JP2004079041A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2004079041A
JP2004079041A JP2002235729A JP2002235729A JP2004079041A JP 2004079041 A JP2004079041 A JP 2004079041A JP 2002235729 A JP2002235729 A JP 2002235729A JP 2002235729 A JP2002235729 A JP 2002235729A JP 2004079041 A JP2004079041 A JP 2004079041A
Authority
JP
Japan
Prior art keywords
data
read
circuit
signal
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002235729A
Other languages
English (en)
Inventor
Mitsunori Tsujino
辻野 光紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2002235729A priority Critical patent/JP2004079041A/ja
Publication of JP2004079041A publication Critical patent/JP2004079041A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Dram (AREA)

Abstract

【課題】動作モードに応じて、取扱うことの可能なビット単位を可変に設定可能な半導体記憶装置において、データ記憶の信頼性向上を図る。
【解決手段】L個(L:2以上の自然数)ずつの複数のグループに分割された複数のメモリセルを備え、複数のグループは、第1のアドレスに応じて1つが選択され、複数のグループの各々において、L個のメモリセルは、第2のアドレスに応じて選択可能であり、この選択されたL個のメモリセルのうち複数のメモリセルに、動作モードに応じて、同一のデータを書き込み、かつ、複数のメモリセルから同一のデータを並列に読み出す。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、動作モードに応じて、取扱うことの可能なビット単位を可変に設定可能な半導体記憶装置に関する。
【0002】
【従来の技術】
現在、通信機器のようにデータの信頼性が極めて重要となる分野では、データを8ビット単位で扱う場合、1ビットのパリティビットが付加され9ビット単位でデータを扱う。一方、従来のメモリ(例えば、DRAM(dynamic random−access memory))は、データを4の整数倍の単位で使用するのが一般的であった。
【0003】
従来のDRAMでは、例えば、128M(64M×2)ビットのメモリで、9ビット単位のデータをそれぞれ共通のアドレス空間で記憶するためには、128M(64M×2)ビットのメモリごとにパリティビット専用のメモリとして64Mビットのメモリが1つ必要であった。すなわち、同じアドレス空間で、4ビット単位で記憶できる64Mビットのメモリを2つ使用することで、8ビットのデータが記憶でき、1ビットのパリティビットを付加するのに最小で4ビット単位のデータを記憶できる64Mビットのメモリがさらに1つ必要であった。しかし、パリティビットとして使用される64Mビットのメモリは、4ビットのうち3ビットは使用されずに無駄になっていた。また、従来のDRAMにおいて、9ビットのデータを記憶する際、メモリ容量を256M(64M×4)ビットおよび512M(64M×8)ビットと増やすと、パリティビット専用のメモリとして、2および4つの64Mビットのメモリがそれぞれ必要であった。つまり、メモリ容量が増大すれば、メモリセルの未使用領域が多いパリティビット専用のメモリが、複数個必要となっていた。
【0004】
これに対して、パーシャルメモリと呼ばれる、取扱うことの可能なビット単位を可変に設定可能な半導体記憶装置が開発されている。パーシャルメモリでは、複数のメモリセルを複数個(一般的には4の倍数)ずつのグループに分割し、当該グループの各々において、一部のメモリセルのみがデータ記憶を実行する動作モードが備えられている。
【0005】
例えば、パーシャルメモリでは、複数のメモリセルを4個ずつのグループに分割し、かつ、各グループにおいて、動作モードの設定に応じて1,2または4ビットのデータを記憶できる。
【0006】
したがって、このようなパーシャルメモリを用いれば、9ビット単位のデータを扱う場合、128、256および512Mビットのメモリを使用する場合、扱うビット単位を1、2または4ビットと切替えることで、従来のパリティビットとして使用されるDRAMのように未使用領域を、無駄にすることなく、有効に活用でき、パリティビット専用のメモリとして1つで対応可能である。
【0007】
図6は、パーシャルメモリである半導体記憶装置の構成図である。図6に示すように半導体記憶装置202は、デコーダ回路1と、ブロック制御回路3と、AND回路4と、AND回路5と、データ読み出し回路16と、データ書き込み回路17と、データ出力バッファ6と、データ入力バッファ7と、イコライザ12と、スイッチ13と、イコライザ14と、メモリセルアレイ15とを備える。
【0008】
半導体記憶装置202でのアドレス選択は、一例として、ロウアドレスRA<0>〜RA<9>およびコラムアドレスCA<0>〜CA<9>によって実行されるものとする。後程、詳細に説明するように、メモリセルアレイ15に行列配置された複数のメモリセルは、たとえば4個ずつの複数のグループに分割される。
【0009】
ロウアドレスRA<0>〜RA<9>とコラムアドレスの一部CA<0>〜CA<7>との組み合わせによって、複数のグループのうちの1つが選択される。CA<8>、CA<9>は、各グループにおいて、4個のメモリセルのうちの1つの選択を行なうために用いられる。
【0010】
なお、以下においては、当該コラムアドレスCA<8>、CA<9>をアドレス信号CA8,CA9とも称する。
【0011】
以下においては、各グループにおいて、4つのメモリセルのうちの1つを用いて、1ビットのデータ記憶を行なう動作モードを「モード#1」、4つのメモリセルのうちの2つを用いて、2ビットのデータ記憶を行なう動作モードを「モード#2」、4つのメモリセル全てを用いて、4ビットのデータ記憶を行なう動作モードを「モード#3」とそれぞれ称することとする。すなわち、モード#1および#2では、各グループにおいて、Lビット未満のデータが記憶される。
【0012】
デコーダ回路1は、アドレス信号CA8およびCA9のH,Lレベル(以下、本明細書においては、信号、信号線等の2値的な高電圧検出および低電圧検出をそれぞれ「Hレベル」および「Lレベル」と表記する。)の組み合わせに応じて、出力信号AYEM<0:3>のうちの1つをHレベルに設定する。
【0013】
ここで、AYEM<0:3>は、AYEM<0>〜AYEM<3>を総括的に表記したものである。なお、以下、本明細書においては、複数ビットの信号を総括的に示す場合には、同様の表記を用いるものとする。
【0014】
また、デコーダ回路1は、半導体記憶装置202をアドレス信号CA8およびCA9のH,Lレベルの組み合わせにより、モード#1、#2および#3のいずれかに切替える機能を有する。
【0015】
ブロック制御回路3は、バンク選択信号YBAに応答して活性化され、信号AYEM<0:3>にそれぞれ対応する信号BS<0:3>の1つをHレベルに設定する。
【0016】
AND回路4は、信号BS<0:3>にそれぞれ対応して設けられる4個のAND回路を総括的に表記したものである。すなわち、AND回路4の出力する信号PAE<0:3>は、信号BS<0:3>とデータ読み出し時に入力される信号PAとの論理積によって決まる。
【0017】
AND回路5は、信号BS<0:3>にそれぞれ対応して設けられる4個のAND回路を総括的に表記したものである。すなわち、AND回路5の出力する信号ZWDE<0:3>は、信号BS<0:3>とデータ書き込み時に入力される信号WDEMとの論理積によって決まる。
【0018】
データ読み出し回路16は、アンプ9とバッファ8とを含む。アンプ9は、信号PAE<0:3>にそれぞれ対応して設けられる4個のアンプを総括的に表記したものである。アンプ9は、Hレベルの信号PAE<0:3>に応答してそれぞれ活性化され、イコライザ12からの出力信号MIO<0:3>を増幅し、信号PD<0:3>としてそれぞれ出力する。バッファ8は、信号PD<0:3>を、1つの信号DB<0>として出力する。
【0019】
データ書き込み回路17は、アンプ10とドライバ11とを含む。アンプ10は、信号ZWDE<0:3>にそれぞれ対応して設けられる4個のアンプを総括的に表記したものである。アンプ10は、Hレベルの信号ZWDE<0:3>に応答してそれぞれ活性化され、データ出力バッファからの信号DB<0>を各々増幅して、ドライバ11に出力する。ドライバ11は、4つのアンプ10にそれぞれ対応して設けられる4個のドライバを総括的に表記したものである。ドライバ11は、アンプ10からの出力信号を所定の電圧レベルまで下げる機能を有し、信号MIO<0:3>として出力する。
【0020】
データ出力バッファ6は、データ読み出し時、信号RDETGに応答して、活性化され、信号DB<0>をDQ0に出力する。データ入力バッファ7は、データ書き込み時、信号WDRVGに応答して活性化され、DQ0から入力された書き込みデータを信号DB<0>として出力する。
【0021】
イコライザ12は、信号MIO<0:3>にそれぞれ対応して設けられる4個のイコライザを総括的に表記したものである。イコライザ12は、データ読み出し時またはデータ書き込み時以外のときに、信号MIO<0:3>を伝達するデータ線対をそれぞれショートさせ、データ線対の電位を同電位にする機能を有する。また、イコライザ12は、データ読み出し時またはデータ書き込み時は、信号EQCに応答して、信号MIO<0:3>を伝達するデータ線対を互いに相補のデータを伝達するよう動作する。
【0022】
イコライザ14は、信号LIO<0:3>にそれぞれ対応して設けられる4個のイコライザを総括的に表記したものである。イコライザ14は、信号LIO<0:3>を伝達するデータ線対に対して、イコライザ12と同様な動作をするので詳細な説明は繰り返さない。
【0023】
スイッチ13は、4つのイコライザ12および14の間にそれぞれ4つ、並列に設けられる。スイッチ13は、データ読み出し時またはデータ書き込み時に、スイッチ制御信号SWCに応答して、イコライザ12とイコライザ14とをそれぞれ電気的に結合する。
【0024】
図7は、メモリセルアレイ15において、行列配置された複数のメモリセルのうち、一例として4つのメモリセルを含む複数のメモリセルグループのうち、ロウアドレスRA<0>〜<9>およびコラムアドレスCA<0>〜<7>により選択される1つのメモリセルグループ150を示した図である。メモリセルアレイ15内には、メモリセルグループ150と同様な構成のメモリセルグループが上下左右に複数個存在し、複数個の当該メモリセルグループは、信号LIO<0:4>をそれぞれ伝達する複数のデータ線対を共有するように配置されている。メモリセルグループ150は、メモリセル130,131,132および133を含む。メモリセル130,131,132および133は、NチャネルMOSトランジスタ111,115,119および123と、センスアンプ回路112,116,120および124と、NチャネルMOSトランジスタ113,117,121および125と、コンデンサ114,118,122および126とをそれぞれ有する。
【0025】
コンデンサ114と、NチャネルMOSトランジスタ113と、センスアンプ回路112と、NチャネルMOSトランジスタ111とは、セルプレート電圧VCPと信号LIO<0>を伝達するデータ線対との間に直列に接続される。NチャネルMOSトランジスタ113および111のゲートは、ワード線WLおよびビット線CSLにそれぞれ接続される。
【0026】
コンデンサ118と、NチャネルMOSトランジスタ117と、センスアンプ回路116と、NチャネルMOSトランジスタ115とは、セルプレート電圧VCPと信号LIO<1>を伝達するデータ線対との間に直列に接続される。NチャネルMOSトランジスタ117および115のゲートは、ワード線WLおよびビット線CSLにそれぞれ接続される。
【0027】
コンデンサ122と、NチャネルMOSトランジスタ121と、センスアンプ回路120と、NチャネルMOSトランジスタ119とは、セルプレート電圧VCPと信号LIO<2>を伝達するデータ線対との間に直列に接続される。NチャネルMOSトランジスタ121および119のゲートは、ワード線WLおよびビット線CSLにそれぞれ接続される。
【0028】
コンデンサ126と、NチャネルMOSトランジスタ125と、センスアンプ124と、NチャネルMOSトランジスタ123とは、セルプレート電圧VCPと信号LIO<3>を伝達するデータ線対との間に直列に接続される。NチャネルMOSトランジスタ125および123のゲートは、ワード線WLおよびビット線CSLにそれぞれ接続される。
【0029】
図8は、図6の半導体記憶装置202において、アンプ9と、アンプ10と、ドライバ11と、イコライザ12と、スイッチ13と、イコライザ14との接続関係を詳細に示した図である。
【0030】
信号PD<0:3>を伝達するデータ線対と信号LIO<0:3>を伝達するデータ線対との間には、アンプ9a,9b,9cおよび9dと、イコライザ12a,12b,12cおよび12dと、スイッチ13a,13b,13cおよび13dと、イコライザ14a,14b,14cおよび14dとがそれぞれ直列に接続される。
【0031】
信号DB<0>を伝達するデータ線対には、アンプ10a,10b,10cおよび10dが各々接続される。アンプ10a,10b,10cおよび10dとイコライザ12a,12b,12cおよび12dとの間には、ドライバ11a,11b,11cおよび11dがそれぞれ設けられる。
【0032】
アンプ9a,9b,9cおよび9dと、アンプ10a,10b,10cおよび10dと、ドライバ11a,11b,11cおよび11dと、イコライザ12a,12b,12cおよび12dと、スイッチ13a,13b,13cおよび13dと、イコライザ14a,14b,14cおよび14dとはそれぞれ、アンプ9と、アンプ10と、ドライバ11と、イコライザ12と、スイッチ13と、イコライザ14と同様な機能を有するので詳細な説明は繰り返さない。
【0033】
図9は、バッファ8の内部構成を示した図である。
バッファ8は、PチャネルMOSトランジスタ59と、NチャネルMOSトランジスタ55,56,57,58および60と、電源電圧Vccと接地電圧GNDとの間に直列に接続されたPチャネルMOSトランジスタ50およびNチャネルMOSトランジスタ51と、PチャネルMOSトランジスタ79と、NチャネルMOSトランジスタ75,76,77,78および80と、電源電圧Vccと接地電圧GNDとの間に直列に接続されたPチャネルMOSトランジスタ70およびNチャネルMOSトランジスタ71と、ノードN2の電圧レベルを反転してNチャネルMOSトランジスタ51のゲートに出力する反転回路52と、ノードN1の電圧レベルを反転してNチャネルMOSトランジスタ71のゲートに出力する反転回路72とを含む。
【0034】
PチャネルMOSトランジスタ59は、電源電圧VccとノードN1との間に設けられる。NチャネルMOSトランジスタ55,56,57および58は、ノードN1とノードN3との間にそれぞれ並列に接続される。NチャネルMOSトランジスタ60は、ノードN3と接地電圧GNDとの間に設けられる。NチャネルMOSトランジスタ60のゲートには、電源電圧Vccが供給される。PチャネルMOSトランジスタ50のゲートには、ノードN1が接続される。NチャネルMOSトランジスタ58,57,56および55のゲートには、信号PD<0:3>がそれぞれ入力される。
【0035】
PチャネルMOSトランジスタ79は、電源電圧VccとノードN2との間に設けられる。NチャネルMOSトランジスタ75,76,77および78は、ノードN2とノードN4との間にそれぞれ並列に接続される。NチャネルMOSトランジスタ80は、ノードN4と接地電圧GNDとの間に設けられる。NチャネルMOSトランジスタ80のゲートには、電源電圧Vccが供給される。PチャネルMOSトランジスタ70のゲートには、ノードN2が接続される。NチャネルMOSトランジスタ78,77,76および75のゲートには、信号PD<0:3>の相補な信号である信号ZPD<0:3>がそれぞれ入力される。
【0036】
次に、図6,7,8および9を用いて、データ読み出し時およびデータ書き込み時の半導体記憶装置202の動作の一例を説明する。
【0037】
まず、モード#1における、データ読み出し時の半導体記憶装置202の動作を説明する。一例として、メモリセル130内のコンデンサ114に記憶されているHレベルのデータを読み出すとする。
【0038】
デコーダ回路1は、信号CA8およびCA9に関わらず、信号AYEM<1:3>をLレベルに設定し、信号AYEM<0>のみをHレベルに設定する。ブロック制御回路3は、バンク選択信号YBAが入力されると活性化され、信号BS<1:3>をLレベルに設定し、信号AYEM<0>に対応する信号BS<0>のみをHレベルに設定する。AND回路4は、データ読み出し時に入力される信号PAに応答して、信号PAE<1:3>をLレベルに設定し、信号BS<0>に対応する信号PAE<0>のみをHレベルに設定する。
【0039】
次に、ワード線WLおよびビット線CSLが選択され、メモリセル130,131,132および133内のコンデンサ114,118,122および126の保持データが信号LIO<0:3>として、それぞれ出力される。
【0040】
信号LIO<0:3>は、イコライザ14a,14b,14cおよび14dと、イコライザ12a,12b,12cおよび12dを経由して、アンプ9a,9b,9cおよび9dに入力される。
【0041】
アンプ9a,9b,9cおよび9dのうち、Hレベルの信号PAE<0>に応答して、アンプ9aのみが活性化される。すなわち、アンプ9a,9b,9cおよび9dのうちの1つを活性化制御することにより、4つのメモリセルのうちの1つのデータを読み出すことができる。そのため、イコライザ12aからの出力信号MIO<0>は、アンプ9aにより増幅され、信号PD<0>がHレベルに設定される。そして、バッファ8内のNチャネルMOSトランジスタ58はオンし、ノードN1はLレベルとなる。その結果、出力DB<0>はHレベルとなる。
【0042】
一方、信号ZPD<0>は、信号PD<0>の相補な信号なのでLレベルに設定される。したがって、PチャネルMOSトランジスタ70はオフのままである。また、データ読み出し時、PチャネルMOSトランジスタ79はオンするので、ノードN2はHレベルに設定される。また、ノードN1はLレベルであるので、反転回路72によりNチャネルMOSトランジスタ71がオンされ、信号ZDB<0>はLレベルに設定される。そして、バッファ8の出力信号DB<0>は、データ出力バッファ6を経由してDQ0に出力される。
【0043】
次に、モード#2およびモード#3における、データ読み出し時の半導体記憶装置202の動作を説明する。モード#2の場合は、メモリセル130および132内のコンデンサの保持データを読み出す。デコード回路1は、信号CA9に関わらず、信号CA8のH、Lレベルにより、信号AYEM<1:3>をLレベルに設定し、信号AYEM<0>のみをHレベルに設定する。そのため、モード#1と同様な動作を行ない、アンプ9aのみが活性化され、2つのメモリセル内の1つのデータが選択され、メモリセルのデータが読み出される。モード#3の場合は、メモリセル130,131,132および133内のコンデンサの保持データを読み出す。デコード回路1は、信号CA8およびCA9のH、Lレベルの組み合わせにより、信号AYEM<0:3>の1つのみをHレベルに設定する。その結果、モード#1と同様な動作によって、4つのうちの1つのメモリセルが選択されデータが読み出される。
【0044】
次に、モード#1における、データ書き込み時の半導体記憶装置202の動作を説明する。一例として、Hレベルのデータをメモリセル130内のコンデンサ114に記憶させるとする。
【0045】
デコーダ回路1は、信号CA8およびCA9に関わらず、信号AYEM<1:3>をLレベルに設定し、信号AYEM<0>のみをHレベルに設定する。ブロック制御回路3は、バンク選択信号YBAが入力されると活性化され、信号BS<1:3>をLレベルに設定し、信号AYEM<0>に対応する信号BS<0>のみをHレベルに設定する。AND回路5は、データ書き込み時に入力される信号WDEMに応答して、信号ZWDE<1:3>をLレベルに設定し、信号BS<0>に対応する信号PAE<0>のみをHレベルに設定する。
【0046】
DQ0から入力されたHレベルのデータは、データ入力バッファ6を経由して、信号DB<0>としてアンプ10a,10b,10cおよび10dのすべてに入力される。
【0047】
Hレベルの信号ZWDE<0>に応答して、アンプ10a,10b,10cおよび10dのうち、アンプ10aのみが活性化される。すなわち、10a,10b,10cおよび10dのうちの1つを活性化制御することにより、4つのメモリセルのうちの1つにデータを書き込むことができる。したがって、信号DB<0>は、アンプ10aで増幅され、ドライバ11a,イコライザ12a,イコライザ14aを経由して、信号LIO<0>はHレベルに設定される。
【0048】
次に、ワード線WLおよびビット線CSLが選択され、信号LIO<0>に接続されている、メモリセル130内のコンデンサ114が充電され、Hレベルのデータが記憶されたことになる。
【0049】
次に、モード#2およびモード#3における、データ書き込みの半導体記憶装置202の動作を説明する。モード#2の場合は、メモリセル130および132内のコンデンサにデータを書き込む。デコード回路1は、信号CA9に関わらず、信号CA8のH、Lレベルにより、信号AYEM<1:3>をLレベルに設定し、信号AYEM<0>のみをHレベルに設定する。そのため、モード#1と同様な動作を行ない、アンプ10aのみが活性化され、2つのメモリセル内の1つのメモリセルが選択され、メモリセルにデータが書き込まれる。モード#3の場合は、メモリセル130,131,132および133内のコンデンサにデータを書きこむ。デコード回路1は、信号CA8およびCA9のH、Lレベルの組み合わせにより、信号AYEM<0:3>の1つのみをHレベルに設定する。その結果、モード#1と同様な動作によって、4つのうちの1つのメモリセルが選択されデータが書き込まれる。
【0050】
【発明が解決しようとする課題】
パーシャルメモリである従来の半導体記憶装置202においては、モード#3の時は、各グループにおいて、4つのメモリセル、すなわち、全メモリセルを使用して、データ記憶を実行しているが、モード#1またはBの時は、一部のメモリセルしかデータ記憶に用いられておらず、残りのメモリセルが使用されていなかった。
【0051】
この発明は、この様な問題点を解決するためになされたものであって、この発明の目的は、いわゆる、パーシャルメモリで構成された半導体記憶装置において、当該動作モードにおけるデータ記憶の信頼性向上を図ることである。
【0052】
【課題を解決するための手段】
請求項1に記載の半導体記憶装置は、第1および第2のアドレスを含むアドレス信号によってアドレス選択を実行する半導体記憶装置であって、L個(L:2以上の自然数)ずつの複数のグループに分割された複数のメモリセルを備え、複数のグループは、第1のアドレスに応じて1つが選択され、複数のグループの各々において、L個のメモリセルは、第2のアドレスに応じて1つが選択可能であり、第1のアドレスによって選択されたグループに属するL個のメモリセルに対し、データ読み出しを制御するデータ読み出し回路と、第1のアドレスによって選択されたグループに属するL個のメモリセルに対し、データ書き込みを制御するデータ書き込み回路と、複数のグループの各々がLビット未満のデータを記憶する動作モードにおいて、選択されたグループに属する前記L個のメモリセルのうちの複数のメモリセルが同一の書き込みデータを同時に書き込まれ、かつ、並列にデータ読み出しの対象とされるようにデータ読み出し回路およびデータ書き込み回路の動作を制御するモード切替回路とをさらに備える。
【0053】
請求項2に記載の半導体記憶装置は、請求項1に記載の半導体記憶装置において、選択されたグループに属するL個のメモリセルとの間でデータを授受するL本のデータ線をさらに備え、データ読み出し回路およびデータ書き込み回路は、複数のグループにそれぞれ対応して複数個設けられ、データ読み出し回路は、L本のデータ線に読み出されたデータをそれぞれ増幅するL個の読み出しユニットと、L個の読み出しユニットから入力された1つ以上のデータを1つのデータとして出力するデータ出力回路とを含み、データ書き込み回路は、L本のデータ線にそれぞれ書き込みデータを伝達するL個の書き込みユニットを含み、モード切替回路は、動作モードを示す情報と第2のアドレスとに応じて、データ読み出し時およびデータ書き込み時のそれぞれにおいて、L個の読み出しユニットおよびL個の書き込みユニットの活性化をそれぞれ制御する。
【0054】
請求項3に記載の半導体記憶装置は、請求項1に記載の半導体記憶装置において、複数のグループの各々は、動作モードに対応して可変に設定可能なM(M:Lの約数である自然数)ビットのデータを記憶する。
【0055】
請求項4に記載の半導体記憶装置は、請求項3に記載の半導体記憶装置において、モード切替回路は、各動作モードにおいて、データ読み出し時およびデータ書き込み時のそれぞれにおいて、(L/M)個の読み出しユニットおよび(L/M)個の書き込みユニットを並列に活性化させる。
【0056】
請求項5に記載の半導体記憶装置は、請求項1に記載の半導体記憶装置において、データ読み出し時に、選択されたグループからの読み出しデータを伝達する第1および第2の読み出しデータ線をさらに備え、データ出力回路は、L個の読み出しユニットからの出力データに応じて、第1の読み出しデータ線の電圧を駆動する第1の駆動ユニットと、反転された出力データに応じて、第2の読み出しデータ線の電圧を駆動する第2の駆動ユニットと、第1および第2の読み出しデータ線の電圧に基づいて、第1および第2の読み出しデータ線を互いに相補な電圧レベルへ設定するデータ線電圧制御部とを含む。
【0057】
請求項6に記載の半導体記憶装置は、請求項1に記載の半導体記憶装置において、データ読み出し時に、選択されたグループからの読み出しデータを伝達する互いに相補な第1および第2の読み出しデータ線をさらに備え、データ出力回路は、L個の読み出しユニットからの出力データの多数決処理に応じて、第1の読み出しデータ線の電圧を駆動する第1の駆動ユニットと、反転された出力データの多数決処理に応じて、第2の読み出しデータ線の電圧を駆動する第2の駆動ユニットとを含む。
【0058】
【発明の実施の形態】
以下において、本発明の実施の形態について、図面を参照しながら説明する。なお、図中同一符号は同一または相当部分を示す。
【0059】
[実施の形態1]
図1は、本発明の実施の形態1に従う半導体記憶装置201の構成図である。
【0060】
図1を参照して、実施の形態1に従う半導体記憶装置201は、図6に示した従来の半導体記憶装置202と比較して、デコーダ回路1とブロック制御回路3との間にモード切替回路2をさらに備える点と、ブロック制御回路3に、モード切替回路2からの出力信号であるAYEM’<0:3>が入力されている点とが異なる。半導体記憶装置201は、半導体記憶装置202で使用されているメモリセルアレイ15(図7参照)を同様に使用している。メモリセルアレイ15は、L(L:2以上の自然数)個ずつの複数のグループに分割された複数のメモリセルを備える。また、半導体記憶装置202内のAND回路4およびAND回路5は、読み出しユニットとして動作するアンプ9a,9b,9cおよび9dのうちの(L/M)個と、書き込みユニットとして動作するアンプ10a,10b,10c,および10dのうちの(L/M)個とをそれぞれ活性化させる機能を有する。それ以外の構成は、図6に示した半導体記憶装置202と同じであるので詳細な説明は繰り返さない。
【0061】
図2は、モード切替回路2の内部の詳細な構成図である。
モード切替回路2は、NOR回路21と、AND回路22および23と、NAND回路30,31,32および33と、OR回路27,28および29と、反転回路24,25,34,35,36および37と、スイッチ26,38,39および40とを含む。反転回路34,35,36および37は、データの読み出しまたは書き込み時のタイミングを合わせるバッファとしての機能を有する。
【0062】
モード#1のとき、モード切替回路2は、信号ms0およびms1のH,Lレベルの組み合わせにより、従来使用されていなかった3つのメモリセルも使用し、4つのメモリセル130,131,132および133すべてに対し、同一のデータを読み出しまたは書き込みするように入力信号AYEM<0:3>をAYEM’<0:3>として出力する。
【0063】
モード#2のとき、モード切替回路2は、信号ms0およびms1のH,Lレベルの組み合わせにより、従来使用されていなかった2つのメモリセルも使用し、4つのメモリセル130,131,132および133のうちの2つのメモリセルの組み合わせに対し、同一のデータをそれぞれ読み出しまたは書き込みするように入力信号AYEM<0:3>をAYEM’<0:3>として出力する。
【0064】
モード#3のとき、モード切替回路2は、信号ms0およびms1のH,Lレベルの組み合わせにより、4つのメモリセル130,131,132および133すべてに対し、それぞれ別々のデータを従来のモードと同様それぞれ読み出しまたは書き込みするように入力信号AYEM<0:3>をAYEM’<0:3>として出力する。
【0065】
すなわち、信号ms0およびms1は、モード#1,モード#2またはモード#3において、読み出しまたは書き込みするメモリセルの数を切替える信号である。以上により、半導体記憶装置201は、動作モードに対応して、可変に設定可能なMビットのデータを記憶することができる。
【0066】
NOR回路21は、モード#1の時、Lレベルの信号ms0およびms1が入力され、出力をHレベルに設定する。信号AYEM<0:3>が入力されるOR回路27は4つある。OR回路27は、信号AYEM<0:3>のうちの少なくとも1つがHレベルであれば出力をHレベルに設定する。NAND回路30と反転回路34は、4つあるOR回路27にそれぞれ対応して設けられる4つのNAND回路および反転回路を総括的に表記したものである。NAND回路30は、NOR回路21およびOR回路27の出力がHレベルであれば、出力をLレベルに設定する。
【0067】
反転回路34は、NAND回路30の出力レベルを反転させて出力する。スイッチ38は、NOR回路21の出力がHレベルになると、4つある反転回路34からの入力信号を信号AYEM’<0:3>として出力する。したがって、NOR回路21の出力がHレベルになり、信号CA8およびCA9に関わらず、信号AYEM<0:3>のうち1つがHレベルになると、信号AYEM’<0:3>が全てHレベルとなる。
【0068】
AND回路22は、モード#2の時、Hレベルの信号ms0とLレベルの信号ms1を反転させる反転回路24を介して入力される信号とが入力され、出力をHレベルに設定する。スイッチ26は、通常AND回路22の出力をNAND回路31および32に出力するようになっているが、データの誤読み出しが生じるような場合には、AND回路22の出力をNAND回路23に出力するように切替えることができる。
【0069】
信号AYEM<0:1>および信号AYEM<2:3>がそれぞれ入力されるOR回路28および29は、信号AYEM<0:1>および信号AYEM<2:3>にそれぞれ対応する2つのOR回路を総括的に表記したものである。NAND回路31および32と、反転回路35および36とは、それぞれ2つあるOR回路28および29にそれぞれ対応する2つのNAND回路および反転回路を総括的に表記したものである。OR回路28は、信号AYEM<0:1>のうちの1つがHレベルであれば出力をHレベルに設定する。OR回路29は、信号AYEM<2:3>のうちの1つがHレベルであれば出力をHレベルに設定する。NAND回路31は、スイッチ26およびOR回路28の出力がHレベルであれば、出力をLレベルに設定する。NAND回路32は、スイッチ26およびOR回路29の出力がHレベルであれば、出力をLレベルに設定する。反転回路35および36は、NAND回路31および32の出力レベルを反転させて出力する。
【0070】
スイッチ39は、AND回路22の出力がHレベルになると、2つある反転回路35および2つある反転回路36からの入力信号をそれぞれ信号AYEM’<0:1>および信号AYEM’<2:3>として出力する。したがって、AND回路22の出力がHレベルになり、信号CA9に関わらず、信号CA8のH,Lレベルにより、信号AYEM<0:1>のうち1つでもHレベルになると、信号AYEM’<0:1>が全てHレベルとなる。一方、信号AYEM’<2:3>は全てLレベルである。
【0071】
同様に、信号AYEM<2:3>のうち1つでもHレベルになると、信号AYEM’<2:3>が全てHレベルとなる。一方、信号AYEM’<0:1>は全てLレベルである。
【0072】
AND回路23は、モード#3の時、Lレベルの信号ms0を反転させる反転回路25を介して入力される信号とHレベルの信号ms1とが入力され、出力をHレベルに設定する。NAND回路33と反転回路37は、信号AYEM<0:3>にそれぞれ対応する2つのNAND回路および反転回路を総括的に表記したものである。NAND回路33は、AND回路23またはスイッチ26の出力がHレベルであり、かつ信号AYEM<0:3>のうちの1つがHレベルの時、Hレベルの信号AYEM<0:3>に対応するNAND回路33は、出力をLレベルに設定する。
【0073】
反転回路37は、NAND回路33の出力レベルを反転させて出力する。スイッチ38は、AND回路23またはスイッチ26の出力がHレベルになると、4つある反転回路37からの入力信号を信号AYEM’<0:3>として出力する。したがって、この場合、モード切替回路2に入力された信号AYEM<0:3>は、そのまま信号AYEM’<0:3>として出力することになる。すなわち、従来と同様に、信号CA8およびCA9により信号AYEM’<0:3>の1つがHレベルとなる。
【0074】
次に、図1、2、7および8を用いて、データ読み出し時およびデータ書き込み時の半導体記憶装置201の動作の一例を説明する。
【0075】
まず、モード#1におけるデータ読み出し時の半導体記憶装置201の動作を説明する。デコーダ回路1からの信号AYEM<0:3>の1つがHレベルに設定されると、モード切替回路2により信号AYEM’<0:3>は全てHレベルに設定される。ブロック制御回路1は、バンク選択信号YBAが入力されると活性化され、信号AYEM’<0:3>に対応する信号BS<0:3>をすべてHレベルに設定する。AND回路4は、データ読み出し時に入力される信号PAに応答して、信号BS<0:3>に対応する信号PAE<0:3>をすべてHレベルに設定する。
【0076】
次に、ワード線WLおよびビット線CSLが選択され、メモリセル130,131,132および133内のコンデンサ114,119,122および126の保持データが信号LIO<0:3>として、それぞれ出力される。
【0077】
信号LIO<0:3>は、イコライザ14a,14b,14cおよび14dと、イコライザ12a,12b,12cおよび12dを経由して、アンプ9a,9b,9cおよび9dに入力される。
【0078】
Hレベルの信号PAE<0:3>により、アンプ9a,9b,9cおよび9dすべてが活性化される。すなわち、アンプ9a,9b,9cおよび9dのうちの4つを同時に活性化制御することにより、4つのメモリセルのうちの4つのデータを読み出すことができる。そのため、イコライザ12a,12b,12cおよび12dからの出力信号MIO<0:3>は、アンプ9a,9b,9cおよび9dにより増幅され、信号PD<0:3>がすべてHレベルに設定される。そして、バッファ8内のNチャネルMOSトランジスタ55,56,57および58はオンし、ノードN1はLレベルとなる。その結果、出力DB<0>はHレベルとなる。
【0079】
一方、信号ZPD<0:3>は、信号PD<0:3>の相補な信号なのですべてLレベルに設定される。したがって、PチャネルMOSトランジスタ75,76,77および78はすべてオフのままである。また、データ読み出し時、PチャネルMOSトランジスタ79はオンするので、ノードN2はHレベルに設定される。また、ノードN1はLレベルであるので、反転回路72によりNチャネルMOSトランジスタ71がオンされ、信号ZDB<0>はLレベルに設定される。そして、信号DB<0>は、データ出力バッファ6を経由してDQ0に出力される。
【0080】
以上により、半導体記憶装置202のモード#1の読み出し動作においては、4つのメモリセル130,131,132および133のデータは、1度に読み出され、バッファ8aを介して1つのデータとして出力される。
【0081】
次に、モード#1におけるデータ書き込み時の半導体記憶装置201の動作を説明する。デコーダ回路1からの信号AYEM<0:3>の1つがHレベルに設定されると、モード切替回路2により信号AYEM’<0:3>は全てHレベルに設定される。ブロック制御回路1は、信号AYEM’<0:3>に対応する信号BS<0:3>をすべてHレベルに設定する。AND回路5は、データ書き込み時に入力される信号WDEMに応答して、信号BS<0:3>に対応する信号ZWDE<0:3>をすべてHレベルに設定する。
【0082】
DQ0から入力されたHレベルのデータは、データ入力バッファを7を経由して、信号DB<0>としてアンプ10a,10b,10cおよび10dのすべてに入力される。
【0083】
Hレベルの信号ZWDE<0:3>により、アンプ10a,10b,10cおよび10dの全てが活性化される。すなわち、アンプ10a,10b,10cおよび10dのうちの4つを同時に活性化制御することにより、4つのメモリセルのうちの4つにデータを書き込むことができる。したがって、信号DB<0>は、アンプ10a,10b,10cおよび10dで増幅され、ドライバ11a,11b,11cおよび11d、イコライザ12a,12b,12cおよび12d、イコライザ14a,14b,14cおよび14dを経由して、信号LIO<0:3>をすべてHレベルに設定する。
【0084】
次に、ワード線WLおよびビット線CSLが選択され、L本のデータ線のうち、一例として4本のデータ線で伝達される信号LIO<0:3>に対応する、メモリセル130,131,132および133内のコンデンサ114,118,122および126が充電される。その結果、4つのメモリセルすべてにHレベルのデータが書き込まれたことになる。
【0085】
以上により、半導体記憶装置202のモード#1の書き込み動作においては、メモリセル130および131,132および133に同じデータが1度に書き込まれる。
【0086】
次に、モード#2におけるデータ読み出し時の半導体記憶装置201の動作を説明する。まず、モード切替回路2内のAND回路22の出力がHレベルに設定される。信号AYEM<0:1>のいずれかがHレベルであるとき、信号AYEM’<0:1>はHレベルとなる。ブロック制御回路1は、信号AYEM’<0:1>に対応する信号BS<0:1>をHレベルに設定する。AND回路4は、信号PAに応答して、信号BS<0:1>に対応する信号PAE<0:1>をHレベルに設定する。
【0087】
そして、アンプ9a,9b,9cおよび9dのうち、Hレベルの信号PAE<0:1>により、アンプ9aおよび9bが活性化される。そのため、信号PD<0:1>がHレベルに設定される。その結果、信号DB<0>はHレベルとなる。信号ZDB<0>に関しては、モード#1の時と同様な動作でLレベルに設定されるので詳細な説明は繰り返さない。
【0088】
そして、信号DB<0>は、データ出力バッファ6を経由してDQ0に出力される。
【0089】
次に、モード切替回路2により、信号AYEM<2:3>のいずれかがHレベルであるとき、信号AYEM’<2:3>はHレベルとなる。ブロック制御回路1は、信号AYEM’<2:3>に対応する信号BS<2:3>をHレベルに設定する。AND回路4は、信号PAに応答して、信号BS<2:3>に対応する信号PAE<2:3>をHレベルに設定する。
【0090】
そして、アンプ9a,9b,9cおよび9dのうち、Hレベルの信号PAE<2:3>により、アンプ9aおよび9bが活性化される。そのため、信号PD<2:3>がHレベルに設定される。その結果、信号DB<0>はHレベルとなる。信号ZDB<0>に関しては、モード#1の時と同様な動作でLレベルに設定されるので詳細な説明は繰り返さない。そして、信号DB<0>は、データ出力バッファ6を経由してDQ0に出力される。
【0091】
以上により、半導体記憶装置202のモード#2の読み出し動作においては、4つのメモリセル130,131,132および133のデータは、2度に分けて2つのデータが別個に読み出され、バッファ8aを介して1つのデータとして出力される。
【0092】
次に、モード#2におけるデータ書き込み時の半導体記憶装置201の動作を説明する。モード切替回路2により、信号AYEM<0:1>のうち1つがHレベルに設定されると、信号AYEM’<0:1>はHレベルに設定される。ブロック制御回路1は、信号AYEM’<0:1>に対応する信号BS<0:1>をHレベルに設定する。AND回路5は、データ書き込み時に入力される信号WDEMに応答して、信号BS<0:1>に対応する信号ZWDE<0:1>をHレベルに設定する。
【0093】
DQ0から入力されたHレベルのデータは、データ入力バッファ7を経由して、信号DB<0>としてアンプ10a,10b,10cおよび10dのすべてに入力される。
【0094】
Hレベルの信号ZWDE<0:1>により、アンプ10aおよび10bが活性化される。したがって、信号DB<0>は、アンプ10aおよび10bで増幅され、ドライバ11aおよび11b、イコライザ12aおよび12b、イコライザ14aおよび14bを経由して、信号LIO<0:1>をHレベルに設定する。
【0095】
次に、信号LIO<0:1>に対応するメモリセル130および131内のコンデンサ114および118が充電される。その結果、4つのうち2つのメモリセルにHレベルのデータが書き込まれたことになる。
【0096】
次に、半導体記憶装置201において、4つのメモリセルのうちデータが書き込まれていないメモリセルにデータを書き込む動作を説明する。モード切替回路2により、信号AYEM<2:3>のうち1つがHレベルに設定されると、信号AYEM’<2:3>はHレベルに設定される。以後の動作は、メモリセル130および131にデータを書き込むのと同様なので詳細な説明は繰り返さない。
【0097】
以上により、半導体記憶装置201のモード#2の書き込み動作においては、4つのメモリセルのうち、メモリセル130および131とメモリセル132および133に対して、2度に分けて2つのデータが別個に書き込まれる。
【0098】
モード#3におけるデータ読み出し時および書き込み時の半導体記憶装置201の動作は、従来の半導体記憶装置202と同様なので詳細な説明は繰り返さない。
【0099】
図3は、実施の形態1に従う半導体記憶装置201において、一度メモリセルにデータを書きこんだ後、リフレッシュ動作をせずにメモリセルのデータを連続して読み出したときのモード#1,#2および#3の経過時間に対するデータの誤読み出しの個数(縦軸は対数)を示すグラフである。モード#1は、4つのメモリセルに同じデータを記憶させ、1つのデータに対して、コンデンサのセル容量を実質4倍にしたモードである。モード#2は、2つのメモリセル2組にそれぞれ同じデータを記憶させ、1つのデータに対して、コンデンサのセル容量を実質2倍にしたモードである。モード#3は1つのメモリセルに対して、1つのデータを記憶させるモードである。
【0100】
メモリセルにデータを書き込んでから1(s)経過時のモード#1と#3とを比較すると、モード#1がモード#3よりも誤読み出しの個数が大幅に少ないことが分かる。
【0101】
また、モード#2とモード#3とを比較すると、モード#3に対し、モード#2のデータの誤読み出しの数が10〜20%程度しか改善されていないのが分かる。これは、バッファ8の構成が4つのデータを1つにしてデータを読み出す構成であるためである。すなわち、モード#2では、バッファ8で2つのメモリセルのデータを同時に読み出すとき、1つのメモリセル内のコンデンサにおいて、当該コンデンサの電荷量が本来保持されるべき電荷量よりも少なくなっている現象(以下、本明細書において、データ破壊とも称する)が発生した場合、2つのデータが相補なデータとなってしまう。そのため、ノードN1とN2が共にLレベルとなる。したがって、バッファ8の出力信号DB<0>はLレベルとなり誤読み出しとなってしまうからである。
【0102】
以上説明したように、実施の形態1に従う半導体記憶装置201においては、4つのメモリセルに同じデータを書き込み、1つのデータに対するコンデンサのセル容量が実質4倍となるモード#1では、データ誤読み出しの低減化を図れ、1つのデータに対する信頼性を向上させるという目的を十分に果たせたといえる。
【0103】
[実施の形態2]
図6の従来の半導体記憶装置202は、モード#1,#2および#3のいずれのモードにおいても、1度に1つのメモリセルに対してしか、データの読み出しまたは書き込みができなかった。そのため、データ読み出し時、バッファ8において、NチャネルMOSトランジスタ55,56,57および58のうちの1つと、NチャネルMOSトランジスタ75,76,77および78のうちの1つしか、オンしないため、出力信号DB<0>およびZDB<0>は互いに相補のデータとなっていた。
【0104】
しかし、実施の形態1に従う半導体記憶装置201のように、1度に複数のメモリセルのデータを読み出しまたは書き込みできるような構成にすると、複数のメモリセルのデータ読み出し時に、1つでもメモリセルにデータ破壊が発生した場合、バッファ8において、データの誤読み出しを行なう可能性が生じる。
【0105】
具体的には、半導体記憶装置201において、モード#1のデータ読み出し時、4つのメモリセルのうち131,132および133がHレベルのデータを記憶しており、メモリセル130のみにデータ破壊が発生し、Lレベルのデータを記憶していたとする。そのため、バッファ8に入力される信号PD<0:3>のうち、信号PD<0>のみがLレベルとなり、信号PD<1:3>はHレベルとなる。このとき、NチャネルMOSトランジスタ58はオフのままで、NチャネルMOSトランジスタ55,56および57はオンとなる。
【0106】
一方、信号PD<0:3>の相補のデータである信号ZPD<0:3>は、NチャネルMOSトランジスタ78のみがオンし、NチャネルMOSトランジスタ75,76および77はオフのままである。
【0107】
したがって、読み出した4つのメモリセルすべてにおいてデータ破壊が発生しなければ、ノードN1はLレベル、ノードN2はHレベルになるはずが、十分に時間が経過すると、ノードN2もLレベルになる可能性が生じる。ノードN2がLレベルになると、バッファ8の出力信号DB<0>は、Lレベルとなり、データ誤読み出しとなる。
【0108】
このような問題を解決するために、半導体記憶装置201において、バッファ8に代えて、ノードN1とN2のレベルが常に相補になるような構成のバッファ8aを使用する。
【0109】
図4を参照して、バッファ8aは、バッファ8と比較して、電圧制御回路84をさらに含む点が異なる。それ以外の構成は、図9のバッファ8と同じなので詳細な説明は繰り返さない。
【0110】
電圧制御回路84は、モード#1の時、信号PD<0:3>の1つが、メモリセルのデータ破壊により、レベルが違っても、ノードN1およびN2を常に相補のレベルに維持するような機能を有する。
【0111】
そのため、電圧制御回路84は一例として以下のような構成とする。
電圧制御回路84は、ノードN1に接続されたラッチ回路82と、ノードN2に接続されたラッチ回路83と、ラッチ回路82と83との間に設けられたPチャネルMOSトランジスタ81とを有する。
【0112】
ラッチ回路82は、ノードN1の電圧レベルを反転させた信号をPチャネルMOSトランジスタ81に出力する反転回路53と、PチャネルMOSトランジスタ81からの入力レベルを反転させた出力をノードN1に出力する反転回路54とを有する。ラッチ回路83は、ノードN2の電圧レベルを反転させた信号を出力する反転回路73と、反転回路73から出力される信号のレベルを反転させた信号をノードN2に出力する反転回路74とを有する。
【0113】
PチャネルMOSトランジスタ81は、データ読み出し時、信号RDVによりラッチ回路82とノードN2とを電気的に結合する。
【0114】
次に、バッファ8aの動作を説明する。半導体記憶装置201において、モード#1のデータ読み出し時、4つのメモリセルのうち131,132および133がHレベルのデータを記憶しており、メモリセル130のみデータ破壊が発生し、Lレベルのデータを記憶していたとする。そのため、バッファ8aに入力される信号PD<0:3>のうち、信号PD<0>のみがLレベルとなり、信号PD<1:3>はHレベルとなる。このとき、NチャネルMOSトランジスタ58はオフのままで、NチャネルMOSトランジスタ55,56および57はオンとなる。
【0115】
一方、信号PD<0:3>の相補のデータである信号ZPD<0:3>は、NチャネルMOSトランジスタ78のみがオンし、NチャネルMOSトランジスタ75,76および77はオフのままである。
【0116】
このとき、ノードN1およびN2は、時間が十分に経過すると、両方ともLレベルになるが、ノードN1の方が、オンするNチャネルMOSトランジスタの数が多いので、ノードN2より速くLレベルになる。
【0117】
ノードN1がLレベルになると、反転回路53の機能により、ノードN2はHレベルを維持する。したがって、4つのメモリセルのうち1つのメモリセルにデータ破壊が発生したとしても、バッファ8aは、正しいデータを出力できる。
【0118】
モード#2のデータ読込み時においては、読み出しの対象となる複数のメモリセルのうちの1つのメモリセルにデータ破壊が発生したとする。この場合、2つのデータを同時に読み込むので2つのデータは相補となり、バッファ8aは誤読み出しをしてしまう。
【0119】
モード#3のデータ読込み時においては、読み出しの対象となる複数のメモリセルのうちの1つのメモリセルにデータ破壊が発生したとする。この場合も、バッファ8aは誤読み出しをしてしまう。
【0120】
以上説明したように、実施の形態2に従うバッファ8aの構成においては、半導体記憶装置201のモード#1のみにおいて、4つのメモリセルを同時に読み出した際、1つのメモリセルにデータ破壊が発生したとしても、正常にデータを読み出すことができる。
【0121】
[実施の形態3]
図5は、バッファ8aと同様な機能を有する本発明の実施の形態3に従うバッファ8bの構成図である。
【0122】
図5を参照して、実施の形態3に従うバッファ8aは、NAND回路93,94,95,96,97,98,99,100,101および102と、PチャネルMOSトランジスタ91および92とを含む。
【0123】
NAND回路95,96,97および98は、半導体記憶装置201のモード#1において、4つのメモリセルの読み出し信号PD<0:3>のうちの互いに異なる3つの組み合わせの否定的論理積をそれぞれとる。NAND回路99,100,101および102は、半導体記憶装置201のモード#1において、4つのメモリセルの読み出し信号PD<0:3>の相補の信号ZPD<0:3>のうちの互いに異なる3つの組み合わせの否定的論理積をそれぞれとる。
【0124】
NAND回路93は、NAND回路95,96,97および98の出力の否定的論理積をとる。NAND回路94は、NAND回路99,100,101および102の出力の否定的論理積をとる。
【0125】
PチャネルMOSトランジスタ91および92は、データ読み出し時に入力される信号RDVによりオンされ、NAND回路93および94の出力を信号DB<0>およびZDB<0>としてそれぞれ出力する。
【0126】
次に、バッファ8bの動作を説明する。半導体記憶装置201において、モード#1のデータ読み出し時、実施の形態2と同様に、4つのメモリセルのうち1つのメモリセルにデータ破壊が発生したとする。その結果、信号PD<0>がLレベル、信号PD<1:3>がHレベルであるとすると、信号ZPD<0>はHレベル、信号ZPD<1:3>がLレベルとなる。したがって、NAND回路95,96,97および98の出力は、それぞれH、H、HおよびLレベルとなる。NAND回路99,100,101および102の出力は、それぞれH、H、HおよびHレベルとなる。その結果、NAND回路93の出力であるバッファ8bの出力信号DB<0>はHレベルとなる。また、NAND回路94の出力である、バッファ8bの出力信号ZDB<0>はLレベルとなる。したがって、4つのメモリセルのうち1つのメモリセルにデータ破壊が発生したとしても、バッファ8bは、正しいデータを出力できる。
【0127】
一方、モード#2のデータ読み出し時においては、信号PD<0:3>のうち、2つの信号が入力されない。信号が入力されない端子は、フローティング状態となる。また、モード#3 のデータ読み出し時においては、信号PD<0:3>のうち、3つの信号が入力されない。信号が入力されない端子は、フローティング状態となる。そのため、バッファ8bは、モード#2および#3では使用できない。そのため、モード#2および#3ではバッファ8bの代りに、図4のバッファ8aを用いる必要がある。
【0128】
したがって、半導体装置201において、バッファ8bは、モード#1のときのみ使用可能であるので、モード#2またはモード#3のときは、信号PD<0:3>がバッファ8aに入力されるよう、切替え可能な構成とすれば、すべてのモードに対応できる。
【0129】
以上説明したように、実施の形態3に従うバッファ8bの構成においては、半導体記憶装置201のモード#1のみにおいて、4つのメモリセルを同時に読み出した際、1つのメモリセルにデータ破壊が発生したとしても、正常にデータを読み出すことができる。
【0130】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0131】
【発明の効果】
請求項1〜4に記載の半導体記憶装置は、L個のメモリセルのうちの複数のメモリセルに同一のデータを同時に書き込み、データが書き込まれたメモリセルから並列にデータを読み出すことにより、1つのメモリセルのデータに対するセル容量を増やすことができ、データ記憶の信頼性を向上させることができる。
【0132】
請求項5および6に記載の半導体記憶装置は、請求項1に記載の半導体記憶装置の奏する効果に加えて、さらに、データ記憶の信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の半導体記憶装置の構成図である。
【図2】本発明の半導体記憶装置内のモード切替回路の構成図である。
【図3】本発明の実施の形態1の半導体記憶装置のモードごとの経過時間に対するデータの誤読み出しの数を示す図である。
【図4】データ読み出し時に使用する、本発明の実施の形態2の半導体記憶装置内のバッファの構成図である。
【図5】データ読み出し時に使用する、本発明の実施の形態3の半導体記憶装置内のバッファの構成図である。
【図6】従来の半導体記憶装置の構成図である。
【図7】メモリセルアレイ内部の構成図である。
【図8】選択されたブロックに対する、読み出しまたは書き込みを行なうための回路図の構成図である。
【図9】データ読み出し時に使用する、バッファの構成図である。
【符号の説明】
1 デコーダ回路、2 モード切替回路、3 ブロック制御回路、4,5,22,23 AND回路、30,31,32,33,93,94,95,96,97,98,99,100,101,102 NAND回路、21 NOR回路、27,28,29 OR回路、6 データ出力バッファ、7 データ入力バッファ、8,8a,8b バッファ、9,9a,9b,9c,9d,10a,10b,10c,10d アンプ、11a,11b,11c,11d ドライバ、12,12a,12b,12c,12d,14,14a,14b,14c,14d イコライザ、13,13a,13b,13c,13d,26,38,39,40スイッチ、15 メモリセルアレイ、16 データ読み出し回路、17 データ書き込み回路、50,59,79,70,81,91,92 PチャネルMOSトランジスタ、51,55〜58,60,75〜78,80,111,113,115,117,119,121,123,125 NチャネルMOSトランジスタ、24,25,34,35,36,37,52,53,54,72,73,74 反転回路、82,83 ラッチ回路、84 電圧制御回路、112,116,120,124 センスアンプ回路、114,118,122,126 コンデンサ、130,131,132,133 メモリセル、150 メモリセルグループ、201,202 半導体記憶装置。

Claims (6)

  1. 第1および第2のアドレスを含むアドレス信号によってアドレス選択を実行する半導体記憶装置であって、
    L個(L:2以上の自然数)ずつの複数のグループに分割された複数のメモリセルを備え、
    前記複数のグループは、前記第1のアドレスに応じて1つが選択され、
    前記複数のグループの各々において、L個のメモリセルは、前記第2のアドレスに応じて1つが選択可能であり、
    前記第1のアドレスによって選択されたグループに属する前記L個のメモリセルに対し、データ読み出しを制御するデータ読み出し回路と、
    前記第1のアドレスによって前記選択されたグループに属する前記L個のメモリセルに対し、データ書き込みを制御するデータ書き込み回路と、
    前記複数のグループの各々がLビット未満のデータを記憶する動作モードにおいて、前記選択されたグループに属する前記L個のメモリセルのうちの複数のメモリセルに同一の書き込みデータが並列して書き込まれ、かつ、並列にデータ読み出しの対象とされるように前記データ読み出し回路および前記データ書き込み回路の動作を制御するモード切替回路とをさらに備える、半導体記憶装置。
  2. 前記選択されたグループに属するL個のメモリセルとの間でデータを授受するL本のデータ線をさらに備え、
    前記データ読み出し回路および前記データ書き込み回路は、前記複数のグループにそれぞれ対応して複数個設けられ、
    前記データ読み出し回路は、
    前記L本のデータ線に読み出されたデータをそれぞれ増幅するL個の読み出しユニットと、
    前記L個の読み出しユニットから入力された1つ以上のデータを1つのデータとして出力するデータ出力回路とを含み、
    前記データ書き込み回路は、
    前記L本のデータ線にそれぞれ書き込みデータを伝達するL個の書き込みユニットを含み、
    前記モード切替回路は、前記動作モードを示す情報と前記第2のアドレスとに応じて、データ読み出し時およびデータ書き込み時のそれぞれにおいて、前記L個の読み出しユニットおよび前記L個の書き込みユニットの活性化をそれぞれ制御する、請求項1に記載の半導体記憶装置。
  3. 前記複数のグループの各々は、前記動作モードに対応して可変に設定可能なM(M:Lの約数である自然数)ビットのデータを記憶する、請求項1に記載の半導体記憶装置。
  4. 前記モード切替回路は、各前記動作モードにおいて、前記データ読み出し時およびデータ書き込み時のそれぞれにおいて、(L/M)個の前記読み出しユニットおよび(L/M)個の前記書き込みユニットを並列に活性化させる、請求項3に記載の半導体記憶装置。
  5. 前記データ読み出し時に、前記選択されたグループからの読み出しデータを伝達する第1および第2の読み出しデータ線をさらに備え、
    前記データ出力回路は、
    前記L個の読み出しユニットからの出力データに応じて、前記第1の読み出しデータ線の電圧を駆動する第1の駆動ユニットと、
    反転された前記出力データに応じて、前記第2の読み出しデータ線の電圧を駆動する第2の駆動ユニットと、
    前記第1および第2の読み出しデータ線の電圧に基づいて、前記第1および第2の読み出しデータ線を互いに相補な電圧レベルへ設定するデータ線電圧制御部とを含む、請求項1に記載の半導体記憶装置。
  6. 前記データ読み出し時に、前記選択されたグループからの読み出しデータを伝達する互いに相補な第1および第2の読み出しデータ線をさらに備え、
    前記データ出力回路は、
    前記L個の読み出しユニットからの出力データの多数決処理に応じて、前記第1の読み出しデータ線の電圧を駆動する第1の駆動ユニットと、
    反転された前記出力データの多数決処理に応じて、前記第2の読み出しデータ線の電圧を駆動する第2の駆動ユニットとを含む、請求項1に記載の半導体記憶装置。
JP2002235729A 2002-08-13 2002-08-13 半導体記憶装置 Withdrawn JP2004079041A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235729A JP2004079041A (ja) 2002-08-13 2002-08-13 半導体記憶装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235729A JP2004079041A (ja) 2002-08-13 2002-08-13 半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2004079041A true JP2004079041A (ja) 2004-03-11

Family

ID=32020138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235729A Withdrawn JP2004079041A (ja) 2002-08-13 2002-08-13 半導体記憶装置

Country Status (1)

Country Link
JP (1) JP2004079041A (ja)

Similar Documents

Publication Publication Date Title
US8873307B2 (en) Semiconductor device
US9548101B2 (en) Retention optimized memory device using predictive data inversion
US7130211B2 (en) Interleave control device using nonvolatile ferroelectric memory
KR20000031149A (ko) 비휘발성 강유전체 메모리장치
US7283420B2 (en) Multi-port memory device
JP2705590B2 (ja) 半導体記憶装置
US8164962B2 (en) Semiconductor memory apparatus
JP2006228261A (ja) デジット線絶縁ゲートの負電圧駆動
KR20000009375A (ko) 기입 시간을 최소화하는 메모리장치 및 데이터 기입방법
US9390770B2 (en) Apparatuses and methods for accessing memory including sense amplifier sections and coupled sources
US6219283B1 (en) Memory device with local write data latches
US6704238B2 (en) Semiconductor memory device including data bus pairs respectively dedicated to data writing and data reading
US6330202B1 (en) Semiconductor memory device having write data line
JP3178946B2 (ja) 半導体記憶装置及びその駆動方法
JP2001084760A (ja) 半導体記憶装置
KR20200052803A (ko) 멀티 레벨 셀을 센싱하는 감지 증폭기 및 그것을 포함하는 메모리 장치
CN115985355A (zh) 位线读出放大器及包括其的存储装置
WO2008032549A1 (fr) Dispositif de stockage semiconducteur
CN111312311B (zh) 用于减少写入上拉时间的设备和使用方法
JP2004079041A (ja) 半導体記憶装置
US10854277B2 (en) Sense amplifier for sensing multi-level cell and memory device including the sense amplifer
US20230352068A1 (en) Memory device including multi-bit cell and operating method thereof
JP2013009212A (ja) 半導体装置
US6226220B1 (en) Semiconductor memory device
JPH09213077A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101