WO2013179997A1 - Position detection device and shift position detection device - Google Patents

Position detection device and shift position detection device Download PDF

Info

Publication number
WO2013179997A1
WO2013179997A1 PCT/JP2013/064326 JP2013064326W WO2013179997A1 WO 2013179997 A1 WO2013179997 A1 WO 2013179997A1 JP 2013064326 W JP2013064326 W JP 2013064326W WO 2013179997 A1 WO2013179997 A1 WO 2013179997A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnetic
magnetic sensor
detection device
position detection
Prior art date
Application number
PCT/JP2013/064326
Other languages
French (fr)
Japanese (ja)
Inventor
山田 幸光
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2014518410A priority Critical patent/JP5976797B2/en
Publication of WO2013179997A1 publication Critical patent/WO2013179997A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/04Ratio selector apparatus
    • F16H59/044Ratio selector apparatus consisting of electrical switches or sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • F16H59/10Range selector apparatus comprising levers
    • F16H59/105Range selector apparatus comprising levers consisting of electrical switches or sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1284Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/10Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for switching-in of additional or auxiliary indicators or recorders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the present invention relates to a position detection device for detecting the position of a magnet moving in a plane using a magnetic sensor and a magnet, and more particularly to a shift position detection device for detecting the position of a magnet moving with a shift lever.
  • the automatic vehicle is provided with an automatic transmission that automatically changes the gear ratio according to the speed of the vehicle. And, in order to switch the gear combination of the automatic transmission, a shift lever device is attached.
  • FIG. 21 illustrates a perspective view of the shift lever device 600 disclosed in Patent Document 1.
  • FIG. 22 illustrates a shift position detection device 601 incorporated in the shift lever device 600 disclosed in Patent Document 1.
  • the shift lever device 600 is provided with a box-shaped case 607, which is assembled to the vehicle body.
  • a substantially rod-shaped shift lever 606 is attached to the case 607 so as to be movable with respect to the case 607 along the vehicle traveling direction and the vehicle width direction.
  • the shift lever 606 is moved to operating positions such as the parking position 608, the reverse position 610, the neutral position 611, and the drive position 612. Therefore, in order to detect this operation position, the shift lever device 600 incorporates a shift position detection device 601.
  • bias magnets 603 and 604 generating a magnetic field (magnetic flux) around the periphery and a counter magnet 602 interlocked with the shift lever are provided. There is.
  • the counter magnet 602 is moved to operation positions such as the parking position 608, the reverse position 610, the neutral position 611, and the drive position 612 by the shift operation of the shift lever.
  • one magnetoresistive element 605 that outputs a detected value according to the direction of the magnetic field (magnetic flux) is provided.
  • the counter magnet 602 acts to pull the magnetic field (magnetic flux) generated by the two bias magnets 603, 604 to its side.
  • the magnetic field (magnetic flux) generated by the bias magnets 603, 604 is directed in the direction of each operating position.
  • the magnetoresistive element 605 is provided with the magnetoresistive element of the number according to the number of operation positions. And each magnetoresistive element is provided with a sensitivity axis so that a detection value may become the maximum in the magnetic field (magnetic flux) which turns to the direction of each corresponding operation position.
  • the position of the counter magnet 602 that is, the position of the shift lever is detected.
  • Patent Document 1 As described above, in the prior art disclosed in Patent Document 1, it is necessary to prepare different reluctances in the sensitivity axis direction according to the number of operation positions. In addition, it is necessary to make the sensitivity axis direction of each magnetic resistance coincide with the direction from the position of each magnetic resistance to the corresponding operation position. Therefore, there is a problem that the manufacturing process is complicated and the number of processes is large and the manufacturing cost is high.
  • the shift position detection device 601 needs to change the specifications for each of the shift lever devices 600 having different specifications.
  • the shift position detection device 601 disclosed in Patent Document 1 can be used only for the shift lever device 600 of the corresponding specification, and there is a problem that versatility is low.
  • a rectangular parallelepiped counter magnet 704 having a long side direction in the left and right (X) direction is disposed on the upper side (Z2 direction) of the magnetoresistive effect sensor 702, and the counter magnet 704 is disposed in the back (Y2) direction.
  • the bias magnet 703 is magnetized in the direction orthogonal to the magnetization direction.
  • the counter magnet 704 is provided so as to be movable in two axial directions of left and right (X) direction and front and back (Y) direction. Then, when the counter magnet 704 moves and approaches the magnetoresistive sensor 702, the bias magnetic field applied to the magnetoresistive sensor 702 is changed by the influence of the magnetic field of the counter magnet 704.
  • the magnetoresistive effect sensor 702 and the bias magnet 703 are provided at each of the operation positions such as the reverse position 705, the neutral position 706, and the drive position 707.
  • Patent Document 1 the counter magnet 602 moves in the magnetic field emitted from the bias magnets 603 and 604 in conjunction with the shift lever. At that time, there is a problem that the smooth operation feeling of the shift lever is lost because the counter magnet 602 receives the magnetic force interference from the bias magnets 603 and 604. The same applies to Patent Document 2.
  • An object of the present invention is to solve such problems, and to provide a shift position detection device having high versatility, low cost, and a smooth sense of operation.
  • the shift position detection device further includes a magnet moving on the first virtual surface, a magnetic sensor disposed on the second virtual surface, and a position calculation unit that calculates the position of the magnet.
  • the sensor is located between the pinned magnetic layer and the free magnetic layer, the pinned magnetic layer having a pinned magnetization, a free magnetic layer whose magnetization is changed by an external magnetic field, and the pinned magnetic layer and the free magnetic layer.
  • a nonmagnetic layer in contact with the first virtual surface, the first virtual surface being provided parallel to the second virtual surface and perpendicular to the magnetizing direction of the magnet;
  • the surface is provided not to include the center of the magnetizing direction of the magnet, and the magnet is provided at a position where the magnetic flux generated from the magnet saturates the magnetization of the free magnetic layer of the magnetic sensor. , Sensitivity axis direction of the magnetic sensor and the magnetic Detecting the angle between the magnetic flux direction generated by the, the position calculation unit and calculates the position of the magnet from said angle.
  • the magnetic flux of the magnet is emitted outward from the vicinity of one end of the magnetizing direction of the magnet, and the first virtual surface is perpendicular to the magnetizing direction. And spreading outward isotropically and radially about the magnet in a state nearly parallel to the second virtual surface. Then, the magnetic flux of the magnet is directed to the other end side of the magnetizing direction of the magnet, passes through the surface including the center of the magnetizing direction of the magnet, and the first virtual surface and the second virtual surface It converges isotropically toward the other end near parallel to the surface.
  • the electrical resistance value of the magnetic sensor can be defined by the angle between the sensitivity axis direction of the magnetic sensor and the magnetic flux direction emitted by the magnet.
  • the magnetic sensor is disposed on the second virtual surface which does not include the magnetization direction center and is provided perpendicularly to the magnetization direction. Therefore, the magnetic flux emitted by the magnet acts on the magnetic sensor in a state substantially parallel to the second virtual surface. Therefore, the electric resistance value of the magnetic sensor is likely to change depending on the angle between the sensitivity axis direction of the magnetic sensor and the magnetic flux direction emitted by the magnet.
  • the magnet is provided at a position where the magnetic flux generated from the magnet saturates the magnetization of the free magnetic layer of the magnetic sensor. Therefore, when the magnet moves on the first virtual surface, the electric resistance value of the magnetic sensor changes depending only on the angle between the sensitivity axis direction of the magnetic sensor and the magnetic flux direction emitted by the magnet. Do.
  • the position of the magnet can be calculated using the angle between the sensitivity axis direction of the magnetic sensor and the magnetic flux direction emitted by the magnet.
  • the position of the magnet can be detected by the at least one magnetic sensor. That is, since it is not necessary to use a bias magnet or to provide a magnetic sensor at each position of the operation position, the number of parts can be reduced. Therefore, it is possible to provide a low cost shift position detection device.
  • the angle between the sensitivity axis direction of the at least one magnetic sensor and the direction of the magnetic flux emitted by the magnet is not limited to the position where the operation position is disposed, and can be arbitrarily provided. Therefore, a highly versatile shift position detection device can be provided. In addition, since the manufacturing process can be simplified and the number of processes can be reduced, the manufacturing cost can be reduced.
  • the position of the magnet can be detected without using a bias magnet. Therefore, since the magnet does not receive magnetic force interference from the bias magnet, it is possible to move and operate the shift lever with a smooth sense of operation.
  • the magnet moves so as not to overlap the magnetic sensor in plan view.
  • the angle between the sensitivity axis direction of the magnetic sensor and the magnetic flux direction emitted by the magnet can be uniquely determined.
  • the magnetic sensor is disposed outside the moving range of the magnet in a plan view.
  • the arrangement of the operation positions in the shift lever device can be more freely provided because the magnet is not limited to the regulation to move so as not to overlap the magnetic sensor in plan view.
  • the arithmetic processing for detecting the angle becomes simpler.
  • the shift position detection device has a failure detection unit that detects a failure of the magnetic sensor, and the failure detection unit compares a reference angle at which the magnet is positioned with an angle detected by the magnetic sensor. Preferably, the failure of the magnetic sensor is detected.
  • the angle calculated from the output of the magnetic sensor deviates from the reference angle. Therefore, the failure of the magnetic sensor can be detected by comparing the reference angle with the angle.
  • the magnetic sensor comprises at least two magnetic sensors.
  • the magnetic sensor comprises at least three magnetic sensors.
  • failure detection of the at least three magnetic sensors is enabled by comparing the three arbitrary positions of the magnet.
  • a shift position detection device having a failure detection unit that detects a failure of the at least three magnetic sensors, wherein the position calculation unit is configured to combine two pairs from at least three of the angles detected by the at least three magnetic sensors.
  • the position calculation unit is configured to combine two pairs from at least three of the angles detected by the at least three magnetic sensors.
  • at least three positions of the magnet are selected from the combination of the two pairs, and the failure detection unit detects a failure of the at least three magnetic sensors by comparing the at least three positions.
  • the at least three positions of the magnet can be calculated. At this time, the at least three positions of the magnet are compared, and when the difference is large, in the at least three magnetic sensors, the angle between the sensitivity axis direction of each magnetic sensor and the magnetic flux direction emitted by the magnet It is determined that there is a magnetic sensor erroneously detecting. Therefore, the failure detection unit can detect the failure of the at least three magnetic sensors. And, the output from the magnetic sensor determined as a failure is not used, and only the output from the normal magnetic sensor is used. An arbitrary position of the magnet can be detected. Thus, a highly reliable shift position detection device can be provided.
  • the at least three magnetic sensors are not arranged on the same straight line.
  • the position calculation unit can uniquely calculate the position of the magnet using the angles detected by the at least three magnetic sensors.
  • FIG. 4 is a cross-sectional view of the magnetic flux distribution generated from the magnet shown in FIG.
  • FIG. 4 is a cross-sectional schematic diagram of the giant magnetoresistive effect element which comprises the magnetic sensor in 1st Embodiment.
  • It is a characteristic view of a giant magnetoresistance effect element which constitutes a magnetic sensor in a 1st embodiment.
  • the Y direction is the front and back direction
  • the Y1 direction is the front direction
  • the Y2 direction is the back direction
  • the X direction is the left and right direction
  • the X1 direction is the left direction and the X2 direction is the right direction It is.
  • the direction orthogonal to both the X direction and the Y direction is the vertical direction (Z direction; height direction)
  • the Z2 direction is the upper direction
  • the Z1 direction is the lower direction.
  • FIG. 1 is a perspective view of a shift lever device on which the shift position detection device in the first embodiment is mounted.
  • FIG. 2 is a plan view for explaining an outline of the shift position detection device in the first embodiment.
  • FIG. 3 is a block diagram of the shift position detection apparatus according to the first embodiment.
  • the automatic vehicle is provided with an automatic transmission that automatically changes the gear ratio according to the speed of the vehicle. And, in order to switch the gear combination of the automatic transmission, a shift lever device is attached.
  • the shift lever device 10 in the present embodiment is configured to include a substantially rod-like shift lever 11 and a box-like case 12 attached to the floor or the like of a vehicle.
  • the shift lever 11 is attached to the case 12 so as to be movable in the longitudinal (Y) direction and in the lateral (X) direction. Then, in the shift lever device 10, the shift lever 11 is moved to the operation position such as the parking position 13, the neutral position 14, the drive position 15, the reverse position 16, and the like.
  • the operation positions are the parking position 13, the neutral position 14, the drive position 15, the reverse position 16 and the like, but the present invention is not limited to this.
  • a plurality of operating positions may be provided for the drive position 15, or other operating positions may be provided.
  • the shift position detecting device 1 is incorporated in the shift lever device 10 in order to detect the operation positions 13, 14, 15, 16 at which the shift lever 11 is positioned.
  • the shift position detection device 1 is a magnet 5 fixed to a shift lever (not shown) and moved together, and a magnet that is disposed out of the movement line of the magnet 5 in plan view. It is configured to include the sensor 2. That is, the magnet 5 moves so as not to overlap with the magnetic sensor 2 vertically (in the Z direction) in plan view. By detecting the position of the magnet 5 using the magnetic sensor 2, each operation position 13, 14, 15, 16 at which the shift lever is positioned is calculated.
  • the position of the magnet 5 is detected without using a bias magnet. Therefore, the magnet 5 is not subjected to magnetic force interference when moving with the shift lever. Therefore, the shift lever can be moved and operated with a smooth sense of operation.
  • FIG. 3 is a plan view showing the magnetic flux distribution generated from the magnet 5 in the present embodiment.
  • FIG. 4 is a cross-sectional view of the magnetic flux distribution generated from the magnet 5 shown in FIG. 3 taken along the line AA and viewed in the arrow direction.
  • the magnet 5 of this embodiment has a shape of the cylindrical body extended in an up-down (Z) direction.
  • the end 5a on the upper (Z2) side of the magnet 5 is magnetized to the N pole, and the end 5b on the lower (Z1) side is magnetized to the S pole. Therefore, the magnetization direction is the vertical direction, and the magnetization direction center 5 c is located substantially at the center of the magnet 5 in the vertical direction.
  • the shift lever is moved to each operation position 13, 14, 15, 16 as shown in FIG. At that time, the end 5 b of the magnet 5 fixed to the shift lever moves on the first virtual surface 8 as shown in FIG. 4.
  • the magnetic sensor 2 is disposed on the second virtual surface 9 which does not pass through the center of the magnet 5 in the magnetization direction. Further, as shown in FIG. 4, the first virtual surface 8 and the second virtual surface 9 are provided in parallel with each other, and are provided perpendicular to the magnetization direction of the magnet 5.
  • the magnet 5 in this embodiment is a cylindrical body, it is not limited to this. Polygonal columns are also possible. Also, the magnetization direction can be reversed, and the end 5a on the upper (Z2) side of the magnet 5 can be magnetized to the S pole and the end 5b on the lower (Z1) side can be magnetized to the N pole. It is. Further, in the present embodiment, the first virtual surface 8 and the second virtual surface 9 are flat, but the present invention is not limited to this, and may be a spherical surface or an elliptical spherical surface. good.
  • the magnetic flux 7 is emitted outward from the vicinity of the upper end 5 a which is one of the magnetization directions of the magnet 5, and the magnetization direction is In a state close to being parallel to the first virtual surface 8 and the second virtual surface 9 which are perpendicular to the above, they spread isotropically and radially outward around the magnet 5. Thereafter, the magnetic flux 7 is directed to the lower end 5b side, which is the other side of the magnetizing direction of the magnet 5, and passes through a plane including the center of the magnetizing direction of the magnet 5 to form the first virtual surface 8 and the second virtual surface 8. And converges isotropically toward the lower end 5b.
  • the magnetic flux 7 emitted or converged from a point near the outer periphery of the upper end 5a and the lower end 5b is close to parallel to the first virtual surface 8 and the second virtual surface 9 in a wider area. In the state.
  • the magnetic flux 7 generated from the magnet 5 radially spreads around the magnet 5 as shown in FIG. Therefore, the direction of the magnetic flux 7 generated from the magnet 5 acting on the magnetic sensor 2 is from the magnet 5 to the direction of the magnetic sensor 2.
  • the magnet 5 is a cylindrical body, when the magnet 5 is seen from the up-down (Z) direction, it has circular isotropic shape. Therefore, the magnetic flux 7 is likely to be radiated isotropically around the magnet 5.
  • the magnetic sensor 2 of the present embodiment is configured to include a giant magnetoresistive effect (hereinafter, described as GMR (Giant Magneto Resistive effect)) element.
  • GMR giant Magnetoresistive effect
  • the GMR element 2a is formed by laminating the antiferromagnetic layer 2c, the fixed magnetic layer 2d, the nonmagnetic layer 2e, and the free magnetic layer 2f in this order from below on the substrate 2b.
  • the surface of the magnetic layer 2f is covered with a protective layer 2g.
  • the magnetization direction (P direction) of the pinned magnetic layer 2d is pinned by the exchange coupling between the antiferromagnetic layer 2c and the pinned magnetic layer 2d.
  • the magnetization direction (P direction) is directed to the left (X2) direction in parallel with the substrate 2b. In this embodiment, this direction (P direction) is taken as the sensitivity axis direction of the GMR element 2a.
  • the GMR element 2a is formed in a multilayer structure by stacking a ferromagnetic thin layer and a nonmagnetic layer, and it is known that the electric resistance is greatly changed by the magnetic flux from the external magnetic field. Therefore, the magnetic sensor 2 configured to include the GMR element 2a can detect the magnetic flux 7 generated from the magnet 5 with high sensitivity.
  • the resistance value of the GMR element 2a depends on the relative angle of magnetization of both the pinned magnetic layer 2d and the free magnetic layer 2f. The resistance value is minimum when both magnetizations are parallel and directed in the same direction, and maximum when antiparallel.
  • the magnetic sensor 2 is configured to include the GMR element 2a, but the present invention is not limited to this.
  • the magnetic sensor 2 can also be configured to include a tunnel effect (TMR [Tunnel Magneto Resistive Effect) element or an anisotropic magnetoresistance effect (AMR [Anisotropic Magneto Resistive effect]) element.
  • TMR Tunnel Effect
  • AMR anisotropic magnetoresistance effect
  • FIG. 6 shows a characteristic diagram of the GMR element in the present embodiment.
  • the vertical axis is the electrical resistance value of the GMR element
  • the horizontal axis is the magnetic flux density of the magnetic flux acting on the GMR element.
  • the direction of the magnetic flux indicates the X1 direction by (-) and the X2 direction by (+).
  • the electric resistance has a substantially constant value of R min and does not change.
  • the electric resistance increases when the magnetic flux density becomes lower than a predetermined value.
  • the electrical resistance stops rising and saturates at a value of R max which is substantially constant.
  • the magnetic sensor 2 is disposed in the magnetic flux generated from the magnet 5. Then, when the magnet 5 is operated to move each operation position as shown in FIG. 2, the magnetic flux 7 generated from the magnet 5 acts on the GMR element 2a (shown in FIG. 6) constituting the magnetic sensor 2. . And, when the magnet 5 is operated to move each operation position, the residual magnetic flux density of the magnet 5 is set sufficiently large so that the magnetic flux 7 saturates the magnetization of the free magnetic layer 2f constituting the GMR element 2a. ing. In other words, the magnet 5 is moved at such a position that the magnetization of the free magnetic layer 2 f is saturated by the residual magnetic flux.
  • the magnet 5 one having a large residual magnetic flux density, such as a neodymium magnet, a samarium cobalt magnet, an alnico magnet, a ferrite magnet, or a plastic magnet, is preferable. And, one having a residual magnetic flux density of 250 to 1500 mT is selected. Therefore, when the magnet 5 is operated to move each operation position, the magnetic flux 7 is maintained so that the magnetization of the free magnetic layer 2 f is saturated regardless of the distance between the magnet 5 and the magnetic sensor 2.
  • the angle formed in the direction of the magnetic flux 7 generated from the magnet 5 in the counterclockwise direction from the magnetization direction (P direction) of the pinned magnetic layer 2d (shown in FIG. 5) is ⁇ . .
  • R is represented by the equation (1), where R is the electric resistance value of the GMR element 2 a constituting the magnetic sensor 2. ing.
  • R R min + (R max -R min ) ⁇ (1 ⁇ cos ⁇ ) / 2 (1) Therefore, the electric resistance value R of the GMR element 2a is determined by the angle ⁇ according to the equation (1). Further, R max and R min are characteristic values of the GMR element 2a, and are values determined by the GMR element 2a.
  • FIG. 7 shows the relationship between the electrical resistance value R and the angle ⁇ in equation (1).
  • the vertical axis in FIG. 7 is the electrical resistance value R
  • the horizontal axis is the angle ⁇ . Numbers indicated by arrows in the figure indicate the respective operation positions.
  • the curve shown in FIG. 7 corresponds to an angle ⁇ which varies between 0 to 180 degrees and 180 to 360 degrees with respect to the same value of the electric resistance value R. Therefore, in the present embodiment, for example, the shift lever is set to be located at the parking position 13 when the engine of the vehicle is started. Therefore, when the engine of the vehicle is started, an angle of section 0 to 180 is assigned to the value of R. Then, when the value of R becomes larger and exceeds the peak electrical resistance value R and becomes smaller next, the angle of the section 180 to 360 is assigned to the value of R.
  • the shift lever moves from the parking position 13 to the neutral position 14, the drive position 15, and the reverse position 16, each operation position 14, 15, 16 can be accurately detected.
  • the electric resistance value R of the GMR element 2a is unique according to the angle ⁇ according to the equation (1). It can be decided at will. That is, the electric resistance value R of the GMR element 2a and the angle ⁇ can be made to correspond to one to one.
  • the magnetic sensor 2 As described above, as shown in FIG. 2, it occurs when the magnetic sensor 2 is disposed within the range in which the magnet 5 moves. That is, when the magnetic sensor 2 is disposed within the range in which the magnet 5 moves, the magnetic sensor 2 looks at the magnet 5 over the range of 360 degrees. However, when the magnetic sensor 2 is disposed outside the range in which the magnet 5 moves, the magnetic sensor 2 sees the magnet 5 within the range of 180 degrees. Therefore, in this case, it is not necessary to perform the above-mentioned arithmetic processing, and the electric resistance value R of the GMR element 2a is uniquely determined by the angle ⁇ . That is, the electric resistance value R of the GMR element 2a corresponds to the angle ⁇ one to one. As described above, it is more preferable to arrange the magnetic sensor 2 out of the range in which the magnet 5 moves, since the arithmetic processing for detecting the angle ⁇ becomes simple.
  • the magnetization direction (P direction) of the pinned magnetic layer 2 d is the same as the sensitivity axis of the magnetic sensor 2. Therefore, the angle ⁇ formed in the direction of the magnetic flux 7 generated from the magnet 5 in the counterclockwise direction from the magnetization direction (P direction) of the pinned magnetic layer 2 d is the magnetic flux of the magnet 5 acting on the sensitivity axis direction of the magnetic sensor 2 and the magnetic sensor 2 7 is an angle ⁇ between the sensitivity axis direction of the magnetic sensor 2 and the magnetic flux direction emitted by the magnet 5.
  • FIG. 8 shows an electric circuit diagram of the magnetic sensor 2 in the present embodiment.
  • the magnetic sensor 2 according to the present embodiment includes four resistance portions R 1 , R 2 , R 3 , and R 4 to form a bridge circuit.
  • the resistance unit R 1, R 4, the magnet 5 becomes a GMR element 2a (shown in FIG. 6) to vary the electric resistance by magnetic flux generated from (3, shown in FIG. 4).
  • the resistor portions R 2 and R 3 have fixed resistance elements which do not change due to the magnetic flux generated from the magnet 5.
  • the fixed resistance element can be obtained, for example, by changing the stacking order of the nonmagnetic layer 2e and the free magnetic layer 2f in FIG. That is, in the present embodiment, the fixed resistance element is formed by laminating the antiferromagnetic layer 2c, the fixed magnetic layer 2d, the free magnetic layer 2f, and the nonmagnetic layer 2e in this order on the substrate 2b from below. The surface of the magnetic layer 2e is covered with a protective layer 2g.
  • the midpoint potential (V 1 ) between the resistor portion R 1 and the resistor portion R 2 and the resistor portion R 3 The midpoint potential (V 2 ) between the resistance portion R 4 and the resistance portion R 4 changes. Then, the midpoint potential (V 1 ) and the midpoint potential (V 2 ) change in reverse with increase and decrease, and the difference (V 1 -V) between the midpoint potential (V 1 ) and the midpoint potential (V 2 ) 2 ) is output via the differential amplifier 2h.
  • the resistor portions R 2 and R 3 are assumed to have fixed resistance elements, but it is also possible to have GMR elements 2 a (shown in FIG. 6).
  • the magnetic sensor 2 includes four resistance portions R 1 , R 2 , R 3 , and R 4 to form a bridge circuit, two resistance portions R 1 and R 2 are connected in series. A configuration in which the midpoint potential of the two resistor units R 1 and R 2 is used as an output is also possible.
  • the electric resistances of the resistance portions R 1 and R 4 include the GMR element 2 a and the direction in which the magnetic flux 7 generated from the magnet 5 acting on the GMR element 2 a constitutes the GMR element 2 a It is the direction of magnetization of the magnetic layer 2 f. Therefore, the difference (V 1 ⁇ V 2 ) which is the output of the magnetic sensor 2 is determined by the angle ⁇ formed in the direction of the magnetic flux 7 generated from the magnet 5 counterclockwise from the magnetization direction (P direction). That is, the difference (V 1 -V 2 ) which is the output of the magnetic sensor 2 and the angle ⁇ between the sensitivity axis direction of the magnetic sensor 2 and the magnetic flux direction emitted by the magnet 5 have a corresponding relationship.
  • the corresponding relationship is, for example, the relationship between the difference (V 1 ⁇ V 2 ) and the angle ⁇ using the equation (1) and the parameters such as the supply voltage and the resistance value constituting the electric circuit of the magnetic sensor 2. It can be determined as a formula.
  • FIG. 9 shows a block diagram of the shift position detection device 1.
  • the shift position detection device 1 is configured to have a control unit 6 in addition to the magnet 5 and the magnetic sensor 2.
  • the control unit 6 is configured to include a central processing unit 6a (hereinafter, referred to as a CPU (Central Processing Unit)) and a memory 6b.
  • the CPU 6a has a position calculation unit 6c.
  • the magnet 5 is omitted and described in the block diagram shown in FIG.
  • the CPU6a from the corresponding relationship of the difference between (V 1 -V 2) between the angle theta, when receiving the difference which is the output of the magnetic sensor 2 (V 1 -V 2), calculates a corresponding angle theta.
  • a first threshold ⁇ a is set and stored in the memory 6 b.
  • FIG. 10 shows a flowchart executed by the position calculation unit 6c in the present embodiment.
  • the calculation process performed by the position calculation unit 6c will be described with reference to FIG. 1, FIG. 2, FIG. 9, and FIG.
  • the shift position detection device 1 is also started at the same time.
  • it is determined in S5 that the shift lever 11 is at the parking position 13 (i 1).
  • the vehicle can appropriately switch the gear combination of the automatic transmission according to the operation position of the shift lever 11.
  • the first threshold ⁇ a is preferably half or less of the angular difference corresponding to the adjacent operation positions in order to reliably distinguish the adjacent operation positions. Moreover, in order to prevent a malfunction, it is preferable that it is larger than the angle variation corresponding to the output variation of the magnetic sensor 2. Therefore, in the present embodiment, the first threshold ⁇ a is set to a value within the above range.
  • the magnetization direction (P direction) of the pinned magnetic layer 2d is provided in parallel to the second virtual surface 9, but the present invention is not limited to this. Even if the magnetization direction (P direction) of the pinned magnetic layer 2d is inclined with respect to the second virtual surface 9, using the cosine value of the magnetization of the pinned magnetic layer 2d to the second virtual surface 9 ( 1) Formula can be obtained.
  • the magnetization direction (P direction) of the pinned magnetic layer 2d is directed to the right (X2) direction, but is not limited thereto.
  • the magnetization direction (P direction) of the pinned magnetic layer 2 d can be oriented in an arbitrary direction in a plane parallel to the second virtual surface 9.
  • the magnetic flux 7 emitted or converged from a position near the outer periphery of the upper end 5a and the lower end 5b is in a state close to parallel to the first virtual surface 8 in a wider area. Therefore, by providing the second virtual surface 9 on which the magnetic sensor 2 is disposed so as to pass near the upper end 5a and the lower end 5b, the sensitivity axis direction of the magnetic sensor 2 can be more accurately detected.
  • the angle ⁇ with the direction of the magnetic flux emitted by the magnet 5 can be calculated.
  • the magnet 5 moves so as not to overlap the magnetic sensor 2 in the vertical direction.
  • the magnetic flux generated from the magnet 5 acts on the sensitivity axis of the magnetic sensor 2 in the vertical direction.
  • the angle ⁇ between the sensitivity axis direction of the magnetic sensor 2 and the magnetic flux direction emitted by the magnet 5 can not be determined uniquely. Therefore, it is preferable that the magnetic sensor 2 be disposed so as not to overlap with the magnet 5 vertically.
  • the magnetic sensor 2 is arrange
  • FIG. 11 shows a block diagram of a shift position detection device which is a modification of the present embodiment.
  • FIG. 12 shows a flowchart executed by the position calculation unit and the failure detection unit as a modification of the present embodiment.
  • a failure detection unit 6d is added to the CPU 6a in the first embodiment. Then, the failure detection unit 6d detects a failure due to deterioration or the like of the magnetic sensor 2 with time.
  • the magnet 5 is omitted and described in the block diagram shown in FIG.
  • the failure calculation processed by the failure detection unit 6 d will be described with reference to FIGS. 11 and 12.
  • the calculation processing of S1 to S5 is the same as that of the first embodiment, and is performed by the position calculation unit 6c.
  • the calculation processing of S6 to S9 is executed by the failure detection unit 6d.
  • the operation position which is the determination result of S5 and the angle ⁇ detected by the magnetic sensor are output from the position calculation unit 6c to the failure detection unit 6d.
  • S6 it is determined whether the shift lever remains at the same operation position. In the case of NO, the process returns to S1 to repeat the calculation process from the beginning.
  • the average value ⁇ > of the angle ⁇ is calculated in S7.
  • the absolute value of the difference between the reference angle theta i corresponding to the operating position and the average value ⁇ theta> is calculated. Then, the absolute value is equal to or smaller than a second threshold value theta b, repeat the processing returns to S1. If this absolute value is the second threshold value theta b above, an alarm by determining the magnetic sensor 2 malfunction, we recommend replacement of the magnetic sensor 2. Further, the reference angle ⁇ i corresponding to the operation position, that is, the initial value ⁇ i of the angle corresponding to the operation position detected by the magnetic sensor 2 and the second threshold value ⁇ b are stored in advance in the memory 6 b .
  • the angle theta is calculated from the output of the magnetic sensor 2, it deviates from the reference angle theta i. If this deviation becomes large, the operation position can not be accurately detected. In this modification, it is to detect with the second threshold value theta b this. Therefore, to prevent malfunctions, the second threshold value theta b, is preferably larger than the angle variation corresponding to the output variation of the magnetic sensor 2. Also, the second threshold value theta b, is preferably less than the first threshold value theta a.
  • the second threshold theta b below the first threshold value theta a, during which accurately detect the respective operating position, to permit detection of such deterioration over time of the magnetic sensor 2.
  • the average value of the angle ⁇ is used in the above method, it is also possible to use the value of the angle ⁇ itself.
  • the reason for using the average value of the angles ⁇ is to improve the accuracy of failure detection. Therefore, it is also possible to execute the determination of S8 after calculating the average value several times to dozens of times. Further, by preparing a plurality of second threshold theta b, it is also possible to partition the level of alarm.
  • FIG. 13 is a plan view for explaining the outline of the shift position detection device in the second embodiment.
  • FIG. 14 shows a block diagram of the shift position detection apparatus in the second embodiment.
  • the shift position detection device of this embodiment differs from the first embodiment in that it comprises two magnetic sensors 2 and 3, and two magnetic sensors 2, A point 3 is located outside the range of movement of the magnet 5.
  • the same reference numerals are used for the same components as in the first embodiment.
  • the two magnetic sensors 2 and 3 are disposed outside the moving range of the magnet 5, the two magnetic sensors 2 and 3 are disposed within the moving range of the magnet 5. It is also possible. However, when the magnetic sensors 2 and 3 overlap the magnet 5 vertically (in the Z direction), the magnetic flux 7 generated from the magnet 5 acts on the sensitivity axes of the magnetic sensors 2 and 3 in the vertical direction. The angle ⁇ between the sensitivity axis direction of 3 and the magnetic flux direction emitted by the magnet 5 can not be uniquely determined. Therefore, it is preferable to arrange each magnetic sensor 2 and 3 so that it does not overlap with each operation position up and down.
  • disposing the two magnetic sensors 2 and 3 out of the moving range of the magnet 5 is not limited to the rule that the two magnetic sensors 2 and 3 and the magnet 5 do not overlap.
  • the degree of freedom in the arrangement of each operation position in the shift lever device is improved. Further, as described above, it is more preferable because the arithmetic processing for detecting the angle ⁇ between the sensitivity axis direction of each of the magnetic sensors 2 and 3 and the magnetic flux direction emitted by the magnet 5 is simplified.
  • the CPU 6 a receives the difference (V 1 ⁇ V 2 ) alternately output from the two magnetic sensors 2 and 3, as in the first embodiment.
  • the angle ⁇ between the sensitivity axis direction of the two magnetic sensors 2 and 3 and the magnetic flux direction emitted by the magnet 5 is calculated. Then, using this angle ⁇ , as in the modification of the first embodiment, according to the flowchart shown in FIG. 12, the position calculation unit 6c performs the determination of the operation position, and the failure detection unit 6d performs the failure determination. Do.
  • the CPU 6a When the failure determination is made, the CPU 6a does not receive the difference (V 1- V 2 ) which is the output from the magnetic sensor determined to be faulty, and executes processing to receive only the output of the normal magnetic sensor . Therefore, in the present embodiment, a highly reliable shift position detection device can be provided.
  • FIG. 15 shows a flowchart executed by the position calculation unit in the modification of the second embodiment.
  • the position calculation unit of this modification executes calculation processing different from the first embodiment and the modification of the first embodiment.
  • An (x, y) coordinate system is set with an arbitrary position on the second virtual surface as the origin. Then, the (x, y) coordinates at which the magnetic sensor 2 and the magnetic sensor 3 are located are respectively (x 2 , y 2 ) and (x 3 , y 3 ).
  • the magnet 5 is located in the direction of the angle ⁇ 2 or the angle ⁇ 3 from each of the magnetic sensors 2 and 3 respectively. Therefore, the (x, y) coordinates at which the magnet 5 is located pass through the (x 2 , y 2 ) coordinates at which the magnetic sensor 2 is located, and a straight line whose inclination is tan ⁇ 2 and the magnetic sensor 3 are located (x 3 , Y 3 ), and is calculated as the point of intersection with a straight line whose inclination is tan ⁇ 3 .
  • FIG. 15 shows a flowchart executed by the position calculation unit in the modification of the second embodiment. The calculation process performed by the position calculation unit 6c of the present modification will be described using FIGS. 13, 14 and 15.
  • FIG. 15 shows a flowchart executed by the position calculation unit in the modification of the second embodiment. The calculation process performed by the position calculation unit 6c of the present modification will be described using FIGS. 13, 14 and 15.
  • FIG. 15 shows a flowchart executed by the position calculation unit in the modification of the second embodiment. The calculation process performed by the position calculation unit 6c of the present modification will be described using FIGS. 13, 14 and 15.
  • FIG. 15 shows a flowchart executed by the position calculation unit in the modification of the second embodiment. The calculation process performed by the position calculation unit 6c of the present modification will be described using FIGS. 13, 14 and 15.
  • FIG. 15 shows a flowchart executed by the position calculation unit in the modification of the second embodiment. The calculation process performed by the position calculation unit 6c of the present modification will be described using FIGS. 13, 14 and 15.
  • the CPU 6a receives the difference (V 1 -V 2 ) which is the output from each of the magnetic sensors 2 and 3 alternately.
  • the position calculation unit 6c determines the angles ⁇ 2 and ⁇ 3 between the sensitivity axis direction of each of the magnetic sensors 2 and 3 and the magnetic flux direction emitted by the magnet 5. calculate.
  • the relational expression between each difference (V 1 -V 2 ) and each angle ⁇ 2 and ⁇ 3 is calculated from the electric circuit configuration of each magnetic sensor 2 and 3 and Equation (1) Note that this relational expression is stored in advance in the memory 6b.
  • the position calculator 6c calculates the angles ⁇ 2 and ⁇ 3 from the differences (V 1 -V 2 ) using these equations and constants.
  • the position calculation unit 6c calculates (x, y) coordinates at which the magnet 5 is located, using the respective angles ⁇ 2 and ⁇ 3 and the equations (4) and (5).
  • the equations (4) and (5) are stored in advance in the memory 6b.
  • the parking position 13 is selected.
  • the absolute value of the difference between the (x i , y i ) coordinate at which the parking position 13 is located and the (x, y) coordinate at which the calculated magnet 5 is located is the third threshold value x a
  • the fourth threshold value x a or threshold is y a or less, i.e.,
  • the answer is YES
  • information that the shift lever is at the parking position 13 is output to the vehicle side. After that, the process returns to S1, and the calculation process is repeated.
  • the neutral position 14 is next selected in S6.
  • the parking position 13, the neutral position 14, the drive position 15, and the reverse position 16 are determined in order.
  • S7 it is confirmed whether the selected operation position is the last reverse position 16.
  • the same arithmetic processing as performed at the parking position 13 is performed on the neutral position 14.
  • the same arithmetic processing as the drive position 15 and the reverse position 16 is repeated until the operation position is determined.
  • the process returns to S1, and the same arithmetic processing is repeated from the parking position 13.
  • the shift position detection device of this modification detects each operation position where the shift lever is positioned. Then, when the shift lever is positioned at each operation position, the information is output to the vehicle side. As a result, the vehicle can select an appropriate gear ratio or the like corresponding to each operation position.
  • each operation position of the shift lever device can be provided at any position. That is, it can respond only by changing the (x i , y i ) coordinate corresponding to an arbitrary position of each operation position.
  • the shift position detection device of this modification is excellent in versatility.
  • the third threshold value x a and the fourth threshold value y a are not more than half the distance between the adjacent operation positions in the X and Y directions in order to reliably divide the adjacent operation positions. Is preferred. Further, in order to prevent a malfunction, the third threshold value x a, and the fourth threshold y a is, X direction corresponding to the output variation of the magnetic sensor 2, and is greater than the positional variation in the Y direction preferred. Therefore, in this modification, the third threshold value x a, and the fourth threshold y a is set to a value in the range of the.
  • FIG. 16 is a plan view for explaining the outline of the shift position detection device in the third embodiment.
  • FIG. 17 shows a block diagram of the shift position detection apparatus in the third embodiment.
  • the shift position detection device of this embodiment differs from that of the first embodiment in that it comprises three magnetic sensors 2, 3, 4 and three magnetic sensors 2, 3 and 4 are points which are disposed outside the moving range of the magnet 5.
  • the same reference numerals are used for the same components as in the first embodiment.
  • the three magnetic sensors 2, 3, and 4 are disposed out of the moving range of the magnet 5, the three magnetic sensors 2, 3, and 4 are in the moving range of the magnet 5. It is also possible to be placed at However, when the respective magnetic sensors 2, 3, 4 overlap the magnet 5 vertically (in the Z direction), the angle ⁇ between the respective magnetic sensors 2, 3, 4 and the magnet 5 can not be determined uniquely. Therefore, it is preferable to arrange each magnetic sensor 2, 3, 4 so that it does not overlap with each operation position up and down.
  • disposing the three magnetic sensors 2, 3, 4 outside the moving range of the magnet 5 does not require the three magnetic sensors 2, 3, 4 and the magnet 5 to overlap. Since it is not restricted, the degree of freedom in the arrangement of each operation position in the shift lever device is improved. Further, as described above, it is more preferable because the arithmetic processing for detecting the angle ⁇ between the sensitivity axis direction of each of the magnetic sensors 2, 3, 4 and the magnetic flux direction emitted by the magnet 5 is simplified.
  • the three magnetic sensors 2, 3, 4 are not arranged on the same straight line.
  • the three magnetic sensors 2, 3, 4 may appear from the magnet 5 in the same direction.
  • it can be determined that the magnets 5 are located on the same straight line it can not be determined where on the same straight line. In order to avoid this, it is preferable that the three magnetic sensors 2, 3 and 4 not be arranged on the same straight line.
  • FIG. 18 is a flowchart executed by the position calculation unit in the third embodiment.
  • the calculation process performed by the position calculation unit in the present embodiment will be described with reference to FIGS. 17 and 18.
  • the CPU 6a receives the differences (V 1 -V 2 ), which are the outputs from the three magnetic sensors 2, 3 and 4, in time series at a sufficiently small time interval.
  • the position calculation unit 6c calculates angles ⁇ 2 , ⁇ 3 , ⁇ 4 formed by the sensitivity axis directions of the magnetic sensors 2, 3, 4 and the magnetic flux direction emitted by the magnet 5. This calculation method is performed in the same manner as S2 shown in FIG. 15 in the modification of the second embodiment.
  • the parking position 13 is selected.
  • the absolute value of the difference between the (x i , y i ) coordinate at which the parking position 13 is located and the (x p , y p ) coordinate at which the calculated magnet 5 is located is the fifth threshold value x b , and It is compared whether it is less than or equal to a threshold value y b of 6, that is,
  • ⁇ y b a threshold value of 6
  • information that the shift lever is at the parking position 13 is output to the vehicle side.
  • NO at S6 for example, the neutral position 14 is next selected at S7.
  • the parking position 13, the neutral position 14, the drive position 15, and the reverse position 16 are determined in order.
  • S8 it is confirmed whether the selected operation position is the last reverse position 16.
  • the same arithmetic processing as performed at the parking position 13 is performed on the neutral position 14.
  • the same arithmetic processing as the drive position 15 and the reverse position 16 is repeated until the operation position is determined.
  • the calculation process is repeated until the operation position is determined for all the combinations of angles. Then, in S10, it is confirmed whether the arithmetic processing has been performed for all the combinations of angles. If NO, the arithmetic processing is repeated for the remaining combinations of angles. In the case of YES, the process returns to S1, and the arithmetic processing is repeated from the beginning.
  • the shift position detection device of the present embodiment shifts using the combinations of three angles ⁇ 2 , ⁇ 3 ), ( ⁇ 2 , ⁇ 4 ), ( ⁇ 3 , ⁇ 4 ) in order. Detect each operation position where the lever is located. Then, when the shift lever is positioned at each operation position, the information is output to the vehicle side. As a result, the vehicle can select an appropriate gear ratio or the like corresponding to each operation position.
  • FIG. 19 shows a block diagram of a shift position detection device in a modification of the third embodiment.
  • FIG. 20 shows a flowchart executed by the failure detection unit in the modification of the third embodiment.
  • a failure detection unit 6 d is added to the third embodiment. Therefore, in the present modification, shift position detection in the third embodiment is performed, and failure detection of the three magnetic sensors 2, 3, and 4 is enabled.
  • the arithmetic processing performed by the failure detection unit 6d in the present modification will be described using FIGS. 16, 19 and 20.
  • it is performed when the magnet 5 (shift lever) remains at one of the operation positions 13, 14, 15, 16 for a predetermined time or more. That is, in S11, it is confirmed whether or not it is determined to be at the same operation position a predetermined number of times or more.
  • the process proceeds to S12.
  • the process returns to S1 of FIG. 18 to repeat the calculation process from the beginning.
  • one of the three angle combinations is chosen.
  • an average value is calculated using the (x p , y p ) coordinates of the magnet 5 corresponding to the predetermined number of times.
  • an average value is calculated using (x p , y p ) coordinates of the magnet 5 corresponding to a predetermined number of times for all combinations of three angles.
  • three of the (x p , y p ) coordinates of the magnet 5 Average values ( ⁇ x p >, ⁇ y p >) are calculated.
  • a combination of two average values is selected from the three average values. There are three combinations of this average value.
  • the absolute value of the difference between ( ⁇ x m >, ⁇ y m >), ( ⁇ x n >, ⁇ y n >) of the two selected average values is the seventh threshold value x c , and the eighth Compare with the threshold y c of This comparison is also performed for the other two combinations.
  • the absolute value of the difference calculated using the average value corresponding to the failed magnetic sensor is the seventh threshold x c and the eighth threshold y c or more, and the average corresponding to the failed magnetic sensor There are two values. Therefore, it is determined that the two magnetic sensors corresponding to the seventh threshold value x c and one average value that is equal to or less than the eighth threshold value y c are normal, and the other magnetic sensor is defective. Ru. Then, an alarm that the magnetic sensor is broken is issued, and replacement of the broken magnetic sensor is promoted.
  • the seventh threshold value x c and the eighth threshold value y c be larger than position variations in the X direction and Y direction corresponding to output variations of the magnetic sensor.
  • the CPU 6a can not receive the output from the magnetic sensors failure determination difference of (V 1 -V 2), which is the output from the normal magnetic sensor difference (V 1 - Process to receive only V 2 ). Therefore, in the present embodiment, a highly reliable shift position detection device can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangement Or Mounting Of Control Devices For Change-Speed Gearing (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Of Transmission Device (AREA)

Abstract

[Problem] The purpose of the present invention is to provide a shift position detection device that has high versatility and is low cost. [Solution] This shift position detection device (1) has a magnet (5) that moves in a first virtual plane, a magnetic sensor (2) disposed in a second virtual plane, and a position computing unit for calculating the position of the magnet (5), and is characterized by the following: the magnetic sensor (2) comprises a fixed magnetic property layer in which magnetization is fixed, a free magnetic property layer in which magnetization changes due to an external magnetic field, and a magnetic-property-free layer positioned between the fixed magnetic property layer and the free magnetic property layer; the first virtual plane is parallel to the second virtual plane and is disposed perpendicular to the magnetizing direction of the magnet (5); the second virtual plane does not include the center of the magnetizing direction of the magnet (5), and the magnet (5) is provided at a position where the magnetic flux of the second virtual plane saturates the magnetization of the free magnetic property layer of the magnetic sensor (2); and the angle formed between the magnetic sensor (2) and the magnet (5) is detected, and the position computing unit calculates the position of the magnet (5) from the angle.

Description

位置検知装置及びシフト位置検知装置Position detection device and shift position detection device
 本発明は、磁気センサと磁石を用いて面内で移動する磁石の位置を検知する位置検知装置に係わり、特にシフトレバーと共に移動する磁石の位置を検知するシフト位置検知装置に関する。 The present invention relates to a position detection device for detecting the position of a magnet moving in a plane using a magnetic sensor and a magnet, and more particularly to a shift position detection device for detecting the position of a magnet moving with a shift lever.
 オートマチック車両には、車両の速度等に応じて変速比を自動的に切り替える自動変速機が設けられている。そして、自動変速機のギア組み合わせを切り替えるために、シフトレバー装置が取り付けられている。 The automatic vehicle is provided with an automatic transmission that automatically changes the gear ratio according to the speed of the vehicle. And, in order to switch the gear combination of the automatic transmission, a shift lever device is attached.
 図21に、特許文献1に開示されるシフトレバー装置600の斜視図を図示する。図22に、特許文献1に開示されるシフトレバー装置600に組み込まれたシフト位置検知装置601を図示する。 FIG. 21 illustrates a perspective view of the shift lever device 600 disclosed in Patent Document 1. As shown in FIG. FIG. 22 illustrates a shift position detection device 601 incorporated in the shift lever device 600 disclosed in Patent Document 1.
 図21に示すように、シフトレバー装置600には、箱形状のケース607が設けられ、このケース607が車体に組み付けられている。ケース607には、略棒形状のシフトレバー606がケース607に対して車両進行方向及び車幅方向に沿って移動可能な状態で取り付けられている。 As shown in FIG. 21, the shift lever device 600 is provided with a box-shaped case 607, which is assembled to the vehicle body. A substantially rod-shaped shift lever 606 is attached to the case 607 so as to be movable with respect to the case 607 along the vehicle traveling direction and the vehicle width direction.
 シフトレバー装置600では、パーキング位置608、リバース位置610、ニュートラル位置611及びドライブ位置612等の操作位置にシフトレバー606が移動操作される。そのため、この操作位置を検知するために、シフトレバー装置600には、シフト位置検知装置601が組み込まれている。 In the shift lever device 600, the shift lever 606 is moved to operating positions such as the parking position 608, the reverse position 610, the neutral position 611, and the drive position 612. Therefore, in order to detect this operation position, the shift lever device 600 incorporates a shift position detection device 601.
 特許文献2に開示されるシフトレバー装置(図示していない)には、図23に示すシフト位置検知装置701が組み込まれている。 In a shift lever device (not shown) disclosed in Patent Document 2, a shift position detection device 701 shown in FIG. 23 is incorporated.
特開2007-333490号公報JP 2007-333490 A 特許2010-243287号公報Patent 2010-243287 gazette
 図22に示すように、特許文献1に開示されるシフト位置検知装置601では、周囲に磁界(磁束)を発生するバイアス磁石603、604と、シフトレバーと連動するカウンタ磁石602とが設けられている。カウンタ磁石602は、シフトレバーの移動操作によって、パーキング位置608、リバース位置610、ニュートラル位置611及びドライブ位置612等の操作位置へ移動する。 As shown in FIG. 22, in the shift position detection device 601 disclosed in Patent Document 1, bias magnets 603 and 604 generating a magnetic field (magnetic flux) around the periphery and a counter magnet 602 interlocked with the shift lever are provided. There is. The counter magnet 602 is moved to operation positions such as the parking position 608, the reverse position 610, the neutral position 611, and the drive position 612 by the shift operation of the shift lever.
 バイアス磁石603、604の間には、磁界(磁束)の向きに応じて検出値を出力する磁気抵抗素子605が1つ設けられている。カウンタ磁石602は、2つのバイアス磁石603、604によって生成される磁界(磁束)を、自身の側に引き込むように働く。よって、カウンタ磁石602が各操作位置に移動すると、バイアス磁石603、604によって生成される磁界(磁束)は、各操作位置の方向に向けられる。 Between the bias magnets 603 and 604, one magnetoresistive element 605 that outputs a detected value according to the direction of the magnetic field (magnetic flux) is provided. The counter magnet 602 acts to pull the magnetic field (magnetic flux) generated by the two bias magnets 603, 604 to its side. Thus, when the counter magnet 602 is moved to each operating position, the magnetic field (magnetic flux) generated by the bias magnets 603, 604 is directed in the direction of each operating position.
 また、磁気抵抗素子605は、操作位置の数に応じた個数の磁気抵抗素子を備えている。そして、各磁気抵抗素子は、対応する各操作位置の方向に向く磁界(磁束)で検出値が最大になるように感度軸が設けられている。このようにして、カウンタ磁石602の位置、すなわちシフトレバーの位置が検知される。 Moreover, the magnetoresistive element 605 is provided with the magnetoresistive element of the number according to the number of operation positions. And each magnetoresistive element is provided with a sensitivity axis so that a detection value may become the maximum in the magnetic field (magnetic flux) which turns to the direction of each corresponding operation position. Thus, the position of the counter magnet 602, that is, the position of the shift lever is detected.
 このように、特許文献1に開示される従来技術では、操作位置の数に応じて感度軸方向の異なる磁気抵抗を用意する必要があった。また、各磁気抵抗の感度軸方向を、各磁気抵抗の位置から対応する各操作位置に向く方向に一致させる必要があった。そのため、製造プロセスが複雑であると共に工程数も多く製造コストが高いという課題があった。 As described above, in the prior art disclosed in Patent Document 1, it is necessary to prepare different reluctances in the sensitivity axis direction according to the number of operation positions. In addition, it is necessary to make the sensitivity axis direction of each magnetic resistance coincide with the direction from the position of each magnetic resistance to the corresponding operation position. Therefore, there is a problem that the manufacturing process is complicated and the number of processes is large and the manufacturing cost is high.
 また、シフトレバー装置600の設計変更がなされる際には、その設計変更に応じて磁気抵抗素子605が備える磁気抵抗の個数や、各磁気抵抗の感度軸方向を変更する必要があった。すなわち、シフト位置検知装置601は、仕様の異なるシフトレバー装置600毎に、その仕様を変更する必要があった。このように、特許文献1に開示されるシフト位置検知装置601は、対応する仕様のシフトレバー装置600にしか用いることができず、汎用性が低いという課題があった。 Further, when the design of the shift lever device 600 is changed, it is necessary to change the number of magnetic resistances provided in the magnetic resistance element 605 and the sensitivity axis direction of each magnetic resistance according to the design change. That is, the shift position detection device 601 needs to change the specifications for each of the shift lever devices 600 having different specifications. As described above, the shift position detection device 601 disclosed in Patent Document 1 can be used only for the shift lever device 600 of the corresponding specification, and there is a problem that versatility is low.
 図23に示すように、特許文献2に開示されるシフト位置検知装置701では、磁気抵抗効果センサ702の下側(Z1方向)に、左(X1)方向に着磁された立方体形状のバイアス磁石703が固定配設されており、このバイアス磁石703から発せられる左(X1)方向のバイアス磁界が磁気抵抗効果センサ702に常時付与されている。 As shown in FIG. 23, in the shift position detection device 701 disclosed in Patent Document 2, a cube-shaped bias magnet magnetized in the left (X1) direction on the lower side (Z1 direction) of the magnetoresistive effect sensor 702 A left (X1) direction bias magnetic field emitted from the bias magnet 703 is always applied to the magnetoresistive sensor 702.
 磁気抵抗効果センサ702の上側(Z2方向)には、左右(X)方向に長辺方向を有する直方体形状のカウンタ磁石704が配置されており、このカウンタ磁石704が、後ろ(Y2)方向に、換言すればバイアス磁石703の着磁方向と直交する方向に着磁されている。 A rectangular parallelepiped counter magnet 704 having a long side direction in the left and right (X) direction is disposed on the upper side (Z2 direction) of the magnetoresistive effect sensor 702, and the counter magnet 704 is disposed in the back (Y2) direction. In other words, the bias magnet 703 is magnetized in the direction orthogonal to the magnetization direction.
 カウンタ磁石704は左右(X)方向及び前後(Y)方向の2軸方向に移動できるように設けられている。そして、カウンタ磁石704が移動し、磁気抵抗効果センサ702に近づくと、磁気抵抗効果センサ702に付与されるバイアス磁界が、カウンタ磁石704の磁界の影響を受けて変化する。 The counter magnet 704 is provided so as to be movable in two axial directions of left and right (X) direction and front and back (Y) direction. Then, when the counter magnet 704 moves and approaches the magnetoresistive sensor 702, the bias magnetic field applied to the magnetoresistive sensor 702 is changed by the influence of the magnetic field of the counter magnet 704.
 そして、このバイアス磁界の変化が磁気抵抗効果センサ702により感知されることで、カウンタ磁石704が磁気抵抗効果センサ702に接近したことを検知する。そのため、磁気抵抗効果センサ702及びバイアス磁石703が、リバース位置705、ニュートラル位置706、ドライブ位置707等の操作位置の各位置に備えられている。 Then, the change in the bias magnetic field is sensed by the magnetoresistive sensor 702 to detect that the counter magnet 704 approaches the magnetoresistive sensor 702. Therefore, the magnetoresistive effect sensor 702 and the bias magnet 703 are provided at each of the operation positions such as the reverse position 705, the neutral position 706, and the drive position 707.
 このように、特許文献2に開示される従来技術では、操作位置の各位置に、磁気抵抗効果センサ702及びバイアス磁石703が設けられている。そのため、部品点数が多いため価格が高いという課題があった。 Thus, in the prior art disclosed in Patent Document 2, the magnetoresistive effect sensor 702 and the bias magnet 703 are provided at each position of the operation position. Therefore, there is a problem that the price is high because the number of parts is large.
 特許文献1においては、カウンタ磁石602が、バイアス磁石603、604から発せられる磁界内を、シフトレバーと連動して移動する。その際、カウンタ磁石602が、バイアス磁石603、604から磁気的な力の干渉を受けるために、シフトレバーのスムーズな操作感覚が失われるという課題があった。特許文献2においても同様である。 In Patent Document 1, the counter magnet 602 moves in the magnetic field emitted from the bias magnets 603 and 604 in conjunction with the shift lever. At that time, there is a problem that the smooth operation feeling of the shift lever is lost because the counter magnet 602 receives the magnetic force interference from the bias magnets 603 and 604. The same applies to Patent Document 2.
 本発明の目的は、このような課題を顧みてなされたものであり、高い汎用性、低価格、およびスムーズな操作感覚を有するシフト位置検知装置を提供することである。 An object of the present invention is to solve such problems, and to provide a shift position detection device having high versatility, low cost, and a smooth sense of operation.
 第1の仮想面上を移動する磁石と、第2の仮想面上に配置される磁気センサと、前記磁石の位置を算出する位置演算部とを有する本発明のシフト位置検知装置は、前記磁気センサが、磁化が固定された固定磁性層と、外部磁界により磁化が変化する自由磁性層と、前記固定磁性層と前記自由磁性層との間に位置し前記固定磁性層と前記自由磁性層とに接触する非磁性層と、からなり、前記第1の仮想面が、前記第2の仮想面に平行であると共に前記磁石の着磁方向に垂直に設けられてなるとともに、前記第2の仮想面が、前記磁石の着磁方向中心を含まないように設けられており、前記磁石から生じる磁束が前記磁気センサの前記自由磁性層の磁化を飽和するような位置に前記磁石が設けられており、前記磁気センサの感度軸方向と前記磁石の発する磁束方向とのなす角度を検知し、前記位置演算部が前記角度から前記磁石の位置を算出することを特徴とする。 The shift position detection device according to the present invention further includes a magnet moving on the first virtual surface, a magnetic sensor disposed on the second virtual surface, and a position calculation unit that calculates the position of the magnet. The sensor is located between the pinned magnetic layer and the free magnetic layer, the pinned magnetic layer having a pinned magnetization, a free magnetic layer whose magnetization is changed by an external magnetic field, and the pinned magnetic layer and the free magnetic layer. And a nonmagnetic layer in contact with the first virtual surface, the first virtual surface being provided parallel to the second virtual surface and perpendicular to the magnetizing direction of the magnet; The surface is provided not to include the center of the magnetizing direction of the magnet, and the magnet is provided at a position where the magnetic flux generated from the magnet saturates the magnetization of the free magnetic layer of the magnetic sensor. , Sensitivity axis direction of the magnetic sensor and the magnetic Detecting the angle between the magnetic flux direction generated by the, the position calculation unit and calculates the position of the magnet from said angle.
 このような態様であれば、前記磁石の磁束は、前記磁石の着磁方向の一方の端部近傍から、外方に向けて放出され、前記着磁方向に垂直である前記第1の仮想面及び前記第2の仮想面に平行に近い状態で、前記磁石を中心にして外方に向けて等方的且つ放射状に広がる。そして、前記磁石の磁束は、前記磁石の着磁方向の他方の端部側に向き、前記磁石の着磁方向中心を含む面を通過して、前記第1の仮想面及び前記第2の仮想面に平行に近い状態で、前記他方の端部に向かって等方的に収束する。 In such an embodiment, the magnetic flux of the magnet is emitted outward from the vicinity of one end of the magnetizing direction of the magnet, and the first virtual surface is perpendicular to the magnetizing direction. And spreading outward isotropically and radially about the magnet in a state nearly parallel to the second virtual surface. Then, the magnetic flux of the magnet is directed to the other end side of the magnetizing direction of the magnet, passes through the surface including the center of the magnetizing direction of the magnet, and the first virtual surface and the second virtual surface It converges isotropically toward the other end near parallel to the surface.
 よって、前記磁石が前記第1の仮想面上を移動する際、前記磁石を中心にして等方的且つ放射状に広がる磁束が、前記磁気センサに作用する。よって、前記磁気センサの電気抵抗値は、前記磁気センサの感度軸方向と前記磁石の発する磁束方向とのなす角度によって規定することができる。 Therefore, when the magnet moves on the first virtual surface, a magnetic flux that isotropically and radially spread around the magnet acts on the magnetic sensor. Therefore, the electrical resistance value of the magnetic sensor can be defined by the angle between the sensitivity axis direction of the magnetic sensor and the magnetic flux direction emitted by the magnet.
 前記磁気センサが、前記着磁方向中心を含まないと共に前記着磁方向に垂直に設けられる前記第2の仮想面上に配置される。そのため、前記磁石の発する磁束は、前記第2の仮想面に略平行な状態で前記磁気センサに作用する。よって、前記磁気センサの電気抵抗値は、前記磁気センサの感度軸方向と前記磁石の発する磁束方向とのなす角度に依存して変化し易い。 The magnetic sensor is disposed on the second virtual surface which does not include the magnetization direction center and is provided perpendicularly to the magnetization direction. Therefore, the magnetic flux emitted by the magnet acts on the magnetic sensor in a state substantially parallel to the second virtual surface. Therefore, the electric resistance value of the magnetic sensor is likely to change depending on the angle between the sensitivity axis direction of the magnetic sensor and the magnetic flux direction emitted by the magnet.
 また、前記磁石から生じる磁束が前記磁気センサの前記自由磁性層の磁化を飽和するような位置に前記磁石が設けられている。よって、前記磁石が前記第1の仮想面上を移動する際、前記磁気センサの電気抵抗値は、前記磁気センサの感度軸方向と前記磁石の発する磁束方向とのなす角度のみに依存して変化する。 The magnet is provided at a position where the magnetic flux generated from the magnet saturates the magnetization of the free magnetic layer of the magnetic sensor. Therefore, when the magnet moves on the first virtual surface, the electric resistance value of the magnetic sensor changes depending only on the angle between the sensitivity axis direction of the magnetic sensor and the magnetic flux direction emitted by the magnet. Do.
 よって、前記磁気センサの電気抵抗値の変化を検知することによって、前記磁気センサの感度軸方向と前記磁石の発する磁束方向とのなす角度を算出することができる。そして、前記磁気センサの感度軸方向と前記磁石の発する磁束方向とのなす角度を用いて、前記磁石の位置を算出することができる。 Therefore, by detecting the change in the electrical resistance value of the magnetic sensor, it is possible to calculate the angle between the sensitivity axis direction of the magnetic sensor and the magnetic flux direction emitted by the magnet. Then, the position of the magnet can be calculated using the angle between the sensitivity axis direction of the magnetic sensor and the magnetic flux direction emitted by the magnet.
 このように、本発明によれば、前記磁石の位置を、前記少なくとも1つの磁気センサによって検知することができる。すなわち、バイアス磁石を用いる必要がないことや、操作位置の各位置に磁気センサを設ける必要がないので、部品数を少なく抑えることができる。よって、低価格なシフト位置検知装置を提供することができる。 Thus, according to the invention, the position of the magnet can be detected by the at least one magnetic sensor. That is, since it is not necessary to use a bias magnet or to provide a magnetic sensor at each position of the operation position, the number of parts can be reduced. Therefore, it is possible to provide a low cost shift position detection device.
 そして、前記少なくとも1つの磁気センサの感度軸方向と前記磁石の発する磁束方向とのなす角度は、操作位置が配置される位置に制限されることはなく、任意に設けることができる。よって、汎用性が高いシフト位置検知装置を提供することができる。また、製造プロセスも簡便になることや、工程数も少なくできるので、製造コストを低く抑えることができる。 The angle between the sensitivity axis direction of the at least one magnetic sensor and the direction of the magnetic flux emitted by the magnet is not limited to the position where the operation position is disposed, and can be arbitrarily provided. Therefore, a highly versatile shift position detection device can be provided. In addition, since the manufacturing process can be simplified and the number of processes can be reduced, the manufacturing cost can be reduced.
 本発明によれば、バイアス磁石を用いないで、前記磁石の位置を検知することができる。よって、前記磁石は、前記バイアス磁石から磁気的な力の干渉を受けないので、シフトレバーを、スムーズな操作感覚で移動操作させることが可能である。 According to the present invention, the position of the magnet can be detected without using a bias magnet. Therefore, since the magnet does not receive magnetic force interference from the bias magnet, it is possible to move and operate the shift lever with a smooth sense of operation.
 よって、本発明によれば、高い汎用性、低価格、およびスムーズな操作感覚を有するシフト位置検知装置を提供することができる。 Therefore, according to the present invention, it is possible to provide a shift position detection device having high versatility, low cost, and a smooth sense of operation.
 前記磁石が、平面視で前記磁気センサと重ならないように移動することが好ましい。このような態様であれば、前記磁気センサの感度軸方向と前記磁石の発する磁束方向とのなす前記角度を一意的に決めることができる。 It is preferable that the magnet moves so as not to overlap the magnetic sensor in plan view. With such an embodiment, the angle between the sensitivity axis direction of the magnetic sensor and the magnetic flux direction emitted by the magnet can be uniquely determined.
 また、本発明においては、前記磁気センサが、平面視で前記磁石の移動する範囲の外に配置されていることが好ましい。このような態様であれば、前記磁石が、平面視で前記磁気センサと重ならないように移動するという規定に制限されないので、シフトレバー装置における各操作位置の配置をより自由に設けることができる。また、前記角度を検知する演算処理がより簡便になる。 Further, in the present invention, it is preferable that the magnetic sensor is disposed outside the moving range of the magnet in a plan view. With such an aspect, the arrangement of the operation positions in the shift lever device can be more freely provided because the magnet is not limited to the regulation to move so as not to overlap the magnetic sensor in plan view. In addition, the arithmetic processing for detecting the angle becomes simpler.
 前記磁気センサの故障を検知する故障検知部を有するシフト位置検知装置であって、前記故障検知部が、前記磁石が位置する基準角度と、前記磁気センサが検知する角度と、を比較することで、前記磁気センサの故障を検知することが好ましい。 The shift position detection device has a failure detection unit that detects a failure of the magnetic sensor, and the failure detection unit compares a reference angle at which the magnet is positioned with an angle detected by the magnetic sensor. Preferably, the failure of the magnetic sensor is detected.
 前記磁気センサに経時的な劣化等が生じると、前記磁気センサの出力から算出される角度は、前記基準角度からずれる。よって、前記基準角度と前記角度とを比較することで前記磁気センサの故障を検知することができる。 When the magnetic sensor is deteriorated with time, the angle calculated from the output of the magnetic sensor deviates from the reference angle. Therefore, the failure of the magnetic sensor can be detected by comparing the reference angle with the angle.
 前記磁気センサが、少なくとも2つの磁気センサからなることが好ましい。このような態様であれば、前記磁石の任意の位置を検知することが可能となるので、汎用性に優れるシフト位置検知装置を可能にする。 Preferably, the magnetic sensor comprises at least two magnetic sensors. With such an aspect, it is possible to detect an arbitrary position of the magnet, thereby enabling a shift position detection device excellent in versatility.
 前記磁気センサが、少なくとも3つの磁気センサからなることが好ましい。このような態様であれば、前記磁石の任意の位置を検知することが可能となるので、汎用性に優れるシフト位置検知装置を可能にする。更に、前記磁石の3つの任意の位置を算出できるので、前記磁石の3つ任意の位置を比較することによって、前記少なくとも3つの磁気センサの故障検知を可能にする。 Preferably, the magnetic sensor comprises at least three magnetic sensors. With such an aspect, it is possible to detect an arbitrary position of the magnet, thereby enabling a shift position detection device excellent in versatility. Furthermore, since three arbitrary positions of the magnet can be calculated, failure detection of the at least three magnetic sensors is enabled by comparing the three arbitrary positions of the magnet.
 前記少なくとも3つの磁気センサの故障を検知する故障検知部を有するシフト位置検知装置であって、前記位置演算部が、前記少なくとも3つの磁気センサが検知する少なくとも3つの前記角度から2対の組み合わせを選び、前記2対の組み合わせから前記磁石の少なくとも3つの位置を算出し、前記故障検知部が、前記少なくとも3つの位置を比較することにより前記少なくとも3つの磁気センサの故障を検知することが好ましい。 A shift position detection device having a failure detection unit that detects a failure of the at least three magnetic sensors, wherein the position calculation unit is configured to combine two pairs from at least three of the angles detected by the at least three magnetic sensors. Preferably, at least three positions of the magnet are selected from the combination of the two pairs, and the failure detection unit detects a failure of the at least three magnetic sensors by comparing the at least three positions.
 前記角度の2対の組み合わせから、前記磁石の前記少なくとも3つの位置を算出することができる。その際に、前記磁石の前記少なくとも3つの位置を比較し、その差が大きい際には、前記少なくとも3つの磁気センサにおいて、各磁気センサの感度軸方向と前記磁石の発する磁束方向とのなす角度を誤って検知している磁気センサがあると判定される。よって、前記故障検知部は、前記少なくとも3つの磁気センサの故障を検知することができる
 そして、故障と判定された磁気センサからの出力は用いないで、正常な磁気センサからの出力のみを用いて前記磁石の任意の位置を検知することができる。よって、信頼性の高いシフト位置検知装置を提供することができる。
From the combination of the two pairs of angles, the at least three positions of the magnet can be calculated. At this time, the at least three positions of the magnet are compared, and when the difference is large, in the at least three magnetic sensors, the angle between the sensitivity axis direction of each magnetic sensor and the magnetic flux direction emitted by the magnet It is determined that there is a magnetic sensor erroneously detecting. Therefore, the failure detection unit can detect the failure of the at least three magnetic sensors. And, the output from the magnetic sensor determined as a failure is not used, and only the output from the normal magnetic sensor is used. An arbitrary position of the magnet can be detected. Thus, a highly reliable shift position detection device can be provided.
 前記少なくとも3つの磁気センサが同一直線上に配置されていないことが好ましい。 Preferably, the at least three magnetic sensors are not arranged on the same straight line.
 このような態様であれば、前記少なくとも3つの磁気センサが検知した角度を用いて、前記位置演算部は、前記磁石の位置を一意的に算出することができる。 In such an embodiment, the position calculation unit can uniquely calculate the position of the magnet using the angles detected by the at least three magnetic sensors.
 本発明によれば、高い汎用性、低価格、およびスムーズな操作感覚を有するシフト位置検知装置を提供することが可能である。 According to the present invention, it is possible to provide a shift position detection device having high versatility, low cost, and a smooth sense of operation.
第1の実施形態におけるシフト位置検知装置が搭載されるシフトレバー装置の斜視図である。It is a perspective view of a shift lever device in which a shift position detection device in a 1st embodiment is carried. 第1の実施形態におけるシフト位置検知装置の概略を説明する平面図である。It is a top view explaining the outline of the shift position sensing device in a 1st embodiment. 第1の実施形態における磁石から生じる磁束分布を説明する平面図である。It is a top view explaining the magnetic flux distribution which arises from the magnet in a 1st embodiment. 図3に示す磁石から生じる磁束分布のA-A線に沿って切断し矢印方向から見た断面図である。FIG. 4 is a cross-sectional view of the magnetic flux distribution generated from the magnet shown in FIG. 第1の実施形態における磁気センサを構成する巨大磁気抵抗効果素子の断面略図である。It is a cross-sectional schematic diagram of the giant magnetoresistive effect element which comprises the magnetic sensor in 1st Embodiment. 第1の実施形態における磁気センサを構成する巨大磁気抵抗効果素子の特性図である。It is a characteristic view of a giant magnetoresistance effect element which constitutes a magnetic sensor in a 1st embodiment. 第1の実施形態における巨大磁気抵抗効果素子の抵抗値の説明図である。It is explanatory drawing of the resistance value of the giant magnetoresistive effect element in 1st Embodiment. 第1の実施形態における磁気センサの電気回路図である。It is an electric circuit diagram of a magnetic sensor in a 1st embodiment. 第1の実施形態におけるシフト位置検知装置のブロック図である。It is a block diagram of the shift position detection apparatus in a 1st embodiment. 第1の実施形態における位置演算部が実行するフローチャートである。It is a flowchart which the position calculating part in 1st Embodiment performs. 第1の実施形態の変形例におけるシフト位置検知装置のブロック図である。It is a block diagram of the shift position detection apparatus in the modification of a 1st embodiment. 第1の実施形態の変形例における位置演算部及び故障検知部が実行するフローチャートである。It is a flowchart which the position calculating part and failure detection part in the modification of 1st Embodiment perform. 第2の実施形態におけるシフト位置検知装置の概略を説明する平面図である。It is a top view explaining the outline of the shift position sensing device in a 2nd embodiment. 第2の実施形態におけるシフト位置検知装置のブロック図である。It is a block diagram of the shift position detection apparatus in 2nd Embodiment. 第2の実施形態の変形例における位置演算部及び故障検知部が実行するフローチャートである。It is a flowchart which the position calculating part and failure detection part in the modification of 2nd Embodiment perform. 第3の実施形態におけるシフト位置検知装置の概略を説明する平面図である。It is a top view explaining the outline of the shift position sensing device in a 3rd embodiment. 第3の実施形態におけるシフト位置検知装置のブロック図である。It is a block diagram of the shift position detection apparatus in 3rd Embodiment. 第3の実施形態における位置演算部が実行するフローチャートである。It is a flowchart which the position calculating part in 3rd Embodiment performs. 第3の実施形態の変形例におけるシフト位置検知装置のブロック図である。It is a block diagram of the shift position detection apparatus in the modification of 3rd Embodiment. 第3の実施形態の変形例における故障検知部が実行するフローチャートである。It is a flowchart which the failure detection part in the modification of 3rd Embodiment performs. 特許文献1に開示されるシフトレバー装置の斜視図である。It is a perspective view of the shift lever apparatus disclosed by patent document 1. FIG. 特許文献1に開示されるシフト位置検知装置の概略を説明する平面図であるIt is a top view explaining the outline of the shift position sensing device indicated by patent documents 1. 特許文献2に開示されるシフト位置検知装置の概略を説明する図であるIt is a figure explaining the outline of the shift position sensing device indicated by patent documents 2.
 <第1の実施形態>
 各図に示すシフト位置検知装置に関しては、Y方向が前後方向であり、Y1方向が前方向でY2方向が後方向、X方向が左右方向であり、X1方向が左方向でX2方向が右方向である。また、X方向とY方向の双方に直交する方向が上下方向(Z方向;高さ方向)であり、Z2方向が上方向でZ1方向が下方向である。なお、各図面は、見やすくするために寸法を適宜実際の寸法とは異ならせて示している。
First Embodiment
For the shift position detection device shown in each figure, the Y direction is the front and back direction, the Y1 direction is the front direction, the Y2 direction is the back direction, the X direction is the left and right direction, and the X1 direction is the left direction and the X2 direction is the right direction It is. Further, the direction orthogonal to both the X direction and the Y direction is the vertical direction (Z direction; height direction), the Z2 direction is the upper direction, and the Z1 direction is the lower direction. In the drawings, the dimensions are appropriately made different from the actual dimensions for the sake of clarity.
 本実施形態について、図面に沿って説明する。図1は、第1の実施形態におけるシフト位置検知装置が搭載されるシフトレバー装置の斜視図である。図2は、第1の実施形態におけるシフト位置検知装置の概略を説明する平面図である。図3は、第1の実施形態であるシフト位置検知装置のブロック図である。 The present embodiment will be described with reference to the drawings. FIG. 1 is a perspective view of a shift lever device on which the shift position detection device in the first embodiment is mounted. FIG. 2 is a plan view for explaining an outline of the shift position detection device in the first embodiment. FIG. 3 is a block diagram of the shift position detection apparatus according to the first embodiment.
 オートマチック車両には、車両の速度等に応じて変速比を自動的に切り替える自動変速機が設けられている。そして、自動変速機のギア組み合わせを切り替えるために、シフトレバー装置が取り付けられている。 The automatic vehicle is provided with an automatic transmission that automatically changes the gear ratio according to the speed of the vehicle. And, in order to switch the gear combination of the automatic transmission, a shift lever device is attached.
 本実施形態におけるシフトレバー装置10は、図1に示すように、略棒状のシフトレバー11と、車両の床等に取り付けられる箱状のケース12とを有して構成されている。そして、シフトレバー11は、ケース12に前後(Y)方向及び左右(X)方向に移動可能な状態で取り付けられている。そして、シフトレバー装置10では、パーキング位置13、ニュートラル位置14、ドライブ位置15、リバース位置16等の操作位置にシフトレバー11が移動操作される。 As shown in FIG. 1, the shift lever device 10 in the present embodiment is configured to include a substantially rod-like shift lever 11 and a box-like case 12 attached to the floor or the like of a vehicle. The shift lever 11 is attached to the case 12 so as to be movable in the longitudinal (Y) direction and in the lateral (X) direction. Then, in the shift lever device 10, the shift lever 11 is moved to the operation position such as the parking position 13, the neutral position 14, the drive position 15, the reverse position 16, and the like.
 本実施形態では、操作位置をパーキング位置13、ニュートラル位置14、ドライブ位置15、リバース位置16等としたが、これに限定されるものではない。例えば、ドライブ位置15に対して、複数の操作位置が設けられるとか、上述以外の操作位置が設けられることも可能である。 In the present embodiment, the operation positions are the parking position 13, the neutral position 14, the drive position 15, the reverse position 16 and the like, but the present invention is not limited to this. For example, a plurality of operating positions may be provided for the drive position 15, or other operating positions may be provided.
 そして、シフトレバー11の位置する各操作位置13、14、15、16を検知するために、シフト位置検知装置1が、シフトレバー装置10に組み込まれている。 The shift position detecting device 1 is incorporated in the shift lever device 10 in order to detect the operation positions 13, 14, 15, 16 at which the shift lever 11 is positioned.
 シフト位置検知装置1は、図2に示すように、シフトレバー(図示してない)に固定されて共に移動する磁石5と、平面視で磁石5の移動する動線を外して配置される磁気センサ2とを有して構成されている。即ち磁石5は、平面視で磁気センサ2と上下(Z方向)に重ならないように移動する。磁気センサ2を用いて磁石5の位置を検知することで、シフトレバーが位置する各操作位置13、14、15、16が算出される。 As shown in FIG. 2, the shift position detection device 1 is a magnet 5 fixed to a shift lever (not shown) and moved together, and a magnet that is disposed out of the movement line of the magnet 5 in plan view. It is configured to include the sensor 2. That is, the magnet 5 moves so as not to overlap with the magnetic sensor 2 vertically (in the Z direction) in plan view. By detecting the position of the magnet 5 using the magnetic sensor 2, each operation position 13, 14, 15, 16 at which the shift lever is positioned is calculated.
 このように、本実施形態のシフト位置検知装置1においては、バイアス磁石を用いないで、磁石5の位置を検知する。そのため、磁石5は、シフトレバーと共に移動する際に、磁気的な力の干渉を受けることがない。そのため、シフトレバーは、スムーズな操作感覚で移動操作することが可能である。 As described above, in the shift position detection device 1 of the present embodiment, the position of the magnet 5 is detected without using a bias magnet. Therefore, the magnet 5 is not subjected to magnetic force interference when moving with the shift lever. Therefore, the shift lever can be moved and operated with a smooth sense of operation.
 図3は、本実施形態における磁石5から生じる磁束分布を示す平面図である。図4に、図3に示す磁石5から生じる磁束分布のA-A線に沿って切断し矢印方向から見た断面図を示す。図3、図4に示すように、本実施形態の磁石5は、上下(Z)方向に延出する円柱体の形状を有している。そして、磁石5の上(Z2)側の端部5aがN極に、下(Z1)側の端部5bがS極に着磁されている。そのため、着磁方向は上下方向であり、着磁方向中心5cは磁石5の上下方向のほぼ中央に位置している。 FIG. 3 is a plan view showing the magnetic flux distribution generated from the magnet 5 in the present embodiment. FIG. 4 is a cross-sectional view of the magnetic flux distribution generated from the magnet 5 shown in FIG. 3 taken along the line AA and viewed in the arrow direction. As shown to FIG. 3, FIG. 4, the magnet 5 of this embodiment has a shape of the cylindrical body extended in an up-down (Z) direction. The end 5a on the upper (Z2) side of the magnet 5 is magnetized to the N pole, and the end 5b on the lower (Z1) side is magnetized to the S pole. Therefore, the magnetization direction is the vertical direction, and the magnetization direction center 5 c is located substantially at the center of the magnet 5 in the vertical direction.
 シフトレバーは、図2に示すように、各操作位置13、14、15、16に移動操作される。その際、シフトレバーに固定される磁石5の端部5bは、図4に示すように、第1の仮想面8の上を移動する。そして、磁気センサ2は、磁石5の着磁方向中心を通らない第2の仮想面9の上に配置される。また、第1の仮想面8と第2の仮想面9とは、図4に示すように、互いに平行に設けられ、磁石5の着磁方向に対して垂直に設けられている。 The shift lever is moved to each operation position 13, 14, 15, 16 as shown in FIG. At that time, the end 5 b of the magnet 5 fixed to the shift lever moves on the first virtual surface 8 as shown in FIG. 4. The magnetic sensor 2 is disposed on the second virtual surface 9 which does not pass through the center of the magnet 5 in the magnetization direction. Further, as shown in FIG. 4, the first virtual surface 8 and the second virtual surface 9 are provided in parallel with each other, and are provided perpendicular to the magnetization direction of the magnet 5.
 本実施形態における磁石5は円柱体としたが、これに限定されるものではない。多角形の柱体も可能である。また、着磁方向は逆も可能であり、磁石5の上(Z2)側の端部5aがS極に、下(Z1)側の端部5bがN極に着磁されていることも可能である。また、本実施形態においては、第1の仮想面8および第2の仮想面9は平面としているが、これに限定されるものではなく、球面であっても良いしあるいは楕円球面であっても良い。 Although the magnet 5 in this embodiment is a cylindrical body, it is not limited to this. Polygonal columns are also possible. Also, the magnetization direction can be reversed, and the end 5a on the upper (Z2) side of the magnet 5 can be magnetized to the S pole and the end 5b on the lower (Z1) side can be magnetized to the N pole. It is. Further, in the present embodiment, the first virtual surface 8 and the second virtual surface 9 are flat, but the present invention is not limited to this, and may be a spherical surface or an elliptical spherical surface. good.
 このような態様であるので、図3、図4に示すように、磁石5の着磁方向の一方である上側の端部5a近傍から、磁束7が外方に向けて放出され、着磁方向に垂直である第1の仮想面8及び第2の仮想面9に平行に近い状態で、磁石5を中心にして外方に向けて等方的且つ放射状に広がる。その後、磁束7は、磁石5の着磁方向の他方である下側の端部5b側に向き、磁石5の着磁方向中心を含む平面を通過して、第1の仮想面8及び第2の仮想面9に平行に近い状態で、下側の端部5bに向かって等方的に収束する。そして、上側の端部5a及び下側の端部5bの外周に近い箇所から放出または収束される磁束7は、より広い領域で第1の仮想面8及び第2の仮想面9に平行に近い状態にある。 Since it is such an aspect, as shown in FIG. 3 and FIG. 4, the magnetic flux 7 is emitted outward from the vicinity of the upper end 5 a which is one of the magnetization directions of the magnet 5, and the magnetization direction is In a state close to being parallel to the first virtual surface 8 and the second virtual surface 9 which are perpendicular to the above, they spread isotropically and radially outward around the magnet 5. Thereafter, the magnetic flux 7 is directed to the lower end 5b side, which is the other side of the magnetizing direction of the magnet 5, and passes through a plane including the center of the magnetizing direction of the magnet 5 to form the first virtual surface 8 and the second virtual surface 8. And converges isotropically toward the lower end 5b. The magnetic flux 7 emitted or converged from a point near the outer periphery of the upper end 5a and the lower end 5b is close to parallel to the first virtual surface 8 and the second virtual surface 9 in a wider area. In the state.
 このように、磁石5から生じる磁束7は、上下(Z)方向から見ると、図3に示すように、磁石5を中心にして放射状に広がっている。よって、磁気センサ2に作用する磁石5から生じる磁束7の方向は、磁石5から磁気センサ2の方向に向いている。また、磁石5が円柱体であるので、磁石5を上下(Z)方向から見ると、等方的な円形状をしている。よって、磁束7は、磁石5を中心にして等方的に放射されやすい。 Thus, when viewed from the upper and lower (Z) direction, the magnetic flux 7 generated from the magnet 5 radially spreads around the magnet 5 as shown in FIG. Therefore, the direction of the magnetic flux 7 generated from the magnet 5 acting on the magnetic sensor 2 is from the magnet 5 to the direction of the magnetic sensor 2. Moreover, since the magnet 5 is a cylindrical body, when the magnet 5 is seen from the up-down (Z) direction, it has circular isotropic shape. Therefore, the magnetic flux 7 is likely to be radiated isotropically around the magnet 5.
 本実施形態の磁気センサ2は、巨大磁気抵抗効果(以下、GMR[Giant Magneto Resistive effect]と記載する)素子を有して構成されている。GMR素子2aは、図5に示すように、例えば下から基板2b上に反強磁性層2c、固定磁性層2d、非磁性層2e、及び自由磁性層2fの順に積層されて成膜され、自由磁性層2fの表面が保護層2gで覆われて構成されている。GMR素子2aでは、反強磁性層2cと固定磁性層2dとの交換結合により、固定磁性層2dの磁化方向(P方向)が固定されている。そして、磁化方向(P方向)は、基板2bに平行な状態で左(X2)方向に向いている。本実施形態においては、この方向(P方向)をGMR素子2aの感度軸方向としている。 The magnetic sensor 2 of the present embodiment is configured to include a giant magnetoresistive effect (hereinafter, described as GMR (Giant Magneto Resistive effect)) element. For example, as shown in FIG. 5, the GMR element 2a is formed by laminating the antiferromagnetic layer 2c, the fixed magnetic layer 2d, the nonmagnetic layer 2e, and the free magnetic layer 2f in this order from below on the substrate 2b. The surface of the magnetic layer 2f is covered with a protective layer 2g. In the GMR element 2a, the magnetization direction (P direction) of the pinned magnetic layer 2d is pinned by the exchange coupling between the antiferromagnetic layer 2c and the pinned magnetic layer 2d. The magnetization direction (P direction) is directed to the left (X2) direction in parallel with the substrate 2b. In this embodiment, this direction (P direction) is taken as the sensitivity axis direction of the GMR element 2a.
 GMR素子2aは、強磁性薄層と非磁性層を重ねて多層に構成されており、外部磁界からの磁束によって電気抵抗が大きく変化することが知られている。よって、GMR素子2aを有して構成される磁気センサ2は、磁石5から生じる磁束7を高感度に検知することが可能である。そして、GMR素子2aの抵抗値は、固定磁性層2dと自由磁性層2fとの双方の磁化の相対的角度に依存する。両者の磁化が平行で同方向を向いている時は抵抗値が最小となり、反平行の時は最大となる。 The GMR element 2a is formed in a multilayer structure by stacking a ferromagnetic thin layer and a nonmagnetic layer, and it is known that the electric resistance is greatly changed by the magnetic flux from the external magnetic field. Therefore, the magnetic sensor 2 configured to include the GMR element 2a can detect the magnetic flux 7 generated from the magnet 5 with high sensitivity. The resistance value of the GMR element 2a depends on the relative angle of magnetization of both the pinned magnetic layer 2d and the free magnetic layer 2f. The resistance value is minimum when both magnetizations are parallel and directed in the same direction, and maximum when antiparallel.
 本実施形態では、磁気センサ2がGMR素子2aを有して構成されているとしたが、これに限定されるものではない。磁気センサ2は、トンネル効果(TMR[Tunnel Magneto Resistive effect)素子や、異方性磁気抵抗効果(AMR[Anisotropic Magneto Resistive effect])素子を有して構成されることも可能である。 In the present embodiment, the magnetic sensor 2 is configured to include the GMR element 2a, but the present invention is not limited to this. The magnetic sensor 2 can also be configured to include a tunnel effect (TMR [Tunnel Magneto Resistive Effect) element or an anisotropic magnetoresistance effect (AMR [Anisotropic Magneto Resistive effect]) element.
 図6に、本実施形態におけるGMR素子の特性図を示す。縦軸はGMR素子の電気抵抗値であり、横軸はGMR素子に作用する磁束の磁束密度である。磁束の方向は、X1方向を(-)で示し、X2方向を(+)で示す。磁束の作用する方向が(+)方向、即ちX2方向の時には電気抵抗はRminとほぼ一定の値であり変化しない。一方、(-)方向、即ちX1方向へ磁束が作用する際は、磁束密度が所定の値以下になると、電気抵抗が上昇する。そして、磁束密度が更に所定の値以下になると、電気抵抗は上昇することを止め、ほぼ一定であるRmaxの値で飽和する。 FIG. 6 shows a characteristic diagram of the GMR element in the present embodiment. The vertical axis is the electrical resistance value of the GMR element, and the horizontal axis is the magnetic flux density of the magnetic flux acting on the GMR element. The direction of the magnetic flux indicates the X1 direction by (-) and the X2 direction by (+). When the magnetic flux acts in the (+) direction, that is, in the X2 direction, the electric resistance has a substantially constant value of R min and does not change. On the other hand, when the magnetic flux acts in the (−) direction, that is, in the X1 direction, the electric resistance increases when the magnetic flux density becomes lower than a predetermined value. When the magnetic flux density further drops below a predetermined value, the electrical resistance stops rising and saturates at a value of R max which is substantially constant.
 図3、図4に示すように、磁気センサ2は、磁石5から生じる磁束内に配置されている。そして、磁石5が、図2に示すように各操作位置を移動操作される際に、磁気センサ2を構成するGMR素子2a(図6に図示)には、磁石5から生じる磁束7が作用する。そして、磁石5が各操作位置を移動操作される際に、その磁束7がGMR素子2aを構成する自由磁性層2fの磁化を飽和するように、磁石5の残留磁束密度は充分に大きく設定されている。別な言い方をすれば、磁石5は、その残留磁束によって自由磁性層2fの磁化が飽和するような位置を移動操作される。 As shown in FIGS. 3 and 4, the magnetic sensor 2 is disposed in the magnetic flux generated from the magnet 5. Then, when the magnet 5 is operated to move each operation position as shown in FIG. 2, the magnetic flux 7 generated from the magnet 5 acts on the GMR element 2a (shown in FIG. 6) constituting the magnetic sensor 2. . And, when the magnet 5 is operated to move each operation position, the residual magnetic flux density of the magnet 5 is set sufficiently large so that the magnetic flux 7 saturates the magnetization of the free magnetic layer 2f constituting the GMR element 2a. ing. In other words, the magnet 5 is moved at such a position that the magnetization of the free magnetic layer 2 f is saturated by the residual magnetic flux.
 そのため、磁石5は、ネオジウム磁石や、サマリウムコバルト磁石、アルニコ磁石、フェライト磁石、プラスチック磁石等の大きい残留磁束密度を有するものが好適である。そして、残留磁束密度が、250~1500mTを有するものが選ばれている。よって、磁石5が各操作位置を移動操作される際に、磁石5と磁気センサ2との距離に関わらず、その磁束7は自由磁性層2fの磁化が飽和するように維持される。 Therefore, as the magnet 5, one having a large residual magnetic flux density, such as a neodymium magnet, a samarium cobalt magnet, an alnico magnet, a ferrite magnet, or a plastic magnet, is preferable. And, one having a residual magnetic flux density of 250 to 1500 mT is selected. Therefore, when the magnet 5 is operated to move each operation position, the magnetic flux 7 is maintained so that the magnetization of the free magnetic layer 2 f is saturated regardless of the distance between the magnet 5 and the magnetic sensor 2.
 本実施形態においては、図3に示すように、固定磁性層2d(図5に図示)の磁化方向(P方向)から反時計まわりに磁石5から生じる磁束7の方向になす角度をθとする。その際、磁石5と磁気センサ2との距離に関わらず、磁気センサ2を構成するGMR素子2aの電気抵抗値をRとすると、Rは(1)式で表わされることが一般的に知られている。 In this embodiment, as shown in FIG. 3, the angle formed in the direction of the magnetic flux 7 generated from the magnet 5 in the counterclockwise direction from the magnetization direction (P direction) of the pinned magnetic layer 2d (shown in FIG. 5) is θ. . At that time, regardless of the distance between the magnet 5 and the magnetic sensor 2, it is generally known that R is represented by the equation (1), where R is the electric resistance value of the GMR element 2 a constituting the magnetic sensor 2. ing.
 R=Rmin+(Rmax-Rmin)×(1-cosθ)/2・・・・・(1)
 よって、GMR素子2aの電気抵抗値Rは、式(1)に従って、角度θにより決まる。また、RmaxやRminは、GMR素子2aの特性値であり、GMR素子2aにより決まる値である。
R = R min + (R max -R min ) × (1−cos θ) / 2 (1)
Therefore, the electric resistance value R of the GMR element 2a is determined by the angle θ according to the equation (1). Further, R max and R min are characteristic values of the GMR element 2a, and are values determined by the GMR element 2a.
 図7に、式(1)における電気抵抗値Rと角度θの関係を示す。図7の縦軸が電気抵抗値Rであり、横軸が角度θを示す。図中に矢印で示す数字は、各操作位置を示す。車両のエンジンが始動されると、同時にシフト位置検知装置1も始動される。そして、シフトレバーが移動操作される際、電気抵抗値Rは、図7に示す曲線上を、パーキング位置13を基点にして、ニュートラル位置14、ドライブ位置15、リバース位置16に移動する。 FIG. 7 shows the relationship between the electrical resistance value R and the angle θ in equation (1). The vertical axis in FIG. 7 is the electrical resistance value R, and the horizontal axis is the angle θ. Numbers indicated by arrows in the figure indicate the respective operation positions. When the engine of the vehicle is started, the shift position detection device 1 is also started at the same time. When the shift lever is moved, the electric resistance value R moves from the parking position 13 to the neutral position 14, the drive position 15, and the reverse position 16 on the curve shown in FIG.
 図7に示す曲線は、電気抵抗値Rの同じ値に対して、区間0~180度と区間180~360度とで異なる角度θに対応している。そのため、本実施形態では、例えば、車両のエンジンが始動される際には、シフトレバーはパーキング位置13に位置するように設定されている。よって、車両のエンジンが始動される際に、Rの値に対して、区間0~180の角度が割り与られる。そして、Rの値が大きくなりピークの電気抵抗値Rを越えて、次に小さくなると、Rの値に対して、区間180~360の角度を割り与える。このようにして、シフトレバーがパーキング位置13からニュートラル位置14、ドライブ位置15、リバース位置16に移動する際に、各操作位置14、15、16を正確に検知できる。次に、Rの値が大きくなりピークの電気抵抗値Rを越えて、次に小さくなると、Rの値に対して、区間0~180の角度を割り与える。このようにして、シフトレバーがニュートラル位置14からパーキング位置13に移動操作される際も、パーキング位置13の位置も正確に検知できる。 The curve shown in FIG. 7 corresponds to an angle θ which varies between 0 to 180 degrees and 180 to 360 degrees with respect to the same value of the electric resistance value R. Therefore, in the present embodiment, for example, the shift lever is set to be located at the parking position 13 when the engine of the vehicle is started. Therefore, when the engine of the vehicle is started, an angle of section 0 to 180 is assigned to the value of R. Then, when the value of R becomes larger and exceeds the peak electrical resistance value R and becomes smaller next, the angle of the section 180 to 360 is assigned to the value of R. Thus, when the shift lever moves from the parking position 13 to the neutral position 14, the drive position 15, and the reverse position 16, each operation position 14, 15, 16 can be accurately detected. Next, when the value of R becomes larger and exceeds the peak electrical resistance value R and becomes smaller next time, the angle of section 0 to 180 is assigned to the value of R. Thus, even when the shift lever is moved from the neutral position 14 to the parking position 13, the position of the parking position 13 can also be accurately detected.
 このようにして、図7に示す曲線上で、GMR素子2aの電気抵抗値Rと角度θを対応させることで、GMR素子2aの電気抵抗値Rは、式(1)に従って、角度θにより一意的に決めることができる。すなわち、GMR素子2aの電気抵抗値Rと角度θとは、1対1に対応させることができる。 In this way, by making the electric resistance value R of the GMR element 2a correspond to the angle θ on the curve shown in FIG. 7, the electric resistance value R of the GMR element 2a is unique according to the angle θ according to the equation (1). It can be decided at will. That is, the electric resistance value R of the GMR element 2a and the angle θ can be made to correspond to one to one.
 上述のようなことは、図2に示すように、磁気センサ2を磁石5が移動する範囲の内に配置する際に生じる。すなわち、磁気センサ2を磁石5が移動する範囲の内に配置すると、磁気センサ2は、360度の範囲にわたって磁石5を見ることになるからである。ところが、磁気センサ2を磁石5が移動する範囲の外に配置すると、磁気センサ2は、180度の範囲内で磁石5を見ることになる。よって、この際には、上述のような演算処理をする必要はなく、GMR素子2aの電気抵抗値Rは、角度θによって一意的に決まる。すなわち、GMR素子2aの電気抵抗値Rは、角度θと1対1に対応する。このように、磁気センサ2を磁石5が移動する範囲の外に配置することは、角度θを検知する演算処理が簡便になるので、より好ましい。 As described above, as shown in FIG. 2, it occurs when the magnetic sensor 2 is disposed within the range in which the magnet 5 moves. That is, when the magnetic sensor 2 is disposed within the range in which the magnet 5 moves, the magnetic sensor 2 looks at the magnet 5 over the range of 360 degrees. However, when the magnetic sensor 2 is disposed outside the range in which the magnet 5 moves, the magnetic sensor 2 sees the magnet 5 within the range of 180 degrees. Therefore, in this case, it is not necessary to perform the above-mentioned arithmetic processing, and the electric resistance value R of the GMR element 2a is uniquely determined by the angle θ. That is, the electric resistance value R of the GMR element 2a corresponds to the angle θ one to one. As described above, it is more preferable to arrange the magnetic sensor 2 out of the range in which the magnet 5 moves, since the arithmetic processing for detecting the angle θ becomes simple.
 固定磁性層2dの磁化方向(P方向)は、磁気センサ2の感度軸と同じ方向である。よって、固定磁性層2dの磁化方向(P方向)から反時計まわりに磁石5から生じる磁束7の方向になす角度θは、磁気センサ2の感度軸方向と磁気センサ2に作用する磁石5の磁束7とのなす角度θであり、即ち磁気センサ2の感度軸方向と磁石5の発する磁束方向とのなす角度θである。 The magnetization direction (P direction) of the pinned magnetic layer 2 d is the same as the sensitivity axis of the magnetic sensor 2. Therefore, the angle θ formed in the direction of the magnetic flux 7 generated from the magnet 5 in the counterclockwise direction from the magnetization direction (P direction) of the pinned magnetic layer 2 d is the magnetic flux of the magnet 5 acting on the sensitivity axis direction of the magnetic sensor 2 and the magnetic sensor 2 7 is an angle θ between the sensitivity axis direction of the magnetic sensor 2 and the magnetic flux direction emitted by the magnet 5.
 図8に、本実施形態における磁気センサ2の電気回路図を示す。図8に示すように、本実施形態における磁気センサ2は、4つの抵抗部R、R、R、Rを有してブリッジ回路を構成してなる。そして、抵抗部R、Rは、磁石5(図3、図4に図示)から生じる磁束によって電気抵抗を変化させるGMR素子2a(図6に図示)を有してなる。また、抵抗部R、Rは、磁石5から生じる磁束によって変化しない固定抵抗素子を有してなる。 FIG. 8 shows an electric circuit diagram of the magnetic sensor 2 in the present embodiment. As shown in FIG. 8, the magnetic sensor 2 according to the present embodiment includes four resistance portions R 1 , R 2 , R 3 , and R 4 to form a bridge circuit. The resistance unit R 1, R 4, the magnet 5 becomes a GMR element 2a (shown in FIG. 6) to vary the electric resistance by magnetic flux generated from (3, shown in FIG. 4). Further, the resistor portions R 2 and R 3 have fixed resistance elements which do not change due to the magnetic flux generated from the magnet 5.
 前記固定抵抗素子は、図5において、例えば非磁性層2eと自由磁性層2fとの積層順序を変えることで得られる。すなわち、本実施形態では、前記固定抵抗素子は、下から基板2b上に反強磁性層2c、固定磁性層2d、自由磁性層2f、及び非磁性層2eの順に積層されて成膜され、非磁性層2eの表面が保護層2gで覆われて構成されている。 The fixed resistance element can be obtained, for example, by changing the stacking order of the nonmagnetic layer 2e and the free magnetic layer 2f in FIG. That is, in the present embodiment, the fixed resistance element is formed by laminating the antiferromagnetic layer 2c, the fixed magnetic layer 2d, the free magnetic layer 2f, and the nonmagnetic layer 2e in this order on the substrate 2b from below. The surface of the magnetic layer 2e is covered with a protective layer 2g.
 磁石5(図3、図4に図示)から生じる磁束によって、図8に示すように、抵抗部Rと抵抗部Rとの間の中点電位(V)と、抵抗部Rと抵抗部Rとの間の中点電位(V)と、が変化する。そして、中点電位(V)と中点電位(V)とは増減を逆にして変化し、中点電位(V)と中点電位(V)との差分(V-V)が差動増幅器2hを介して出力される。 As shown in FIG. 8 by the magnetic flux generated from the magnet 5 (shown in FIG. 3 and FIG. 4), the midpoint potential (V 1 ) between the resistor portion R 1 and the resistor portion R 2 and the resistor portion R 3 The midpoint potential (V 2 ) between the resistance portion R 4 and the resistance portion R 4 changes. Then, the midpoint potential (V 1 ) and the midpoint potential (V 2 ) change in reverse with increase and decrease, and the difference (V 1 -V) between the midpoint potential (V 1 ) and the midpoint potential (V 2 ) 2 ) is output via the differential amplifier 2h.
 本実施形態においては、抵抗部R、Rは固定抵抗素子を有してなるとしたが、GMR素子2a(図6に図示)を有してなることも可能である。また、磁気センサ2が、4つの抵抗部R、R、R、Rを有してブリッジ回路を構成してなるとしたが、2つの抵抗部R、Rが直列に接続され、2つの抵抗部R、Rの中点電位を出力とする構成も可能である。 In the present embodiment, the resistor portions R 2 and R 3 are assumed to have fixed resistance elements, but it is also possible to have GMR elements 2 a (shown in FIG. 6). In addition, although the magnetic sensor 2 includes four resistance portions R 1 , R 2 , R 3 , and R 4 to form a bridge circuit, two resistance portions R 1 and R 2 are connected in series. A configuration in which the midpoint potential of the two resistor units R 1 and R 2 is used as an output is also possible.
 本実施形態においては、抵抗部R、Rの電気抵抗は、GMR素子2aを有してなると共に、GMR素子2aに作用する磁石5から生じる磁束7の方向がGMR素子2aを構成する自由磁性層2fの磁化の方向である。よって、磁気センサ2の出力である差分(V-V)は、磁化方向(P方向)から反時計まわりに磁石5から生じる磁束7の方向になす角度θにより決まる。すなわち、磁気センサ2の出力である差分(V-V)と、磁気センサ2の感度軸方向と磁石5の発する磁束方向とのなす角度θとは、対応する関係にある。 In the present embodiment, the electric resistances of the resistance portions R 1 and R 4 include the GMR element 2 a and the direction in which the magnetic flux 7 generated from the magnet 5 acting on the GMR element 2 a constitutes the GMR element 2 a It is the direction of magnetization of the magnetic layer 2 f. Therefore, the difference (V 1 −V 2 ) which is the output of the magnetic sensor 2 is determined by the angle θ formed in the direction of the magnetic flux 7 generated from the magnet 5 counterclockwise from the magnetization direction (P direction). That is, the difference (V 1 -V 2 ) which is the output of the magnetic sensor 2 and the angle θ between the sensitivity axis direction of the magnetic sensor 2 and the magnetic flux direction emitted by the magnet 5 have a corresponding relationship.
 この対応する関係は、例えば、(1)式と、磁気センサ2の電気回路を構成する供給電圧や抵抗値等のパラメータとを用いて、差分(V-V)と角度θとの関係式として求めることができる。 The corresponding relationship is, for example, the relationship between the difference (V 1 −V 2 ) and the angle θ using the equation (1) and the parameters such as the supply voltage and the resistance value constituting the electric circuit of the magnetic sensor 2. It can be determined as a formula.
 図9に、シフト位置検知装置1のブロック図を示す。図9に示すように、シフト位置検知装置1には、磁石5及び磁気センサ2以外に、制御部6を有して構成されている。そして、制御部6は、中央演算処理装置6a(以下、CPU[Central Processing Unit]と記載する)と、メモリ6bとを有して構成されている。そして、CPU6aは、位置演算部6cを有している。ただし、図8に示すブロック図には、磁石5を省略して記載していない。 FIG. 9 shows a block diagram of the shift position detection device 1. As shown in FIG. 9, the shift position detection device 1 is configured to have a control unit 6 in addition to the magnet 5 and the magnetic sensor 2. The control unit 6 is configured to include a central processing unit 6a (hereinafter, referred to as a CPU (Central Processing Unit)) and a memory 6b. The CPU 6a has a position calculation unit 6c. However, the magnet 5 is omitted and described in the block diagram shown in FIG.
 CPU6aは、差分(V-V)と角度θとの対応する関係から、磁気センサ2の出力である差分(V-V)を受信すると、対応する角度θを算出する。また、本実施形態においては、各操作位置13、14、15、16に対応する基準角度θ(i=1~4)、がメモリ6bに記憶されている。この基準角度θ(i=1~4)は、磁気センサ2によって初期的に検知された値である。また、第1の閾値θが設定されて、メモリ6bに記憶されている。 CPU6a from the corresponding relationship of the difference between (V 1 -V 2) between the angle theta, when receiving the difference which is the output of the magnetic sensor 2 (V 1 -V 2), calculates a corresponding angle theta. Further, in the present embodiment, the reference angles θ i (i = 1 to 4) corresponding to the respective operation positions 13, 14, 15, 16 are stored in the memory 6b. The reference angle θ i (i = 1 to 4) is a value initially detected by the magnetic sensor 2. In addition, a first threshold θ a is set and stored in the memory 6 b.
 図10に、本実施形態における位置演算部6cが実行するフローチャートを示す。位置演算部6cが実行する演算処理を、図1、図2、図9、図10を参照して説明する。車両のエンジンが始動されると、同時にシフト位置検知装置1も始動される。そして、S1において、例えば、i=1としてパーキング位置13が選ばれる。S2において,角度θとパーキング位置13(i=1)の位置に対応する角度θとの差が算出され、その絶対値が第1の閾値θ以下であるか比較される。そして、YESの際には、S5において、シフトレバー11がパーキング位置13(i=1)にあると判定される。そして、シフトレバー11がパーキング位置13(i=1)にあるという情報が、車両側に出力される。その後に、S1に戻り演算処理が繰り返される。NOの際には、S3において、次に例えばi=2としてニュートラル位置14が選ばれる。 FIG. 10 shows a flowchart executed by the position calculation unit 6c in the present embodiment. The calculation process performed by the position calculation unit 6c will be described with reference to FIG. 1, FIG. 2, FIG. 9, and FIG. When the engine of the vehicle is started, the shift position detection device 1 is also started at the same time. Then, in S1, for example, the parking position 13 is selected as i = 1. In S2, the difference is calculated between the angle theta 1 which corresponds to the position of the angle theta and a parking position 13 (i = 1), its absolute value is compared or less than the first threshold value theta a. Then, in the case of YES, it is determined in S5 that the shift lever 11 is at the parking position 13 (i = 1). Then, information that the shift lever 11 is at the parking position 13 (i = 1) is output to the vehicle side. After that, the process returns to S1, and the calculation process is repeated. In the case of NO, the neutral position 14 is next selected as S2, for example, with i = 2.
 本実施形態では、例えば、i=1としてパーキング位置13、i=2としてニュートラル位置14、i=3としてドライブ位置15、i=4としてリバース位置16の順に判定される。そのため、S4において、選ばれている操作位置が最後のリバース位置16(i=4)であるか確認される。NOの際には、ニュートラル位置14(i=2)に対して、パーキング位置13(i=1)で行ったのと同じ演算処理を行う。そして、操作位置が判明するまで、ドライブ位置15(i=3)、リバース位置16(i=4)と同じ演算処理を繰り返す。YESの際には、S1に戻って、パーキング位置13(i=1)から同じ演算処理を繰り返す。 In this embodiment, for example, the parking position 13 is determined as i = 1, the neutral position 14 as i = 2, the drive position 15 as i = 3, and the reverse position 16 as i = 4. Therefore, in S4, it is confirmed whether the selected operation position is the last reverse position 16 (i = 4). In the case of NO, the same arithmetic processing as that performed at the parking position 13 (i = 1) is performed on the neutral position 14 (i = 2). Then, the same arithmetic processing as the drive position 15 (i = 3) and the reverse position 16 (i = 4) is repeated until the operation position is determined. In the case of YES, the process returns to S1, and the same arithmetic processing is repeated from the parking position 13 (i = 1).
 このようにして、シフトレバー11が操作位置13、14、15、16にあることが検知されると、その情報が車両に出力される。よって、車両は、シフトレバー11の操作位置に応じて、自動変速機のギア組み合わせを適切に切り替えることが可能である。 In this manner, when it is detected that the shift lever 11 is at the operation position 13, 14, 15, 16, the information is output to the vehicle. Thus, the vehicle can appropriately switch the gear combination of the automatic transmission according to the operation position of the shift lever 11.
 第1の閾値θは、隣り合う操作位置を確実に区別するために、隣り合う操作位置に対応する角度差の半分以下であることが好ましい。また、誤動作を防ぐために、磁気センサ2の出力ばらつきに対応する角度ばらつきよりも大きいことが好ましい。よって、本実施形態においては、第1の閾値θは前記の範囲内の値に設定されている。 The first threshold θ a is preferably half or less of the angular difference corresponding to the adjacent operation positions in order to reliably distinguish the adjacent operation positions. Moreover, in order to prevent a malfunction, it is preferable that it is larger than the angle variation corresponding to the output variation of the magnetic sensor 2. Therefore, in the present embodiment, the first threshold θ a is set to a value within the above range.
 本実施形態においては、固定磁性層2dの磁化方向(P方向)を、第2の仮想面9に平行に設けているが、これに限定されるものではない。固定磁性層2dの磁化方向(P方向)が、第2の仮想面9に対して傾斜していても、固定磁性層2dの磁化の第2の仮想面9への余弦値を用いて、(1)式を求めることができる。 In the present embodiment, the magnetization direction (P direction) of the pinned magnetic layer 2d is provided in parallel to the second virtual surface 9, but the present invention is not limited to this. Even if the magnetization direction (P direction) of the pinned magnetic layer 2d is inclined with respect to the second virtual surface 9, using the cosine value of the magnetization of the pinned magnetic layer 2d to the second virtual surface 9 ( 1) Formula can be obtained.
 本実施形態においては、固定磁性層2dの磁化方向(P方向)は、右(X2)方向に向いているが、これに限定されるものではない。固定磁性層2dの磁化方向(P方向)を、第2の仮想面9に平行な面内で任意の方向に向けることができる。 In the present embodiment, the magnetization direction (P direction) of the pinned magnetic layer 2d is directed to the right (X2) direction, but is not limited thereto. The magnetization direction (P direction) of the pinned magnetic layer 2 d can be oriented in an arbitrary direction in a plane parallel to the second virtual surface 9.
 また、上側の端部5a及び下側の端部5bの外周に近い箇所から放出または収束される磁束7は、より広い領域で第1の仮想面8に平行に近い状態にある。よって、磁気センサ2が配置される第2の仮想面9を、上側の端部5a及び下側の端部5bの近傍を通るように設けることで、より精度よく磁気センサ2の感度軸方向と磁石5の発する磁束方向とのなす角度θを算出することができる。 Further, the magnetic flux 7 emitted or converged from a position near the outer periphery of the upper end 5a and the lower end 5b is in a state close to parallel to the first virtual surface 8 in a wider area. Therefore, by providing the second virtual surface 9 on which the magnetic sensor 2 is disposed so as to pass near the upper end 5a and the lower end 5b, the sensitivity axis direction of the magnetic sensor 2 can be more accurately detected. The angle θ with the direction of the magnetic flux emitted by the magnet 5 can be calculated.
 本実施形態においては、図2に示すように、磁石5は、磁気センサ2と上下方向で重ならないように移動する。磁気センサ2と磁石5とが上下に重る際には、磁石5から生じる磁束が磁気センサ2の感度軸に上下方向に作用する。その結果、磁気センサ2の感度軸方向と磁石5の発する磁束方向とのなす角度θを一意的に決めることができない。よって、磁気センサ2は、磁石5と上下に重ならないように配置されることが好ましい。 In the present embodiment, as shown in FIG. 2, the magnet 5 moves so as not to overlap the magnetic sensor 2 in the vertical direction. When the magnetic sensor 2 and the magnet 5 are vertically stacked, the magnetic flux generated from the magnet 5 acts on the sensitivity axis of the magnetic sensor 2 in the vertical direction. As a result, the angle θ between the sensitivity axis direction of the magnetic sensor 2 and the magnetic flux direction emitted by the magnet 5 can not be determined uniquely. Therefore, it is preferable that the magnetic sensor 2 be disposed so as not to overlap with the magnet 5 vertically.
 本実施形態においては、図2に示すように、磁石5が前後左右に移動する範囲の内に磁気センサ2を配置しているが、これに限定されるものではない。磁気センサ2を磁石5の移動する範囲の外に配置することは可能である。この際には、磁気センサ2と磁石5とが重ならないという規定に制限されないので、シフトレバー装置における各操作位置の配置の自由度が向上する。また、磁気センサ2の感度軸方向と磁石5の発する磁束方向とのなす角度θを検知する演算処理が上述のように簡便になるので、より好ましい。 In this embodiment, as shown in FIG. 2, although the magnetic sensor 2 is arrange | positioned in the range which the magnet 5 moves to front and rear, right and left, it is not limited to this. It is possible to place the magnetic sensor 2 outside the range of movement of the magnet 5. At this time, since the magnetic sensor 2 and the magnet 5 are not limited to the definition that they do not overlap, the degree of freedom in the arrangement of each operation position in the shift lever device is improved. In addition, since the arithmetic processing for detecting the angle θ between the sensitivity axis direction of the magnetic sensor 2 and the magnetic flux direction emitted by the magnet 5 is simplified as described above, it is more preferable.
 図11に、本実施形態の変形例であるシフト位置検知装置のブロック図を示す。また、図12に、本実施形態の変形例である位置演算部及び故障検知部が実行するフローチャートを示す。図11に示すように、本変形例におけるシフト位置検知装置は、第1の実施形態に対してCPU6aに故障検知部6dが追加されている。そして、この故障検知部6dが、磁気センサ2の経時的な劣化等による故障を検知する。図11に示すブロック図には、磁石5は省略して記載していない。 FIG. 11 shows a block diagram of a shift position detection device which is a modification of the present embodiment. Further, FIG. 12 shows a flowchart executed by the position calculation unit and the failure detection unit as a modification of the present embodiment. As shown in FIG. 11, in the shift position detection device according to the present modification, a failure detection unit 6d is added to the CPU 6a in the first embodiment. Then, the failure detection unit 6d detects a failure due to deterioration or the like of the magnetic sensor 2 with time. The magnet 5 is omitted and described in the block diagram shown in FIG.
 故障検知部6dが処理する故障演算について、図11、図12を用いて説明する。図12において、S1からS5の演算処理は第1の実施形態と同じであり、位置演算部6cにより実行される。S6からS9の演算処理は、故障検知部6dにより実行される。S5の判定結果である操作位置と磁気センサが検知した角度θとが、位置演算部6cから故障検知部6dに出力される。そして、S6において、シフトレバーが同じ操作位置に留まっているかを判定する。NOの際には、S1に戻って最初から演算処理を繰り返す。YESの際には、S7において、角度θの平均値<θ>が算出される。 The failure calculation processed by the failure detection unit 6 d will be described with reference to FIGS. 11 and 12. In FIG. 12, the calculation processing of S1 to S5 is the same as that of the first embodiment, and is performed by the position calculation unit 6c. The calculation processing of S6 to S9 is executed by the failure detection unit 6d. The operation position which is the determination result of S5 and the angle θ detected by the magnetic sensor are output from the position calculation unit 6c to the failure detection unit 6d. Then, in S6, it is determined whether the shift lever remains at the same operation position. In the case of NO, the process returns to S1 to repeat the calculation process from the beginning. In the case of YES, the average value <θ> of the angle θ is calculated in S7.
 S8において、平均値<θ>と操作位置に対応する基準角度θとの差の絶対値が算出される。そして、この絶対値が第2の閾値θ以下であれば、S1に戻って演算処理を繰り返す。この絶対値が第2の閾値θ以上であれば、磁気センサ2を故障と判定して警報を発し、磁気センサ2の交換を勧める。また、操作位置に対応する基準角度θ、すなわち磁気センサ2が検知した操作位置に対応する角度の初期値θや、第2の閾値θは、メモリ6bに予め記憶されている。 In S8, the absolute value of the difference between the reference angle theta i corresponding to the operating position and the average value <theta> is calculated. Then, the absolute value is equal to or smaller than a second threshold value theta b, repeat the processing returns to S1. If this absolute value is the second threshold value theta b above, an alarm by determining the magnetic sensor 2 malfunction, we recommend replacement of the magnetic sensor 2. Further, the reference angle θ i corresponding to the operation position, that is, the initial value θ i of the angle corresponding to the operation position detected by the magnetic sensor 2 and the second threshold value θb are stored in advance in the memory 6 b .
 磁気センサ2に経時的な劣化等が生じると、磁気センサ2の出力から算出される角度θは、基準角度θからずれる。このずれが大きくなると、正確に操作位置を検知できなくなる。本変形例では、これを第2の閾値θを用いて検知するものである。よって、誤動作を防ぐために、第2の閾値θは、磁気センサ2の出力ばらつきに対応する角度ばらつきよりも大きいことが好ましい。また、第2の閾値θは、第1の閾値θより小さいことが好ましい。 When temporal deterioration in the magnetic sensor 2 occurs, the angle theta is calculated from the output of the magnetic sensor 2, it deviates from the reference angle theta i. If this deviation becomes large, the operation position can not be accurately detected. In this modification, it is to detect with the second threshold value theta b this. Therefore, to prevent malfunctions, the second threshold value theta b, is preferably larger than the angle variation corresponding to the output variation of the magnetic sensor 2. Also, the second threshold value theta b, is preferably less than the first threshold value theta a.
 第2の閾値θを第1の閾値θ以下に選ぶことで、各操作位置を正確に検知できている期間中に、磁気センサ2の経時的な劣化等の検知を可能にする。 By choosing the second threshold theta b below the first threshold value theta a, during which accurately detect the respective operating position, to permit detection of such deterioration over time of the magnetic sensor 2.
 上記の方法では、角度θの平均値を用いたが、角度θの値そのものもを用いることも可能である。角度θの平均値を用いた理由は、故障検知の精度を上げるためである。よって、数回~数十回の平均値を算出した後に、S8の判定を実行することも可能である。また、複数の第2の閾値θを用意して、警報のレベルを区分けすることも可能である。 Although the average value of the angle θ is used in the above method, it is also possible to use the value of the angle θ itself. The reason for using the average value of the angles θ is to improve the accuracy of failure detection. Therefore, it is also possible to execute the determination of S8 after calculating the average value several times to dozens of times. Further, by preparing a plurality of second threshold theta b, it is also possible to partition the level of alarm.
 <第2の実施形態>
 図13に、第2の実施形態におけるシフト位置検知装置の概略を説明する平面図を示す。図14に、第2の実施形態におけるシフト位置検知装置のブロック図を示す。図13に示すように、本実施形態のシフト位置検知装置が第1の実施形態と異なる点は、2つの磁気センサ2、3を有して構成されている点と、2つの磁気センサ2、3が磁石5の移動する範囲の外に配置されている点である。本実施形態においては、第1の実施形態と同じ構成要素に関しては、同じ符号を用いている。
Second Embodiment
FIG. 13 is a plan view for explaining the outline of the shift position detection device in the second embodiment. FIG. 14 shows a block diagram of the shift position detection apparatus in the second embodiment. As shown in FIG. 13, the shift position detection device of this embodiment differs from the first embodiment in that it comprises two magnetic sensors 2 and 3, and two magnetic sensors 2, A point 3 is located outside the range of movement of the magnet 5. In the present embodiment, the same reference numerals are used for the same components as in the first embodiment.
 本実施形態では、2つの磁気センサ2、3が磁石5の移動する範囲の外に配置されているとしたが、2つの磁気センサ2、3は磁石5の移動する範囲の内に配置されることも可能である。ただし、各磁気センサ2、3が磁石5と上下(Z方向)に重なると、磁石5から生じる磁束7が各磁気センサ2、3の感度軸に上下方向に作用するため、各磁気センサ2、3の感度軸方向と磁石5の発する磁束方向とのなす角度θを一意的に決められない。よって、各磁気センサ2、3を、各操作位置と上下に重ならないように配置することが好ましい。 In the present embodiment, although the two magnetic sensors 2 and 3 are disposed outside the moving range of the magnet 5, the two magnetic sensors 2 and 3 are disposed within the moving range of the magnet 5. It is also possible. However, when the magnetic sensors 2 and 3 overlap the magnet 5 vertically (in the Z direction), the magnetic flux 7 generated from the magnet 5 acts on the sensitivity axes of the magnetic sensors 2 and 3 in the vertical direction. The angle θ between the sensitivity axis direction of 3 and the magnetic flux direction emitted by the magnet 5 can not be uniquely determined. Therefore, it is preferable to arrange each magnetic sensor 2 and 3 so that it does not overlap with each operation position up and down.
 本実施形態のように、2つの磁気センサ2、3を磁石5の移動する範囲の外に配置することは、2つの磁気センサ2、3と磁石5とが重ならないという規定に制限されないので、シフトレバー装置における各操作位置の配置の自由度が向上する。また、上述のように、各磁気センサ2、3の感度軸方向と磁石5の発する磁束方向とのなす角度θを検知する演算処理が簡便になるので、より好ましい。 As in the present embodiment, disposing the two magnetic sensors 2 and 3 out of the moving range of the magnet 5 is not limited to the rule that the two magnetic sensors 2 and 3 and the magnet 5 do not overlap. The degree of freedom in the arrangement of each operation position in the shift lever device is improved. Further, as described above, it is more preferable because the arithmetic processing for detecting the angle θ between the sensitivity axis direction of each of the magnetic sensors 2 and 3 and the magnetic flux direction emitted by the magnet 5 is simplified.
 本実施形態においては、図14に示すように、CPU6aが、2つの磁気センサ2、3から交互に出力される差分(V-V)を受信し、第1の実施形態と同じように、2つの磁気センサ2、3の感度軸方向と磁石5の発する磁束方向とのなす角度θを算出する。そして、この角度θを用いて、第1の実施形態の変形例と同じように、図12に示すフローチャートに従って、位置演算部6cが操作位置の判定を、及び故障検知部6dが故障判定を実行する。 In the present embodiment, as shown in FIG. 14, the CPU 6 a receives the difference (V 1 −V 2 ) alternately output from the two magnetic sensors 2 and 3, as in the first embodiment. The angle θ between the sensitivity axis direction of the two magnetic sensors 2 and 3 and the magnetic flux direction emitted by the magnet 5 is calculated. Then, using this angle θ, as in the modification of the first embodiment, according to the flowchart shown in FIG. 12, the position calculation unit 6c performs the determination of the operation position, and the failure detection unit 6d performs the failure determination. Do.
 故障判定がなされた際には、CPU6aは、故障判定された磁気センサからの出力である差分(V-V)を受信しないで、正常な磁気センサの出力のみを受信する処理を実行する。よって、本実施形態においては、信頼性の高いシフト位置検知装置を提供することができる。 When the failure determination is made, the CPU 6a does not receive the difference (V 1- V 2 ) which is the output from the magnetic sensor determined to be faulty, and executes processing to receive only the output of the normal magnetic sensor . Therefore, in the present embodiment, a highly reliable shift position detection device can be provided.
 図15に、第2の実施形態の変形例における位置演算部が実行するフローチャートを示す。本変形例の位置演算部は、第1の実施形態及び第1の実施形態の変形例とは異なる演算処理を実行する。 FIG. 15 shows a flowchart executed by the position calculation unit in the modification of the second embodiment. The position calculation unit of this modification executes calculation processing different from the first embodiment and the modification of the first embodiment.
 第2の仮想面上の任意な位置を原点とする(x、y)座標系を設定する。そして、磁気センサ2と磁気センサ3とが位置する(x、y)座標を、各々、(x、y)、(x、y)とする。 An (x, y) coordinate system is set with an arbitrary position on the second virtual surface as the origin. Then, the (x, y) coordinates at which the magnetic sensor 2 and the magnetic sensor 3 are located are respectively (x 2 , y 2 ) and (x 3 , y 3 ).
 CPU6aは、上述したように、差分(V-V)と角度θとの対応する関係から、各磁気センサ2、3の出力である差分(V-V)を受信すると、各磁気センサ2、3の感度軸方向と磁石5の発する磁束方向とのなす角度θを算出する。そして、各々の角度をθ、θとする。 CPU6a, as described above, from the corresponding relationship between the difference (V 1 -V 2) between the angle theta, when receiving the difference (V 1 -V 2) is an output of the magnetic sensors 2 and 3, each of the magnetic The angle θ between the sensitivity axis direction of the sensors 2 and 3 and the magnetic flux direction emitted by the magnet 5 is calculated. And let each angle be θ 2 and θ 3 .
 その際には、磁石5は、各磁気センサ2、3から、各々に角度θまたは角度θの方向に位置する。よって、磁石5が位置する(x、y)座標は、磁気センサ2が位置する(x、y)座標を通り、傾きがtanθである直線と、磁気センサ3が位置する(x、y)座標を通り、傾きがtanθである直線との交点として算出される。 In that case, the magnet 5 is located in the direction of the angle θ 2 or the angle θ 3 from each of the magnetic sensors 2 and 3 respectively. Therefore, the (x, y) coordinates at which the magnet 5 is located pass through the (x 2 , y 2 ) coordinates at which the magnetic sensor 2 is located, and a straight line whose inclination is tan θ 2 and the magnetic sensor 3 are located (x 3 , Y 3 ), and is calculated as the point of intersection with a straight line whose inclination is tan θ 3 .
 また、この2つの直線は、(2)式及び(3)式によって表わすことができる。 Also, these two straight lines can be expressed by equations (2) and (3).
 y=(x-x)×tanθ+y・・・・・(2)
 y=(x-x)×tanθ+y・・・・・(3)
 よって、(2)式及び(3)式の直線の交点、即ち磁石5が位置する(x、y)座標は、(4)式及び(5)式によって表わすことができる。
y = (x−x 2 ) × tan θ 2 + y 2 (2)
y = (x−x 3 ) × tan θ 3 + y 3 (3)
Therefore, the intersection of the straight lines of the equations (2) and (3), that is, the (x, y) coordinates at which the magnet 5 is located can be expressed by the equations (4) and (5).
 x=(y-y+x×tanθ-x×tanθ)/(tanθ-tanθ)・・・・・(4)
 y={y×tanθ-y×tanθ+(x-x)×tanθ×tanθ}/(tanθ-tanθ)・・・・・(5)
 図15に、第2の実施形態の変形例における位置演算部が実行するフローチャートを示す。図13、図14、図15を用いて、本変形例の位置演算部6cが実行する演算処理について説明する。
x = (y 3 -y 2 + x 2 × tanθ 2 -x 3 × tanθ 3) / (tanθ 2 -tanθ 3) ····· (4)
y = {y 3 × tan θ 2 −y 2 × tan θ 3 + (x 2 −x 3 ) × tan θ 2 × tan θ 3 } / (tan θ 2 -tan θ 3 ) (5)
FIG. 15 shows a flowchart executed by the position calculation unit in the modification of the second embodiment. The calculation process performed by the position calculation unit 6c of the present modification will be described using FIGS. 13, 14 and 15. FIG.
 S1において、交互に各磁気センサ2、3からの出力である差分(V-V)をCPU6aが受信する。S2において、この差分(V-V)を用いて、位置演算部6cが、各磁気センサ2、3の感度軸方向と磁石5の発する磁束方向とのなす各角度θ、θを算出する。その算出方法として、例えば、(1)式と、各磁気センサ2、3の電気回路構成とから、各差分(V-V)と各角度θ、θとの関係式を求めておき、この関係式をメモリ6bに予め記憶させておく。また、演算に必要なRminや、Rmax等の定数もメモリ6bに予め記憶させておく。これらの式や、定数を用いて、位置演算部6cは、各差分(V-V)から各角度θ、θを算出する。 At S1, the CPU 6a receives the difference (V 1 -V 2 ) which is the output from each of the magnetic sensors 2 and 3 alternately. In S2, using this difference (V 1 -V 2 ), the position calculation unit 6c determines the angles θ 2 and θ 3 between the sensitivity axis direction of each of the magnetic sensors 2 and 3 and the magnetic flux direction emitted by the magnet 5. calculate. As the calculation method, for example, the relational expression between each difference (V 1 -V 2 ) and each angle θ 2 and θ 3 is calculated from the electric circuit configuration of each magnetic sensor 2 and 3 and Equation (1) Note that this relational expression is stored in advance in the memory 6b. In addition, constants such as R min and R max required for the calculation are also stored in the memory 6 b in advance. The position calculator 6c calculates the angles θ 2 and θ 3 from the differences (V 1 -V 2 ) using these equations and constants.
 S3において、位置演算部6cは、各角度θ、θと、(4)式及び(5)式とを用いて、磁石5が位置する(x、y)座標を算出する。また、(4)式及び(5)式は、メモリ6bに予め記憶させておく。 In S3, the position calculation unit 6c calculates (x, y) coordinates at which the magnet 5 is located, using the respective angles θ 2 and θ 3 and the equations (4) and (5). The equations (4) and (5) are stored in advance in the memory 6b.
 S4において、例えばパーキング位置13が選ばれる。S5において、パーキング位置13が位置する(x、y)座標と、算出した磁石5が位置する(x、y)座標との差の絶対値が第3の閾値x、及び第4の閾値y以下であるか、即ち|x-x|<x、且つ|y-y|<yであるか比較される。そして、YESの際には、S8において、シフトレバーがパーキング位置13にあると判定される。そして、シフトレバーがパーキング位置13にあるという情報が、車両側に出力される。その後に、S1に戻り演算処理が繰り返される。NOの際には、S6において、次に例えばニュートラル位置14が選ばれる。 At S4, for example, the parking position 13 is selected. In S5, the absolute value of the difference between the (x i , y i ) coordinate at which the parking position 13 is located and the (x, y) coordinate at which the calculated magnet 5 is located is the third threshold value x a , and the fourth threshold value x a or threshold is y a or less, i.e., | x-x i | <x a, and | y-y i | is compared <whether a y a. When the answer is YES, it is determined in S8 that the shift lever is at the parking position 13. Then, information that the shift lever is at the parking position 13 is output to the vehicle side. After that, the process returns to S1, and the calculation process is repeated. At the time of NO, for example, the neutral position 14 is next selected in S6.
 本変形例では、例えばパーキング位置13、ニュートラル位置14、ドライブ位置15、リバース位置16の順に判定される。それで、S7において、選ばれている操作位置が最後のリバース位置16であるか確認される。NOの際には、ニュートラル位置14に対して、パーキング位置13で行ったのと同じ演算処理を行う。そして、操作位置が判明するまで、ドライブ位置15、リバース位置16と同じ演算処理を繰り返す。YESの際には、S1に戻って、パーキング位置13から同じ演算処理を繰り返す。 In this modification, for example, the parking position 13, the neutral position 14, the drive position 15, and the reverse position 16 are determined in order. Thus, in S7, it is confirmed whether the selected operation position is the last reverse position 16. At the time of NO, the same arithmetic processing as performed at the parking position 13 is performed on the neutral position 14. Then, the same arithmetic processing as the drive position 15 and the reverse position 16 is repeated until the operation position is determined. In the case of YES, the process returns to S1, and the same arithmetic processing is repeated from the parking position 13.
 このようにして、本変形例のシフト位置検知装置は、シフトレバーが位置する各操作位置を検知する。そして、シフトレバーが各操作位置に位置する際には、その情報を車両側に出力する。その結果、車両は、各操作位置に対応する適切なギア比等を選ぶことができる。 Thus, the shift position detection device of this modification detects each operation position where the shift lever is positioned. Then, when the shift lever is positioned at each operation position, the information is output to the vehicle side. As a result, the vehicle can select an appropriate gear ratio or the like corresponding to each operation position.
 特許文献1及び特許文献2における従来技術においては、磁石の各操作位置に限定される(x、y)座標のみしか検知できない。ところが、本変形例では、磁石5が位置する任意な(x、y)座標を検知することが可能である。よって、本変形例によれば、シフトレバー装置の各操作位置を任意の位置に設けることができる。すなわち、各操作位置の任意の位置に対応して(x、y)座標を変更するのみで対応できる。このように、本変形例のシフト位置検知装置は、汎用性に優れる。 In the prior art in Patent Document 1 and Patent Document 2, only the (x, y) coordinates limited to each operation position of the magnet can be detected. However, in this modification, it is possible to detect an arbitrary (x, y) coordinate at which the magnet 5 is located. Therefore, according to the present modification, each operation position of the shift lever device can be provided at any position. That is, it can respond only by changing the (x i , y i ) coordinate corresponding to an arbitrary position of each operation position. Thus, the shift position detection device of this modification is excellent in versatility.
 第3の閾値x、及び第4の閾値yは、隣り合う操作位置を確実に区分するために、隣り合う操作位置を隔てる、X方向、及びY方向である距離の半分以下であることが好ましい。また、誤動作を防ぐために、第3の閾値x、及び第4の閾値yは、磁気センサ2の出力ばらつきに対応するX方向、及びY方向の位置ばらつきよりも大きいことが好ましい。よって、本変形例においては、第3の閾値x、及び第4の閾値yは、前記の範囲内の値に設定されている。 The third threshold value x a and the fourth threshold value y a are not more than half the distance between the adjacent operation positions in the X and Y directions in order to reliably divide the adjacent operation positions. Is preferred. Further, in order to prevent a malfunction, the third threshold value x a, and the fourth threshold y a is, X direction corresponding to the output variation of the magnetic sensor 2, and is greater than the positional variation in the Y direction preferred. Therefore, in this modification, the third threshold value x a, and the fourth threshold y a is set to a value in the range of the.
 <第3の実施形態>
 図16に、第3の実施形態におけるシフト位置検知装置の概略を説明する平面図を示す。図17に、第3の実施形態におけるシフト位置検知装置のブロック図を示す。図16に示すように、本実施形態のシフト位置検知装置が第1の実施形態と異なる点は、3つの磁気センサ2、3、4を有して構成されている点と、3つの磁気センサ2、3、4が磁石5の移動する範囲の外に配置されている点である。本実施形態においては、第1の実施形態と同じ構成要素に関しては、同じ符号を用いている。
Third Embodiment
FIG. 16 is a plan view for explaining the outline of the shift position detection device in the third embodiment. FIG. 17 shows a block diagram of the shift position detection apparatus in the third embodiment. As shown in FIG. 16, the shift position detection device of this embodiment differs from that of the first embodiment in that it comprises three magnetic sensors 2, 3, 4 and three magnetic sensors 2, 3 and 4 are points which are disposed outside the moving range of the magnet 5. In the present embodiment, the same reference numerals are used for the same components as in the first embodiment.
 本実施形態では、3つの磁気センサ2、3、4が磁石5の移動する範囲の外に配置されているとしたが、3つの磁気センサ2、3、4は磁石5の移動する範囲の内に配置されることも可能である。ただし、各磁気センサ2、3、4が磁石5と上下(Z方向)に重なると、各磁気センサ2、3、4と磁石5とのなす角度θを一意的に決められない。よって、各磁気センサ2、3、4を、各操作位置と上下に重ならないように配置することが好ましい。 In the present embodiment, although the three magnetic sensors 2, 3, and 4 are disposed out of the moving range of the magnet 5, the three magnetic sensors 2, 3, and 4 are in the moving range of the magnet 5. It is also possible to be placed at However, when the respective magnetic sensors 2, 3, 4 overlap the magnet 5 vertically (in the Z direction), the angle θ between the respective magnetic sensors 2, 3, 4 and the magnet 5 can not be determined uniquely. Therefore, it is preferable to arrange each magnetic sensor 2, 3, 4 so that it does not overlap with each operation position up and down.
 本実施形態のように、3つの磁気センサ2、3、4を磁石5の移動する範囲の外に配置することは、3つの磁気センサ2、3、4と磁石5とが重ならないという規定に制限されないので、シフトレバー装置における各操作位置の配置の自由度が向上する。また、上述のように、各磁気センサ2、3、4の感度軸方向と磁石5の発する磁束方向とのなす角度θを検知する演算処理が簡便になるので、より好ましい。 As in the present embodiment, disposing the three magnetic sensors 2, 3, 4 outside the moving range of the magnet 5 does not require the three magnetic sensors 2, 3, 4 and the magnet 5 to overlap. Since it is not restricted, the degree of freedom in the arrangement of each operation position in the shift lever device is improved. Further, as described above, it is more preferable because the arithmetic processing for detecting the angle θ between the sensitivity axis direction of each of the magnetic sensors 2, 3, 4 and the magnetic flux direction emitted by the magnet 5 is simplified.
 本実施形態では、図16に示すように、3つの磁気センサ2、3、4は同一直線上に配置されていない。3つの磁気センサ2、3、4が同一直線上に配置されている際には、磁石5から、3つの磁気センサ2、3、4は同じ方向に見えることがある。この際には、磁石5が前記同一直線上に位置することは確定できるが、前記同一直線上のどこにあるかを確定できない。このことを避けるために、3つの磁気センサ2、3、4は同一直線上に配置されないことが好ましい。 In the present embodiment, as shown in FIG. 16, the three magnetic sensors 2, 3, 4 are not arranged on the same straight line. When the three magnetic sensors 2, 3, 4 are arranged on the same straight line, the three magnetic sensors 2, 3, 4 may appear from the magnet 5 in the same direction. At this time, although it can be determined that the magnets 5 are located on the same straight line, it can not be determined where on the same straight line. In order to avoid this, it is preferable that the three magnetic sensors 2, 3 and 4 not be arranged on the same straight line.
 また、任意の2つの磁気センサを結ぶ直線上に、2つ以上の操作位置が存在しないように配置されることが好ましい。例えば、ニュートラル位置14とドライブ位置15が前記直線上にあると、2つを区別できないからである。3つの磁気センサの場合は区別できるが、1つが故障して区別できない場合がある。 Moreover, it is preferable to arrange | position so that two or more operation positions do not exist on the straight line which ties arbitrary two magnetic sensors. For example, when the neutral position 14 and the drive position 15 are on the straight line, the two can not be distinguished. In the case of three magnetic sensors, although they can be distinguished, one may fail and be indistinguishable.
 図18は、第3の実施形態における位置演算部が実行するフローチャートである。本実施形態における位置演算部が実行する演算処理について、図17、図18を用いて説明する。3つの磁気センサ2、3、4からの出力である差分(V-V)を、CPU6aは、十分に小さい時間間隔で時系列的に受信する。S2において、位置演算部6cが、各磁気センサ2、3、4の感度軸方向と磁石5の発する磁束方向とのなす各角度θ、θ、θを算出する。この算出方法は、第2の実施形態の変形例における図15に示すS2と同じようになされる。 FIG. 18 is a flowchart executed by the position calculation unit in the third embodiment. The calculation process performed by the position calculation unit in the present embodiment will be described with reference to FIGS. 17 and 18. The CPU 6a receives the differences (V 1 -V 2 ), which are the outputs from the three magnetic sensors 2, 3 and 4, in time series at a sufficiently small time interval. In S2, the position calculation unit 6c calculates angles θ 2 , θ 3 , θ 4 formed by the sensitivity axis directions of the magnetic sensors 2, 3, 4 and the magnetic flux direction emitted by the magnet 5. This calculation method is performed in the same manner as S2 shown in FIG. 15 in the modification of the second embodiment.
 S3において、3つの角度θ、θ、θから、2つの角度の組み合わせを選ぶ。この角度の組み合わせは、(θ、θ)、(θ、θ)、(θ、θ)の3通りがあり、まず、S3において、その内の1つを選ぶ。 In S3, a combination of two angles is selected from the three angles θ 2 , θ 3 and θ 4 . There are three combinations of this angle: (θ 2 , θ 3 ), (θ 2 , θ 4 ), and (θ 3 , θ 4 ). First, at S 3, one of them is selected.
 S4において、S3で選ばれた角度の組み合わせに対して、磁石5の座標(x、y)を算出する。この算出方法は、第2の実施形態の変形例における図15に示すS3と同じようになされる。 In S4, coordinates (x p , y p ) of the magnet 5 are calculated for the combination of angles selected in S3. This calculation method is performed in the same manner as S3 shown in FIG. 15 in the modification of the second embodiment.
 S5において、例えばパーキング位置13が選ばれる。S6において、パーキング位置13が位置する(x、y)座標と、算出した磁石5が位置する(x、y)座標との差の絶対値が第5の閾値x、及び第6の閾値y以下であるか、即ち|x-x|<x、且つ|y-y|<yであるか比較される。そして、YESの際には、S9において、シフトレバーがパーキング位置13にあると判定される。そして、シフトレバーがパーキング位置13にあるという情報が、車両側に出力される。S6において、NOの際には、S7において、次に例えばニュートラル位置14が選ばれる。 At S5, for example, the parking position 13 is selected. In S6, the absolute value of the difference between the (x i , y i ) coordinate at which the parking position 13 is located and the (x p , y p ) coordinate at which the calculated magnet 5 is located is the fifth threshold value x b , and It is compared whether it is less than or equal to a threshold value y b of 6, that is, | x p −x i | <x b and | y p −y i | <y b . Then, in the case of YES, it is determined in S9 that the shift lever is at the parking position 13. Then, information that the shift lever is at the parking position 13 is output to the vehicle side. In the case of NO at S6, for example, the neutral position 14 is next selected at S7.
 本実施形態では、例えばパーキング位置13、ニュートラル位置14、ドライブ位置15、リバース位置16の順に判定される。それで、S8において、選ばれている操作位置が最後のリバース位置16であるか確認される。NOの際には、ニュートラル位置14に対して、パーキング位置13で行ったのと同じ演算処理を行う。そして、操作位置が判明するまで、ドライブ位置15、リバース位置16と同じ演算処理を繰り返す。 In the present embodiment, for example, the parking position 13, the neutral position 14, the drive position 15, and the reverse position 16 are determined in order. Thus, in S8, it is confirmed whether the selected operation position is the last reverse position 16. At the time of NO, the same arithmetic processing as performed at the parking position 13 is performed on the neutral position 14. Then, the same arithmetic processing as the drive position 15 and the reverse position 16 is repeated until the operation position is determined.
 このようにして、全ての角度の組み合わせに対して、操作位置が判明するまで演算処理が繰り返せられる。そして、S10において、全ての角度の組み合わせに対して演算処理が実行されたか確認される。NOの際には、残りの角度の組み合わせに対して演算処理を繰り返される。YESの際には、S1に戻って、最初から演算処理を繰り返す。 In this way, the calculation process is repeated until the operation position is determined for all the combinations of angles. Then, in S10, it is confirmed whether the arithmetic processing has been performed for all the combinations of angles. If NO, the arithmetic processing is repeated for the remaining combinations of angles. In the case of YES, the process returns to S1, and the arithmetic processing is repeated from the beginning.
 このようにして、本実施形態のシフト位置検知装置は、3通りの角度の組み合わせθ、θ)、(θ、θ)、(θ、θ)を順次に用いて、シフトレバーが位置する各操作位置を検知する。そして、シフトレバーが各操作位置に位置する際には、その情報を車両側に出力する。その結果、車両は、各操作位置に対応する適切なギア比等を選ぶことができる。 In this way, the shift position detection device of the present embodiment shifts using the combinations of three angles θ 2 , θ 3 ), (θ 2 , θ 4 ), (θ 3 , θ 4 ) in order. Detect each operation position where the lever is located. Then, when the shift lever is positioned at each operation position, the information is output to the vehicle side. As a result, the vehicle can select an appropriate gear ratio or the like corresponding to each operation position.
 図19に、第3の実施形態の変形例におけるシフト位置検知装置のブロック図を示す。図20に、第3の実施形態の変形例における故障検知部が実行するフローチャートを示す。本変形例は、図17と図19を比較して分かるように、第3の実施形態に故障検知部6dを追加して設けたものである。よって、本変形例においては、第3の実施形態におけるシフト位置検知を行うと共に、3つの磁気センサ2、3、4の故障検知を可能にしている。 FIG. 19 shows a block diagram of a shift position detection device in a modification of the third embodiment. FIG. 20 shows a flowchart executed by the failure detection unit in the modification of the third embodiment. In this modification, as can be understood by comparing FIG. 17 and FIG. 19, a failure detection unit 6 d is added to the third embodiment. Therefore, in the present modification, shift position detection in the third embodiment is performed, and failure detection of the three magnetic sensors 2, 3, and 4 is enabled.
 本変形例における故障検知部6dが実行する演算処理について、図16、図19、図20を用いて説明する。本変形例では、磁石5(シフトレバー)が操作位置13、14、15、16の内の1つに所定の時間以上に留まっている際に実行される。すなわち、S11において、所定の回数以上に同じ操作位置にあると判定されたか確認される。YESの際には、S12に進む。NOの際には、図18のS1に戻り、最初から演算処理を繰り返す。 The arithmetic processing performed by the failure detection unit 6d in the present modification will be described using FIGS. 16, 19 and 20. In this modification, it is performed when the magnet 5 (shift lever) remains at one of the operation positions 13, 14, 15, 16 for a predetermined time or more. That is, in S11, it is confirmed whether or not it is determined to be at the same operation position a predetermined number of times or more. In the case of YES, the process proceeds to S12. In the case of NO, the process returns to S1 of FIG. 18 to repeat the calculation process from the beginning.
 S11の演算処理について、もう少し詳しく説明する。図20に示すS12~S13において、3つの角度の組み合わせに対して、繰り返して磁石5(シフトレバー)が位置する操作位置が検知される。この繰り返しが所定の回数以上に実行され、その間、磁石5が操作位置13、14、15、16の内の1つに継続的に位置すると判定されると、S12に進む。所定の回数は、数回から数十回の間に設定されている。 The calculation process of S11 will be described in more detail. In S12 to S13 shown in FIG. 20, the operation position where the magnet 5 (shift lever) is positioned is repeatedly detected for the combination of three angles. If it is determined that the repetition is performed a predetermined number of times or more and the magnet 5 is continuously positioned at one of the operation positions 13, 14, 15, 16 during that time, the process proceeds to S12. The predetermined number of times is set between several times and several tens of times.
 S12において、3つの角度の組み合わせの1つが選ばれる。S13において、所定の回数に対応する磁石5の(x、y)座標を用いて平均値を算出する。S14、S15において、3つの角度の組み合わせの全てに対して、所定の回数に対応する磁石5の(x、y)座標を用いて平均値を算出する。このようにして、3つの角度組み合わせ(θ、θ)、(θ、θ)、(θ、θ)に対して、磁石5の(x、y)座標の3つの平均値(<x>、<y>)が算出される。 In S12, one of the three angle combinations is chosen. In S13, an average value is calculated using the (x p , y p ) coordinates of the magnet 5 corresponding to the predetermined number of times. In S14 and S15, an average value is calculated using (x p , y p ) coordinates of the magnet 5 corresponding to a predetermined number of times for all combinations of three angles. Thus, for the three angular combinations (θ 2 , θ 3 ), (θ 2 , θ 4 ), (θ 3 , θ 4 ), three of the (x p , y p ) coordinates of the magnet 5 Average values (<x p >, <y p >) are calculated.
 S16において、3つの平均値の内から、2つの平均値の組み合わせを選ぶ。この平均値の組み合わせは、3通りある。S17において、選ばれた2つの平均値の(<x>、<y>)、(<x>、<y>)の差の絶対値が第7の閾値x、及び第8の閾値yと比較する。この比較を、他の2つの組み合わせに対しても実行する。 In S16, a combination of two average values is selected from the three average values. There are three combinations of this average value. In S17, the absolute value of the difference between (<x m >, <y m >), (<x n >, <y n >) of the two selected average values is the seventh threshold value x c , and the eighth Compare with the threshold y c of This comparison is also performed for the other two combinations.
 S18において、3つの平均値の組み合わせに対して、その差の絶対値が第7の閾値x、及び第8の閾値y以上であるか確認される。S18において、NOの際には、図18のS1に戻り、最初から演算処理を繰り返す。 In S18, it is checked whether the absolute value of the difference is greater than or equal to the seventh threshold x c and the eighth threshold y c with respect to the combination of the three averages. In the case of NO at S18, the process returns to S1 of FIG. 18 to repeat the calculation process from the beginning.
 YESの際には、3つの磁気センサの内に故障した磁気センサがあると判定される。その際には、故障した磁気センサに対応する平均値を用いて算出した差の絶対値が第7の閾値x、及び第8の閾値y以上であり、故障した磁気センサに対応する平均値は2つある。よって、第7の閾値x、及び第8の閾値y以下であった1つの平均値に対応する2つの磁気センサは正常であり、他の1つの磁気センサが故障していると判定される。そして、磁気センサが故障しているとの警報を発し、故障した磁気センサの交換を進める。 If YES, it is determined that there is a failed magnetic sensor among the three magnetic sensors. In that case, the absolute value of the difference calculated using the average value corresponding to the failed magnetic sensor is the seventh threshold x c and the eighth threshold y c or more, and the average corresponding to the failed magnetic sensor There are two values. Therefore, it is determined that the two magnetic sensors corresponding to the seventh threshold value x c and one average value that is equal to or less than the eighth threshold value y c are normal, and the other magnetic sensor is defective. Ru. Then, an alarm that the magnetic sensor is broken is issued, and replacement of the broken magnetic sensor is promoted.
 誤動作を防ぐために、第7の閾値x、及び第8の閾値yは、磁気センサの出力ばらつきに対応するX方向、及びY方向の位置ばらつきよりも大きいことが好ましい。 In order to prevent a malfunction, it is preferable that the seventh threshold value x c and the eighth threshold value y c be larger than position variations in the X direction and Y direction corresponding to output variations of the magnetic sensor.
 故障判定がなされた際には、CPU6aは、故障判定された磁気センサからの出力である差分(V-V)を受信しないで、正常な磁気センサからの出力である差分(V-V)のみを受信するように処理する。よって、本実施形態においては、信頼性の高いシフト位置検知装置を提供することができる。 When the failure determination has been made, the CPU 6a can not receive the output from the magnetic sensors failure determination difference of (V 1 -V 2), which is the output from the normal magnetic sensor difference (V 1 - Process to receive only V 2 ). Therefore, in the present embodiment, a highly reliable shift position detection device can be provided.
 3つの磁気センサからの出力である差分(V-V)は、所定の時間間隔でCPU6aに受信される。よって、シフトレバーが移動操作される際には、3つの磁気センサの出力である差分(V-V)から算出される角度θには時系列的にずれが生じる。そのため、本変形例においては、磁石5(シフトレバー)が操作位置13、14、15、16の内の1つに留まっている際に、磁気センサの故障検知を実行している。 The differences (V 1 -V 2 ), which are outputs from the three magnetic sensors, are received by the CPU 6a at predetermined time intervals. Therefore, when the shift lever is moved, the angle θ calculated from the difference (V 1 -V 2 ), which is the output of the three magnetic sensors, deviates in time series. Therefore, in the present modification, when the magnet 5 (shift lever) remains at one of the operation positions 13, 14, 15, 16, the failure detection of the magnetic sensor is performed.
 シフトレバーが移動操作される際に、故障検知を精度良く実行するためには、CPUの動作周波数を上げる必要がある。動作周波数の高いCPUは高価格であり、消費電力も大きいため好ましくない。よって、本変形例においては、磁石5(シフトレバー)が操作位置13、14、15、16の内の1つに留まっている際に、磁気センサの故障検知を実行することにより、低価格であると共に低消費電力である故障検知部を備えるシフト位置検知装置を提供することができる。 When the shift lever is moved, it is necessary to increase the operating frequency of the CPU in order to perform failure detection with high accuracy. A CPU with a high operating frequency is not preferable because it is expensive and consumes a large amount of power. Therefore, in the present modification, when the magnet 5 (shift lever) remains at one of the operation positions 13, 14, 15, 16, the failure detection of the magnetic sensor is performed, thereby reducing the cost. It is possible to provide a shift position detection device that includes a failure detection unit that has low power consumption.
1 シフト位置検知装置
2、3、4 磁気センサ
2a GMR素子
5 磁石
6 制御部
6a CPU
6b メモリ
6c 位置演算部
6d 故障検知部
7 磁束
8 第1の仮想面
9 第2の仮想面
10 シフトレバー装置
11 シフトレバー
12 ケース
13 パーキング位置
14 ニュートラル位置
15 ドライブ位置
16 リバース位置
1 Shift Position Detection Device 2, 3, 3 Magnetic Sensor 2a GMR Element 5 Magnet 6 Control Section 6a CPU
6b Memory 6c Position Calculation Unit 6d Failure Detection Unit 7 Magnetic flux 8 First virtual surface 9 Second virtual surface 10 Shift lever device 11 Shift lever 12 Case 13 Parking position 14 Neutral position 15 Drive position 16 Reverse position

Claims (10)

  1.  第1の仮想面上を移動する磁石と、
    第2の仮想面上に配置される磁気センサと、
    前記磁石の位置を算出する位置演算部と、
    を有する位置検知装置であって、
     前記磁気センサが、磁化が固定された固定磁性層と、外部磁界により磁化が変化する自由磁性層と、前記固定磁性層と前記自由磁性層との間に位置し前記固定磁性層と前記自由磁性層とに接触する非磁性層と、からなり、
     前記第1の仮想面が、前記第2の仮想面に平行であると共に前記磁石の着磁方向に垂直に設けられてなるとともに、前記第2の仮想面が、前記磁石の着磁方向中心を含まないように設けられており、前記磁石から生じる磁束が前記磁気センサの前記自由磁性層の磁化を飽和するような位置に前記磁石が設けられており、前記磁気センサの感度軸方向と前記磁石の発する磁束方向とのなす角度を検知し、前記位置演算部が前記角度から前記磁石の位置を算出することを特徴とする位置検知装置。
    A magnet moving on a first virtual plane;
    A magnetic sensor disposed on the second virtual surface;
    A position calculation unit that calculates the position of the magnet;
    A position detection device having
    The magnetic sensor is located between the pinned magnetic layer and the free magnetic layer, the pinned magnetic layer having the pinned magnetization, the free magnetic layer whose magnetization is changed by an external magnetic field, and the pinned magnetic layer and the free magnetic layer. And a nonmagnetic layer in contact with the layer,
    The first virtual plane is provided parallel to the second virtual plane and perpendicular to the magnetizing direction of the magnet, and the second virtual plane is the center of the magnetizing direction of the magnet. The magnet is provided so as not to be included, and the magnet is provided at a position where the magnetic flux generated from the magnet saturates the magnetization of the free magnetic layer of the magnetic sensor, and the sensitivity axis direction of the magnetic sensor and the magnet A position detection unit that detects an angle formed by the direction of the magnetic flux emitted by the position detection unit and the position calculation unit calculates the position of the magnet from the angle.
  2.  第1の仮想面上を移動する磁石と、
    第2の仮想面上に配置される磁気センサと、
    前記磁石の位置を算出する位置演算部と、
    を有するシフト位置検知装置であって、
     前記磁気センサが、磁化が固定された固定磁性層と、外部磁界により磁化が変化する自由磁性層と、前記固定磁性層と前記自由磁性層との間に位置し前記固定磁性層と前記自由磁性層とに接触する非磁性層と、からなり、
     前記第1の仮想面が、前記第2の仮想面に平行であると共に前記磁石の着磁方向に垂直に設けられてなるとともに、前記第2の仮想面が、前記磁石の着磁方向中心を含まないように設けられており、前記磁石から生じる磁束が前記磁気センサの前記自由磁性層の磁化を飽和するような位置に前記磁石が設けられており、前記磁気センサの感度軸方向と前記磁石の発する磁束方向とのなす角度を検知し、前記位置演算部が前記角度から前記磁石の位置を算出することを特徴とするシフト位置検知装置。
    A magnet moving on a first virtual plane;
    A magnetic sensor disposed on the second virtual surface;
    A position calculation unit that calculates the position of the magnet;
    A shift position detection device having
    The magnetic sensor is located between the pinned magnetic layer and the free magnetic layer, the pinned magnetic layer having the pinned magnetization, the free magnetic layer whose magnetization is changed by an external magnetic field, and the pinned magnetic layer and the free magnetic layer. And a nonmagnetic layer in contact with the layer,
    The first virtual plane is provided parallel to the second virtual plane and perpendicular to the magnetizing direction of the magnet, and the second virtual plane is the center of the magnetizing direction of the magnet. The magnet is provided so as not to be included, and the magnet is provided at a position where the magnetic flux generated from the magnet saturates the magnetization of the free magnetic layer of the magnetic sensor, and the sensitivity axis direction of the magnetic sensor and the magnet A shift position detection device characterized by detecting an angle formed by the direction of the magnetic flux emitted by the sensor and the position calculation unit calculating the position of the magnet from the angle.
  3.  前記磁石が、平面視で前記磁気センサと重ならないように移動することを特徴とする請求項2に記載のシフト位置検知装置。 The shift position detection device according to claim 2, wherein the magnet moves so as not to overlap the magnetic sensor in a plan view.
  4.  前記磁気センサが、平面視で前記磁石の移動する範囲の外に配置されていることを特徴とする請求項3に記載のシフト位置検知装置。 The shift position detection device according to claim 3, wherein the magnetic sensor is disposed outside a moving range of the magnet in a plan view.
  5.  前記磁気センサの故障を検知する故障検知部を有するシフト位置検知装置であって、
     前記故障検知部が、前記磁石が位置する基準角度と、前記磁気センサが検知する角度と、を比較することで、前記磁気センサの故障を検知することを特徴とする請求項2から請求項4のいずれか1項に記載のシフト位置検知装置。
    A shift position detection device having a failure detection unit that detects a failure of the magnetic sensor,
    The failure detection unit detects a failure of the magnetic sensor by comparing a reference angle at which the magnet is located with an angle detected by the magnetic sensor. The shift position detection device according to any one of the above.
  6.  前記磁気センサが、少なくとも2つの磁気センサからなることを特徴とする請求項2から請求項4のいずれか1項に記載のシフト位置検知装置。 The shift position detection device according to any one of claims 2 to 4, wherein the magnetic sensor comprises at least two magnetic sensors.
  7.  前記シフト位置検知装置は、複数のシフト位置を有し、各シフト位置が前記磁気センサ同士を結ぶ直線上にないことを特徴とする請求項6に記載のシフト位置検知装置。 The shift position detection device according to claim 6, wherein the shift position detection device has a plurality of shift positions, and each shift position is not on a straight line connecting the magnetic sensors.
  8.  前記磁気センサが、少なくとも3つの磁気センサからなることを特徴とする請求項2から請求項4のいずれか1項に記載のシフト位置検知装置。 The shift position detection device according to any one of claims 2 to 4, wherein the magnetic sensor comprises at least three magnetic sensors.
  9. 前記少なくとも3つの磁気センサの故障を検知する故障検知部を有するシフト位置検知装置であって、
     前記位置演算部が、前記少なくとも3つの磁気センサが検知する少なくとも3つの前記角度から2対の組み合わせを選び、前記2対の組み合わせから前記磁石の少なくとも3つの位置を算出し、前記故障検知部が、前記少なくとも3つの位置を比較することにより前記少なくとも3つの磁気センサの故障を検知することを特徴とする請求項8に記載のシフト位置検知装置。
    A shift position detection device having a failure detection unit that detects a failure of the at least three magnetic sensors,
    The position calculation unit selects a combination of two pairs from at least three of the angles detected by the at least three magnetic sensors, calculates at least three positions of the magnet from the combination of the two pairs, and the failure detection unit 9. The shift position detection device according to claim 8, wherein the failure of the at least three magnetic sensors is detected by comparing the at least three positions.
  10.  前記少なくとも3つの磁気センサが同一直線上に配置されていないことを特徴とする請求項8または請求項9に記載のシフト位置検知装置。 10. The shift position detection device according to claim 8, wherein the at least three magnetic sensors are not arranged on the same straight line.
PCT/JP2013/064326 2012-05-30 2013-05-23 Position detection device and shift position detection device WO2013179997A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014518410A JP5976797B2 (en) 2012-05-30 2013-05-23 Shift position detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012122996 2012-05-30
JP2012-122996 2012-05-30

Publications (1)

Publication Number Publication Date
WO2013179997A1 true WO2013179997A1 (en) 2013-12-05

Family

ID=49673196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064326 WO2013179997A1 (en) 2012-05-30 2013-05-23 Position detection device and shift position detection device

Country Status (2)

Country Link
JP (1) JP5976797B2 (en)
WO (1) WO2013179997A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095273A (en) * 2014-11-17 2016-05-26 株式会社日本自動車部品総合研究所 Position detection device
JP2019002469A (en) * 2017-06-14 2019-01-10 株式会社デンソー Position sensor
US10378646B2 (en) 2016-12-16 2019-08-13 Toyota Jidosha Kabushiki Kaisha Shift control system for vehicle and shift control method for vehicle
CN111373343A (en) * 2017-11-24 2020-07-03 阿尔卑斯阿尔派株式会社 Operating device
CN112068048A (en) * 2019-06-10 2020-12-11 Tdk株式会社 Position detecting device
US11391367B2 (en) 2019-12-13 2022-07-19 Hyundai Kefico Corporation Method of detecting gear shift position of electric shift-by-wire system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001301483A (en) * 2000-04-21 2001-10-31 Tokai Rika Co Ltd Shift lever device and movable body position detecting device
JP2004077374A (en) * 2002-08-21 2004-03-11 Tokai Rika Co Ltd Arranging structure of magnetic sensor
JP2006000493A (en) * 2004-06-18 2006-01-05 Tokai Rika Co Ltd Buckle device and position detecting device
JP2007278720A (en) * 2006-04-03 2007-10-25 Tokai Rika Co Ltd Position detector and shift device
JP2009074908A (en) * 2007-09-20 2009-04-09 Alps Electric Co Ltd Origin detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018211A (en) * 2008-07-11 2010-01-28 Tokai Rika Co Ltd Magnetic type position detection device, and shifting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001301483A (en) * 2000-04-21 2001-10-31 Tokai Rika Co Ltd Shift lever device and movable body position detecting device
JP2004077374A (en) * 2002-08-21 2004-03-11 Tokai Rika Co Ltd Arranging structure of magnetic sensor
JP2006000493A (en) * 2004-06-18 2006-01-05 Tokai Rika Co Ltd Buckle device and position detecting device
JP2007278720A (en) * 2006-04-03 2007-10-25 Tokai Rika Co Ltd Position detector and shift device
JP2009074908A (en) * 2007-09-20 2009-04-09 Alps Electric Co Ltd Origin detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095273A (en) * 2014-11-17 2016-05-26 株式会社日本自動車部品総合研究所 Position detection device
US10378646B2 (en) 2016-12-16 2019-08-13 Toyota Jidosha Kabushiki Kaisha Shift control system for vehicle and shift control method for vehicle
JP2019002469A (en) * 2017-06-14 2019-01-10 株式会社デンソー Position sensor
CN110770533A (en) * 2017-06-14 2020-02-07 株式会社电装 Position sensor
US11493528B2 (en) 2017-06-14 2022-11-08 Denso Corporation Position sensor
CN111373343A (en) * 2017-11-24 2020-07-03 阿尔卑斯阿尔派株式会社 Operating device
CN112068048A (en) * 2019-06-10 2020-12-11 Tdk株式会社 Position detecting device
US11391367B2 (en) 2019-12-13 2022-07-19 Hyundai Kefico Corporation Method of detecting gear shift position of electric shift-by-wire system

Also Published As

Publication number Publication date
JPWO2013179997A1 (en) 2016-01-21
JP5976797B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2013179997A1 (en) Position detection device and shift position detection device
US10613161B2 (en) Magnetic sensor including two bias magnetic field generation units for generating stable bias magnetic field
CN108020150B (en) Multi-dimensional measurements using magnetic sensors and related systems, methods, and integrated circuits
US9618589B2 (en) First and second magneto-resistive sensors formed by first and second sections of a layer stack
US9835472B2 (en) Using cartesian coordinates for position detection with a magnetic sensor
US10060992B2 (en) Magnetic sensor including bias magnetic field generation unit for generating stable bias magnetic field
US9244136B2 (en) Magnetic sensor with reduced effect of interlayer coupling magnetic field
US11037715B2 (en) Magnetic sensor including a plurality of magnetic detection elements and a plurality of magnetic field generators
KR20150135307A (en) Hall sensor insensitive to external magnetic fields
JP2015190780A (en) Current sensor and circuit board
JP2009139252A (en) Position sensor
US20150309128A1 (en) Magnetic field sensor device
JP5373580B2 (en) Position detection device
JP2015190781A (en) Circuit board
CN105301529B (en) XMR sensor equipment
US10048328B2 (en) Redundant magnetic angle sensor with improved accuracy
EP3729119B1 (en) Magnetoresitive magnetic field sensor bridge with compensated cross-axis effect
CN113196076A (en) Magnetic sensor with dual TMR film and method of manufacturing the same
JP4870226B2 (en) Position detection device
JP5453198B2 (en) Magnetic sensor
JP2013142569A (en) Current sensor
JP5973892B2 (en) Magnetic detection switch and shift lever device using the magnetic detection switch
JP6007479B2 (en) Current sensor
JP5373581B2 (en) Position detection device
JP5191946B2 (en) Position detecting device using magnetoresistive effect element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797803

Country of ref document: EP

Kind code of ref document: A1