WO2018212132A1 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
WO2018212132A1
WO2018212132A1 PCT/JP2018/018544 JP2018018544W WO2018212132A1 WO 2018212132 A1 WO2018212132 A1 WO 2018212132A1 JP 2018018544 W JP2018018544 W JP 2018018544W WO 2018212132 A1 WO2018212132 A1 WO 2018212132A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
dummy pattern
magnetic detection
land patterns
circuit board
Prior art date
Application number
PCT/JP2018/018544
Other languages
French (fr)
Japanese (ja)
Inventor
圭 田邊
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2018212132A1 publication Critical patent/WO2018212132A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic sensor, and more particularly to a magnetic sensor in which a sensor chip is mounted on a circuit board.
  • Magnetic sensors using magnetoresistive elements are widely used in ammeters and magnetic encoders.
  • the magnetic sensor may be provided with a magnetic block for collecting magnetic flux on the sensor chip.
  • the magnetic block is placed on the element formation surface of the sensor chip (see Patent Document 1).
  • the sensor chip is generally small, it is not always easy to place the magnetic block on the sensor chip. Moreover, since the fixing position of the magnetic block with respect to the sensor chip greatly affects the detection accuracy, there is a problem that a very high mounting accuracy is required.
  • an object of the present invention is to provide a magnetic sensor capable of performing highly sensitive and highly accurate magnetic detection without using a magnetic block.
  • a magnetic sensor includes a circuit board having a plurality of land patterns and dummy patterns, an element formation surface on which a magnetic detection element and a plurality of terminal electrodes are formed, and the element formation surface is the plurality of land patterns and A sensor chip mounted on the circuit board so as to cover the dummy pattern, each of the plurality of land patterns and the dummy pattern includes nickel, and each of the plurality of land patterns is provided on each of the plurality of terminal electrodes.
  • the connected dummy pattern is located closer to the magnetic detection element than the plurality of land patterns.
  • the dummy pattern containing nickel functions as a magnetic current collector, the magnetic field detection sensitivity can be increased without using a magnetic block separately. Moreover, since the dummy pattern and the plurality of land patterns are formed at the same time in the circuit board manufacturing process, the self-alignment effect of the solder generated when the sensor chip is surface-mounted on the circuit board, It becomes possible to correctly control the positional relationship of the dummy patterns.
  • the magnetic detection element includes first and second magnetic detection elements, and the dummy pattern may be located between the first magnetic detection element and the second magnetic detection element in plan view. I do not care. According to this, since the magnetic flux collected by the dummy pattern is distributed to the first magnetic detection element and the second magnetic detection element, a differential signal corresponding to the magnetic field strength can be obtained.
  • the first and second magnetic detection elements are arranged in the first direction, and the plurality of land patterns are arranged so as to avoid the region located in the first direction when viewed from the dummy pattern. I do not care. According to this, it is possible to suppress a decrease in detection accuracy due to the magnetic flux collection effect of a plurality of land patterns.
  • the dummy pattern may be in an electrically floating state. According to this, since no current flows through the dummy pattern, the magnetic flux generated by the current flowing through the dummy pattern does not become noise.
  • each of the plurality of land patterns and dummy patterns may have a structure in which a copper layer and a nickel layer are laminated. According to this, it is possible to achieve the low resistance required for the conductor pattern while ensuring the function as a magnetic current collector.
  • the thickness of the nickel layer is preferably in the range of 10 to 100 ⁇ m. According to this, it is possible to suppress an increase in manufacturing cost of the circuit board while sufficiently securing the function as a magnetic current collector.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a magnetic sensor 10 according to a preferred embodiment of the present invention.
  • FIG. 2A is a schematic plan view for explaining the configuration of the element forming surface 31 of the sensor chip 30, and FIG. 2B is a schematic diagram for explaining the configuration of the mounting surface 21 of the circuit board 20.
  • FIG. 3 is a circuit diagram for explaining a connection relationship between the terminal electrodes E11 to E16 and the magnetic detection elements R1 to R4.
  • FIG. 4 is a schematic cross-sectional view of the sensor chip 30.
  • FIG. 5 is a schematic cross-sectional view for explaining the layer configuration of the conductor pattern 40 provided on the mounting surface 21 of the circuit board 20.
  • FIG. 6 is a diagram for explaining the magnetism collecting effect by the dummy pattern D.
  • FIG. 7A and 7B are schematic plan views for explaining the first modified example.
  • FIG. 7A shows the element formation surface 31 of the sensor chip 30 and
  • FIG. 7B shows the mounting surface 21 of the circuit board 20.
  • FIGS. 8A and 8B are schematic plan views for explaining the second modified example, in which FIG. 8A shows the element formation surface 31 of the sensor chip 30 and FIG. 8B shows the mounting surface 21 of the circuit board 20.
  • FIGS. 9A and 9B are schematic plan views for explaining the third modified example, in which FIG. 9A shows the element forming surface 31 of the sensor chip 30 and FIG. 9B shows the mounting surface 21 of the circuit board 20. .
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a magnetic sensor 10 according to a preferred embodiment of the present invention.
  • the magnetic sensor 10 includes a circuit board 20 and a sensor chip 30 mounted on a mounting surface 21 of the circuit board 20.
  • the circuit board 20 is a board in which a wiring pattern is formed on an insulating base such as a resin, and a general printed board or an interposer board can be used.
  • conductor patterns such as land patterns E21 to E26 and a dummy pattern D are provided.
  • the sensor chip 30 has an element formation surface 31 on which magnetic detection elements R1 to R4 and terminal electrodes E11 to E16 are formed, and the element formation surface 31 faces the mounting surface 21 of the circuit board 20 so as to face down. Is mounted on the circuit board 20.
  • FIG. 2A is a schematic plan view for explaining the configuration of the element forming surface 31 of the sensor chip 30, and FIG. 2B is a schematic diagram for explaining the configuration of the mounting surface 21 of the circuit board 20.
  • FIG. 2A is a schematic plan view for explaining the configuration of the element forming surface 31 of the sensor chip 30, and FIG. 2B is a schematic diagram for explaining the configuration of the mounting surface 21 of the circuit board 20.
  • the element formation surface 31 of the sensor chip 30 forms an xy plane, and four magnetic detection elements R1 to R4 extending in the y direction are formed.
  • the magnetic detection elements R1 to R4 are not particularly limited as long as the physical characteristics change depending on the magnetic flux density, but it is preferable to use magnetoresistive elements (MR elements) whose electric resistance changes according to the direction of the magnetic field.
  • MR elements magnetoresistive elements
  • the magnetization fixed directions of the magnetic detection elements R1 to R4 are all aligned in the direction indicated by the arrow A in FIG. 2A (the positive side in the x direction).
  • the magnetic detection elements R1, R2 are arranged in the y direction
  • the magnetic detection elements R3, R4 are arranged in the y direction
  • the magnetic detection elements R1, R3 are arranged in the x direction
  • the magnetic detection elements R2, R4 Are arranged in the x direction.
  • terminal electrodes E11 to E16 are provided on the element forming surface 31 of the sensor chip 30 . These terminal electrodes E11 to E16 are connected to corresponding land patterns E21 to E26 through solder S as shown in FIG. However, it is not essential to connect the terminal electrodes E11 to E16 and the land patterns E21 to E26 with the solder S, and other conductive joints such as gold balls and gold bumps may be used.
  • the terminal electrodes E11 to E13 are arranged at substantially equal intervals in the y direction along the edge y1 of the element forming surface 31, and the terminal electrodes E14 to E16 are arranged in the y direction along the edge y2 of the element forming surface 31. Are arranged at almost equal intervals.
  • the edge y1 is an edge located on one end side in the x direction and extending in the y direction.
  • the edge y2 is an edge that is located on the other end side in the x direction and extends in the y direction.
  • the mounting surface 21 of the circuit board 20 forms an xy plane and has a mounting region 30a on which the sensor chip 30 is mounted.
  • Six land patterns E21 to E26 and a dummy pattern D are provided in the mounting area 30a. Therefore, when the sensor chip 30 is mounted on the mounting area 30a of the circuit board 20, the land patterns E21 to E26 and the dummy pattern D are all covered with the element formation surface 31 of the sensor chip 30.
  • the land patterns E21 to E26 are connected to other circuits via wiring or given a predetermined potential.
  • the dummy pattern D is an independent pattern that is not connected to other wiring patterns, and therefore is electrically floating.
  • the dummy pattern D is a conductor pattern extending in the y direction, and its width in the x direction is slightly larger than the interval in the x direction of the magnetic detection elements R1, R3 (or magnetic detection elements R2, R4).
  • FIG. 2B shows positions where the sensor chip 30 is mounted in the mounting region 30a and overlaps the magnetic detection elements R1 to R4 in plan view (viewed from the z direction). It can be seen that it is sandwiched between the magnetic detection elements R1 and R3 and at a position sandwiched between the magnetic detection elements R2 and R4.
  • the dummy pattern D and the magnetic detection elements R1 to R4 do not overlap with each other in plan view, but the magnetic detection element R1 is located near one side (right side) in the x direction of the dummy pattern D in plan view. , R2 are located, and the magnetic detection elements R3, R4 are located in the vicinity of the other side (left side) in the x direction of the dummy pattern D in plan view.
  • FIG. 3 is a circuit diagram for explaining a connection relationship between the terminal electrodes E11 to E16 and the magnetic detection elements R1 to R4.
  • the magnetic detection element R1 is connected between the terminal electrodes E11 and E14
  • the magnetic detection element R2 is connected between the terminal electrodes E12 and E13
  • the magnetic detection element R3 is connected between the terminal electrodes E13 and E14.
  • the magnetic detection element R4 is connected between the terminal electrodes E11 and E12.
  • the power supply potential Vcc is applied to the terminal electrode E11
  • the ground potential GND is applied to the terminal electrode E13.
  • the magnetic detection elements R1 to R4 form a differential bridge circuit, and changes in the electrical resistance of the magnetic detection elements R1 to R4 according to the magnetic flux density appear at the terminal electrodes E12 and E14.
  • the differential signals output from the terminal electrodes E12 and E14 are input to the circuit board 20 or a differential amplifier 60 provided outside thereof.
  • the output signal of the differential amplifier 60 is fed back to the terminal electrode E15.
  • a compensation coil C is connected between the terminal electrode E15 and the terminal electrode E16, and thereby the compensation coil C generates a magnetic field according to the output signal of the differential amplifier 60.
  • FIG. 4 is a schematic cross-sectional view of the sensor chip 30.
  • the compensation coil C and the magnetic detection elements R1 to R4 are stacked in this order on the surface of the substrate 33 constituting the sensor chip 30.
  • the compensation coil C is covered with an insulating layer 34
  • the magnetic detection elements R1 to R4 are covered with an insulating layer 35.
  • the element formation surface 31 of the sensor chip 30 may have a multilayer structure.
  • the element formation surface 31 does not indicate only one specific surface, but when it has a multilayer structure, each surface constituting the xy plane, for example, the surface of the substrate 33, the insulating layer 34.
  • the surface of the insulating layer 35 constitute the element formation surface 31.
  • FIG. 5 is a schematic cross-sectional view for explaining the layer configuration of the conductor pattern 40 provided on the mounting surface 21 of the circuit board 20.
  • the conductor pattern 40 is a pattern formed on the mounting surface 21 of the circuit board 20 using a photolithography method, a plating method, or the like.
  • the land patterns E21 to E26 and the dummy pattern D described above are also a part of the conductor pattern 40. .
  • the conductor pattern 40 has a structure in which a copper layer 41 made of copper (Cu), a nickel layer 42 made of nickel (Ni), and a gold layer 43 made of gold (Au) are laminated in this order. ing.
  • the copper layer 41 is a part that functions as a main conductor
  • the nickel layer 42 is a part that functions as a barrier layer
  • the gold layer 43 functions as a rust prevention layer and is a part provided to ensure wettability to the solder S It is.
  • the nickel layer 42 included in the dummy pattern D functions as a magnetic current collector. That is, in the present embodiment, the magnetic flux is collected by utilizing the magnetic characteristics of nickel as a barrier metal, and this is supplied to the magnetic detection elements R1 to R4, thereby increasing the detection sensitivity.
  • the magnetic flux ⁇ is collected in the dummy pattern D, and this is the magnetic detection element located on the left and right, that is, on one side (right side) in the x direction.
  • R1 and R2 and the magnetic detection elements R3 and R4 located on the other side (left side) in the x direction are equally distributed. Since the magnetization fixed directions of the magnetic detection elements R1 to R4 are aligned in the same direction, the differential signal obtained thereby is amplified twice by the bridge circuit.
  • the nickel layer 42 In order to sufficiently obtain the magnetism collecting effect by the nickel layer 42, it is desirable to design the nickel layer 42 to be thicker than a general circuit board.
  • the thickness of the nickel layer in a general circuit board is, for example, about several ⁇ m, but in order to obtain a sufficient magnetic flux collecting effect, the thickness of the nickel layer 42 is preferably 10 ⁇ m or more.
  • the magnetic flux collecting effect increases as the thickness of the nickel layer 42 increases.
  • the thickness of the nickel layer 42 is preferably 100 ⁇ m or less. Actually, if the thickness of the nickel layer 42 is about 20 ⁇ m or more and 40 ⁇ m or less, it is possible to balance the magnetism collecting effect, productivity, and cost.
  • the magnetism collecting effect by the nickel layer 42 is necessary in the dummy pattern D, but not in the conductor patterns 40 other than the dummy pattern D, for example, the land patterns E21 to E26.
  • the layer configuration of each pattern is the same. For this reason, when the plurality of conductor patterns 40 are formed simultaneously, if the dummy pattern D has a magnetic flux collecting effect, the magnetic flux collecting effect inevitably appears in the land patterns E21 to E26.
  • the dummy pattern D and another conductor pattern 40 may be formed in separate steps.
  • the positional relationship between the magnetic detection elements R1 to R4 and the dummy pattern D becomes the designed positional relationship due to the self-alignment effect of the solder S. Thereby, the detection accuracy of a magnetic field can be improved compared with the case where a magnetic body block is retrofitted to a sensor chip.
  • the magnetic flux ⁇ due to the external magnetic field is absorbed not only by the dummy pattern D but also by the land patterns E21 to E26.
  • the land patterns E21 to E26 are preferably designed to be located as far as possible from the magnetic detection elements R1 to R4.
  • at least the dummy pattern D needs to be positioned closer to the magnetic detection elements R1 to R4 than the land patterns E21 to E26.
  • the magnetic field can be generated without retrofitting another member such as a magnetic block to the sensor chip 30. Detection sensitivity can be increased.
  • FIG. 7A and 7B are schematic plan views for explaining the first modified example, in which FIG. 7A shows an element forming surface 31 of the sensor chip 30 and FIG. 7B shows a mounting surface 21 of the circuit board 20.
  • the distance between the magnetic detection elements R1 to R4 and the land patterns E21 to E26 is further increased by making the width of the sensor chip 30 in the x direction larger than the width in the y direction.
  • a layout in which the distance between the magnetic detection elements R1 to R4 and the land patterns E21 to E26 is larger is adopted, a decrease in detection accuracy due to the magnetic flux ⁇ sucked into the land patterns E21 to E26 can be suppressed. Is possible.
  • FIG. 8A and 8B are schematic plan views for explaining the second modified example, in which FIG. 8A shows the element formation surface 31 of the sensor chip 30 and FIG. 8B shows the mounting surface 21 of the circuit board 20.
  • the sensor chip 30 has a four-terminal configuration, and the land patterns E21 to E24 are arranged avoiding the region located in the x direction when viewed from the dummy pattern D.
  • the compensation coil C shown in FIGS. 3 and 4 cannot be integrated in the sensor chip 30.
  • the land patterns E21 to E24 are arranged so as to avoid the region located in the x direction when viewed from the dummy pattern D, the detection accuracy is hardly lowered due to the magnetic flux ⁇ sucked into the land patterns E21 to E24. .
  • FIG. 9 is a schematic plan view for explaining the third modification, wherein (a) shows the element formation surface 31 of the sensor chip 30 and (b) shows the mounting surface 21 of the circuit board 20.
  • the width of the sensor chip 30 in the y direction is further expanded, and the terminal electrodes E11 to E13 are arranged at substantially equal intervals in the x direction along the edge x1 of the element forming surface 31.
  • E16 is arranged at substantially equal intervals in the x direction along the edge x2 of the element forming surface 31.
  • the edge x1 is an edge located on one end side in the y direction and extending in the x direction.
  • the edge x2 is an edge that is located on the other end side in the y direction and extends in the x direction.
  • the sensor chip 30 has a shape elongated in the y direction and the terminal electrodes E11 to E16 are arranged along the short edges x1 and x2, the land patterns E21 to E26 are formed in the same manner as in the second modification.
  • the detection accuracy is hardly lowered due to the magnetic flux ⁇ sucked.
  • the dummy pattern D is in an electrically floating state, but the present invention is not limited to this. Therefore, a ground potential or the like may be applied to the dummy pattern D.

Abstract

[Problem] To provide a magnetic sensor that can perform highly sensitive, highly precise magnetic detection without using a magnetic block. [Solution] The present invention comprises: a circuit board 20 that has land patterns E21–E26 and a dummy pattern D; and a sensor chip 30 that has an element formation surface 31 on which are formed magnetic detection elements R1–R4 and terminal electrodes E11–E16 and that is mounted on the circuit board 20. The land patterns E21–E26 and the dummy pattern D include nickel. The land patterns E21–E26 are respectively connected to the terminal electrodes E11–E16. The dummy pattern D is positioned near the magnetic detection elements R1–R4. The dummy pattern D functions as a magnetism collector, which makes it possible for the present invention to increase magnetic field detection sensitivity without using a separate magnetic block.

Description

磁気センサMagnetic sensor
 本発明は磁気センサに関し、特に、回路基板にセンサチップが搭載されてなる磁気センサに関する。 The present invention relates to a magnetic sensor, and more particularly to a magnetic sensor in which a sensor chip is mounted on a circuit board.
 磁気抵抗素子などを用いた磁気センサは、電流計や磁気エンコーダなどに広く用いられている。磁気センサには、センサチップに磁束を集めるための磁性体ブロックが設けられることがあり、この場合、磁性体ブロックはセンサチップの素子形成面に載置される(特許文献1参照)。 Magnetic sensors using magnetoresistive elements are widely used in ammeters and magnetic encoders. The magnetic sensor may be provided with a magnetic block for collecting magnetic flux on the sensor chip. In this case, the magnetic block is placed on the element formation surface of the sensor chip (see Patent Document 1).
特開2009-276159号公報JP 2009-276159 A
 しかしながら、一般にセンサチップは小型であることから、センサチップ上に磁性体ブロックを載置することは必ずしも容易でない。また、センサチップに対する磁性体ブロックの固定位置は、検出精度に大きく影響することから、非常に高い取り付け精度が要求されるという問題もあった。 However, since the sensor chip is generally small, it is not always easy to place the magnetic block on the sensor chip. Moreover, since the fixing position of the magnetic block with respect to the sensor chip greatly affects the detection accuracy, there is a problem that a very high mounting accuracy is required.
 したがって、本発明は、磁性体ブロックを用いることなく、高感度且つ高精度な磁気検出を行うことが可能な磁気センサを提供することを目的とする。 Therefore, an object of the present invention is to provide a magnetic sensor capable of performing highly sensitive and highly accurate magnetic detection without using a magnetic block.
 本発明による磁気センサは、複数のランドパターン及びダミーパターンを有する回路基板と、磁気検出素子及び複数の端子電極が形成された素子形成面を有し、前記素子形成面が前記複数のランドパターン及びダミーパターンを覆うよう、前記回路基板に搭載されたセンサチップとを備え、前記複数のランドパターン及び前記ダミーパターンは、いずれもニッケルを含み、前記複数のランドパターンは、前記複数の端子電極にそれぞれ接続され、前記ダミーパターンは、前記複数のランドパターンよりも前記磁気検出素子の近傍に位置することを特徴とする。 A magnetic sensor according to the present invention includes a circuit board having a plurality of land patterns and dummy patterns, an element formation surface on which a magnetic detection element and a plurality of terminal electrodes are formed, and the element formation surface is the plurality of land patterns and A sensor chip mounted on the circuit board so as to cover the dummy pattern, each of the plurality of land patterns and the dummy pattern includes nickel, and each of the plurality of land patterns is provided on each of the plurality of terminal electrodes. The connected dummy pattern is located closer to the magnetic detection element than the plurality of land patterns.
 本発明によれば、ニッケルを含むダミーパターンが集磁体として機能することから、磁性体ブロックを別途用いることなく、磁界の検出感度を高めることができる。しかも、ダミーパターンと複数のランドパターンは、回路基板の製造工程において同時に形成されるものであることから、センサチップを回路基板に表面実装する際に生じるハンダのセルフアライメント効果によって、磁気検出素子とダミーパターンの位置関係を正しく制御することが可能となる。 According to the present invention, since the dummy pattern containing nickel functions as a magnetic current collector, the magnetic field detection sensitivity can be increased without using a magnetic block separately. Moreover, since the dummy pattern and the plurality of land patterns are formed at the same time in the circuit board manufacturing process, the self-alignment effect of the solder generated when the sensor chip is surface-mounted on the circuit board, It becomes possible to correctly control the positional relationship of the dummy patterns.
 本発明において、磁気検出素子は第1及び第2の磁気検出素子を含み、ダミーパターンは、平面視で第1の磁気検出素子と第2の磁気検出素子の間に位置するものであっても構わない。これによれば、ダミーパターンによって集磁された磁束が第1の磁気検出素子と第2の磁気検出素子に分配されることから、磁界強度に応じた差動信号を得ることが可能となる。 In the present invention, the magnetic detection element includes first and second magnetic detection elements, and the dummy pattern may be located between the first magnetic detection element and the second magnetic detection element in plan view. I do not care. According to this, since the magnetic flux collected by the dummy pattern is distributed to the first magnetic detection element and the second magnetic detection element, a differential signal corresponding to the magnetic field strength can be obtained.
 この場合、第1及び第2の磁気検出素子は第1の方向に配列されており、複数のランドパターンは、ダミーパターンから見て第1の方向に位置する領域を避けて配置されていても構わない。これによれば、複数のランドパターンの集磁効果による検出精度の低下を抑制することが可能となる。 In this case, the first and second magnetic detection elements are arranged in the first direction, and the plurality of land patterns are arranged so as to avoid the region located in the first direction when viewed from the dummy pattern. I do not care. According to this, it is possible to suppress a decrease in detection accuracy due to the magnetic flux collection effect of a plurality of land patterns.
 本発明において、ダミーパターンは電気的にフローティング状態であっても構わない。これによれば、ダミーパターンに電流が流れないため、ダミーパターンに電流が流れることによって生じる磁束がノイズとなることがない。 In the present invention, the dummy pattern may be in an electrically floating state. According to this, since no current flows through the dummy pattern, the magnetic flux generated by the current flowing through the dummy pattern does not become noise.
 本発明において、複数のランドパターン及びダミーパターンは、いずれも銅層とニッケル層が積層された構造を有していても構わない。これによれば、集磁体としての機能を確保しつつ、導体パターンに求められる低抵抗を実現することが可能となる。この場合、ニッケル層の厚みは10~100μmの範囲とすることが好ましい。これによれば、集磁体としての機能を十分に確保しつつ、回路基板の製造コストの増大を抑制することが可能となる。 In the present invention, each of the plurality of land patterns and dummy patterns may have a structure in which a copper layer and a nickel layer are laminated. According to this, it is possible to achieve the low resistance required for the conductor pattern while ensuring the function as a magnetic current collector. In this case, the thickness of the nickel layer is preferably in the range of 10 to 100 μm. According to this, it is possible to suppress an increase in manufacturing cost of the circuit board while sufficiently securing the function as a magnetic current collector.
 このように、本発明によれば、センサチップに磁性体ブロックを後付けすることなく、高感度且つ高精度な磁気検出を行うことが可能となる。 Thus, according to the present invention, it is possible to perform highly sensitive and highly accurate magnetic detection without retrofitting a magnetic block to the sensor chip.
図1は、本発明の好ましい実施形態による磁気センサ10の構成を示す略断面図である。FIG. 1 is a schematic cross-sectional view showing the configuration of a magnetic sensor 10 according to a preferred embodiment of the present invention. 図2(a)はセンサチップ30の素子形成面31の構成を説明するための模式的な平面図であり、図2(b)は回路基板20の搭載面21の構成を説明するための模式的な平面図である。FIG. 2A is a schematic plan view for explaining the configuration of the element forming surface 31 of the sensor chip 30, and FIG. 2B is a schematic diagram for explaining the configuration of the mounting surface 21 of the circuit board 20. FIG. 図3は、端子電極E11~E16と磁気検出素子R1~R4との接続関係を説明するための回路図である。FIG. 3 is a circuit diagram for explaining a connection relationship between the terminal electrodes E11 to E16 and the magnetic detection elements R1 to R4. 図4は、センサチップ30の模式的な断面図である。FIG. 4 is a schematic cross-sectional view of the sensor chip 30. 図5は、回路基板20の搭載面21に設けられる導体パターン40の層構成を説明するための模式的な断面図である。FIG. 5 is a schematic cross-sectional view for explaining the layer configuration of the conductor pattern 40 provided on the mounting surface 21 of the circuit board 20. 図6は、ダミーパターンDによる集磁効果を説明するための図である。FIG. 6 is a diagram for explaining the magnetism collecting effect by the dummy pattern D. FIG. 図7は、第1の変形例を説明するための略平面図であり、(a)はセンサチップ30の素子形成面31を示し、(b)は回路基板20の搭載面21を示している。7A and 7B are schematic plan views for explaining the first modified example. FIG. 7A shows the element formation surface 31 of the sensor chip 30 and FIG. 7B shows the mounting surface 21 of the circuit board 20. . 図8は、第2の変形例を説明するための略平面図であり、(a)はセンサチップ30の素子形成面31を示し、(b)は回路基板20の搭載面21を示している。FIGS. 8A and 8B are schematic plan views for explaining the second modified example, in which FIG. 8A shows the element formation surface 31 of the sensor chip 30 and FIG. 8B shows the mounting surface 21 of the circuit board 20. . 図9は、第3の変形例を説明するための略平面図であり、(a)はセンサチップ30の素子形成面31を示し、(b)は回路基板20の搭載面21を示している。FIGS. 9A and 9B are schematic plan views for explaining the third modified example, in which FIG. 9A shows the element forming surface 31 of the sensor chip 30 and FIG. 9B shows the mounting surface 21 of the circuit board 20. .
 以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本発明の好ましい実施形態による磁気センサ10の構成を示す略断面図である。 FIG. 1 is a schematic cross-sectional view showing a configuration of a magnetic sensor 10 according to a preferred embodiment of the present invention.
 図1に示すように、本実施形態による磁気センサ10は、回路基板20と、回路基板20の搭載面21に搭載されたセンサチップ30を備える。回路基板20は、樹脂などの絶縁性基体に配線パターンが形成された基板であり、一般的なプリント基板やインターポーザ基板などを用いることができる。回路基板20の搭載面21にはランドパターンE21~E26やダミーパターンDなどの導体パターンが設けられている。一方、センサチップ30は、磁気検出素子R1~R4及び端子電極E11~E16が形成された素子形成面31を有し、素子形成面31が回路基板20の搭載面21と向かい合うよう、フェイスダウン形式で回路基板20に搭載されている。 As shown in FIG. 1, the magnetic sensor 10 according to the present embodiment includes a circuit board 20 and a sensor chip 30 mounted on a mounting surface 21 of the circuit board 20. The circuit board 20 is a board in which a wiring pattern is formed on an insulating base such as a resin, and a general printed board or an interposer board can be used. On the mounting surface 21 of the circuit board 20, conductor patterns such as land patterns E21 to E26 and a dummy pattern D are provided. On the other hand, the sensor chip 30 has an element formation surface 31 on which magnetic detection elements R1 to R4 and terminal electrodes E11 to E16 are formed, and the element formation surface 31 faces the mounting surface 21 of the circuit board 20 so as to face down. Is mounted on the circuit board 20.
 図2(a)はセンサチップ30の素子形成面31の構成を説明するための模式的な平面図であり、図2(b)は回路基板20の搭載面21の構成を説明するための模式的な平面図である。 FIG. 2A is a schematic plan view for explaining the configuration of the element forming surface 31 of the sensor chip 30, and FIG. 2B is a schematic diagram for explaining the configuration of the mounting surface 21 of the circuit board 20. FIG.
 図2(a)に示すように、センサチップ30の素子形成面31はxy面を構成しており、y方向に延在する4つの磁気検出素子R1~R4が形成されている。磁気検出素子R1~R4は、磁束密度によって物理特性の変化する素子であれば特に限定されないが、磁界の向きに応じて電気抵抗が変化する磁気抵抗素子(MR素子)を用いることが好ましい。磁気検出素子R1~R4の磁化固定方向は、図2(a)の矢印Aが示す方向(x方向におけるプラス側)に全て揃えられている。本実施形態では、磁気検出素子R1,R2がy方向に配列され、磁気検出素子R3,R4がy方向に配列され、磁気検出素子R1,R3がx方向に配列され、磁気検出素子R2,R4がx方向に配列されている。 As shown in FIG. 2A, the element formation surface 31 of the sensor chip 30 forms an xy plane, and four magnetic detection elements R1 to R4 extending in the y direction are formed. The magnetic detection elements R1 to R4 are not particularly limited as long as the physical characteristics change depending on the magnetic flux density, but it is preferable to use magnetoresistive elements (MR elements) whose electric resistance changes according to the direction of the magnetic field. The magnetization fixed directions of the magnetic detection elements R1 to R4 are all aligned in the direction indicated by the arrow A in FIG. 2A (the positive side in the x direction). In the present embodiment, the magnetic detection elements R1, R2 are arranged in the y direction, the magnetic detection elements R3, R4 are arranged in the y direction, the magnetic detection elements R1, R3 are arranged in the x direction, and the magnetic detection elements R2, R4 Are arranged in the x direction.
 さらに、センサチップ30の素子形成面31には、6つの端子電極E11~E16が設けられている。これら端子電極E11~E16は、図1に示すように、ハンダSを介してそれぞれ対応するランドパターンE21~E26に接続される。但し、端子電極E11~E16とランドパターンE21~E26の接続をハンダSによって行うことは必須でなく、他の導電性接合物、例えば、金ボール、金バンプなどを用いても構わない。本実施形態においては、端子電極E11~E13が素子形成面31のエッジy1に沿ってy方向にほぼ等間隔に配置され、端子電極E14~E16が素子形成面31のエッジy2に沿ってy方向にほぼ等間隔に配置されている。ここで、エッジy1とは、x方向における一端側に位置し、y方向に延在するエッジである。また、エッジy2とは、x方向における他端側に位置し、y方向に延在するエッジである。 Furthermore, on the element forming surface 31 of the sensor chip 30, six terminal electrodes E11 to E16 are provided. These terminal electrodes E11 to E16 are connected to corresponding land patterns E21 to E26 through solder S as shown in FIG. However, it is not essential to connect the terminal electrodes E11 to E16 and the land patterns E21 to E26 with the solder S, and other conductive joints such as gold balls and gold bumps may be used. In the present embodiment, the terminal electrodes E11 to E13 are arranged at substantially equal intervals in the y direction along the edge y1 of the element forming surface 31, and the terminal electrodes E14 to E16 are arranged in the y direction along the edge y2 of the element forming surface 31. Are arranged at almost equal intervals. Here, the edge y1 is an edge located on one end side in the x direction and extending in the y direction. The edge y2 is an edge that is located on the other end side in the x direction and extends in the y direction.
 図2(b)に示すように、回路基板20の搭載面21はxy面を構成しており、センサチップ30が搭載される搭載領域30aを有している。搭載領域30aの内部には、6つのランドパターンE21~E26とダミーパターンDが設けられている。したがって、センサチップ30が回路基板20の搭載領域30aに搭載されると、ランドパターンE21~E26及びダミーパターンDは、いずれもセンサチップ30の素子形成面31によって覆われることになる。ランドパターンE21~E26は、配線を介して他の回路に接続され、或いは、所定の電位が与えられる。これに対し、ダミーパターンDは、他の配線パターンに接続されない独立パターンであり、したがって電気的にはフローティング状態である。 As shown in FIG. 2B, the mounting surface 21 of the circuit board 20 forms an xy plane and has a mounting region 30a on which the sensor chip 30 is mounted. Six land patterns E21 to E26 and a dummy pattern D are provided in the mounting area 30a. Therefore, when the sensor chip 30 is mounted on the mounting area 30a of the circuit board 20, the land patterns E21 to E26 and the dummy pattern D are all covered with the element formation surface 31 of the sensor chip 30. The land patterns E21 to E26 are connected to other circuits via wiring or given a predetermined potential. On the other hand, the dummy pattern D is an independent pattern that is not connected to other wiring patterns, and therefore is electrically floating.
 ダミーパターンDはy方向に延在する導体パターンであり、そのx方向における幅は、磁気検出素子R1,R3(又は磁気検出素子R2,R4)のx方向における間隔よりもやや大きい。図2(b)には、搭載領域30aにセンサチップ30を搭載した場合に、平面視(z方向から見て)で磁気検出素子R1~R4と重なる位置が示されており、ダミーパターンDは、磁気検出素子R1,R3に挟まれ、且つ、磁気検出素子R2,R4に挟まれる位置に設けられていることが分かる。このように、本実施形態においては、ダミーパターンDと磁気検出素子R1~R4は平面視で重ならないものの、平面視でダミーパターンDのx方向における一方側(右側)の近傍に磁気検出素子R1,R2が位置し、平面視でダミーパターンDのx方向における他方側(左側)の近傍に磁気検出素子R3,R4が位置する。 The dummy pattern D is a conductor pattern extending in the y direction, and its width in the x direction is slightly larger than the interval in the x direction of the magnetic detection elements R1, R3 (or magnetic detection elements R2, R4). FIG. 2B shows positions where the sensor chip 30 is mounted in the mounting region 30a and overlaps the magnetic detection elements R1 to R4 in plan view (viewed from the z direction). It can be seen that it is sandwiched between the magnetic detection elements R1 and R3 and at a position sandwiched between the magnetic detection elements R2 and R4. As described above, in this embodiment, the dummy pattern D and the magnetic detection elements R1 to R4 do not overlap with each other in plan view, but the magnetic detection element R1 is located near one side (right side) in the x direction of the dummy pattern D in plan view. , R2 are located, and the magnetic detection elements R3, R4 are located in the vicinity of the other side (left side) in the x direction of the dummy pattern D in plan view.
 図3は、端子電極E11~E16と磁気検出素子R1~R4との接続関係を説明するための回路図である。 FIG. 3 is a circuit diagram for explaining a connection relationship between the terminal electrodes E11 to E16 and the magnetic detection elements R1 to R4.
 図3に示すように、磁気検出素子R1は端子電極E11,E14間に接続され、磁気検出素子R2は端子電極E12,E13間に接続され、磁気検出素子R3は端子電極E13,E14間に接続され、磁気検出素子R4は端子電極E11,E12間に接続されている。ここで、端子電極E11には電源電位Vccが与えられ、端子電極E13には接地電位GNDが与えられる。これにより、磁気検出素子R1~R4は差動ブリッジ回路を構成し、磁束密度に応じた磁気検出素子R1~R4の電気抵抗の変化が端子電極E12,E14に現れることになる。 As shown in FIG. 3, the magnetic detection element R1 is connected between the terminal electrodes E11 and E14, the magnetic detection element R2 is connected between the terminal electrodes E12 and E13, and the magnetic detection element R3 is connected between the terminal electrodes E13 and E14. The magnetic detection element R4 is connected between the terminal electrodes E11 and E12. Here, the power supply potential Vcc is applied to the terminal electrode E11, and the ground potential GND is applied to the terminal electrode E13. As a result, the magnetic detection elements R1 to R4 form a differential bridge circuit, and changes in the electrical resistance of the magnetic detection elements R1 to R4 according to the magnetic flux density appear at the terminal electrodes E12 and E14.
 端子電極E12,E14から出力される差動信号は、回路基板20又はその外部に設けられた差動アンプ60に入力される。差動アンプ60の出力信号は、端子電極E15にフィードバックされる。図3に示すように、端子電極E15と端子電極E16との間には補償コイルCが接続されており、これにより、補償コイルCは差動アンプ60の出力信号に応じた磁界を発生させる。かかる構成により、磁束密度に応じた磁気検出素子R1~R4の電気抵抗の変化が端子電極E12,E14に現れると、磁束密度に応じた電流が補償コイルCに流れ、逆方向の磁束を発生させる。これにより、外部磁束が打ち消される。そして、差動アンプ60から出力される電流を検出回路70によって電流電圧変換すれば、外部磁束の強さを検出することが可能となる。 The differential signals output from the terminal electrodes E12 and E14 are input to the circuit board 20 or a differential amplifier 60 provided outside thereof. The output signal of the differential amplifier 60 is fed back to the terminal electrode E15. As shown in FIG. 3, a compensation coil C is connected between the terminal electrode E15 and the terminal electrode E16, and thereby the compensation coil C generates a magnetic field according to the output signal of the differential amplifier 60. With this configuration, when a change in the electrical resistance of the magnetic detection elements R1 to R4 corresponding to the magnetic flux density appears in the terminal electrodes E12 and E14, a current corresponding to the magnetic flux density flows to the compensation coil C and generates a magnetic flux in the reverse direction. . Thereby, the external magnetic flux is canceled out. If the current output from the differential amplifier 60 is converted into a current voltage by the detection circuit 70, the strength of the external magnetic flux can be detected.
 図4は、センサチップ30の模式的な断面図である。図4に示す例では、センサチップ30を構成する基板33の表面に、補償コイルC及び磁気検出素子R1~R4がこの順に積層されている。補償コイルCは絶縁層34によって覆われ、磁気検出素子R1~R4は絶縁層35によって覆われている。このように、センサチップ30の素子形成面31は多層構造を有していても構わない。換言すれば、素子形成面31とはある特定の一表面のみを指すものではなく、多層構造を有している場合にはxy面を構成する各表面、例えば、基板33の表面、絶縁層34の表面、絶縁層35の表面がそれぞれ素子形成面31を構成する。 FIG. 4 is a schematic cross-sectional view of the sensor chip 30. In the example shown in FIG. 4, the compensation coil C and the magnetic detection elements R1 to R4 are stacked in this order on the surface of the substrate 33 constituting the sensor chip 30. The compensation coil C is covered with an insulating layer 34, and the magnetic detection elements R1 to R4 are covered with an insulating layer 35. Thus, the element formation surface 31 of the sensor chip 30 may have a multilayer structure. In other words, the element formation surface 31 does not indicate only one specific surface, but when it has a multilayer structure, each surface constituting the xy plane, for example, the surface of the substrate 33, the insulating layer 34. And the surface of the insulating layer 35 constitute the element formation surface 31.
 図5は、回路基板20の搭載面21に設けられる導体パターン40の層構成を説明するための模式的な断面図である。 FIG. 5 is a schematic cross-sectional view for explaining the layer configuration of the conductor pattern 40 provided on the mounting surface 21 of the circuit board 20.
 導体パターン40は、フォトリソグラフィ法やめっき法などを用いて回路基板20の搭載面21に形成されるパターンであり、上述したランドパターンE21~E26やダミーパターンDも導体パターン40の一部である。図5に示すように、導体パターン40は銅(Cu)からなる銅層41、ニッケル(Ni)からなるニッケル層42および金(Au)からなる金層43がこの順に積層された構造を有している。銅層41は主たる導体として機能する部分であり、ニッケル層42はバリア層として機能する部分であり、金層43は防錆層として機能するとともにハンダSに対する濡れ性を確保するために設けられる部分である。 The conductor pattern 40 is a pattern formed on the mounting surface 21 of the circuit board 20 using a photolithography method, a plating method, or the like. The land patterns E21 to E26 and the dummy pattern D described above are also a part of the conductor pattern 40. . As shown in FIG. 5, the conductor pattern 40 has a structure in which a copper layer 41 made of copper (Cu), a nickel layer 42 made of nickel (Ni), and a gold layer 43 made of gold (Au) are laminated in this order. ing. The copper layer 41 is a part that functions as a main conductor, the nickel layer 42 is a part that functions as a barrier layer, and the gold layer 43 functions as a rust prevention layer and is a part provided to ensure wettability to the solder S It is.
 本実施形態においては、ダミーパターンDに含まれるニッケル層42が集磁体として機能する。つまり、本実施形態においては、バリアメタルであるニッケルの磁気特性を利用することによって磁束を集め、これを磁気検出素子R1~R4に供給することによって、検出感度を高めている。具体的には、図6に示すようにz方向の外部磁界が存在する場合、磁束φがダミーパターンDに集められ、これが左右、つまり、x方向における一方側(右側)に位置する磁気検出素子R1,R2と、x方向における他方側(左側)に位置する磁気検出素子R3,R4に均等に分配される。そして、磁気検出素子R1~R4の磁化固定方向は同一方向に揃えられていることから、これにより得られる差動信号がブリッジ回路によって2倍に増幅されることになる。 In the present embodiment, the nickel layer 42 included in the dummy pattern D functions as a magnetic current collector. That is, in the present embodiment, the magnetic flux is collected by utilizing the magnetic characteristics of nickel as a barrier metal, and this is supplied to the magnetic detection elements R1 to R4, thereby increasing the detection sensitivity. Specifically, as shown in FIG. 6, when an external magnetic field in the z direction is present, the magnetic flux φ is collected in the dummy pattern D, and this is the magnetic detection element located on the left and right, that is, on one side (right side) in the x direction. R1 and R2 and the magnetic detection elements R3 and R4 located on the other side (left side) in the x direction are equally distributed. Since the magnetization fixed directions of the magnetic detection elements R1 to R4 are aligned in the same direction, the differential signal obtained thereby is amplified twice by the bridge circuit.
 ニッケル層42による集磁効果を十分に得るためには、一般的な回路基板よりもニッケル層42の厚みを厚く設計することが望ましい。一般的な回路基板におけるニッケル層の厚みは例えば数μm程度であるが、十分な集磁効果を得るためには、ニッケル層42の厚みを10μm以上とすることが好ましい。集磁効果はニッケル層42の厚みが厚くなるほど高くなるが、回路基板20の生産性やコストを考慮すれば、ニッケル層42の厚みを100μm以下とすることが好ましい。実際には、ニッケル層42の厚みを20μm以上、40μm以下程度とすれば、集磁効果と生産性及びコストのバランスを取ることができる。 In order to sufficiently obtain the magnetism collecting effect by the nickel layer 42, it is desirable to design the nickel layer 42 to be thicker than a general circuit board. The thickness of the nickel layer in a general circuit board is, for example, about several μm, but in order to obtain a sufficient magnetic flux collecting effect, the thickness of the nickel layer 42 is preferably 10 μm or more. The magnetic flux collecting effect increases as the thickness of the nickel layer 42 increases. However, considering the productivity and cost of the circuit board 20, the thickness of the nickel layer 42 is preferably 100 μm or less. Actually, if the thickness of the nickel layer 42 is about 20 μm or more and 40 μm or less, it is possible to balance the magnetism collecting effect, productivity, and cost.
 ニッケル層42による集磁効果は、ダミーパターンDにおいて必要である一方、ダミーパターンD以外の他の導体パターン40、例えばランドパターンE21~E26においては不要である。しかしながら、各導体パターン40は回路基板20の製造工程において同時に形成されるため、各パターンの層構成は互いに同じとなる。このため、複数の導体パターン40を同時に形成する場合、ダミーパターンDに集磁効果を持たせると、ランドパターンE21~E26についても不可避的に集磁効果が現れる。尚、ダミーパターンDにおける集磁効果を選択的に高める必要がある場合には、ダミーパターンDと他の導体パターン40を別工程で形成しても構わない。 The magnetism collecting effect by the nickel layer 42 is necessary in the dummy pattern D, but not in the conductor patterns 40 other than the dummy pattern D, for example, the land patterns E21 to E26. However, since each conductor pattern 40 is formed simultaneously in the manufacturing process of the circuit board 20, the layer configuration of each pattern is the same. For this reason, when the plurality of conductor patterns 40 are formed simultaneously, if the dummy pattern D has a magnetic flux collecting effect, the magnetic flux collecting effect inevitably appears in the land patterns E21 to E26. In addition, when it is necessary to selectively enhance the magnetic flux collection effect in the dummy pattern D, the dummy pattern D and another conductor pattern 40 may be formed in separate steps.
 尚、磁気検出素子R1~R4に対するダミーパターンDの平面位置がずれると、磁界の検出精度が変化してしまうが、本実施形態においてはそのようなずれがほとんど生じない。これは、磁気検出素子R1~R4と端子電極E11~E16が同一チップ上に形成されることから両者の位置関係にはずれがほとんど無く、且つ、ランドパターンE21~E26とダミーパターンDを同時に形成すれば、両者の位置関係にずれがほとんど生じないからである。そして、ハンダSを用いてセンサチップ30を回路基板20に搭載すると、ハンダSのセルフアライメント効果によって、磁気検出素子R1~R4とダミーパターンDの位置関係も設計通りの位置関係となる。これにより、磁性体ブロックをセンサチップに後付けする場合と比べて、磁界の検出精度を高めることができる。 Incidentally, if the planar position of the dummy pattern D with respect to the magnetic detection elements R1 to R4 is deviated, the magnetic field detection accuracy changes, but in the present embodiment, such deviation hardly occurs. This is because the magnetic detection elements R1 to R4 and the terminal electrodes E11 to E16 are formed on the same chip, so there is almost no deviation in the positional relationship between them, and the land patterns E21 to E26 and the dummy pattern D can be formed simultaneously. This is because there is almost no deviation in the positional relationship between the two. When the sensor chip 30 is mounted on the circuit board 20 using the solder S, the positional relationship between the magnetic detection elements R1 to R4 and the dummy pattern D becomes the designed positional relationship due to the self-alignment effect of the solder S. Thereby, the detection accuracy of a magnetic field can be improved compared with the case where a magnetic body block is retrofitted to a sensor chip.
 外部磁界による磁束φは、ダミーパターンDだけでなくランドパターンE21~E26にも吸い込まれる。ランドパターンE21~E26に吸い込まれた磁束φが磁気検出素子R1~R4に影響を与えると、磁界の検出精度が低下してしまう。このため、ランドパターンE21~E26については、磁気検出素子R1~R4からできるだけ離れた位置となるよう設計することが好ましい。本発明においては、少なくとも、ランドパターンE21~E26よりもダミーパターンDの方が、磁気検出素子R1~R4の近傍に位置する必要がある。 The magnetic flux φ due to the external magnetic field is absorbed not only by the dummy pattern D but also by the land patterns E21 to E26. When the magnetic flux φ sucked into the land patterns E21 to E26 affects the magnetic detection elements R1 to R4, the magnetic field detection accuracy is lowered. For this reason, the land patterns E21 to E26 are preferably designed to be located as far as possible from the magnetic detection elements R1 to R4. In the present invention, at least the dummy pattern D needs to be positioned closer to the magnetic detection elements R1 to R4 than the land patterns E21 to E26.
 以上説明したように、本実施形態においては、回路基板20に設けられたダミーパターンDが集磁体として機能することから、磁性体ブロックなどの別部材をセンサチップ30に後付けすることなく、磁界の検出感度を高めることが可能となる。 As described above, in the present embodiment, since the dummy pattern D provided on the circuit board 20 functions as a magnetic current collector, the magnetic field can be generated without retrofitting another member such as a magnetic block to the sensor chip 30. Detection sensitivity can be increased.
 以下、本実施形態による磁気センサ10のいくつかの変形例について説明する。 Hereinafter, some modified examples of the magnetic sensor 10 according to the present embodiment will be described.
 図7は第1の変形例を説明するための略平面図であり、(a)はセンサチップ30の素子形成面31を示し、(b)は回路基板20の搭載面21を示している。 7A and 7B are schematic plan views for explaining the first modified example, in which FIG. 7A shows an element forming surface 31 of the sensor chip 30 and FIG. 7B shows a mounting surface 21 of the circuit board 20.
 図7に示す例では、センサチップ30のx方向における幅をy方向における幅よりも大きくすることによって、磁気検出素子R1~R4とランドパターンE21~E26の距離をより拡大している。このように、磁気検出素子R1~R4とランドパターンE21~E26との距離がより大きくなるレイアウトを採用すれば、ランドパターンE21~E26に吸い込まれる磁束φに起因する検出精度の低下を抑制することが可能となる。 In the example shown in FIG. 7, the distance between the magnetic detection elements R1 to R4 and the land patterns E21 to E26 is further increased by making the width of the sensor chip 30 in the x direction larger than the width in the y direction. As described above, if a layout in which the distance between the magnetic detection elements R1 to R4 and the land patterns E21 to E26 is larger is adopted, a decrease in detection accuracy due to the magnetic flux φ sucked into the land patterns E21 to E26 can be suppressed. Is possible.
 図8は第2の変形例を説明するための略平面図であり、(a)はセンサチップ30の素子形成面31を示し、(b)は回路基板20の搭載面21を示している。 8A and 8B are schematic plan views for explaining the second modified example, in which FIG. 8A shows the element formation surface 31 of the sensor chip 30 and FIG. 8B shows the mounting surface 21 of the circuit board 20.
 図8に示す例では、センサチップ30を4端子構成とし、ダミーパターンDから見てx方向に位置する領域を避けてランドパターンE21~E24を配置している。この場合、センサチップ30には端子電極E15,E16が設けられないことから、図3及び図4に示した補償コイルCをセンサチップ30に集積することはできない。このように、ダミーパターンDから見てx方向に位置する領域を避けてランドパターンE21~E24を配置すれば、ランドパターンE21~E24に吸い込まれる磁束φに起因する検出精度の低下がほとんど生じない。 In the example shown in FIG. 8, the sensor chip 30 has a four-terminal configuration, and the land patterns E21 to E24 are arranged avoiding the region located in the x direction when viewed from the dummy pattern D. In this case, since the sensor chip 30 is not provided with the terminal electrodes E15 and E16, the compensation coil C shown in FIGS. 3 and 4 cannot be integrated in the sensor chip 30. As described above, if the land patterns E21 to E24 are arranged so as to avoid the region located in the x direction when viewed from the dummy pattern D, the detection accuracy is hardly lowered due to the magnetic flux φ sucked into the land patterns E21 to E24. .
 図9は第3の変形例を説明するための略平面図であり、(a)はセンサチップ30の素子形成面31を示し、(b)は回路基板20の搭載面21を示している。 FIG. 9 is a schematic plan view for explaining the third modification, wherein (a) shows the element formation surface 31 of the sensor chip 30 and (b) shows the mounting surface 21 of the circuit board 20.
 図9に示す例では、センサチップ30のy方向における幅をさらに拡大し、端子電極E11~E13を素子形成面31のエッジx1に沿ってx方向にほぼ等間隔に配置し、端子電極E14~E16を素子形成面31のエッジx2に沿ってx方向にほぼ等間隔に配置している。ここで、エッジx1とは、y方向における一端側に位置し、x方向に延在するエッジである。また、エッジx2とは、y方向における他端側に位置し、x方向に延在するエッジである。このように、センサチップ30をy方向に長い形状とし、短辺であるエッジx1,x2に沿って端子電極E11~E16を配置すれば、第2の変形例と同様、ランドパターンE21~E26に吸い込まれる磁束φに起因する検出精度の低下がほとんど生じない。 In the example shown in FIG. 9, the width of the sensor chip 30 in the y direction is further expanded, and the terminal electrodes E11 to E13 are arranged at substantially equal intervals in the x direction along the edge x1 of the element forming surface 31. E16 is arranged at substantially equal intervals in the x direction along the edge x2 of the element forming surface 31. Here, the edge x1 is an edge located on one end side in the y direction and extending in the x direction. The edge x2 is an edge that is located on the other end side in the y direction and extends in the x direction. As described above, if the sensor chip 30 has a shape elongated in the y direction and the terminal electrodes E11 to E16 are arranged along the short edges x1 and x2, the land patterns E21 to E26 are formed in the same manner as in the second modification. The detection accuracy is hardly lowered due to the magnetic flux φ sucked.
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say, it is included in the range.
 例えば、上記実施形態では、ダミーパターンDを電気的にフローティング状態としているが、本発明がこれに限定されるものではない。したがって、ダミーパターンDにグランド電位などを与えても構わない。 For example, in the above embodiment, the dummy pattern D is in an electrically floating state, but the present invention is not limited to this. Therefore, a ground potential or the like may be applied to the dummy pattern D.
10  磁気センサ
20  回路基板
21  搭載面
30  センサチップ
30a  搭載領域
31  素子形成面
33  基板
34,35  絶縁層
40  導体パターン
41  銅層
42  ニッケル層
43  金層
60  差動アンプ
70  検出回路
C  補償コイル
D  ダミーパターン
E11~E13  端子電極
E21~E26  ランドパターン
R1~R4  磁気検出素子
S  ハンダ
φ  磁束
DESCRIPTION OF SYMBOLS 10 Magnetic sensor 20 Circuit board 21 Mounting surface 30 Sensor chip 30a Mounting area 31 Element formation surface 33 Substrate 34, 35 Insulating layer 40 Conductive pattern 41 Copper layer 42 Nickel layer 43 Gold layer 60 Differential amplifier 70 Detection circuit C Compensation coil D Dummy Patterns E11 to E13 Terminal electrodes E21 to E26 Land patterns R1 to R4 Magnetic detection element S Solder φ Magnetic flux

Claims (6)

  1.  複数のランドパターン及びダミーパターンを有する回路基板と、
     磁気検出素子及び複数の端子電極が形成された素子形成面を有し、前記素子形成面が前記複数のランドパターン及びダミーパターンを覆うよう、前記回路基板に搭載されたセンサチップと、を備え、
     前記複数のランドパターン及び前記ダミーパターンは、いずれもニッケルを含み、
     前記複数のランドパターンは、前記複数の端子電極にそれぞれ接続され、
     前記ダミーパターンは、前記複数のランドパターンよりも前記磁気検出素子の近傍に位置することを特徴とする磁気センサ。
    A circuit board having a plurality of land patterns and dummy patterns;
    And a sensor chip mounted on the circuit board so as to cover the plurality of land patterns and dummy patterns, the element forming surface having a magnetic detection element and a plurality of terminal electrodes formed thereon,
    Each of the plurality of land patterns and the dummy pattern includes nickel,
    The plurality of land patterns are connected to the plurality of terminal electrodes, respectively.
    The magnetic sensor is characterized in that the dummy pattern is positioned closer to the magnetic detection element than the plurality of land patterns.
  2.  前記磁気検出素子は、第1及び第2の磁気検出素子を含み、
     前記ダミーパターンは、平面視で前記第1の磁気検出素子と前記第2の磁気検出素子の間に位置することを特徴とする請求項1に記載の磁気センサ。
    The magnetic detection element includes first and second magnetic detection elements,
    The magnetic sensor according to claim 1, wherein the dummy pattern is located between the first magnetic detection element and the second magnetic detection element in a plan view.
  3.  前記第1及び第2の磁気検出素子は、第1の方向に配列されており、
     前記複数のランドパターンは、前記ダミーパターンから見て前記第1の方向に位置する領域を避けて配置されていることを特徴とする請求項2に記載の磁気センサ。
    The first and second magnetic detection elements are arranged in a first direction,
    The magnetic sensor according to claim 2, wherein the plurality of land patterns are arranged so as to avoid a region located in the first direction when viewed from the dummy pattern.
  4.  前記ダミーパターンは、電気的にフローティング状態であることを特徴とする請求項1乃至3のいずれか一項に記載の磁気センサ。 The magnetic sensor according to any one of claims 1 to 3, wherein the dummy pattern is in an electrically floating state.
  5.  前記複数のランドパターン及び前記ダミーパターンは、いずれも銅層とニッケル層が積層された構造を有していることを特徴とする請求項1乃至4のいずれか一項に記載の磁気センサ。 5. The magnetic sensor according to claim 1, wherein each of the plurality of land patterns and the dummy pattern has a structure in which a copper layer and a nickel layer are laminated.
  6.  前記ニッケル層の厚みが10~100μmの範囲であることを特徴とする請求項5に記載の磁気センサ。 6. The magnetic sensor according to claim 5, wherein the thickness of the nickel layer is in the range of 10 to 100 μm.
PCT/JP2018/018544 2017-05-19 2018-05-14 Magnetic sensor WO2018212132A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-099588 2017-05-19
JP2017099588A JP6805962B2 (en) 2017-05-19 2017-05-19 Magnetic sensor

Publications (1)

Publication Number Publication Date
WO2018212132A1 true WO2018212132A1 (en) 2018-11-22

Family

ID=64273897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018544 WO2018212132A1 (en) 2017-05-19 2018-05-14 Magnetic sensor

Country Status (2)

Country Link
JP (1) JP6805962B2 (en)
WO (1) WO2018212132A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634391A (en) * 1992-07-21 1994-02-08 Murata Mfg Co Ltd Magnetic sensor module
JP2004077374A (en) * 2002-08-21 2004-03-11 Tokai Rika Co Ltd Arranging structure of magnetic sensor
JP2006032710A (en) * 2004-07-16 2006-02-02 Yamaha Corp Manufacturing method for magnetic sensor
JP2009520195A (en) * 2005-12-19 2009-05-21 オーストリアマイクロシステムス アーゲー Magnetic field sensor arrangement and magnetic field non-contact measurement method
JP2013040907A (en) * 2011-08-19 2013-02-28 Kyocera Corp Magnetic sensor
JP2016018817A (en) * 2014-07-04 2016-02-01 ローム株式会社 Semiconductor device
JP2016027315A (en) * 2014-06-26 2016-02-18 セイコーインスツル株式会社 Magnetic sensor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634391A (en) * 1992-07-21 1994-02-08 Murata Mfg Co Ltd Magnetic sensor module
JP2004077374A (en) * 2002-08-21 2004-03-11 Tokai Rika Co Ltd Arranging structure of magnetic sensor
JP2006032710A (en) * 2004-07-16 2006-02-02 Yamaha Corp Manufacturing method for magnetic sensor
JP2009520195A (en) * 2005-12-19 2009-05-21 オーストリアマイクロシステムス アーゲー Magnetic field sensor arrangement and magnetic field non-contact measurement method
JP2013040907A (en) * 2011-08-19 2013-02-28 Kyocera Corp Magnetic sensor
JP2016027315A (en) * 2014-06-26 2016-02-18 セイコーインスツル株式会社 Magnetic sensor device
JP2016018817A (en) * 2014-07-04 2016-02-01 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2018194485A (en) 2018-12-06
JP6805962B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP6376995B2 (en) Integrated sensor array
US7106046B2 (en) Current measuring method and current measuring device
EP2174152B1 (en) Current sensor having sandwiched magnetic permeability layer
JP6822127B2 (en) Magnetic sensor
JP5234459B2 (en) Current sensor
EP3779490A1 (en) Magnetic sensor
WO2018212131A1 (en) Magnetic sensor
CN106663511A (en) Shunt resistor
EP2159588A1 (en) Magnetic detecting device, method for manufacturing magnetic detecting device, and angle detecting device, position detecting device and magnetic switch using the magnetic detecting device
JP7115242B2 (en) magnetic sensor
JP6301823B2 (en) Magnetic detector
WO2018092337A1 (en) Current sensor
JP4689516B2 (en) Magnetic detector
JP2019174140A (en) Magnetic sensor
WO2018212132A1 (en) Magnetic sensor
US11022660B2 (en) Magnetic sensor including a magnetic member offset from a magnetoresistive effect element
JP2010056260A (en) Magnetic switch and magnetic field detection method
US11346897B2 (en) Magnetic field sensor on integrated circuit
US20230258741A1 (en) Magnetic sensor
JP2013205201A (en) Current sensor and current sensor package
WO2010090075A1 (en) Magnetic detector
JP2001330471A (en) Moving matter detector
KR20170102427A (en) Sensor device and semiconductor device
JP2001244521A (en) Moving object sensing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802016

Country of ref document: EP

Kind code of ref document: A1