JP2004077374A - Arranging structure of magnetic sensor - Google Patents

Arranging structure of magnetic sensor Download PDF

Info

Publication number
JP2004077374A
JP2004077374A JP2002240574A JP2002240574A JP2004077374A JP 2004077374 A JP2004077374 A JP 2004077374A JP 2002240574 A JP2002240574 A JP 2002240574A JP 2002240574 A JP2002240574 A JP 2002240574A JP 2004077374 A JP2004077374 A JP 2004077374A
Authority
JP
Japan
Prior art keywords
magnetic detection
magnetic
detection sensor
chip
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002240574A
Other languages
Japanese (ja)
Inventor
Kazuto Matsui
松居 和人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Original Assignee
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd filed Critical Tokai Rika Co Ltd
Priority to JP2002240574A priority Critical patent/JP2004077374A/en
Publication of JP2004077374A publication Critical patent/JP2004077374A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an arranging structure for a magnetic sensor capable of enhancing the sensing accuracy when the direction of a magnetic flux parallel with two magnetism sensing surfaces is sensed. <P>SOLUTION: The invention includes a first IC chip 12 equipped with a first magnetic sensor 14 having one magnetism sensing surface 14a and a second IC chip 13 equipped with a second magnetic sensor 15 having another magnetism sensing surface 15a. The first magnetic sensor 14 is connected fast to the second magnetic sensor 15 using a bump 16 in such a way that the magnetism sensing surfaces 14a and 15a are positioned confronting. The two sensors 14 and 15 are arranged so that the output values in accordance with the direction of the magnetic flux to be sensed are in the contrary characteristics or in the same characteristics. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、磁束の方向を検出する磁気センサの配置構造に関するものである。
【0002】
【従来の技術】
従来より、図8及び図9に示すような、信号検出用の第1磁気検出センサ101及び異常判定用の第2磁気検出センサ102の配置構造が知られている。
【0003】
前記両磁気検出センサ101,102は数ミリ四方のサイズで形成され、それぞれ磁気検出面101a,102aを備えている。前記第1磁気検出センサ101と前記第2磁気検出センサ102は、ICチップ104の平面状をなす実装面f上において隣り合うように配置されている。前記両磁気検出センサ101,102及びICチップ104にて構造体103が構成されている。
【0004】
さらに、前記第1磁気検出センサ101と前記第2磁気検出センサ102は、磁気検出面101a,102aにて検出する磁束の向きに応じた出力値が互いに反対の特性となるように配置されている。そして、図10に示すように、前記両磁気検出センサ101,102の磁気検出面101a,102aは、磁石105の磁束106(実装面fに平行な磁束)を受けてそれぞれ出力値を出力する。
【0005】
前記第1磁気検出センサ101の出力値と前記第2磁気検出センサ102の出力値は、互いに反対の特性とされているため、両磁気検出センサ101,102がそれぞれ正常に機能している際には、その合計値が常に所定の値で一定になる。そして、前記合計値が一定の際には両磁気検出センサ101,102は正常に機能しているものとし、第1磁気検出センサ101の出力値を適宜利用する。
【0006】
もし、前記合計値が一定にならない際には、第1磁気検出センサ101又は第2磁気検出センサ102の少なくとも一方が故障しており、その際、構造体103が異常をきたしていると判断できる。
【0007】
【発明が解決しようとする課題】
ところが、前記両磁気検出センサ101,102は、ICチップ104の実装面f上において互いに隣り合うようにして配置していた。
【0008】
このため、両磁気検出センサ101,102の磁気検出面101a,102aにて実装面fに平行な磁束106を検出しようとすると、両磁気検出センサ101,102の微妙な位置の違いにより検出する磁束の方向及び磁束の密度が異なるため、精度よい検出結果が得られなかった。
【0009】
本発明は、前述した事情に鑑みてなされたものであって、その目的は、両磁気検出面と平行な磁束の方向を検出する際に検出精度を上げることができる磁気センサの配置構造を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、検出する磁束の向きに応じた出力値が互いに反対の特性又は同特性となる第1磁気検出面を有する第1磁気検出センサと第2磁気検出面を有する第2磁気検出センサとを備え、前記第1磁気検出面と前記第2磁気検出面とが対向するように前記第1磁気検出センサと前記第2磁気検出センサとを配置したことを要旨とする。
【0011】
請求項2に記載の発明は、請求項1に記載の磁気センサの配置構造において、前記第1磁気検出面と前記第2磁気検出面とが平行になるように前記第1磁気検出センサと前記第2磁気検出センサとを配置したことを要旨とする。
【0012】
請求項3に記載の発明は、請求項1又は請求項2に記載の磁気センサの配置構造において、前記第1磁気検出センサを第1チップ上に設け、前記第2磁気検出センサを第2チップ上に設け、前記第1磁気検出センサと前記第2磁気検出センサとが対向するように前記第2チップを前記第1チップにフリップチップ実装したことを要旨とする。
【0013】
【発明の実施の形態】
以下、本発明を具体化した一実施形態を図1〜図7に従って説明する。
図1に示すように、本実施形態の構造体11は、第1チップとしての第1ICチップ12、第2チップとしての第2ICチップ13、信号検出用の第1磁気検出センサ14、異常判定用の第2磁気検出センサ15、及び前記両ICチップ12,13を接続する複数のバンプ16を備えている。
【0014】
前記両磁気検出センサ14,15は数ミリ四方のサイズで形成されている。
図1及び図2に示すように、前記第1ICチップ12の一側面である平面状の実装面12a(図1における上側の面)には、第1磁気検出センサ14が配置されている。
【0015】
図4に示すように、前記第1磁気検出センサ14は、Ni−Co等の強磁性体からなる4つの磁気抵抗素子R1,R2,R3,R4をフルブリッジに接続した回路構成とされている。
【0016】
図3(a)に示すように、第1磁気検出センサ14において、一方の磁気抵抗素子R2,R3と、他方の磁気抵抗素子R1,R4とは、基準線S1に対して45゜の傾きでそれぞれ配置されている。
【0017】
即ち、磁気抵抗素子R2,R3は同じ配列方向に向かって配置され、磁気抵抗素子R1,R4は前記磁気抵抗素子R2,R3の向く配列方向とは直交する配列方向に向かって配置されている。
【0018】
図2及び図3(a)において、m及びnは磁気抵抗素子R1,R4及び磁気抵抗素子R2,R3が向かう配列方向を示すとともに、各磁気抵抗素子R1〜R4の中心軸を示している。
【0019】
なお、各磁気抵抗素子R1〜R4はジグザグ状にすなわち、折れ線状に成膜されており、このジグザグ形状は、前記配列方向とは直交するように配置されている。すなわち、図3(b)に示すように、このジグザグ形状は、互いに平行に配置した複数の直線部17と、直線部17の互いに隣接する端部間を接続する接続部18とにて形成されている。前記磁気抵抗素子R1,R4の直線部17は前記mに対して直交して配置され、前記磁気抵抗素子R2,R3の直線部17は前記nに対して直交して配置されている。
【0020】
図4に示すように、前記第1磁気検出センサ14は4つの端子T1〜T4を備えている。前記端子T1は両磁気抵抗素子R1,R3間に接続され、端子T2は両磁気抵抗素子R2,R4間に接続されている。前記端子T3は両磁気抵抗素子R1,R2間に接続され、端子T4は両磁気抵抗素子R3,R4間に接続されている。
【0021】
そして、第1ICチップ12の実装面12aにはオペアンプ20が形成されている(図4参照)。そのオペアンプ20の反転入力端子と前記端子T3とが接続され、非反転入力端子と前記端子T4とが接続されている。前記第1磁気検出センサ14の端子T1,T2及びオペアンプ20の出力端子O1は実装面12a上に形成された図示しない各導体とそれぞれ接続されている。
【0022】
そして、端子T1は前記導体を介して電源が印加され、端子T2は前記導体を介して接地される。また、前記出力端子O1は前記導体を介して出力電圧ΔV1が出力される。前記第1磁気検出センサ14が異なる向きの磁束を検出することにより、オペアンプ20から出力される出力電圧ΔV1(図7参照)がアナログ的となる。
【0023】
一方、前記第2ICチップ13の一側面である平面状の実装面13a(図1における下側の面)には前記第1磁気検出センサ14と同構成の第2磁気検出センサ15が配置され、かつその実装面13aには前記オペアンプ20と同構成のオペアンプ21が形成されている(図4参照)。
【0024】
この第2磁気検出センサ15とオペアンプ21との接続関係は、前記第1磁気検出センサ14とオペアンプ20との接続関係と同じとされている。従って、第2磁気検出センサ15における磁気抵抗素子R5〜R8及び端子T5〜T8を、前記第1磁気検出センサ14における磁気抵抗素子R1〜R4及び端子T1〜T4とそれぞれ読み替えたものとしその詳しい説明を省略する。また、オペアンプ21は出力端子O2を備えている。即ち、オペアンプ21の反転入力端子と前記端子T7とが接続され、非反転入力端子と前記端子T8とが接続されている。
【0025】
また、図2及び図3(a)に示すように、第2磁気検出センサ15において、一方の磁気抵抗素子R6,R7と、他方の磁気抵抗素子R5,R8とは、基準線S2に対して45゜の傾きでそれぞれ配置されている。
【0026】
図2及び図3(a)において、m’及びn’は磁気抵抗素子R6,R7及び磁気抵抗素子R5,R8が向かう配列方向をそれぞれ示すとともに、各磁気抵抗素子R5〜R8の中心軸を示している。
【0027】
前記両ICチップ12,13は、実装面12aと実装面13aとが対向した状態で複数の前記バンプ16にて接続固定されている。
そして、前記第2磁気検出センサ15の端子T5,T6及びオペアンプ21の出力端子O2は、それらに対向した各バンプ16を介して実装面12a上に形成された図示しない各導体とそれぞれ接続されている。前記端子T5はバンプ16及び前記導体を介して電源が印加され、端子T6はバンプ16及び前記導体を介して接地されるように構成されている。また、前記出力端子O2はバンプ16及び前記導体を介して出力電圧ΔV2が出力されるように構成されている。前記第2磁気検出センサ15が異なる向きの磁束を検出することにより、オペアンプ21から出力される出力電圧ΔV2(図7参照)がアナログ的となる。
【0028】
そして、前記第1磁気検出センサ14の磁気検出面14aと前記第2磁気検出センサ15の磁気検出面15aとが互いに平行に配置されている。前記第1ICチップ12と第2ICチップ13とが複数のバンプ16にて接続固定されていることにより、前記両磁気検出面14a,15a間の距離が500μmとされている。
【0029】
また、図3(a)に示すように平面視したとき、検出面14aに配置される中心軸m,nが、検出面15aに配置される中心軸n’,m’にそれぞれ直交するように磁気抵抗素子R1〜R4,R5〜R8が対向配置されている。
【0030】
すなわち、図7に示すように出力電圧ΔV1,ΔV2は1周期が180゜の正弦波であって、互いに位相が180°ずれるように第1磁気検出センサ14と第2磁気検出センサ15は配置されている。即ち、前記第1磁気検出センサ14と第2磁気検出センサ15は、同じ向きの磁束を検出した際に、その磁束の向きに応じた出力値が互いに反対となるように配置されている。
【0031】
以下、本実施形態でいう「磁束Z」とは、実装面12aに対して平行なものをいう。
そして、第1磁気検出センサ14の出力値と第2磁気検出センサ15の出力値は、互いに反対の特性とされているため、両磁気検出センサ14,15が正常に機能している際には、その合計値が常に所定の値で一定になる。そして、前記合計値が一定の際には両磁気検出センサ14,15はそれぞれ正常に機能しているものとし、第1磁気検出センサ14の出力値を適宜利用する。
【0032】
前記磁気検出面14aは第1磁気検出面に相当し、前記磁気検出面15aは第2磁気検出面に相当する。
次に、本実施形態の特徴的な作用について説明する。
【0033】
なお、図6(a)は、前記磁気検出面14aと同一平面上の磁束Zを示したものであり、図6(b)は、前記磁気検出面15aと同一平面上の磁束Zを示したものである。
【0034】
即ち、図5に示す構造体11と磁石Mとの位置関係において、前記磁気検出面14aが検出する磁束Zは図6(a)における二点鎖線で示す磁気検出面14a内の磁束Zであり、前記磁気検出面15aが検出する磁束Zは図6(b)における二点鎖線で示す磁気検出面15a内の磁束Zである。
【0035】
また、図10に示す従来技術の構造体103と磁石105との位置関係において、第1磁気検出センサ101の磁気検出面101aが検出する磁束106は図6(a)における二点鎖線で示す磁気検出面14a内の磁束Zに相当する。そして、上記従来技術の構造体103と磁石105との位置関係において、第2磁気検出センサ102の磁気検出面102aが検出する磁束106は図6(a)における二点鎖線で示す磁気検出面102a内の磁束Zに相当する。
【0036】
従って、図6(a)及び図6(b)に示すように、本実施形態の構造体11においては、磁気検出面14aの二点鎖線枠内の磁束Zと、磁気検出面15aの二点鎖線枠内の磁束Zとの向きの差はほとんどない。
【0037】
しかしながら、従来技術の構造体103における磁気検出面101aの二点鎖線枠内の磁束Zと磁気検出面102aの二点鎖線枠内の磁束Zとの向きの差は上記構造体11の場合と比べて大きくなっている。
【0038】
これは、本実施形態の構造体11における両磁気検出面14a,15aの位置の違いが500μmであるのに対し、従来技術の構造体103における両磁気検出面101a,102aの位置の違いが第1磁気検出センサ101の一辺の長さ分、即ち、数ミリとなっているからである。
【0039】
即ち、本実施形態の構造体11は、その両磁気検出面14a,15aの位置ずれが、従来技術の構造体103における両磁気検出面101a,102aの位置ずれの10分の1以下とされており、この結果、構造体11は構造体103と比べて位置ずれによる検出精度が高くなっている。
【0040】
従って、本実施形態によれば、以下のような効果を得ることができる。
(1)本実施形態では、検出する磁束Zの向きに応じた出力値が互いに反対の特性となる磁気検出面14aを有する第1磁気検出センサ14と磁気検出面15aを有する第2磁気検出センサ15とを備えた。そして、磁気検出面14aと磁気検出面15aとが対向するように第1磁気検出センサ14と第2磁気検出センサ15とを配置した。
【0041】
そのため、両磁気検出センサ14,15の両磁気検出面14a,15aを互いに対向するように配置したため、両磁気検出面14a,15aを平面上に互いに隣り合うように配置する場合、即ち従来技術の両磁気検出面101a,102aと比べて、両磁気検出面14a,15aの位置ずれを小さく設定できる。従って、両磁気検出センサ14,15は両磁気検出面14a,15aと平行な磁束Zの方向を検出する際に検出精度を上げることができる。また、両磁気検出センサ14,15を対向配置するようにしたため、両磁気検出センサ14,15を横に並べて配置した場合と比べて実装面12a上のスペースを取らない。そのため、構造体11の平面視における両磁気検出センサ14,15の配置スペースを小さくでき、この結果、構造体11を小型化できる。
【0042】
(2)本実施形態では、磁気検出面14aと磁気検出面15aとが平行になるように第1磁気検出センサ14と第2磁気検出センサ15とを配置した。従って、両磁気検出面14a,15aをなるべく位置ずれがないように近づけて配置でき、検出精度をより一層上げることができる。
【0043】
(3)本実施形態では、第1磁気検出センサ14を第1ICチップ12上に配置し、第2磁気検出センサ15を第2ICチップ13上に配置し、両磁気検出センサ14,15が互いに対向するように第2ICチップ13を第1ICチップ12にフリップチップ実装した。従って、第1磁気検出センサ14と第2磁気検出センサ15との距離はフリップチップ実装にて形成したバンプ16の高さより設定できる。
【0044】
(4)本実施形態では、第1磁気検出センサ14と第2磁気検出センサ15とを、その出力値の位相が互いに180°ずれるように配置した。従って、両磁気検出センサ14,15の出力値を合計した合計値が所定の値で一定となっている間は、両磁気検出センサ14,15は正常に機能しているものとし、第1磁気検出センサ14の出力値を適宜利用することができる。
(他の実施形態)
なお、上記実施形態は以下のような他の実施形態に変更して具体化してもよい。
【0045】
・前記実施形態では、第1磁気検出センサ14と第2磁気検出センサ15とを、その出力値の位相が互いに180°ずれるように配置していた。これに限らず、第1磁気検出センサ14と第2磁気検出センサ15とを出力値の位相が互いに一致するように配置し、端子T3をオペアンプ20の非反転入力端子に接続し、端子T4をオペアンプ20の反転入力端子に接続するようにしてもよい。すなわち、図3(a)において平面視したとき、検出面14aに配置される中心軸m,nが、検出面15aに配置される中心軸n’,m’に対してそれぞれ一致するように磁気抵抗素子R1〜R4,R5〜R8を対向配置してもよい。このようにすると、結果的にオペアンプ20,21とから出力される出力電圧ΔV1,ΔV2は互いに反対の特性となる。この場合、オペアンプ20は反転増幅回路に相当する。また、上記端子T3,T4におけるオペアンプ20の非反転入力端子と反転入力端子との接続関係を変更する変わりに、第2磁気検出センサ15における端子T7,T8におけるオペアンプ21の非反転入力端子と反転入力端子との接続関係を変更してもよい。この場合、オペアンプ21は反転増幅回路に相当する。
【0046】
・前記実施形態では、バンプ16により第1ICチップ12と第2ICチップ13とを接続固定していた。これに限らず、半田ボールにより第1ICチップ12と第2ICチップ13とを接続固定してもよい。
【0047】
・前記実施形態では、第1ICチップ12と第2ICチップ13とをフリップチップ実装を行うことにより、両磁気検出センサ14,15の両磁気検出面14a,15aを互いに対向するように配置していた。これに限らず、両磁気検出面14a,15aが互いに対向するように配置されるのであれば、第1ICチップ12と第2ICチップ13との固定構造はどのようにしてもよい。
【0048】
・前記実施形態では、第1及び第2磁気検出センサ14,15を磁気抵抗素子R1〜R4,R5〜R8にて構成していた。これに限らず、第1及び第2磁気検出センサ14,15をホール素子、巨大磁気抵抗素子(GMR)にて構成してもよい。
【0049】
次に、上記実施形態及び他の実施形態から把握できる技術的思想について以下に追記する。
(イ)前記第1磁気検出センサと前記第2磁気検出センサとを、その出力値の位相が互いに180°ずれるように配置したことを特徴とする請求項1乃至請求項3のうちいずれか1項に記載の磁気センサの配置構造。
【0050】
(ロ)前記第1磁気検出センサと前記第2磁気検出センサとを、その出力値の位相が互いに一致するように配置し、その一方の出力値の位相を逆位相とする反転増幅回路を備えたことを特徴とする請求項1乃至請求項3のうちいずれか1項に記載の磁気センサの配置構造。
【0051】
【発明の効果】
以上詳述したように、本発明によれば、両磁気検出面と平行な磁束の方向を検出する際に検出精度を上げることができる。
【図面の簡単な説明】
【図1】本実施形態における構造体の正面図。
【図2】本実施形態における第1ICチップと第2ICチップを示す斜視図。
【図3】(a)は、図1のA−A線矢視における第1磁気検出センサと第2磁気検出センサとの位置関係を示した説明図。(b)は、磁気抵抗素子を示す平面図。
【図4】本実施形態における第1磁気検出センサとオペアンプとの接続関係を示す回路図。
【図5】本実施形態における磁石の磁束と構造体との位置関係を示す説明図。
【図6】(a)は、第1磁気検出センサの磁気検出面と同一平面上の磁束を示した説明図。(b)は、第2磁気検出センサの磁気検出面と同一平面上の磁束を示した説明図。
【図7】本実施形態における第1磁気検出センサ側の出力電圧と第2磁気検出センサ側の出力電圧との関係を示した特性図。
【図8】従来技術における構造体を示す平面図。
【図9】従来技術における構造体を示す正面図。
【図10】従来技術における磁石の磁束と構造体との関係を示す説明図。
【符号の説明】
12…第1チップとしての第1ICチップ、
13…第2チップとしての第2ICチップ、
14…第1磁気検出センサ、14a…第1磁気検出面としての磁気検出面、
15…第2磁気検出センサ、15a…第2磁気検出面としての磁気検出面、
Z…磁束。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an arrangement structure of a magnetic sensor that detects a direction of a magnetic flux.
[0002]
[Prior art]
Conventionally, as shown in FIGS. 8 and 9, an arrangement structure of a first magnetic detection sensor 101 for signal detection and a second magnetic detection sensor 102 for abnormality determination is known.
[0003]
The two magnetic detection sensors 101 and 102 are formed in a size of several millimeters square and have magnetic detection surfaces 101a and 102a, respectively. The first magnetic detection sensor 101 and the second magnetic detection sensor 102 are arranged so as to be adjacent to each other on a planar mounting surface f of the IC chip 104. A structure 103 is composed of the two magnetic detection sensors 101 and 102 and the IC chip 104.
[0004]
Further, the first magnetic detection sensor 101 and the second magnetic detection sensor 102 are arranged such that output values corresponding to the directions of magnetic fluxes detected on the magnetic detection surfaces 101a and 102a have opposite characteristics. . Then, as shown in FIG. 10, the magnetic detection surfaces 101a and 102a of the two magnetic detection sensors 101 and 102 receive the magnetic flux 106 of the magnet 105 (magnetic flux parallel to the mounting surface f) and output respective output values.
[0005]
Since the output value of the first magnetic detection sensor 101 and the output value of the second magnetic detection sensor 102 have opposite characteristics, when the two magnetic detection sensors 101 and 102 function normally, Are always constant at a predetermined value. When the total value is constant, the two magnetic detection sensors 101 and 102 are assumed to be functioning normally, and the output value of the first magnetic detection sensor 101 is appropriately used.
[0006]
If the total value does not become constant, it can be determined that at least one of the first magnetic detection sensor 101 and the second magnetic detection sensor 102 has failed, and in that case, the structure 103 has failed. .
[0007]
[Problems to be solved by the invention]
However, the two magnetic detection sensors 101 and 102 are arranged on the mounting surface f of the IC chip 104 so as to be adjacent to each other.
[0008]
For this reason, when trying to detect the magnetic flux 106 parallel to the mounting surface f on the magnetic detection surfaces 101a and 102a of the two magnetic detection sensors 101 and 102, the magnetic flux detected due to a delicate difference between the two magnetic detection sensors 101 and 102 is detected. , And the density of the magnetic flux were different, so that accurate detection results could not be obtained.
[0009]
The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an arrangement structure of a magnetic sensor capable of increasing detection accuracy when detecting a direction of a magnetic flux parallel to both magnetic detection surfaces. Is to do.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 includes a first magnetic detection sensor having a first magnetic detection surface whose output values according to the direction of a magnetic flux to be detected have opposite characteristics or have the same characteristics. A second magnetic detection sensor having a second magnetic detection surface, wherein the first magnetic detection sensor and the second magnetic detection sensor are arranged so that the first magnetic detection surface and the second magnetic detection surface face each other. The point is that they are arranged.
[0011]
According to a second aspect of the present invention, in the arrangement structure of the magnetic sensor according to the first aspect, the first magnetic detection sensor and the second magnetic detection surface are arranged so that the first magnetic detection surface and the second magnetic detection surface are parallel to each other. The gist is that a second magnetic detection sensor is arranged.
[0012]
According to a third aspect of the invention, in the arrangement structure of the magnetic sensor according to the first or second aspect, the first magnetic detection sensor is provided on a first chip, and the second magnetic detection sensor is provided on a second chip. The gist is that the second chip is flip-chip mounted on the first chip such that the first magnetic detection sensor and the second magnetic detection sensor face each other.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS.
As shown in FIG. 1, a structure 11 of the present embodiment includes a first IC chip 12 as a first chip, a second IC chip 13 as a second chip, a first magnetic detection sensor 14 for signal detection, The second magnetic detection sensor 15 and a plurality of bumps 16 connecting the two IC chips 12 and 13 are provided.
[0014]
The two magnetic detection sensors 14 and 15 are formed in a size of several mm square.
As shown in FIGS. 1 and 2, a first magnetic detection sensor 14 is disposed on a planar mounting surface 12a (upper surface in FIG. 1) which is one side surface of the first IC chip 12.
[0015]
As shown in FIG. 4, the first magnetic detection sensor 14 has a circuit configuration in which four magnetoresistive elements R1, R2, R3, and R4 made of a ferromagnetic material such as Ni—Co are connected to a full bridge. .
[0016]
As shown in FIG. 3A, in the first magnetic detection sensor 14, one of the magnetoresistive elements R2 and R3 and the other of the magnetoresistive elements R1 and R4 have an inclination of 45 ° with respect to the reference line S1. Each is arranged.
[0017]
That is, the magnetoresistance elements R2 and R3 are arranged in the same arrangement direction, and the magnetoresistance elements R1 and R4 are arranged in an arrangement direction orthogonal to the arrangement direction of the magnetoresistance elements R2 and R3.
[0018]
In FIGS. 2 and 3A, m and n indicate the direction in which the magnetoresistive elements R1 and R4 and the magnetoresistive elements R2 and R3 are directed, and indicate the central axis of each of the magnetoresistive elements R1 to R4.
[0019]
Each of the magnetoresistive elements R1 to R4 is formed in a zigzag shape, that is, in a polygonal line shape, and the zigzag shape is arranged to be orthogonal to the arrangement direction. That is, as shown in FIG. 3B, this zigzag shape is formed by a plurality of straight portions 17 arranged in parallel with each other and a connecting portion 18 connecting between adjacent ends of the straight portion 17. ing. The linear portions 17 of the magnetoresistive elements R1 and R4 are arranged orthogonal to the m, and the linear portions 17 of the magnetoresistive elements R2 and R3 are arranged orthogonal to the n.
[0020]
As shown in FIG. 4, the first magnetic detection sensor 14 has four terminals T1 to T4. The terminal T1 is connected between the magnetoresistive elements R1 and R3, and the terminal T2 is connected between the magnetoresistive elements R2 and R4. The terminal T3 is connected between the magnetoresistive elements R1 and R2, and the terminal T4 is connected between the magnetoresistive elements R3 and R4.
[0021]
The operational amplifier 20 is formed on the mounting surface 12a of the first IC chip 12 (see FIG. 4). The inverting input terminal of the operational amplifier 20 is connected to the terminal T3, and the non-inverting input terminal is connected to the terminal T4. The terminals T1 and T2 of the first magnetic detection sensor 14 and the output terminal O1 of the operational amplifier 20 are respectively connected to conductors (not shown) formed on the mounting surface 12a.
[0022]
Then, power is applied to the terminal T1 via the conductor, and the terminal T2 is grounded via the conductor. The output terminal O1 outputs an output voltage ΔV1 via the conductor. When the first magnetic detection sensor 14 detects magnetic fluxes in different directions, the output voltage ΔV1 (see FIG. 7) output from the operational amplifier 20 becomes analog.
[0023]
On the other hand, a second magnetic detection sensor 15 having the same configuration as the first magnetic detection sensor 14 is disposed on a planar mounting surface 13a (a lower surface in FIG. 1) which is one side surface of the second IC chip 13, An operational amplifier 21 having the same configuration as the operational amplifier 20 is formed on the mounting surface 13a (see FIG. 4).
[0024]
The connection relationship between the second magnetic detection sensor 15 and the operational amplifier 21 is the same as the connection relationship between the first magnetic detection sensor 14 and the operational amplifier 20. Therefore, the magnetoresistive elements R5 to R8 and the terminals T5 to T8 in the second magnetic detection sensor 15 are replaced with the magnetoresistive elements R1 to R4 and the terminals T1 to T4 in the first magnetic detection sensor 14, respectively. Is omitted. The operational amplifier 21 has an output terminal O2. That is, the inverting input terminal of the operational amplifier 21 is connected to the terminal T7, and the non-inverting input terminal is connected to the terminal T8.
[0025]
Further, as shown in FIGS. 2 and 3A, in the second magnetic detection sensor 15, one of the magnetoresistance elements R6 and R7 and the other of the magnetoresistance elements R5 and R8 are arranged with respect to a reference line S2. They are arranged at an inclination of 45 °.
[0026]
2 and 3 (a), m 'and n' indicate the arrangement directions of the magnetoresistive elements R6 and R7 and the magnetoresistive elements R5 and R8, respectively, and indicate the central axes of the magnetoresistive elements R5 to R8. ing.
[0027]
The two IC chips 12 and 13 are connected and fixed by a plurality of bumps 16 with the mounting surface 12a and the mounting surface 13a facing each other.
The terminals T5 and T6 of the second magnetic detection sensor 15 and the output terminal O2 of the operational amplifier 21 are connected to conductors (not shown) formed on the mounting surface 12a via the bumps 16 facing the terminals T5 and T6. I have. Power is applied to the terminal T5 through the bump 16 and the conductor, and the terminal T6 is grounded through the bump 16 and the conductor. The output terminal O2 is configured to output an output voltage ΔV2 via the bump 16 and the conductor. When the second magnetic detection sensor 15 detects magnetic fluxes in different directions, the output voltage ΔV2 (see FIG. 7) output from the operational amplifier 21 becomes analog.
[0028]
The magnetic detection surface 14a of the first magnetic detection sensor 14 and the magnetic detection surface 15a of the second magnetic detection sensor 15 are arranged parallel to each other. Since the first IC chip 12 and the second IC chip 13 are connected and fixed by a plurality of bumps 16, the distance between the two magnetic detection surfaces 14a and 15a is 500 μm.
[0029]
When viewed in a plan view as shown in FIG. 3A, the central axes m and n arranged on the detection surface 14a are respectively orthogonal to the central axes n 'and m' arranged on the detection surface 15a. Magnetoresistive elements R1 to R4, R5 to R8 are arranged facing each other.
[0030]
That is, as shown in FIG. 7, the output voltages ΔV1 and ΔV2 are sinusoidal waves having a period of 180 °, and the first magnetic detection sensor 14 and the second magnetic detection sensor 15 are arranged so that their phases are shifted from each other by 180 °. ing. That is, the first magnetic detection sensor 14 and the second magnetic detection sensor 15 are arranged such that, when detecting magnetic fluxes in the same direction, the output values corresponding to the directions of the magnetic fluxes are opposite to each other.
[0031]
Hereinafter, the “magnetic flux Z” in this embodiment refers to a magnetic flux Z that is parallel to the mounting surface 12a.
Since the output value of the first magnetic detection sensor 14 and the output value of the second magnetic detection sensor 15 have opposite characteristics, when both the magnetic detection sensors 14 and 15 are functioning normally, , The sum of which is always constant at a predetermined value. When the total value is constant, the two magnetic detection sensors 14 and 15 are assumed to be functioning normally, and the output value of the first magnetic detection sensor 14 is used as appropriate.
[0032]
The magnetic detection surface 14a corresponds to a first magnetic detection surface, and the magnetic detection surface 15a corresponds to a second magnetic detection surface.
Next, the characteristic operation of the present embodiment will be described.
[0033]
FIG. 6 (a) shows the magnetic flux Z on the same plane as the magnetic detection surface 14a, and FIG. 6 (b) shows the magnetic flux Z on the same plane as the magnetic detection surface 15a. Things.
[0034]
That is, in the positional relationship between the structure 11 and the magnet M shown in FIG. 5, the magnetic flux Z detected by the magnetic detection surface 14a is the magnetic flux Z in the magnetic detection surface 14a indicated by a two-dot chain line in FIG. The magnetic flux Z detected by the magnetic detection surface 15a is the magnetic flux Z in the magnetic detection surface 15a indicated by a two-dot chain line in FIG.
[0035]
Further, in the positional relationship between the conventional structure 103 and the magnet 105 shown in FIG. 10, the magnetic flux 106 detected by the magnetic detection surface 101a of the first magnetic detection sensor 101 is a magnetic flux indicated by a two-dot chain line in FIG. It corresponds to the magnetic flux Z in the detection surface 14a. In the positional relationship between the structure 103 and the magnet 105 according to the related art, the magnetic flux 106 detected by the magnetic detection surface 102a of the second magnetic detection sensor 102 is the magnetic detection surface 102a indicated by a two-dot chain line in FIG. Corresponds to the magnetic flux Z within
[0036]
Accordingly, as shown in FIGS. 6A and 6B, in the structure 11 of the present embodiment, the magnetic flux Z in the two-dot chain line frame of the magnetic detection surface 14a and the two points of the magnetic detection surface 15a There is almost no difference in the direction from the magnetic flux Z in the chain line frame.
[0037]
However, the difference in the direction between the magnetic flux Z in the two-dot chain line frame of the magnetic detection surface 101a and the magnetic flux Z in the two-dot chain line frame of the magnetic detection surface 102a in the conventional structure 103 is smaller than that in the case of the structure 11. It is getting bigger.
[0038]
This is because the difference between the positions of the two magnetic detection surfaces 14a and 15a in the structure 11 of the present embodiment is 500 μm, whereas the difference in the position between the two magnetic detection surfaces 101a and 102a in the structure 103 of the related art is the fourth. This is because it is equal to the length of one side of one magnetic detection sensor 101, that is, several millimeters.
[0039]
That is, in the structure 11 of the present embodiment, the positional deviation between the two magnetic detection surfaces 14a and 15a is set to be one tenth or less of the positional deviation between the two magnetic detection surfaces 101a and 102a in the conventional structure 103. As a result, as compared to the structure 103, the structure 11 has a higher detection accuracy due to the positional shift.
[0040]
Therefore, according to the present embodiment, the following effects can be obtained.
(1) In the present embodiment, the first magnetic detection sensor 14 having the magnetic detection surface 14a and the second magnetic detection sensor having the magnetic detection surface 15a whose output values according to the direction of the magnetic flux Z to be detected have characteristics opposite to each other. 15 was provided. And the 1st magnetic detection sensor 14 and the 2nd magnetic detection sensor 15 were arrange | positioned so that the magnetic detection surface 14a and the magnetic detection surface 15a may face.
[0041]
Therefore, since the two magnetic detection surfaces 14a and 15a of the two magnetic detection sensors 14 and 15 are arranged so as to face each other, when the two magnetic detection surfaces 14a and 15a are arranged so as to be adjacent to each other on a plane, that is, in the conventional art. As compared with the two magnetic detection surfaces 101a and 102a, the displacement between the two magnetic detection surfaces 14a and 15a can be set smaller. Therefore, the two magnetic detection sensors 14 and 15 can increase the detection accuracy when detecting the direction of the magnetic flux Z parallel to the two magnetic detection surfaces 14a and 15a. Further, since the two magnetic detection sensors 14 and 15 are arranged to face each other, a space on the mounting surface 12a is not taken up as compared with the case where the two magnetic detection sensors 14 and 15 are arranged side by side. For this reason, the arrangement space of the two magnetic detection sensors 14 and 15 in the plan view of the structure 11 can be reduced, and as a result, the structure 11 can be downsized.
[0042]
(2) In the present embodiment, the first magnetic detection sensor 14 and the second magnetic detection sensor 15 are arranged so that the magnetic detection surface 14a and the magnetic detection surface 15a are parallel. Therefore, the two magnetic detection surfaces 14a and 15a can be arranged close to each other so as not to be displaced as much as possible, and the detection accuracy can be further improved.
[0043]
(3) In the present embodiment, the first magnetic detection sensor 14 is disposed on the first IC chip 12, the second magnetic detection sensor 15 is disposed on the second IC chip 13, and the two magnetic detection sensors 14, 15 are opposed to each other. Then, the second IC chip 13 was flip-chip mounted on the first IC chip 12. Therefore, the distance between the first magnetic detection sensor 14 and the second magnetic detection sensor 15 can be set based on the height of the bump 16 formed by flip chip mounting.
[0044]
(4) In the present embodiment, the first magnetic detection sensor 14 and the second magnetic detection sensor 15 are arranged such that the phases of their output values are shifted from each other by 180 °. Therefore, while the sum of the output values of the two magnetic detection sensors 14 and 15 is constant at a predetermined value, both the magnetic detection sensors 14 and 15 are assumed to be functioning normally and the first magnetic The output value of the detection sensor 14 can be appropriately used.
(Other embodiments)
The above embodiment may be embodied by being changed to another embodiment as described below.
[0045]
-In the said embodiment, the 1st magnetic detection sensor 14 and the 2nd magnetic detection sensor 15 were arrange | positioned so that the phase of the output value might be mutually shifted by 180 degrees. Not limited to this, the first magnetic detection sensor 14 and the second magnetic detection sensor 15 are arranged so that the phases of the output values coincide with each other, the terminal T3 is connected to the non-inverting input terminal of the operational amplifier 20, and the terminal T4 is connected. It may be connected to the inverting input terminal of the operational amplifier 20. That is, when viewed in a plan view in FIG. 3A, the magnetic axes are arranged such that the central axes m and n arranged on the detection surface 14a coincide with the central axes n 'and m' arranged on the detection surface 15a. The resistance elements R1 to R4 and R5 to R8 may be arranged to face each other. In this case, as a result, the output voltages ΔV1 and ΔV2 output from the operational amplifiers 20 and 21 have opposite characteristics. In this case, the operational amplifier 20 corresponds to an inverting amplifier circuit. Further, instead of changing the connection relationship between the non-inverting input terminal and the inverting input terminal of the operational amplifier 20 at the terminals T3 and T4, the non-inverting input terminal of the operational amplifier 21 at the terminals T7 and T8 of the second magnetic detection sensor 15 is inverted. The connection relationship with the input terminal may be changed. In this case, the operational amplifier 21 corresponds to an inverting amplifier circuit.
[0046]
In the embodiment, the first IC chip 12 and the second IC chip 13 are connected and fixed by the bumps 16. Instead, the first IC chip 12 and the second IC chip 13 may be connected and fixed by solder balls.
[0047]
In the above embodiment, the first IC chip 12 and the second IC chip 13 are flip-chip mounted, so that the two magnetic detection surfaces 14a and 15a of the two magnetic detection sensors 14 and 15 are arranged so as to face each other. . However, the present invention is not limited to this, and any structure may be used for fixing the first IC chip 12 and the second IC chip 13 as long as the two magnetic detection surfaces 14a and 15a are arranged so as to face each other.
[0048]
-In the said embodiment, the 1st and 2nd magnetic detection sensors 14 and 15 were comprised by the magnetic resistance element R1-R4, R5-R8. However, the present invention is not limited thereto, and the first and second magnetic detection sensors 14 and 15 may be configured by a Hall element or a giant magnetoresistive element (GMR).
[0049]
Next, technical ideas that can be grasped from the above embodiment and other embodiments will be additionally described below.
(1) The first magnetic detection sensor and the second magnetic detection sensor are arranged such that the phases of their output values are shifted from each other by 180 °. Arrangement structure of the magnetic sensor described in the paragraph.
[0050]
(B) an inverting amplifier circuit in which the first magnetic detection sensor and the second magnetic detection sensor are arranged so that their output values have the same phase, and the phase of one of the output values is in the opposite phase; The arrangement structure of a magnetic sensor according to any one of claims 1 to 3, wherein:
[0051]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to increase the detection accuracy when detecting the direction of a magnetic flux parallel to both magnetic detection surfaces.
[Brief description of the drawings]
FIG. 1 is a front view of a structure according to an embodiment.
FIG. 2 is a perspective view showing a first IC chip and a second IC chip according to the embodiment.
FIG. 3A is an explanatory diagram showing a positional relationship between a first magnetic detection sensor and a second magnetic detection sensor as viewed from the direction of arrows AA in FIG. 1; (B) is a plan view showing a magnetoresistive element.
FIG. 4 is a circuit diagram showing a connection relationship between a first magnetic detection sensor and an operational amplifier according to the embodiment.
FIG. 5 is an explanatory diagram showing a positional relationship between a magnetic flux of a magnet and a structure according to the embodiment.
FIG. 6A is an explanatory diagram showing a magnetic flux on the same plane as a magnetic detection surface of a first magnetic detection sensor. (B) is an explanatory view showing the magnetic flux on the same plane as the magnetic detection surface of the second magnetic detection sensor.
FIG. 7 is a characteristic diagram showing a relationship between an output voltage on a first magnetic detection sensor side and an output voltage on a second magnetic detection sensor side in the embodiment.
FIG. 8 is a plan view showing a structure according to a conventional technique.
FIG. 9 is a front view showing a structure according to the related art.
FIG. 10 is an explanatory diagram showing a relationship between a magnetic flux of a magnet and a structure according to a conventional technique.
[Explanation of symbols]
12 a first IC chip as a first chip,
13: a second IC chip as a second chip,
14: a first magnetic detection sensor; 14a: a magnetic detection surface as a first magnetic detection surface;
15: a second magnetic detection sensor, 15a: a magnetic detection surface as a second magnetic detection surface,
Z: magnetic flux.

Claims (3)

検出する磁束の向きに応じた出力値が互いに反対の特性又は同特性となる第1磁気検出面を有する第1磁気検出センサと第2磁気検出面を有する第2磁気検出センサとを備え、
前記第1磁気検出面と前記第2磁気検出面とが対向するように前記第1磁気検出センサと前記第2磁気検出センサとを配置したことを特徴とする磁気センサの配置構造。
A first magnetic detection sensor having a first magnetic detection surface and a second magnetic detection sensor having a second magnetic detection surface, wherein output values according to the direction of the magnetic flux to be detected have opposite or same characteristics.
An arrangement structure of a magnetic sensor, wherein the first magnetic detection sensor and the second magnetic detection sensor are arranged so that the first magnetic detection surface and the second magnetic detection surface face each other.
前記第1磁気検出面と前記第2磁気検出面とが平行になるように前記第1磁気検出センサと前記第2磁気検出センサとを配置したことを特徴とする請求項1に記載の磁気センサの配置構造。The magnetic sensor according to claim 1, wherein the first magnetic detection sensor and the second magnetic detection sensor are arranged such that the first magnetic detection surface and the second magnetic detection surface are parallel. Arrangement structure. 前記第1磁気検出センサを第1チップ上に設け、前記第2磁気検出センサを第2チップ上に設け、前記第1磁気検出センサと前記第2磁気検出センサとが対向するように前記第2チップを前記第1チップにフリップチップ実装したことを特徴とする請求項1又は請求項2に記載の磁気センサの配置構造。The first magnetic detection sensor is provided on a first chip, the second magnetic detection sensor is provided on a second chip, and the second magnetic detection sensor is provided so that the first magnetic detection sensor and the second magnetic detection sensor face each other. The arrangement structure of a magnetic sensor according to claim 1, wherein a chip is flip-chip mounted on the first chip.
JP2002240574A 2002-08-21 2002-08-21 Arranging structure of magnetic sensor Pending JP2004077374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002240574A JP2004077374A (en) 2002-08-21 2002-08-21 Arranging structure of magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002240574A JP2004077374A (en) 2002-08-21 2002-08-21 Arranging structure of magnetic sensor

Publications (1)

Publication Number Publication Date
JP2004077374A true JP2004077374A (en) 2004-03-11

Family

ID=32023317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240574A Pending JP2004077374A (en) 2002-08-21 2002-08-21 Arranging structure of magnetic sensor

Country Status (1)

Country Link
JP (1) JP2004077374A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1580568A2 (en) * 2004-03-24 2005-09-28 Yamaha Corporation Semiconductor device, magnetic sensor, and magnetic sensor unit
WO2008026329A1 (en) 2006-08-31 2008-03-06 Alps Electric Co., Ltd. Magnetism detecting apparatus
WO2008026327A1 (en) 2006-08-30 2008-03-06 Alps Electric Co., Ltd. Magnetic detector
WO2008029520A1 (en) 2006-09-07 2008-03-13 Alps Electric Co., Ltd. Magnetism sensor
JP2009047444A (en) * 2007-08-14 2009-03-05 Shinka Jitsugyo Kk Magnetic sensor and manufacturing method therefor
US7524696B2 (en) 2005-02-25 2009-04-28 Yamaha Corporation Sensor including lead frame and method of forming sensor including lead frame
US7570048B2 (en) 2005-07-13 2009-08-04 Denso Corporation Magnetic sensor having spin valve type electro-magnetic transformation device
US7829982B2 (en) 2005-02-18 2010-11-09 Yamaha Corporation Lead frame, sensor including lead frame and method of forming sensor including lead frame
JP2013011528A (en) * 2011-06-29 2013-01-17 Denso Corp Rotation detector
WO2013179997A1 (en) * 2012-05-30 2013-12-05 アルプス電気株式会社 Position detection device and shift position detection device
WO2018198901A1 (en) * 2017-04-25 2018-11-01 コニカミノルタ株式会社 Magnetic sensor
WO2018212132A1 (en) * 2017-05-19 2018-11-22 Tdk株式会社 Magnetic sensor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1580568A3 (en) * 2004-03-24 2012-09-19 Yamaha Corporation Semiconductor device, magnetic sensor, and magnetic sensor unit
EP1580568A2 (en) * 2004-03-24 2005-09-28 Yamaha Corporation Semiconductor device, magnetic sensor, and magnetic sensor unit
US7829982B2 (en) 2005-02-18 2010-11-09 Yamaha Corporation Lead frame, sensor including lead frame and method of forming sensor including lead frame
US7524696B2 (en) 2005-02-25 2009-04-28 Yamaha Corporation Sensor including lead frame and method of forming sensor including lead frame
US7570048B2 (en) 2005-07-13 2009-08-04 Denso Corporation Magnetic sensor having spin valve type electro-magnetic transformation device
WO2008026327A1 (en) 2006-08-30 2008-03-06 Alps Electric Co., Ltd. Magnetic detector
WO2008026329A1 (en) 2006-08-31 2008-03-06 Alps Electric Co., Ltd. Magnetism detecting apparatus
US7414393B2 (en) 2006-08-31 2008-08-19 Alps Electric Co., Ltd Magnetic detection device including circuit switching and processing input of two bridge circuits
US7402998B2 (en) 2006-09-07 2008-07-22 Alps Electric Co., Ltd Magnetic detection device including circuit capable of switching over output mode of N pole and S pole between non-separated one output and separated two outputs
WO2008029520A1 (en) 2006-09-07 2008-03-13 Alps Electric Co., Ltd. Magnetism sensor
JP2009047444A (en) * 2007-08-14 2009-03-05 Shinka Jitsugyo Kk Magnetic sensor and manufacturing method therefor
JP2013011528A (en) * 2011-06-29 2013-01-17 Denso Corp Rotation detector
WO2013179997A1 (en) * 2012-05-30 2013-12-05 アルプス電気株式会社 Position detection device and shift position detection device
WO2018198901A1 (en) * 2017-04-25 2018-11-01 コニカミノルタ株式会社 Magnetic sensor
WO2018212132A1 (en) * 2017-05-19 2018-11-22 Tdk株式会社 Magnetic sensor
JP2018194485A (en) * 2017-05-19 2018-12-06 Tdk株式会社 Magnetic sensor

Similar Documents

Publication Publication Date Title
JP6017461B2 (en) Single package magnetoresistive angle sensor
KR101625319B1 (en) Magnetic sensor and magnetic detection method thereof
US9739850B2 (en) Push-pull flipped-die half-bridge magnetoresistive switch
JP6438959B2 (en) Single chip Z-axis linear magnetoresistive sensor
JP6699951B2 (en) Magnetic resistance Z-axis gradient detection chip
EP2682773B1 (en) Separately packaged bridge magnetic-field angle sensor
EP2402719A1 (en) Rotation detection device
JP6597370B2 (en) Magnetic sensor
CN110741269B (en) Magnetic sensor and current sensor
JP2016223894A (en) Magnetic sensor
JP2004077374A (en) Arranging structure of magnetic sensor
JP2015200551A (en) magnetic sensor module
US20090251830A1 (en) Magnetic detector
US20240094312A1 (en) Magnetic sensor
TW202036019A (en) Magnetic field sensing apparatus
JP6126348B2 (en) Magnetic sensor and magnetic detection method thereof
JP6199548B2 (en) Magnetic sensor and magnetic detection method thereof
US10497859B2 (en) Two-dimensional magnetic field sensor with a single integrated magnetic field concentrator
JP2019074481A (en) Magnetic sensor
JP2009041950A (en) Magnetic acceleration sensor
JP6226447B2 (en) Magnetic sensor and magnetic detection method thereof
JP2009281784A (en) Magnetometric sensor
CN111693911B (en) Magnetic sensor device
JP2012037463A (en) Magnetic sensor
JP5497621B2 (en) Rotation angle detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122