JP2004077034A - Refrigeration air conditioner and its operating method - Google Patents

Refrigeration air conditioner and its operating method Download PDF

Info

Publication number
JP2004077034A
JP2004077034A JP2002238851A JP2002238851A JP2004077034A JP 2004077034 A JP2004077034 A JP 2004077034A JP 2002238851 A JP2002238851 A JP 2002238851A JP 2002238851 A JP2002238851 A JP 2002238851A JP 2004077034 A JP2004077034 A JP 2004077034A
Authority
JP
Japan
Prior art keywords
refrigerant
chloride
refrigeration
circuit
chloride recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002238851A
Other languages
Japanese (ja)
Other versions
JP2004077034A5 (en
JP3855884B2 (en
Inventor
Hiroari Shiba
柴 広有
Yoshihiro Takahashi
高橋 佳宏
Masato Yosomiya
四十宮 正人
Toshihiko Enomoto
榎本 寿彦
Masanobu Baba
馬場 正信
Toru Onoda
小野田 徹
Akihiro Matsushita
松下 章弘
Shinobu Ogasawara
小笠原 忍
Satoru Toyama
外山 悟
Yasuyori Hirai
平井 康順
Yoshimitsu Ito
伊藤 美満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002238851A priority Critical patent/JP3855884B2/en
Publication of JP2004077034A publication Critical patent/JP2004077034A/en
Publication of JP2004077034A5 publication Critical patent/JP2004077034A5/ja
Application granted granted Critical
Publication of JP3855884B2 publication Critical patent/JP3855884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/18Refrigerant conversion

Abstract

<P>PROBLEM TO BE SOLVED: To circulate chlorides remaining in an extension pipe to be removed outside the pipe and carried to a chloride recovering means to be adsorbed and recovered, by circulating a refrigerant in the extension pipe and the chloride recovering means. <P>SOLUTION: The chloride recovering circuit composed of at least an outdoor machine corresponding to a new refrigerant, an existing refrigerant extension pipe used for the former refrigerant, and a chloride recovering means having activated carbon is formed, when the outdoor machine and an indoor machine corresponding to the new refrigerant are replaced. The new refrigerant and a new freezing machine oil are circulated in the chloride recovering circuit, so that a chloride compound remaining in the existing refrigerant extension pipe is circulated and removed, and recovered by the chloride recovering means. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、塩素を含む弗化炭素水素系冷媒を塩素を含まない弗化炭素水素系冷媒などに変更する際、室外機及び室内機を新冷媒対応機に交換する一方で、旧冷媒で使用した既設冷媒配管を流用するための好適な方法に関するものである。
特に既設冷媒配管に残留し、新冷媒回路中でスラッジ生成や新冷凍機油の劣化の要因になる塩化化合物の除去、回収方法に関するものである。
【0002】
【従来の技術】
従来の技術として、特開平6−159866号公報に記載の冷凍サイクル装置の異物除去器がある。図15に従来の冷凍サイクル装置の冷媒回路図を、また、図16に異物除去器の縦断面図を示す。
図15の冷凍サイクルにおいて、コンプレッサ51、コンデンサ52、ドライヤ53、キャピラリチューブ54、異物除去器57、エバポレータ55、アキュムレータ56から構成される。またドライヤ53と異物除去器57は一体型としてコンデンサ52とエバポレータ55の間に設置しても良いとし、図16のように一体型の断面図が示されている。
【0003】
図16には、例えば、下部に異物吸着剤60としての活性炭、上部にドライヤの働きをする水分吸着剤59としてモレキュラーシーブス、そしてそれらをメッシュ61で挟み、最後に管58を絞り加工すしてこれらを内蔵する構造を示している。
【0004】
冷凍機油中の不純物が冷凍サイクル内の高温部で化学反応を起して異物が生成され、その例としてカルボン酸の金属塩を示している。そして異物除去器57は異物が生成しやすい冷媒を使用する冷凍サイクルに適用することでキャピラリチューブ等の冷媒回路中での異物詰りを回避する。また、さらに異物除去器57とドライヤ53を一体にしたため、部品数や設置スペースの低減を可能にしている。
【0005】
【発明が解決しようとする課題】
上記従来例に示した異物吸着器は、キャピラリチューブの詰り対策として、活性炭で固形スラッジであるカルボン酸金属塩を捕集することを想定しているが、塩素を含む旧冷媒から塩素を含まない新冷媒に変更して対応した新冷凍機油に溶解している塩化化合物を吸着することは想定していない。
【0006】
また、スラッジはカルボン酸金属塩が重合する形で析出し、キャピラリチューブなどの管内径2〜3mmの細管を詰まらせる。一方、活性炭の表面孔径は例えば1nm(ナノメートル)と小さく、管内径2〜3mmの細管を詰まらすカルボン酸金属塩の重合物をこの表面孔にて吸着回収することは難しい。従来例には活性炭の吸着メカニズムについて説明がなく、活性炭を目の細かいメッシュフィルタとしてカルボン酸金属塩を捕捉することを想定していたと推測する。
【0007】
上記のように従来例に示した活性炭を備える異物吸着器は、冷媒回路内に常時設置することを前提にしている。活性炭の吸着は活性炭孔内表面と吸着物の分子との間に働く分子間力や孔内表面に存在する分子との化学結合などで引き付けて捕捉するので、その引き付ける度合いは活性炭が置かれている周囲環境の温度、圧力、濃度によって平衡状態が変化し、それに合わせて吸脱着が異なる。そして、常時設置していると、長時間かけて吸着回収したものが、冷暖切換などで冷媒状態が大きく変化する度に、活性炭に吸着した異物を一度に大量に脱着する可能性があり、それが例えばカルボン酸金属塩だとすると、これによりスラッジ生成を促進する問題が発生する。
【0008】
この発明は上記のような問題点を解消するためになされたもので、室内機、室外機、冷媒配管を備えた冷凍空調装置の作動冷媒種類を変更するとき、簡易、短時間、少ない追加設備、かつ低コストで、既設の冷媒配管を再利用できるようにすることを目的としている。具体的には既設の冷媒配管中に塩化物や固形異物が残溜したまま新冷媒対応の冷媒回路に接続されると新冷媒対応の冷媒回路中でスラッジを生成したり新冷凍機油を劣化させたりする際の主要因となる塩化化合物などの有害物質を冷媒回路内に設けた塩化物回収手段で回収することで、既設の冷媒配管を新冷媒対応の冷媒回路で再利用することを可能にする。
【0009】
さらに、塩化物回収手段は冷媒配管内の残塩化物の除去を目的とし、運転時間を限定し、通常の冷凍空調回路には組み込まないことで、塩化物回収手段で捕捉した塩化化合物などの有害物を、冷凍空調運転時に何らかの要因で冷媒回路に再放出しないようにした。
【0010】
【課題を解決するための手段】
本発明の請求項1に係る冷凍空調装置は、作動冷媒を塩素を含む旧冷媒から塩素を含まない新冷媒に変更する際に、室外機および室内機は新冷媒に対応した機器に交換し、冷媒配管は旧冷媒で使用していたものを流用する際、圧縮機および室外熱交換器と室内熱交換器との間を前記冷媒配管のガス側延長配管および液側延長配管により接続して形成した新冷媒対応回路において、塩化物を除去するための活性炭を有し塩化物回収手段を室外熱交換器と室内熱交換器の間の液相冷媒が流通する配管に設けたものである。
【0011】
また、本発明の請求項2に係る冷凍空調装置は、前記塩化物回収手段を室外熱交換器と室内熱交換器の間の一部に並列になるように設け、前記冷媒回路から着脱自在、または前記冷媒回路から弁切換で遮断する構造を備えたものである。
【0012】
また、本発明の請求項3に係る冷凍空調装置は、前記塩化物回収手段を前記冷媒回路から遮断する際に切替える弁は、自動で切替え可能なものである。
【0013】
また、本発明の請求項4に係る冷凍空調装置は、前記塩化物回収手段が新冷媒対応の室外機に搭載されるものである。
【0014】
また、本発明の請求項5に係る冷凍空調装置は、前記塩化物回収手段が新冷媒対応の室外機と前記液延長配管の間に搭載されるものである。
【0015】
また、本発明の請求項6に係る冷凍空調装置は、作動冷媒を塩素を含む旧冷媒から塩素を含まない新冷媒に変更する際に、室外機および室内機は新冷媒に対応した機器に交換し、冷媒配管は旧冷媒で使用していたものを流用する場合、圧縮機と、室外熱交換器と、室内熱交換器と、ガス延長配管と、液延長配管と、を接続し、塩化物を除去するための活性炭を備えた塩化物回収手段を室外熱交換器と室内熱交換器の間の一部に並列になるように設け、前記冷媒回路から取り外したり、或いは前記冷媒回路から弁切換で遮断したりできる構造を備える冷凍空調装置において、冷媒配管中に残留する塩化物を回収する塩化物回収運転は、前記塩化物回収手段を冷媒回路に組込むステップと、前記延長配管と室内機内を真空引きした後に冷媒を充填するステップと、圧縮機を運転して前記塩化物回収手段に冷媒を流通させて塩化物を捕捉するステップと、圧縮機を停止して前記塩化物回収手段を冷媒回路から切離し、または弁切換で冷媒回路から遮断するステップと、を備えたものである。
【0016】
また、本発明の請求項7に係る冷凍空調装置の運転方法は、前記の塩化物回収運転を、室外機と室内機を交換する工事中に行うものである。
【0017】
また、本発明の請求項8に係る冷凍空調装置の運転方法は、前記塩化物回収運転が、新冷媒機へ交換後、新冷媒回路で空気調和運転や冷凍運転を開始してからの総運転時間が所定時間経過する毎に、一定時間だけ行うものである。
【0018】
また、本発明の請求項9に係る冷凍空調装置の運転方法は、前記塩化物回収運転が、所定時間経過するまで、あるいは冷媒回路中に残留する塩化物量が所定管理値以下になるまで行うものである。
【0019】
また、本発明の請求項10に係る冷凍空調装置は、変更前の作動冷媒が塩素を含む弗化炭素水素系冷媒であり、変更後の作動冷媒が塩素を含まない弗化炭素水素系冷媒、炭素水素系冷媒、自然冷媒である。
【0020】
【発明の実施の形態】
実施の形態1.
以下、本発明の実施の形態を図1を用いて説明する。
説明の前提として、旧冷媒はR22、新冷媒はR410A、旧冷凍機油は鉱油、新冷凍機油はエステル油とする。
【0021】
まず新冷媒対応の空気調和装置および冷凍装置の構成について説明する。図1において、1は圧縮機、2は室外熱交換器、3は減圧手段、4は室内熱交換器、5は液側冷媒配管、6はガス側冷媒配管、7は四方弁、10は塩化物回収手段、11a、11bは開閉弁、13はバイパス管、Xは室外機、Yは室内機、Zはバイパス回路ユニットである。
【0022】
Xは新冷媒対応の室外機、Yは新冷媒対応の室内機である。一方、冷媒配管5,6は旧冷媒対応の冷凍空調装置でも使用していた既設の延長冷媒配管である。
【0023】
バイパス回路ユニットZは塩化物回収手段10、開閉弁11a、11b、バイパス管13から構成される。この塩化物回収手段10は冷媒回路の減圧手段3を設けたメイン配管に並列に接続され流れの前後に開閉弁11a,11bを介してバイパスする流路となっている。そして本実施例では全閉機能を有する減圧手段3をバイパスするように設置する。
【0024】
塩化物回収手段10の構成例を図2に示す。塩化物回収手段10は活性炭20を備える。活性炭20は収納容器の円柱形状に合わせて固めた粒状活性炭20aを繊維シート20bで包んだモールド形状とする。ここで使用する活性炭20は塩化物、その中でも特に塩化化合物を吸着するために搭載する。また、その他にも活性炭20は粒状活性炭20a、繊維シート20bによって旧冷凍機油である鉱油、硫化化合物、スルフォネート、リン酸金属塩、金属酸化物、固形異物を吸着或いはメッシュ効果で捕捉することができる。なお、この活性炭モールド品を容器管に詰めて、事前に真空引きを施し水分を脱着しておけば、そのまま活性炭を大気中に放置しておくよりも水分を吸着しにくいので、製造上はこのように処理をして水分管理を行う。
【0025】
次に、塩化物回収回路の構成について説明する。
圧縮機1と、四方弁7と、室外熱交換器2と、開閉弁11aと、塩化物回収手段10と、開閉弁11bと、液延長冷媒配管5と、室内熱交換器4と、ガス延長冷媒配管6と、四方弁7と、圧縮機1と、をこの順番で環状に接続した冷媒回路を形成する。
【0026】
塩化物回収運転時の動作例について図3を用いて説明する。まず、四方弁7は圧縮機1の吐出側と室外熱交換器2を連通し、圧縮機1の吸入側とガス延長冷媒配管6を連通する。そして、減圧手段3は全閉状態にし、開閉弁11a、11bを開いて、塩化物回収回路を形成する。これにより圧縮機を吐出する冷媒が塩化物回収手段10を流通することができる。
【0027】
圧縮機1を吐出した冷媒は、四方弁7、室外熱交換器2、開閉弁11a、塩化物回収手段10、開閉弁11b、液側延長冷媒配管5、室内熱交換器4、ガス側延長冷媒配管6を順次流通し、そして四方弁7を介して圧縮機1の吸入口に戻る。図3において、冷媒回路上の矢印は冷媒の流れを示し、実線は高圧側、点線は低圧側を表している。ここで塩化物回収手段10を流通する冷媒状態は液状態、或いは液相支配の気液二相状態が望ましい。その理由として、活性炭への吸着は液相内での方が気相内より多いためである。
【0028】
塩化物回収運転時の別動作例について図4を用いて説明する。これは暖房運転回路にて塩化物回収を行う場合であり、四方弁7は圧縮機1の吐出側とガス側延長冷媒配管6を連通し、圧縮機1の吸入側と室外熱交換器2を連通する。そして減圧手段3は全閉状態にし、開閉弁11a、11bを開き、塩化物回収回路を形成する。これにより圧縮機を吐出する冷媒が塩化物回収手段10を流通することができる。
【0029】
図4の冷媒回路の矢印で示すように、圧縮機1を吐出した冷媒は、四方弁7、ガス側延長冷媒配管6、室内熱交換器4、液側延長冷媒配管5、開閉弁11b、塩化物回収手段10、開閉弁11a、室外熱交換器2を順次流通し、そして四方弁7を介して圧縮機1の吸入口に戻る。図3と同様に塩化物回収手段10を流通する冷媒状態は液状態、或いは液相支配の気液二相状態が望ましい。また圧縮機1吸入側に戻る冷媒ができるだけガス状態になるように調整しながら運転するのが望ましい。
【0030】
塩化物回収手段10の設置場所は基本的には冷媒が流通するところならばどこでも良いが、液冷媒、或いは液が支配的な気液二相冷媒が流通するところに設置すると塩化化合物の回収効果が良好であることを実験的に確認した。
【0031】
次に、バイパス回路ユニットZの別の構成例について説明する。
バイパス回路ユニットZは図5のように液側延長配管5の一部をバイパスする形で設置しても良い。この場合、メイン配管にもバイパスさせるための開閉弁11cが必要となる。そして、バイパス回路ユニットZの動作は、塩化物回収運転時は開閉弁11cを閉、開閉弁11a,11bは開として冷媒を塩化物回収手段10側へバイパス流通させ、その他の通常運転時は開閉弁11cを開、開閉弁11a,11bを閉として冷媒をメイン配管側に流すものである。これにより、室外機に塩化物回収手段が搭載されていない場合でも、塩化物回収運転を行うことができる。
尚、図6のようにバイパス回路ユニットZを組まずに、塩化物回収手段10を室外機Xと液側延長配管5の間に直接組込んで冷媒を流通させるようにして、塩化物回収運転を行っても良いことは言うまでもない。ただし、この場合、塩化物回収運転実施後は、冷媒回路から塩化物回収手段10を取り外し、代わりの配管を組込み接続するか、室外機Xと液側延長配管5を直接接続して冷媒回路を形成する必要がある。
【0032】
さらに、バイパス回路ユニットZは図7のように室外熱交換器2と減圧手段3の間、或いは図8のように減圧手段3と室外機Xの液側延長配管5との接続口の間に設置しても良い。この場合、メイン配管にも開閉弁11cが必要である。これらの動作は、図5と同様に、開閉弁11cの開閉は、塩化物回収運転時は開閉弁11cを閉、開閉弁11a,11bは開として冷媒を塩化物回収手段10へ流れるようにバイパスさせ、その他の通常運転時は開閉弁11cは開、開閉弁11a,11bを閉とするものである。
【0033】
室外機Xに備えられた圧縮機1や四方弁7を運転指令に基づいて駆動制御する制御装置によりバイパス回路ユニットZに設けた開閉弁11a〜11cを自動開閉できると、塩化物回収運転を回収運転指令または積算運転時間などに応じて自動制御して回収することができる。これにより、塩化物回収運転と通常の冷凍空調運転の切換作業負荷を従来よりも大幅に低減することができる。また、塩化物回収運転時に塩化物回収手段10を流通する冷媒の流通方向を一方向に設定できる場合は、例えば図3のバイパス回路ユニットZにおいて、塩化物回収手段10側へ冷媒をバイパスさせる流路の下流側の開閉弁を図9のように逆止弁12にすることができる。
【0034】
次に塩化物回収運転で留意することを説明する。
まず、塩化物回収運転では、この運転による空気調和や冷凍を行うことを想定していない。目的は、新冷媒対応の冷凍空調回路を形成する前に、旧冷媒でも使用していた接続用延長冷媒配管中に残存する塩化物を配管中から除去して塩化物回収手段で回収することなので、圧縮機から吐出した冷媒と冷凍機油が、上記冷媒配管と塩化物回収手段を流通さえすればよい。
【0035】
例えば、室外熱交換器や室内熱交換器をバイパスする回路を形成しても良いし、これらの熱交換器で熱交換しなくても良い。ただし圧縮機が液圧縮して故障することを回避する必要はある。また、塩化物回収運転時は冷媒回路中の冷媒流量や圧力、温度などの冷媒状態は塩化物除去に最も適した状態で運転する。
【0036】
室外熱交換器をバイパスした塩化物回収運転用の冷媒回路の例を図10に示す。圧縮機1の吸入側と液側冷媒配管5を接続する配管上に塩化物回収手段10をその上下流にそれぞれ開閉弁を設けて設置する。冷媒は圧縮機1吐出側から四方弁7、ガス側冷媒配管6、室内熱交換器4、液側冷媒配管5、開閉弁11d、塩化物回収手段10、開閉弁11e、圧縮機1の吸入側の順に循環する。このとき減圧手段3は全閉状態にする。塩化物回収手段10を流通する冷媒状態は液状態、或いは液相支配の気液二相状態が望ましい。また、圧縮機1吸入側に戻る冷媒ができるだけガスが混入した気液二相状態になるように調整運転して圧縮機の故障を防止する。
【0037】
上述と同様に開閉弁11d、11eは自動開閉できると、塩化物回収運転を自動制御で実現することができる。また、この図10の場合、塩化物回収運転時に塩化物回収手段10を流通する冷媒の流通方向を一方向に設定できるので、塩化物回収手段10の下流側の開閉弁11eを逆止弁にすることができる。
【0038】
以上の塩化物回収運転の冷媒動作によって、冷媒配管5,6内の残留物を回路を循環する冷媒や冷凍機油に溶解したり混ぜた状態にして冷媒配管5,6の外へ除去し、さらに塩化物回収手段10まで移動して吸着回収することができる。
【0039】
塩化物回収運転の実施タイミング、実施時間について説明する。
実施タイミングは室外機、室内機を新冷媒対応機に交換する設置工事のなかで実施するのが良い。実施時間は冷凍機油への塩化物の含有量がスラッジ発生や冷凍機油劣化を引き起こさない量いわゆる管理値まで低減するのに必要な時間とする。塩化物を溶解した冷凍機油と冷媒の混合液を活性炭に1回流通すると塩化物はほぼ全量回収できるので、回収運転時間つまり冷媒を循環させて活性炭を有した塩化物回収手段へ流通させる時間は、冷媒回路に封入されている全冷凍機油が少なくとも1回以上活性炭を流通するのに必要な時間から設定するとよい。概ね30分〜1時間を想定している。
【0040】
上記回収運転時間の一例を下記する。
封入冷凍機油量をM=1000g(冷房能力8〜16KW)、
冷媒回路を循環する冷凍機油重量をGoil=1500g/時間
とすると、
冷凍機油が活性炭を最低1回流通するのに要する最大時間は、
T=M/Goil=0.67時間となる。
実験検証結果に余裕度を設けて洗浄時間を設定するのは言うまでもない。
【0041】
塩化物回収運転を時間で制御するかわりに、回路中の塩化物濃度を測定検知し、スラッジ発生や冷凍機油劣化を引き起こさない量いわゆる管理値まで低減したらその回収運転を終了する、としても良い。
【0042】
さらに、新冷媒対応のユニット交換設置時の塩化物回収運転作業が終了した後、通常の冷凍空調運転を開始し所定時間経過したときに、塩化物回収運転を一定時間するのも効果的である。例えば1年に1回洗浄回収すると良く、運転積算時間では約2000時間程度後となる。このとき、室外機、室内機の交換工事中に行った洗浄運転と同一回路、同一冷媒循環経路を設定すると、既に活性炭に吸着している有害物の脱着そして冷媒回路への放出を回避することができる。
【0043】
塩化物回収の目的について説明する。
まず既設の接続用延長冷媒配管内に付着した残留物のうち、塩化物回収対象物について説明する。既設の延長冷媒配管5,6はいずれも旧冷媒でも使用していたため、冷媒配管内に旧冷媒、旧冷凍機油、塩化化合物、硫黄化合物などが残存する。その中でも残留が問題となる物質は塩化化合物であり、とりわけ特に問題なのは塩化鉄である。塩化鉄は以下の反応により、脂肪酸の金属塩(スラッジつまり油からの沈殿分で非常に細かい固体の液状スラリーの素となる)を生成したり、塩素分を含まない新冷媒用の新冷凍機油であるエステル油を分解して油の劣化、特にその潤滑性を低減して、圧縮機摺動部分の摩耗を引き起こしたりする。エステル油の加水分解反応は、まず、エステル油+水→脂肪酸(塩化鉄は触媒として働く)から、次に脂肪酸+鉄(金属)→脂肪酸金属塩となる。
それゆえに、新冷媒対応の冷媒回路における塩化鉄量を、信頼性を鑑みた所定量(管理値)以下に抑える必要がある。
【0044】
ここで、塩化鉄の除去・回収の基本方法について説明する。
基本は塩素を含まない新冷媒R410Aと一緒に冷媒回路中を循環する新冷凍機油であるエステル油に、既設の冷媒配管中の残塩化鉄を溶解、流動することでこの冷媒配管から除去して循環する冷媒中に含ませ、冷媒回路内に設けた塩化物回収手段10の活性炭20に吸着回収する。
【0045】
次に、塩化鉄のエステル油への溶解の度合いについて説明する。
図11に30℃時の冷媒、油への塩化鉄溶解濃度概要値を示す。塩化鉄はエステル油に圧倒的に溶解しやすい。例えば残塩化鉄0.3gを溶解させるために必要なエステル油は約50gである。これを圧縮機の油循環量を1500g/時間とすると、圧縮機から油が50g流出するのに要する時間は0.033時間、約2分と計算できる。これは塩化物回収運転開始後、約2分で冷媒配管中の全塩化鉄を溶解可能な分のエステル油が圧縮機を吐出していることを意味する。
【0046】
次に、活性炭の塩化鉄吸着特性について説明する。
吸着対象の塩化鉄は、エステル油中に溶解しているとする。活性炭を液相中に置いて、液相吸着させる場合、使用活性炭は粒状活性炭が適している。この液相は冷媒、冷凍機油、塩化鉄など多種の混合液のため競争吸着となり、その場合、吸着対象物の分子量は吸着特性に大きく寄与すると考えられている。武田薬品工業製の粒状活性炭LH2Cは、分子量150〜300の物質を吸着するのに好適と言われている。活性炭LH2Cは孔径約1ナノメートル(10−9m)の微細孔を表面に形成し、吸着物質をこの微細孔内に主に分子間力で維持する。塩化鉄の分子量は162.2なので活性炭の微細孔に入ることができるため吸着可能である。同様に冷凍機油も分子量200〜400くらいなので活性炭で吸着可能である。
【0047】
一方、冷媒R410AはR32(CH2F2)50%とR125(C2HF5)50%の混合物である。R32の分子量は約52、R125の分子量は約120で平均値は86となるため、分子間力と化学結合の度合いが弱く前記粒状活性炭ではあまり吸着できない。
【0048】
そして、塩化物回収手段に搭載する活性炭の設計例について説明する。
活性炭は冷凍機油を吸着するので、結果的に、圧縮機摺動部の摺動性を良くするために冷凍機油に入れている微量な極圧添加剤も吸着する。そこで活性炭搭載量は、添加剤の吸着量が吸着上限値以下になるように設定する必要がある。
ここで活性炭搭載量の設計例を以下に示す。
まず、計算条件として、
▲1▼1gの活性炭が吸着する冷凍機油量:1g(実験結果より)
▲2▼初期の冷凍機油量:1000g
▲3▼初期の添加剤量:対油1wt%
▲4▼添加剤吸着上限値:対初期量10wt%
とすると、
計算結果は、
(a)1gの活性炭が吸着する添加剤量=▲1▼×▲3▼=0.01g
(b)添加剤吸着上限量=▲2▼×▲3▼×▲4▼=1g
(c)最大活性炭量=(b)/(c)=100g
となる。したがって、100g以下ならば添加剤吸着の問題はない。
【0049】
冷凍空調回路と塩化物回収回路の相違について説明する。
冷凍空調用回路について、冷房、冷凍運転を実施する場合は図12に示すように、四方弁7は圧縮機1の吐出側と室外熱交換器2を連通し、圧縮機1の吸入側とガス側延長冷媒配管6を連通する。バイパス回路ユニットZ内の開閉弁11a、11bを閉め、減圧手段3は冷凍サイクル状態に応じて開度を調整する。次に、圧縮機1と、四方弁7と、室外熱交換器2と、減圧手段3と、液側延長冷媒配管5と、室内熱交換器4と、ガス側延長冷媒配管6と、四方弁7と、圧縮機1と、をこの順番で環状に接続した冷媒回路を形成する。
一方、暖房運転を実施する場合、四方弁7は圧縮機1の吸入側と室外熱交換器2を連通し、圧縮機1の吐出側とガス側延長冷媒配管6を連通する。開閉弁11a、11bを閉め、減圧手段3は冷凍サイクル状態に応じて開度を調整する。次に、圧縮機1と、四方弁7と、ガス延長冷媒配管6と、室内熱交換器4と、液延長冷媒配管5と、減圧手段3と、室外熱交換器2と、四方弁7と、圧縮機1と、をこの順番で環状に接続した冷媒回路を形成する。この場合の運転回路図は省略する。尚、運転の動作については通常の冷房、暖房運転となるので共に説明を省略する。
【0050】
上記の通常の冷房、暖房運転ともにバイパス回路ユニットZ内の開閉弁11a、11bを閉じているので塩化物回収手段10には冷媒が流通しない。
【0051】
塩化物回収回路と冷凍空調回路の切換は、開閉弁11a、11bと減圧手段3の開閉状態を以下のように変更することで実施する。
塩化物回収回路形成時は、開閉弁11a,11bを開、減圧手段3を全閉とし、一方通常の冷凍空調回路形成時は、開閉弁11a,11bを閉、減圧手段を適宜開度制御する。
【0052】
回収運転を行い塩化物回収手段10の両端の開閉弁を閉じた後、塩化物回収手段を永久的に使用しない場合は、この塩化物回収手段10を回路から外すことは、回収塩化物を冷媒回路中に逆流させる可能性がゼロになる、という点で信頼性向上につながる。
【0053】
冷媒は旧冷媒が塩素を含む弗化炭素水素系冷媒を想定し、新冷媒は塩素を含まない弗化炭素水素系冷媒、炭素水素系冷媒、自然冷媒、二酸化炭素、空気を想定している。また、活性炭は冷媒回路では水分を吸着しにくいので、塩化物回収手段に水分吸着剤も搭載して回路中の水分を除去しても良い。
【0054】
以上のように、本実施の形態によれば、作動冷媒を塩素を含む旧冷媒から塩素を含まない新冷媒に変更する際に、室外機および室内機は新冷媒に対応した機器に交換し、冷媒配管は旧冷媒で使用していた既設のものを流用する場合、圧縮機、室外熱交換器と室内熱交換器との間をガス側延長配管および液延長配管にて接続して形成した新冷媒対応回路において、塩化物を除去するための活性炭を備えた塩化物回収手段を、室外熱交換器と、室内熱交換器の間の液相冷媒が流れる部分に設け、塩化物回収手段に圧縮機を吐出した冷媒が流通できるようにした塩化物回収回路を形成して運転すると、 旧冷媒で使用していた既設の冷媒配管中に残留した有害な塩化化合物を、冷媒配管から除去し、かつ活性炭を備えた塩化物回収手段で吸着回収できる。これにより塩化物を新冷媒対応の冷媒回路から除去し、スラッジ発生による回路内詰りや冷凍機油劣化による圧縮機故障を回避することができる。また所定時間塩化物回収手段を実施した後は、塩化物回収手段に冷媒が流通しないようにすることで、吸着回収した有害物の塩化化合物などを冷媒回路へ再放出しないようにする。
【0055】
実施の形態2.
次に、塩化物回収運転の運転手順について図3および図13を用いて説明する。
ここでの運転は、室外機および室内機を旧冷媒対応機から新冷媒対応機に交換する工事の際に行うことを想定している。
【0056】
ステップ1:旧冷媒の冷媒回収
旧冷媒のR22冷媒対応機で構成されている冷媒回路から、冷媒を回収する。旧冷媒対応室外機の圧縮機が動く場合は(S1)、その圧縮機を使用したポンプダウン運転でR22冷媒を室外熱交換器に回収し(S2)、一方圧縮機が動かない場合は専用の冷媒回収機を用いて冷媒を回収する(S3)。
【0057】
ステップ2:旧冷媒対応の室外機・室内機を延長配管から取り外す(S4)。
【0058】
ステップ3:新冷媒対応の室外機および室内機を延長配管に接続する。
新冷媒対応の室外機および室内機を旧冷媒で使用していた延長配管に接続する(S5)際、塩化物回収手段が予めこの新冷媒対応室外機に搭載されていない場合は、この段階で室外機と液側延長冷媒配管の間に塩化物回収手段を設置する。
【0059】
ステップ4:真空引き+冷媒充填
延長冷媒配管および室内機と、ステップ3で塩化物回収手段を備えた場合は塩化物回収手段内を真空引きする(S6)。この段階で、冷媒回路内の滞留水分を管理値まで確実に低減させる(S7)。その後、室外機に封入している新冷媒を延長冷媒配管、室内機、塩化物回収手段に放出させる。尚、延長冷媒配管が長く追加充填が必要な場合は、この段階で追加充填する。(S8)
【0060】
ステップ5:塩化物回収回路の形成
図3のように塩化物回収ユニットZのバイパス側開閉弁11a,11bを開き、メイン流路の減圧手段3を全閉にする。これにより圧縮機を吐出した冷媒が延長冷媒配管と塩化物回収手段を流通する。(S9)
【0061】
ステップ6:塩化物回収運転
圧縮機を運転し(S10)、冷媒回路中の残塩化物量がスラッジ発生や圧縮機故障を引き起こさない保証が確立されている量まで低減できたら回収運転を終了する。実際に冷媒回路中の残塩化物量を測定しても良いが、回収運転時間を予め設定しておいて、所定の運転時間が経過したら終了する。(S11)
【0062】
ステップ7:冷凍空調回路への切換
塩化物回収ユニットZのバイパス側開閉弁11a,11bを閉じて、メイン管の減圧手段3を調整できるようにする。これにより圧縮機を吐出した冷媒が塩化物回収手段を流通できなくする。(S12)これ以降、塩化物回収手段を冷媒回路から物理的に切離しても良い。
【0063】
この塩化物回収運転での特徴は、新ユニットへの交換工事中に塩化物回収回路を形成して冷媒を循環し、工事終了までには冷媒回路を冷凍空調回路に切替え、以降、塩化物回収手段には冷媒が流通しないようにすることである。
また上記ステップ5から7までを自動で実施されるように制御装置を組み込んで設定しておくと作業手間が省ける。例えば、装置への入力電源を入れると、自動的にステップ5からステップ7まで運転されるように予め制御設定しておけば良い。
【0064】
以上のように、本実施の形態によれば、塩化物回収運転を新冷媒対応の室外機と室内機に交換する工事中に行い、それ以降は回路から物理的に切離したり遮断したりするので、塩化物回収手段に回収した有害な塩化物を通常の冷凍空調運転中に冷媒回路に放出することを回避することができる。また、弁の切換だけで塩化物回収運転と通常の冷凍空調運転を切替えることができるので、回収運転の手間を最小限に抑えることができる。
【0065】
実施の形態3.
また、塩化物回収運転の別の運転手順例を図3および図14を用いて説明する。本運転は新冷媒対応の冷媒回路で冷凍空調運転を開始した後、所定時間Tsum経過時に一定時間実施することを想定している。
【0066】
ステップ1:経過時間のチェック
塩化物回収を行うタイミングかどうかを予め定めたタイマーでチェックする。例えば、総運転時間がTsumを超えたか判断する。(S21)
【0067】
ステップ2:塩化物回収回路の形成
図3のように塩化物回収ユニットZのバイパス側開閉弁11a,11bを開き、メイン管の減圧手段3を全閉にする。これにより圧縮機を吐出した冷媒が冷媒配管と塩化物回収手段を流通する。(S22)
【0068】
ステップ3:塩化物回収運転
圧縮機を運転する(S23)。回路中の残塩化物量がスラッジ発生や圧縮機故障を引き起こさない保証が確立されている量まで低減できたら回収運転を終了する。実際に回路中の塩化物量を測定しても良いが、回収運転時間を予め設定しておいて、時間がきたら終了する。(S24)
【0069】
ステップ4:冷凍空調回路への切換
塩化物回収ユニットZのバイパス側開閉弁11a,11bを閉じて、メイン管の減圧手段3を調整できるようにする。これにより圧縮機を吐出した冷媒が塩化物回収手段を流通できなくする。(S25)
【0070】
ステップ5:回収運転タイマーの再設定(S26)
【0071】
以上のように、本実施の形態によれば、新冷媒対応の冷媒回路で冷凍空調運転を開始した後、所定時間経過経過していることが判明した場合、一定時間だけ塩化物回収運転を行い、その後、元の冷凍空調回路に戻して塩化物回収手段を回路から遮断するので、塩化物回収手段に回収した有害な塩化物を通常の冷凍空調運転中に冷媒回路に放出することを回避することができる。また、弁の切換だけで塩化物回収運転と通常の冷凍空調運転を切替えることができるので、回収運転の手間を最小限に抑えることができる。
【0072】
【発明の効果】
本発明の請求項1に係る冷凍空調装置は、作動冷媒を塩素を含む旧冷媒から塩素を含まない新冷媒に変更する際に、室外機および室内機は新冷媒に対応した機器に交換し、冷媒配管は旧冷媒で使用していたものを流用する場合、圧縮機および室外熱交換器と室内熱交換器との間を前記冷媒配管のガス側延長配管および液側延長配管により接続して形成した新冷媒対応回路において、塩化物を除去するための活性炭を有した塩化物回収手段を室外熱交換器と室内熱交換器の間の液相冷媒が流通する配管に設けたので、冷媒を延長配管と塩化物回収手段に流通して、延長配管中に残留する塩化物を流動して配管外へ除去し、塩化物回収手段まで運んで吸着回収することができる。その結果、新冷媒対応回路中の残塩化物量をスラッジ発生による回路詰りや圧縮機故障を生じないことを確認した管理値以下に低減することができ、信頼性を確保することができる。
【0073】
また、本発明の請求項2に係る冷凍空調装置は、前記塩化物回収手段を室外熱交換器と室内熱交換器の間の一部に並列になるように設け、前記冷媒回路から着脱自在、または前記冷媒回路から弁切換で遮断する構造を備えたので、塩化物回収を終了した後は、塩化物回収手段を冷媒回路から遮断することで、吸着した有害な塩化化合物などを、運転中の冷凍空調回路に放出することを回避することができる。
【0074】
また、本発明の請求項3に係る冷凍空調装置は、前記塩化物回収手段を前記冷媒回路から遮断する際に切替える弁は、自動で切替え可能なので、塩化物回収運転と通常の冷凍空調運転の切換作業負荷を大幅に低減することができる。
【0075】
また、本発明の請求項4に係る冷凍空調装置は、前記塩化物回収手段が新冷媒対応の室外機に搭載されるので、現地で塩化物回収手段を設置する手間を省き、かつ自動運転で塩化物回収運転を実施することが可能である。
【0076】
また、本発明の請求項5に係る冷凍空調装置は、前記塩化物回収手段が新冷媒対応の室外機と液延長配管の間に搭載されるので、延長配管内に残留する有害な塩化化合物などを除去する必要があり、かつ室外機に塩化物回収手段が搭載されていないときでも、回収運転を実施することができる。
【0077】
また、本発明の請求項6に係る冷凍空調装置の運転方法は、冷媒配管中に残留する塩化物を回収する場合、前記塩化物回収手段を冷媒回路に組込むステップと、前記延長配管と室内機内を真空引きした後に冷媒を充填するステップと、圧縮機を運転して前記塩化物回収手段に冷媒を流通させて塩化物を捕捉するステップと、圧縮機を停止して前記塩化物回収手段を冷媒回路から切離し、または弁切換で冷媒回路から遮断するステップと、を備えたので、塩化物回収運転中は、冷媒を延長配管と塩化物回収手段に流通して、延長配管中に残留する塩化物を流動して配管外へ除去し、塩化物回収手段まで運んで吸着回収することができる。その結果、新冷媒対応回路中の残塩化物量をスラッジ発生による回路詰りや圧縮機故障を生じないことを確認した管理値以下に低減することができ、信頼性を確保することができる。また、塩化物回収運転後に通常の冷凍空調運転へ切替えたとき、塩化物回収手段を冷媒回路から遮断して冷媒が流通できないようにするので、塩化物回収手段で吸着した有害な塩化化合物などを、運転中の冷凍空調回路に放出することを回避することができる。
【0078】
また、本発明の請求項7に係る冷凍空調装置は、前記の塩化物回収運転は、室外機と室内機を交換する工事中に行うので、顧客に渡した後は塩化物回収手段を冷媒回路から遮断して冷媒が流通できないようにするので、塩化物回収手段で吸着した有害な塩化化合物などを、運転中の冷凍空調回路に放出することを回避することができる。
【0079】
また、本発明の請求項8に係る冷凍空調装置の運転方法は、前記塩化物回収運転が、新冷媒機へ交換後、新冷媒回路で空気調和運転や冷凍運転を開始してからの総運転時間が所定時間経過する毎に、一定時間だけ行うので、塩化物回収手段を冷媒回路から遮断して冷媒が流通できないようにするので、塩化物回収手段で吸着した有害な塩化化合物などを、運転中の冷凍空調回路に放出することを回避することができる。
【0080】
また、本発明の請求項9に係る冷凍空調装置の運転方法は、前記塩化物回収運転が、所定時間経過するまで、あるいは冷媒回路中に残留する塩化物量が所定管理値以下になるまで行うので、新冷媒対応回路中の残塩化物量をスラッジ発生による回路詰りや圧縮機故障を生じないことを確認した管理値以下に低減することができ、信頼性を確保することができる。
【0081】
また、本発明の請求項10に係る冷凍空調装置は、変更前の作動冷媒が塩素を含む弗化炭素水素系冷媒であり、変更後の作動冷媒が塩素を含まない弗化炭素水素系冷媒、炭素水素系冷媒、自然冷媒であえうので、延長配管中の塩化物吸着効果は同等であり、その結果、新冷媒対応回路中の残塩化物量をスラッジ発生による回路詰りや圧縮機故障を生じないことを確認した管理値以下に低減することができ、信頼性を確保することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係わる冷媒回路図である。
【図2】本発明の実施の形態1に係わる塩化物回収手段の構成図である。
【図3】本発明の実施の形態1に係わる冷媒流れ図である。
【図4】本発明の実施の形態1に係わり別の冷媒流れ図である。
【図5】本発明の実施の形態1に係わる別のバイパス回路ユニット図である。
【図6】本発明の実施の形態1に係わり塩化物回収手段の設置図である。
【図7】本発明の実施の形態1に係わるまた別のバイパス回路ユニット図である。
【図8】本発明の実施の形態1に係わるさらに別のバイパス回路ユニット図である。
【図9】本発明の実施の形態1に係わるさらに別のバイパス回路ユニット図である。
【図10】本発明の実施の形態1に係わる別の冷媒回路図である。
【図11】本発明の実施の形態1に係わり、冷凍機油の溶解濃度を示す説明図である。
【図12】本発明の実施の形態1に係わる冷房・冷凍運転回路図である。
【図13】本発明の実施の形態2に係わる塩化物回収運転のフローチャートである。
【図14】本発明の実施の形態3に係わる塩化物回収運転のフローチャートである。
【図15】従来例の冷媒回路図である。
【図16】従来例の異物吸着器図である。
【符号の説明】
1 圧縮機、2 室外熱交換器、3 減圧手段、4 室内熱交換器、5 液冷媒配管、6 ガス冷媒配管、7 四方弁、10 塩化物回収手段、11 開閉弁、12 逆止弁、20 活性炭、20a 粒状活性炭、20b 繊維シート、21 水分吸着剤、22 メッシュ止め板、23 メッシュ、24 繊維製メッシュ、51 コンプレッサ、52 コンデンサ、53 ドライヤ、54 キャピラリーチューブ、55 エバポレータ、56 アキュムレータ、57 異物除去器、58 管、59 水分吸着剤、60 異物吸着剤。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a method for replacing an outdoor unit and an indoor unit with a new refrigerant-compatible unit when changing a hydrocarbon-based fluorocarbon-based refrigerant containing chlorine to a refrigerant containing hydrogen-free carbon-based refrigerant while using the old refrigerant. The present invention relates to a preferred method for diverting an existing refrigerant pipe.
In particular, the present invention relates to a method for removing and recovering a chloride compound remaining in an existing refrigerant pipe and causing sludge formation and deterioration of a new refrigerating machine oil in a new refrigerant circuit.
[0002]
[Prior art]
As a conventional technique, there is a foreign matter remover of a refrigeration cycle apparatus described in Japanese Patent Application Laid-Open No. 6-159866. FIG. 15 shows a refrigerant circuit diagram of a conventional refrigeration cycle device, and FIG. 16 shows a longitudinal sectional view of a foreign matter remover.
The refrigeration cycle shown in FIG. 15 includes a compressor 51, a condenser 52, a dryer 53, a capillary tube 54, a foreign matter remover 57, an evaporator 55, and an accumulator 56. Further, it is assumed that the dryer 53 and the foreign matter remover 57 may be installed as an integral unit between the condenser 52 and the evaporator 55, and an integral sectional view is shown in FIG.
[0003]
FIG. 16 shows, for example, activated carbon as a foreign matter adsorbent 60 at the lower part, molecular sieves as a moisture adsorbent 59 acting as a dryer at the upper part, and sandwiching them with a mesh 61, and finally drawing a pipe 58 to form these. Is shown.
[0004]
Impurities in the refrigerating machine oil cause a chemical reaction in a high-temperature portion in the refrigerating cycle to generate foreign substances, and examples thereof include metal salts of carboxylic acids. The foreign matter remover 57 is applied to a refrigeration cycle using a refrigerant in which foreign matter is easily generated, thereby avoiding foreign matter clogging in a refrigerant circuit such as a capillary tube. Further, since the foreign matter remover 57 and the dryer 53 are integrated, the number of components and the installation space can be reduced.
[0005]
[Problems to be solved by the invention]
The foreign matter adsorber shown in the above conventional example is supposed to capture metal carboxylate which is solid sludge with activated carbon as a measure against clogging of the capillary tube, but does not contain chlorine from the old refrigerant containing chlorine. It is not anticipated that a new refrigerant will be used to adsorb chloride compounds dissolved in the corresponding new refrigerator oil.
[0006]
In addition, sludge precipitates in a form in which the metal carboxylate is polymerized, and clogs a small tube having an inner diameter of 2 to 3 mm such as a capillary tube. On the other hand, the surface pore diameter of activated carbon is as small as 1 nm (nanometer), for example, and it is difficult to adsorb and recover a polymer of a metal carboxylate that clogs a capillary having an inner diameter of 2 to 3 mm through the surface pores. There is no explanation on the mechanism of adsorption of activated carbon in the conventional example, and it is presumed that activated carbon was assumed to be used as a fine mesh filter to capture the metal carboxylate.
[0007]
As described above, the foreign matter adsorber provided with the activated carbon shown in the conventional example is premised on being always installed in the refrigerant circuit. Activated carbon is adsorbed and trapped by the intermolecular force acting between the inner surface of the activated carbon pore and the molecules of the adsorbed substance and the chemical bond with the molecules present on the inner surface of the activated carbon. The equilibrium state changes depending on the temperature, pressure, and concentration of the surrounding environment, and adsorption and desorption differ accordingly. And, if it is always installed, what has been adsorbed and collected over a long period of time may have a large amount of foreign substances adsorbed on activated carbon desorbed at once each time the refrigerant state changes significantly due to cooling / heating switching, etc. Is a metal carboxylate, for example, which causes a problem of promoting sludge formation.
[0008]
The present invention has been made in order to solve the above-described problems, and when changing the type of operating refrigerant of a refrigeration / air-conditioning apparatus including an indoor unit, an outdoor unit, and a refrigerant pipe, simple, short, and few additional facilities are required. It is an object of the present invention to be able to reuse an existing refrigerant pipe at low cost. Specifically, when chloride and solid foreign matters remain in the existing refrigerant pipe and are connected to the refrigerant circuit corresponding to the new refrigerant, sludge is generated in the refrigerant circuit corresponding to the new refrigerant, and the new refrigerating machine oil is deteriorated. By collecting harmful substances such as chlorides, which are the main factors in the process, by using chloride recovery means provided in the refrigerant circuit, it is possible to reuse the existing refrigerant piping in the refrigerant circuit compatible with the new refrigerant I do.
[0009]
Furthermore, the chloride recovery means aims to remove residual chlorides in the refrigerant pipes, limits the operation time, and does not incorporate it into a normal refrigeration / air-conditioning circuit. The object is prevented from being re-discharged to the refrigerant circuit for some reason during the refrigeration / air-conditioning operation.
[0010]
[Means for Solving the Problems]
The refrigeration air conditioner according to claim 1 of the present invention, when changing the working refrigerant from an old refrigerant containing chlorine to a new refrigerant not containing chlorine, the outdoor unit and the indoor unit are replaced with devices corresponding to the new refrigerant, The refrigerant pipe is formed by connecting the compressor and the outdoor heat exchanger and the indoor heat exchanger with the gas-side extension pipe and the liquid-side extension pipe of the refrigerant pipe when diverting the refrigerant used in the old refrigerant. In this new refrigerant-compatible circuit, activated carbon for removing chloride is provided, and chloride recovery means is provided in a pipe through which a liquid-phase refrigerant flows between the outdoor heat exchanger and the indoor heat exchanger.
[0011]
In the refrigeration / air-conditioning apparatus according to claim 2 of the present invention, the chloride recovery means is provided so as to be parallel to a part between an outdoor heat exchanger and an indoor heat exchanger, and is detachable from the refrigerant circuit. Alternatively, a structure for shutting off the refrigerant circuit by switching valves is provided.
[0012]
Further, in the refrigeration / air-conditioning apparatus according to claim 3 of the present invention, a valve that is switched when the chloride recovery unit is disconnected from the refrigerant circuit can be automatically switched.
[0013]
Further, in the refrigeration / air-conditioning apparatus according to claim 4 of the present invention, the chloride recovery means is mounted on an outdoor unit compatible with a new refrigerant.
[0014]
Further, in the refrigeration / air-conditioning apparatus according to claim 5 of the present invention, the chloride recovery means is mounted between an outdoor unit corresponding to a new refrigerant and the liquid extension pipe.
[0015]
In the refrigeration / air-conditioning apparatus according to claim 6 of the present invention, when the working refrigerant is changed from the old refrigerant containing chlorine to the new refrigerant containing no chlorine, the outdoor unit and the indoor unit are replaced with devices corresponding to the new refrigerant. If the refrigerant pipe used in the old refrigerant is used, connect the compressor, outdoor heat exchanger, indoor heat exchanger, gas extension pipe, and liquid extension pipe to chloride pipe. Chloride recovery means provided with activated carbon for removing water is provided in parallel with a part between the outdoor heat exchanger and the indoor heat exchanger, and is removed from the refrigerant circuit, or a valve is switched from the refrigerant circuit. In a refrigeration air-conditioning apparatus having a structure that can be shut off at a time, in a chloride recovery operation for recovering chloride remaining in the refrigerant pipe, a step of incorporating the chloride recovery means into a refrigerant circuit, and the extension pipe and the indoor unit Fill the refrigerant after evacuation Operating the compressor to allow the refrigerant to flow through the chloride recovery means to capture the chloride, stopping the compressor and disconnecting the chloride recovery means from the refrigerant circuit, or by switching valves. Shutting off from the refrigerant circuit.
[0016]
Further, in the operation method of the refrigeration / air-conditioning apparatus according to claim 7 of the present invention, the chloride recovery operation is performed during construction for replacing an outdoor unit and an indoor unit.
[0017]
Further, in the operation method of the refrigeration / air-conditioning apparatus according to claim 8 of the present invention, the chloride recovery operation is performed after the air conditioner operation or the refrigeration operation is started in the new refrigerant circuit after the replacement with the new refrigerant machine. Each time the predetermined time elapses, the operation is performed for a fixed time.
[0018]
In the method for operating a refrigeration / air-conditioning apparatus according to claim 9 of the present invention, the chloride recovery operation is performed until a predetermined time elapses or until the amount of chloride remaining in the refrigerant circuit becomes equal to or less than a predetermined control value. It is.
[0019]
Also, in the refrigeration / air-conditioning apparatus according to claim 10 of the present invention, the working refrigerant before the change is a hydrocarbon-based hydrogen fluoride-based refrigerant, and the working refrigerant after the change is a chlorine-free hydrogen-based fluorocarbon refrigerant, It is a hydrocarbon-based refrigerant and a natural refrigerant.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, embodiments of the present invention will be described with reference to FIG.
It is assumed that the old refrigerant is R22, the new refrigerant is R410A, the old refrigerator oil is mineral oil, and the new refrigerator oil is ester oil.
[0021]
First, the configurations of an air conditioner and a refrigeration device compatible with a new refrigerant will be described. In FIG. 1, 1 is a compressor, 2 is an outdoor heat exchanger, 3 is a decompression means, 4 is an indoor heat exchanger, 5 is a liquid-side refrigerant pipe, 6 is a gas-side refrigerant pipe, 7 is a four-way valve, and 10 is chloride. Reference numerals 11a and 11b denote on-off valves, 13 denotes a bypass pipe, X denotes an outdoor unit, Y denotes an indoor unit, and Z denotes a bypass circuit unit.
[0022]
X is an outdoor unit compatible with the new refrigerant, and Y is an indoor unit compatible with the new refrigerant. On the other hand, the refrigerant pipes 5 and 6 are the existing extension refrigerant pipes used in the refrigeration / air-conditioning apparatus compatible with the old refrigerant.
[0023]
The bypass circuit unit Z includes chloride recovery means 10, on-off valves 11a and 11b, and a bypass pipe 13. The chloride collecting means 10 is connected in parallel to the main pipe provided with the pressure reducing means 3 of the refrigerant circuit, and serves as a flow path which bypasses before and after the flow via the on-off valves 11a and 11b. In this embodiment, the pressure reducing means 3 having the fully closed function is installed so as to bypass the pressure reducing means 3.
[0024]
FIG. 2 shows a configuration example of the chloride recovery means 10. The chloride recovery means 10 includes an activated carbon 20. The activated carbon 20 has a mold shape in which granular activated carbon 20a hardened in accordance with the cylindrical shape of the storage container is wrapped with a fiber sheet 20b. The activated carbon 20 used here is mounted to adsorb chlorides, especially chloride compounds. In addition, the activated carbon 20 can absorb the old refrigerator oil, such as mineral oil, sulfide compounds, sulfonates, metal phosphates, metal oxides, and solid foreign substances, by the granular activated carbon 20a and the fiber sheet 20b by the adsorption or mesh effect. . If this activated carbon molded product is packed in a container tube and vacuum-evacuated in advance to desorb moisture, it is more difficult to adsorb moisture than leaving the activated carbon in the air as it is. And moisture management.
[0025]
Next, the configuration of the chloride recovery circuit will be described.
Compressor 1, four-way valve 7, outdoor heat exchanger 2, on-off valve 11a, chloride recovery means 10, on-off valve 11b, liquid extension refrigerant pipe 5, indoor heat exchanger 4, gas extension A refrigerant circuit in which the refrigerant pipe 6, the four-way valve 7, and the compressor 1 are annularly connected in this order is formed.
[0026]
An operation example during the chloride recovery operation will be described with reference to FIG. First, the four-way valve 7 connects the discharge side of the compressor 1 and the outdoor heat exchanger 2, and connects the suction side of the compressor 1 and the gas extension refrigerant pipe 6. Then, the pressure reducing means 3 is fully closed, and the on-off valves 11a and 11b are opened to form a chloride recovery circuit. Thereby, the refrigerant discharged from the compressor can flow through the chloride recovery means 10.
[0027]
The refrigerant discharged from the compressor 1 includes a four-way valve 7, an outdoor heat exchanger 2, an on-off valve 11a, a chloride recovery means 10, an on-off valve 11b, a liquid-side extended refrigerant pipe 5, an indoor heat exchanger 4, and a gas-side extended refrigerant. The gas flows sequentially through the pipe 6 and returns to the suction port of the compressor 1 via the four-way valve 7. In FIG. 3, the arrows on the refrigerant circuit indicate the flow of the refrigerant, the solid line indicates the high pressure side, and the dotted line indicates the low pressure side. Here, the state of the refrigerant flowing through the chloride recovery means 10 is desirably a liquid state or a gas-liquid two-phase state dominated by a liquid phase. The reason is that the adsorption to activated carbon is more in the liquid phase than in the gas phase.
[0028]
Another operation example during the chloride recovery operation will be described with reference to FIG. This is the case where chloride recovery is performed in the heating operation circuit. The four-way valve 7 communicates the discharge side of the compressor 1 with the gas-side extended refrigerant pipe 6, and connects the suction side of the compressor 1 with the outdoor heat exchanger 2. Communicate. Then, the pressure reducing means 3 is fully closed, and the on-off valves 11a and 11b are opened to form a chloride recovery circuit. Thereby, the refrigerant discharged from the compressor can flow through the chloride recovery means 10.
[0029]
As shown by arrows in the refrigerant circuit of FIG. 4, the refrigerant discharged from the compressor 1 is supplied to the four-way valve 7, the gas-side extended refrigerant pipe 6, the indoor heat exchanger 4, the liquid-side extended refrigerant pipe 5, the on-off valve 11b, The liquid flows sequentially through the material recovery means 10, the on-off valve 11a, and the outdoor heat exchanger 2, and returns to the suction port of the compressor 1 via the four-way valve 7. As in FIG. 3, the state of the refrigerant flowing through the chloride recovery means 10 is desirably a liquid state or a gas-liquid two-phase state dominated by a liquid phase. It is desirable to operate the compressor 1 while adjusting so that the refrigerant returning to the suction side of the compressor 1 is in a gaseous state as much as possible.
[0030]
The chloride recovery means 10 may be installed in any location where the refrigerant circulates, but if it is installed in a location where a liquid refrigerant or a gas-liquid two-phase refrigerant in which the liquid is dominant circulates, the effect of recovering the chloride compound will be obtained. Was confirmed experimentally.
[0031]
Next, another configuration example of the bypass circuit unit Z will be described.
The bypass circuit unit Z may be installed so as to bypass a part of the liquid-side extension pipe 5 as shown in FIG. In this case, an on-off valve 11c for bypassing the main pipe is required. The operation of the bypass circuit unit Z is as follows. During the chloride recovery operation, the on-off valve 11c is closed, and the on-off valves 11a and 11b are opened to bypass the refrigerant to the chloride recovery means 10 side. The valve 11c is opened, the on-off valves 11a and 11b are closed, and the refrigerant flows to the main pipe side. Thereby, even when the chloride recovery means is not mounted on the outdoor unit, the chloride recovery operation can be performed.
6, the chloride recovery means 10 is directly assembled between the outdoor unit X and the liquid-side extension pipe 5 to allow the refrigerant to flow, without assembling the bypass circuit unit Z, as shown in FIG. Needless to say, it may be done. However, in this case, after performing the chloride recovery operation, the chloride recovery means 10 is removed from the refrigerant circuit, and a substitute pipe is incorporated and connected, or the outdoor unit X and the liquid-side extension pipe 5 are directly connected to connect the refrigerant circuit. Need to be formed.
[0032]
Further, the bypass circuit unit Z is provided between the outdoor heat exchanger 2 and the pressure reducing means 3 as shown in FIG. 7 or between the connection between the pressure reducing means 3 and the liquid-side extension pipe 5 of the outdoor unit X as shown in FIG. May be installed. In this case, the open / close valve 11c is also required for the main piping. These operations are similar to those in FIG. 5. The opening and closing of the on-off valve 11 c is such that the on-off valve 11 c is closed during the chloride recovery operation, and the on-off valves 11 a and 11 b are opened to bypass the refrigerant so that the refrigerant flows to the chloride recovery means 10. During other normal operations, the on-off valve 11c is opened and the on-off valves 11a and 11b are closed.
[0033]
When the on-off valves 11a to 11c provided in the bypass circuit unit Z can be automatically opened and closed by the control device that drives and controls the compressor 1 and the four-way valve 7 provided in the outdoor unit X based on the operation command, the chloride recovery operation is recovered. It can be automatically controlled and collected according to an operation command or an accumulated operation time. As a result, the workload of switching between the chloride recovery operation and the normal refrigeration / air-conditioning operation can be significantly reduced as compared with the conventional case. Further, when the flow direction of the refrigerant flowing through the chloride recovery means 10 can be set to one direction during the chloride recovery operation, for example, in the bypass circuit unit Z in FIG. The on-off valve on the downstream side of the road can be a check valve 12 as shown in FIG.
[0034]
Next, points to be noted in the chloride recovery operation will be described.
First, in the chloride recovery operation, it is not assumed that air conditioning or refrigeration by this operation is performed. The purpose is to remove the chloride remaining in the connecting extended refrigerant pipe used for the old refrigerant from the pipe and recover it with the chloride recovery means before forming the refrigeration air conditioning circuit for the new refrigerant. The refrigerant and the refrigerating machine oil discharged from the compressor only need to flow through the refrigerant pipe and the chloride collecting means.
[0035]
For example, a circuit that bypasses the outdoor heat exchanger or the indoor heat exchanger may be formed, or heat exchange may not be performed by these heat exchangers. However, it is necessary to prevent the compressor from malfunctioning due to liquid compression. In addition, during the chloride recovery operation, the refrigerant is operated in a state in which the refrigerant flow rate, pressure, temperature, etc. in the refrigerant circuit is most suitable for chloride removal.
[0036]
FIG. 10 shows an example of a refrigerant circuit for the chloride recovery operation that bypasses the outdoor heat exchanger. On the pipe connecting the suction side of the compressor 1 and the liquid side refrigerant pipe 5, the chloride recovery means 10 is installed with on-off valves respectively provided upstream and downstream thereof. The refrigerant flows from the compressor 1 discharge side to the four-way valve 7, the gas-side refrigerant pipe 6, the indoor heat exchanger 4, the liquid-side refrigerant pipe 5, the on-off valve 11d, the chloride recovery means 10, the on-off valve 11e, and the suction side of the compressor 1. In order. At this time, the pressure reducing means 3 is set to a fully closed state. The refrigerant flowing through the chloride recovery means 10 is desirably in a liquid state or a gas-liquid two-phase state dominated by a liquid phase. In addition, the refrigerant returning to the suction side of the compressor 1 is adjusted so as to be in a gas-liquid two-phase state in which gas is mixed as much as possible, thereby preventing a failure of the compressor.
[0037]
As described above, when the on-off valves 11d and 11e can be automatically opened and closed, the chloride recovery operation can be realized by automatic control. Further, in the case of FIG. 10, the flow direction of the refrigerant flowing through the chloride recovery means 10 during the chloride recovery operation can be set to one direction, so that the on-off valve 11e on the downstream side of the chloride recovery means 10 is used as a check valve. can do.
[0038]
By the refrigerant operation of the chloride recovery operation described above, the residue in the refrigerant pipes 5, 6 is dissolved or mixed with the refrigerant circulating in the circuit or the refrigerating machine oil, and is removed out of the refrigerant pipes 5, 6. It can be moved to the chloride collecting means 10 to perform adsorption and collection.
[0039]
The implementation timing and implementation time of the chloride recovery operation will be described.
The timing of the implementation should be during the installation work for replacing the outdoor unit and the indoor unit with a new refrigerant compatible unit. The implementation time is a time necessary for reducing the chloride content in the refrigerating machine oil to an amount that does not cause sludge generation or refrigerating machine oil deterioration, that is, a control value. If the mixed liquid of the refrigerating machine oil and the refrigerant in which the chloride is dissolved is once circulated through the activated carbon, almost all of the chloride can be recovered. The time may be set from the time required for the entire refrigerating machine oil enclosed in the refrigerant circuit to flow through the activated carbon at least once. It is assumed that approximately 30 minutes to 1 hour.
[0040]
An example of the recovery operation time is described below.
M = 1000g (cooling capacity 8-16KW)
Goil = 1500 g / h for refrigerator oil circulating in the refrigerant circuit
Then
The maximum time required for the refrigerating machine oil to circulate activated carbon at least once is:
T = M / Goil = 0.67 hours.
It goes without saying that the cleaning time is set by providing a margin for the experimental verification results.
[0041]
Instead of controlling the chloride recovery operation by time, the chloride concentration in the circuit may be measured and detected, and the recovery operation may be terminated when the amount is reduced to a control value that does not cause sludge generation or refrigerating machine oil deterioration, that is, a control value.
[0042]
Further, it is also effective to start the normal refrigeration / air-conditioning operation after the chloride recovery operation at the time of unit replacement installation of the new refrigerant is completed, and to perform the chloride recovery operation for a predetermined time when a predetermined time has elapsed. . For example, it is good to wash and collect once a year, and the operation integration time is about 2000 hours later. At this time, by setting the same circuit and the same refrigerant circulation path as the cleaning operation performed during the replacement work of the outdoor unit and the indoor unit, it is possible to avoid desorption of harmful substances already adsorbed on activated carbon and release to the refrigerant circuit. Can be.
[0043]
The purpose of chloride recovery will be described.
First, of the residues attached to the existing extension refrigerant pipe for connection, the chloride recovery target will be described. Since the existing extended refrigerant pipes 5 and 6 both use the old refrigerant, the old refrigerant, the old refrigerator oil, the chloride compound, the sulfur compound, and the like remain in the refrigerant pipe. Among them, the substance whose residue is a problem is a chlorinated compound, and a particularly problematic substance is iron chloride. Iron chloride produces metal salts of fatty acids (sludge, or sediment from oils, which form a very fine solid liquid slurry) or a new refrigeration oil for chlorine-free new refrigerants by the following reactions: To degrade the oil, especially its lubricity, causing wear on the sliding parts of the compressor. In the hydrolysis reaction of ester oil, first, ester oil + water → fatty acid (iron chloride acts as a catalyst), and then fatty acid + iron (metal) → fatty acid metal salt.
Therefore, it is necessary to suppress the amount of iron chloride in the refrigerant circuit corresponding to the new refrigerant to a predetermined amount (control value) in consideration of reliability.
[0044]
Here, a basic method of removing and recovering iron chloride will be described.
Basically, the residual iron chloride in the existing refrigerant pipe is dissolved in ester oil which is a new refrigerating machine oil circulating in the refrigerant circuit together with the chlorine-free new refrigerant R410A, and removed from the refrigerant pipe by flowing. It is contained in the circulating refrigerant and is adsorbed and collected on the activated carbon 20 of the chloride collecting means 10 provided in the refrigerant circuit.
[0045]
Next, the degree of dissolution of iron chloride in the ester oil will be described.
FIG. 11 shows the approximate concentration of iron chloride dissolved in the refrigerant and oil at 30 ° C. Iron chloride is overwhelmingly soluble in ester oil. For example, about 50 g of ester oil is required to dissolve 0.3 g of residual iron chloride. Assuming that the oil circulation amount of the compressor is 1500 g / hour, the time required for 50 g of oil to flow out of the compressor can be calculated as 0.033 hours, about 2 minutes. This means that approximately 2 minutes after the start of the chloride recovery operation, the compressor oil is discharged from the compressor in an amount sufficient to dissolve all the iron chloride in the refrigerant pipe.
[0046]
Next, the iron chloride adsorption characteristics of activated carbon will be described.
It is assumed that the iron chloride to be adsorbed is dissolved in the ester oil. When activated carbon is placed in the liquid phase and adsorbed in the liquid phase, granular activated carbon is suitable as the activated carbon used. This liquid phase is competitively adsorbed due to various kinds of mixed liquids such as refrigerant, refrigerating machine oil, and iron chloride. In this case, it is considered that the molecular weight of the substance to be adsorbed greatly contributes to the adsorption characteristics. It is said that granular activated carbon LH2C manufactured by Takeda Pharmaceutical Company is suitable for adsorbing substances having a molecular weight of 150 to 300. Activated carbon LH2C has a pore size of about 1 nanometer (10 -9 m) micropores are formed on the surface, and the adsorbed substance is maintained in the micropores mainly by intermolecular force. Since the molecular weight of iron chloride is 162.2, it can enter fine pores of activated carbon and thus can be adsorbed. Similarly, the refrigerating machine oil can be adsorbed by activated carbon because it has a molecular weight of about 200 to 400.
[0047]
On the other hand, the refrigerant R410A is a mixture of 50% of R32 (CH2F2) and 50% of R125 (C2HF5). Since the molecular weight of R32 is about 52 and the molecular weight of R125 is about 120 and the average value is 86, the intermolecular force and the degree of chemical bonding are weak, and the granular activated carbon cannot be adsorbed much.
[0048]
Then, a design example of the activated carbon mounted on the chloride collecting means will be described.
Activated carbon adsorbs refrigerating machine oil, and consequently also adsorbs trace amounts of extreme pressure additives contained in refrigerating machine oil in order to improve the slidability of the sliding portion of the compressor. Therefore, it is necessary to set the amount of activated carbon loaded so that the amount of adsorbed additive is equal to or less than the upper limit of adsorption.
Here, a design example of the activated carbon loading amount is shown below.
First, as calculation conditions,
{Circle around (1)} Refrigerator oil to which 1 g of activated carbon is adsorbed: 1 g (from experimental results)
(2) Initial refrigerating machine oil amount: 1000 g
(3) Initial additive amount: 1 wt% with respect to oil
(4) Upper limit of additive adsorption: 10 wt% with respect to initial amount
Then
The calculation result is
(A) Amount of additive adsorbed by 1 g of activated carbon = (1) × (3) = 0.01 g
(B) Upper limit of additive adsorption = (2) x (3) x (4) = 1 g
(C) Maximum activated carbon amount = (b) / (c) = 100 g
It becomes. Therefore, if the amount is 100 g or less, there is no problem of additive adsorption.
[0049]
The difference between the refrigeration / air-conditioning circuit and the chloride recovery circuit will be described.
As shown in FIG. 12, when performing cooling and refrigerating operations, the four-way valve 7 communicates the discharge side of the compressor 1 with the outdoor heat exchanger 2 and connects the suction side of the compressor 1 with the gas on the suction side. The side extension refrigerant pipe 6 is communicated. The on-off valves 11a and 11b in the bypass circuit unit Z are closed, and the pressure reducing means 3 adjusts the opening according to the refrigeration cycle state. Next, the compressor 1, the four-way valve 7, the outdoor heat exchanger 2, the decompression means 3, the liquid-side extended refrigerant pipe 5, the indoor heat exchanger 4, the gas-side extended refrigerant pipe 6, the four-way valve 7 and the compressor 1 in this order to form a refrigerant circuit connected in a ring.
On the other hand, when performing the heating operation, the four-way valve 7 connects the suction side of the compressor 1 and the outdoor heat exchanger 2, and connects the discharge side of the compressor 1 and the gas-side extended refrigerant pipe 6. The on-off valves 11a and 11b are closed, and the opening of the pressure reducing means 3 is adjusted according to the state of the refrigeration cycle. Next, the compressor 1, the four-way valve 7, the gas extension refrigerant pipe 6, the indoor heat exchanger 4, the liquid extension refrigerant pipe 5, the pressure reducing means 3, the outdoor heat exchanger 2, the four-way valve 7, And the compressor 1 in this order to form a refrigerant circuit. The operation circuit diagram in this case is omitted. Note that the operation of the operation is a normal cooling operation and a heating operation, and a description thereof will be omitted.
[0050]
Since the on-off valves 11a and 11b in the bypass circuit unit Z are closed in both the normal cooling and heating operations, no refrigerant flows through the chloride recovery means 10.
[0051]
Switching between the chloride recovery circuit and the refrigeration / air-conditioning circuit is performed by changing the open / close states of the on-off valves 11a and 11b and the pressure reducing means 3 as follows.
When the chloride recovery circuit is formed, the on-off valves 11a and 11b are opened and the pressure reducing means 3 is fully closed. On the other hand, when a normal refrigeration and air-conditioning circuit is formed, the on-off valves 11a and 11b are closed and the opening degree of the pressure reducing means is appropriately controlled. .
[0052]
When the recovery operation is performed and the on-off valves at both ends of the chloride recovery means 10 are closed, and the chloride recovery means is not used permanently, the removal of the chloride recovery means 10 from the circuit is performed by removing the recovered chloride from the refrigerant. This improves reliability in that the possibility of backflow in the circuit is reduced to zero.
[0053]
As the refrigerant, the old refrigerant is assumed to be a hydrogen fluoride-based refrigerant containing chlorine, and the new refrigerant is assumed to be a hydrogen-hydrocarbon fluoride-based refrigerant containing no chlorine, a hydrocarbon-based refrigerant, a natural refrigerant, carbon dioxide, and air. Further, since activated carbon hardly adsorbs water in the refrigerant circuit, a water adsorbent may be mounted on the chloride recovery means to remove water in the circuit.
[0054]
As described above, according to the present embodiment, when changing the working refrigerant from the old refrigerant containing chlorine to the new refrigerant containing no chlorine, the outdoor unit and the indoor unit are replaced with devices corresponding to the new refrigerant, When the existing refrigerant used for the old refrigerant is used for the refrigerant pipe, a new pipe formed by connecting the compressor, the outdoor heat exchanger and the indoor heat exchanger with the gas-side extension pipe and the liquid extension pipe In the refrigerant circuit, chloride recovery means provided with activated carbon for removing chloride is provided in a portion where the liquid-phase refrigerant flows between the outdoor heat exchanger and the indoor heat exchanger, and compressed into the chloride recovery means. When a chloride recovery circuit that allows the refrigerant discharged from the machine to flow is formed and operated, harmful chloride compounds remaining in the existing refrigerant pipe used for the old refrigerant are removed from the refrigerant pipe, and Can be adsorbed and recovered by chloride recovery means equipped with activated carbon You. Thereby, chloride can be removed from the refrigerant circuit corresponding to the new refrigerant, and clogging in the circuit due to sludge generation and compressor failure due to deterioration of the refrigerating machine oil can be avoided. In addition, after the chloride recovery means has been operated for a predetermined time, the refrigerant is prevented from flowing through the chloride recovery means, so that the harmful chloride compounds and the like that have been adsorbed and recovered are not re-discharged to the refrigerant circuit.
[0055]
Embodiment 2 FIG.
Next, the operation procedure of the chloride recovery operation will be described with reference to FIGS.
The operation here is assumed to be performed at the time of the construction of replacing the outdoor unit and the indoor unit from the old refrigerant-compatible device to the new refrigerant-compatible device.
[0056]
Step 1: Recover old refrigerant
Refrigerant is recovered from the refrigerant circuit configured with the old refrigerant R22 refrigerant compatible machine. When the compressor of the outdoor unit corresponding to the old refrigerant operates (S1), the R22 refrigerant is recovered in the outdoor heat exchanger by the pump-down operation using the compressor (S2). The refrigerant is recovered using a refrigerant recovery machine (S3).
[0057]
Step 2: Remove the outdoor unit and indoor unit corresponding to the old refrigerant from the extension pipe (S4).
[0058]
Step 3: Connect the outdoor unit and the indoor unit compatible with the new refrigerant to the extension pipe.
At the time of connecting the outdoor unit and the indoor unit compatible with the new refrigerant to the extension pipe used for the old refrigerant (S5), if the chloride recovery means is not previously mounted on the outdoor unit corresponding to the new refrigerant, at this stage Chloride recovery means is installed between the outdoor unit and the liquid-side extended refrigerant pipe.
[0059]
Step 4: Vacuum + refrigerant filling
When the chloride refrigerant recovery means is provided in step 3 with the extended refrigerant pipe and the indoor unit, the inside of the chloride recovery means is evacuated (S6). At this stage, the water remaining in the refrigerant circuit is reliably reduced to the control value (S7). Then, the new refrigerant sealed in the outdoor unit is discharged to the extended refrigerant pipe, the indoor unit, and the chloride recovery means. If the extended refrigerant pipe is long and needs additional filling, additional filling is performed at this stage. (S8)
[0060]
Step 5: Formation of chloride recovery circuit
As shown in FIG. 3, the bypass-side on-off valves 11a and 11b of the chloride recovery unit Z are opened, and the pressure reducing means 3 in the main flow path is fully closed. Thereby, the refrigerant discharged from the compressor flows through the extended refrigerant pipe and the chloride collecting means. (S9)
[0061]
Step 6: Chloride recovery operation
The compressor is operated (S10), and when the amount of residual chloride in the refrigerant circuit can be reduced to an amount that guarantees no sludge generation or compressor failure, the recovery operation is terminated. Although the residual chloride amount in the refrigerant circuit may be actually measured, the recovery operation time is set in advance, and the operation ends after the predetermined operation time has elapsed. (S11)
[0062]
Step 7: Switching to refrigeration and air conditioning circuit
By closing the bypass-side on-off valves 11a and 11b of the chloride recovery unit Z, the pressure reducing means 3 of the main pipe can be adjusted. This prevents the refrigerant discharged from the compressor from flowing through the chloride recovery means. (S12) Thereafter, the chloride collecting means may be physically separated from the refrigerant circuit.
[0063]
The feature of this chloride recovery operation is that during the replacement work for a new unit, a chloride recovery circuit is formed and the refrigerant is circulated, the refrigerant circuit is switched to a refrigeration and air conditioning circuit by the end of the work, and thereafter, chloride recovery The means is to prevent the circulation of the refrigerant.
In addition, if a control device is incorporated and set so that steps 5 to 7 are automatically performed, work time can be saved. For example, the control may be set in advance so that when the input power to the device is turned on, the operation is automatically performed from step 5 to step 7.
[0064]
As described above, according to the present embodiment, the chloride recovery operation is performed during the work of replacing the outdoor unit and the indoor unit with the new refrigerant, and thereafter, it is physically disconnected or cut off from the circuit. Further, it is possible to prevent the harmful chloride collected by the chloride collecting means from being discharged to the refrigerant circuit during the normal refrigeration / air-conditioning operation. Further, since the chloride recovery operation and the normal refrigeration / air-conditioning operation can be switched only by switching the valve, the trouble of the recovery operation can be minimized.
[0065]
Embodiment 3 FIG.
Another operation procedure example of the chloride recovery operation will be described with reference to FIGS. 3 and 14. This operation is assumed to be performed for a certain period of time after a lapse of a predetermined time Tsum after the start of the refrigeration / air-conditioning operation in the refrigerant circuit corresponding to the new refrigerant.
[0066]
Step 1: Check elapsed time
A predetermined timer is used to check whether it is time to perform chloride recovery. For example, it is determined whether the total operation time has exceeded Tsum. (S21)
[0067]
Step 2: Formation of chloride recovery circuit
As shown in FIG. 3, the bypass-side on-off valves 11a and 11b of the chloride recovery unit Z are opened, and the pressure reducing means 3 of the main pipe is fully closed. Thereby, the refrigerant discharged from the compressor flows through the refrigerant pipe and the chloride collecting means. (S22)
[0068]
Step 3: Chloride recovery operation
The compressor is operated (S23). When the amount of residual chloride in the circuit can be reduced to an amount that is guaranteed not to cause sludge generation and compressor failure, the recovery operation is terminated. Although the amount of chloride in the circuit may be actually measured, the recovery operation time is set in advance, and the operation is terminated when the time comes. (S24)
[0069]
Step 4: Switching to refrigeration and air conditioning circuit
By closing the bypass-side on-off valves 11a and 11b of the chloride recovery unit Z, the pressure reducing means 3 of the main pipe can be adjusted. This prevents the refrigerant discharged from the compressor from flowing through the chloride recovery means. (S25)
[0070]
Step 5: Resetting the collection operation timer (S26)
[0071]
As described above, according to the present embodiment, after starting the refrigeration / air-conditioning operation in the refrigerant circuit corresponding to the new refrigerant, if it is determined that a predetermined time has elapsed, the chloride recovery operation is performed for a predetermined time. After that, returning to the original refrigeration / air-conditioning circuit and shutting off the chloride recovery means from the circuit, it is possible to avoid discharging harmful chlorides recovered by the chloride recovery means to the refrigerant circuit during normal refrigeration / air-conditioning operation. be able to. Further, since the chloride recovery operation and the normal refrigeration / air-conditioning operation can be switched only by switching the valve, the trouble of the recovery operation can be minimized.
[0072]
【The invention's effect】
The refrigeration air conditioner according to claim 1 of the present invention, when changing the working refrigerant from an old refrigerant containing chlorine to a new refrigerant not containing chlorine, the outdoor unit and the indoor unit are replaced with devices corresponding to the new refrigerant, When diverting the refrigerant used in the old refrigerant, the refrigerant pipe is formed by connecting the compressor and the outdoor heat exchanger and the indoor heat exchanger with the gas-side extension pipe and the liquid-side extension pipe of the refrigerant pipe. In the new refrigerant-compatible circuit, chloride recovery means with activated carbon for removing chloride was provided in the piping through which the liquid-phase refrigerant flows between the outdoor heat exchanger and the indoor heat exchanger, so the refrigerant was extended. After flowing through the pipe and the chloride collecting means, chloride remaining in the extension pipe flows and is removed outside the pipe, and can be carried to the chloride collecting means to be adsorbed and collected. As a result, the amount of residual chloride in the new refrigerant-compatible circuit can be reduced to or below a control value that has been confirmed not to cause circuit clogging or compressor failure due to sludge generation, and reliability can be ensured.
[0073]
In the refrigeration / air-conditioning apparatus according to claim 2 of the present invention, the chloride recovery means is provided so as to be parallel to a part between an outdoor heat exchanger and an indoor heat exchanger, and is detachable from the refrigerant circuit. Or, since a structure for shutting off the refrigerant circuit by switching the valve is provided, after the chloride collection is completed, the chloride recovery means is cut off from the refrigerant circuit to remove harmful chloride compounds and the like adsorbed during operation. Release to the refrigeration / air-conditioning circuit can be avoided.
[0074]
Further, in the refrigeration / air-conditioning apparatus according to claim 3 of the present invention, the valve that switches when the chloride recovery means is disconnected from the refrigerant circuit can be automatically switched, so that the chloride recovery operation and the normal refrigeration / air-conditioning operation can be performed. The switching work load can be greatly reduced.
[0075]
In the refrigeration / air-conditioning apparatus according to claim 4 of the present invention, since the chloride collecting means is mounted on an outdoor unit compatible with the new refrigerant, the trouble of installing the chloride collecting means on site is eliminated, and the automatic operation is performed. It is possible to carry out a chloride recovery operation.
[0076]
Further, in the refrigeration / air-conditioning apparatus according to claim 5 of the present invention, since the chloride recovery means is mounted between the outdoor unit corresponding to the new refrigerant and the liquid extension pipe, harmful chloride compounds remaining in the extension pipe, etc. Is required to be removed, and the collection operation can be performed even when the chloride recovery means is not mounted on the outdoor unit.
[0077]
The method for operating a refrigeration / air-conditioning apparatus according to claim 6 of the present invention includes, when recovering chloride remaining in the refrigerant pipe, incorporating the chloride recovery means into a refrigerant circuit; Filling the refrigerant after evacuation, operating the compressor to circulate the refrigerant through the chloride recovery means to capture the chloride, stopping the compressor and allowing the chloride recovery means to cool the chloride recovery means Disconnecting from the circuit or disconnecting from the refrigerant circuit by switching valves, during the chloride recovery operation, the refrigerant flows through the extension pipe and the chloride recovery means, and the chloride remaining in the extension pipe Can be removed to the outside of the pipe by flowing, and can be carried to the chloride collecting means to be adsorbed and collected. As a result, the amount of residual chloride in the new refrigerant-compatible circuit can be reduced to or below a control value that has been confirmed not to cause circuit clogging or compressor failure due to sludge generation, and reliability can be ensured. Also, when switching to the normal refrigeration and air-conditioning operation after the chloride recovery operation, the chloride recovery means is shut off from the refrigerant circuit to prevent the refrigerant from flowing, so that harmful chloride compounds adsorbed by the chloride recovery means can be removed. In addition, it is possible to avoid discharge to the refrigeration / air-conditioning circuit during operation.
[0078]
In the refrigeration / air-conditioning apparatus according to claim 7 of the present invention, the chloride recovery operation is performed during the work of replacing the outdoor unit and the indoor unit. Harmful chloride compounds and the like adsorbed by the chloride recovery means can be prevented from being discharged to the operating refrigeration / air-conditioning circuit.
[0079]
Further, in the operation method of the refrigeration / air-conditioning apparatus according to claim 8 of the present invention, the chloride recovery operation is performed after the air conditioner operation or the refrigeration operation is started in the new refrigerant circuit after the replacement with the new refrigerant machine. Every time the predetermined time elapses, the operation is performed only for a certain period of time, so that the chloride collecting means is shut off from the refrigerant circuit so that the refrigerant cannot flow, so that harmful chloride compounds and the like adsorbed by the chloride collecting means are operated. Release to the refrigeration and air conditioning circuit inside can be avoided.
[0080]
In the method for operating a refrigeration / air-conditioning apparatus according to claim 9 of the present invention, the chloride recovery operation is performed until a predetermined time elapses or until the amount of chloride remaining in the refrigerant circuit becomes equal to or less than a predetermined management value. In addition, the amount of residual chloride in the new refrigerant-compatible circuit can be reduced to or below a control value that has been confirmed not to cause circuit clogging or compressor failure due to sludge generation, thereby ensuring reliability.
[0081]
In the refrigeration / air-conditioning apparatus according to claim 10 of the present invention, the working refrigerant before the change is a hydrocarbon-based hydrogen fluoride-based refrigerant, and the working refrigerant after the change is a chlorine-free hydrogen-based fluorocarbon refrigerant, Since it is possible to use a hydrocarbon-based refrigerant or a natural refrigerant, the chloride adsorption effect in the extension piping is the same, and as a result, the residual chloride amount in the new refrigerant-compatible circuit does not cause circuit clogging or compressor failure due to sludge generation. Can be reduced below the confirmed management value, and reliability can be ensured.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram according to Embodiment 1 of the present invention.
FIG. 2 is a configuration diagram of a chloride recovery unit according to the first embodiment of the present invention.
FIG. 3 is a refrigerant flow chart according to Embodiment 1 of the present invention.
FIG. 4 is another refrigerant flow chart according to Embodiment 1 of the present invention.
FIG. 5 is another bypass circuit unit diagram according to the first embodiment of the present invention.
FIG. 6 is an installation diagram of chloride collecting means according to the first embodiment of the present invention.
FIG. 7 is another bypass circuit unit diagram according to the first embodiment of the present invention.
FIG. 8 is another bypass circuit unit diagram according to the first embodiment of the present invention.
FIG. 9 is still another bypass circuit unit diagram according to the first embodiment of the present invention.
FIG. 10 is another refrigerant circuit diagram according to the first embodiment of the present invention.
FIG. 11 is an explanatory diagram showing a dissolved concentration of refrigerating machine oil according to the first embodiment of the present invention.
FIG. 12 is a circuit diagram of a cooling / refrigeration operation according to Embodiment 1 of the present invention.
FIG. 13 is a flowchart of a chloride recovery operation according to Embodiment 2 of the present invention.
FIG. 14 is a flowchart of a chloride recovery operation according to Embodiment 3 of the present invention.
FIG. 15 is a refrigerant circuit diagram of a conventional example.
FIG. 16 is a diagram of a conventional foreign matter adsorber.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor, 2 outdoor heat exchangers, 3 decompression means, 4 indoor heat exchangers, 5 liquid refrigerant piping, 6 gas refrigerant piping, 7 four-way valve, 10 chloride recovery means, 11 open / close valve, 12 check valve, 20 Activated carbon, 20a granular activated carbon, 20b fiber sheet, 21 moisture adsorbent, 22 mesh stopper, 23 mesh, 24 fiber mesh, 51 compressor, 52 condenser, 53 dryer, 54 capillary tube, 55 evaporator, 56 accumulator, 57 foreign matter removal Vessel, 58 tubes, 59 moisture adsorbent, 60 foreign matter adsorbent.

Claims (10)

作動冷媒を塩素を含む旧冷媒から塩素を含まない新冷媒に変更する際に、室外機および室内機は新冷媒に対応した機器に交換し、冷媒配管は旧冷媒で使用していたものを流用する際、圧縮機および室外熱交換器と室内熱交換器との間を前記冷媒配管のガス側延長配管および液側延長配管により接続して形成した新冷媒対応回路において、塩化物を除去するための活性炭を有した塩化物回収手段を室外熱交換器と室内熱交換器の間の液相冷媒が流通する配管に設けることを特徴とする冷凍空調装置。When changing the working refrigerant from an old refrigerant that contains chlorine to a new refrigerant that does not contain chlorine, the outdoor unit and indoor unit must be replaced with devices that support the new refrigerant, and the refrigerant piping used for the old refrigerant will be used. In order to remove chloride in a new refrigerant corresponding circuit formed by connecting a compressor and an outdoor heat exchanger and an indoor heat exchanger by a gas-side extension pipe and a liquid-side extension pipe of the refrigerant pipe, A refrigeration / air-conditioning system characterized in that chloride recovery means having activated carbon is provided in a pipe through which a liquid-phase refrigerant flows between an outdoor heat exchanger and an indoor heat exchanger. 前記塩化物回収手段は、室外熱交換器と室内熱交換器の間の一部に並列になるように設け、前記冷媒回路から脱着自在、または前記冷媒回路から弁切換で遮断する構造を備えることを特徴とする請求項1記載の冷凍空調装置。The chloride recovery means is provided so as to be parallel to a part between the outdoor heat exchanger and the indoor heat exchanger, and has a structure that is detachable from the refrigerant circuit or shut off by switching a valve from the refrigerant circuit. The refrigeration / air-conditioning apparatus according to claim 1, wherein: 前記塩化物回収手段を前記冷媒回路から遮断する際に切替える弁は、自動で切替えることができることを特徴とする請求項2記載の冷凍空調装置。The refrigeration / air-conditioning apparatus according to claim 2, wherein a valve that switches when the chloride recovery unit is disconnected from the refrigerant circuit can be automatically switched. 前記塩化物回収手段は新冷媒対応の室外機に搭載されることを特徴とする請求項1記載の冷凍空調装置。The refrigeration / air-conditioning apparatus according to claim 1, wherein the chloride recovery means is mounted on an outdoor unit compatible with a new refrigerant. 前記塩化物回収手段は新冷媒対応の室外機と前記液側延長配管の間に搭載されることを特徴とする請求項1記載の冷凍空調装置。The refrigeration / air-conditioning apparatus according to claim 1, wherein the chloride recovery means is mounted between an outdoor unit corresponding to a new refrigerant and the liquid-side extension pipe. 作動冷媒を塩素を含む旧冷媒から塩素を含まない新冷媒に変更する際に、室外機および室内機は新冷媒に対応した機器に交換し、冷媒配管は旧冷媒で使用していたものを流用する場合、圧縮機と、室外熱交換器と、室内熱交換器と、ガス延長配管と、液延長配管と、を接続し、塩化物を除去するための活性炭を備えた塩化物回収手段を室外熱交換器と室内熱交換器の間の一部に並列になるように設け、前記冷媒回路から取り外したり、或いは前記冷媒回路から弁切換で遮断したりできる構造を備える冷凍空調装置において、冷媒配管中に残留する塩化物を回収する塩化物回収運転は、前記塩化物回収手段を冷媒回路に組込むステップと、前記延長配管と室内機内を真空引きした後に冷媒を充填するステップと、圧縮機を運転して前記塩化物回収手段に冷媒を流通させて塩化物を捕捉するステップと、圧縮機を停止して前記塩化物回収手段を冷媒回路から切離し、または弁切換で冷媒回路から遮断するステップと、を備えたことを特徴とする冷凍空調装置の運転方法。When changing the working refrigerant from an old refrigerant that contains chlorine to a new refrigerant that does not contain chlorine, the outdoor unit and indoor unit must be replaced with devices that support the new refrigerant, and the refrigerant piping used for the old refrigerant will be used. In this case, the compressor, the outdoor heat exchanger, the indoor heat exchanger, the gas extension pipe, and the liquid extension pipe are connected to each other, and the chloride recovery means provided with activated carbon for removing chloride is connected to the outside. In a refrigeration / air-conditioning apparatus having a structure provided in parallel with a part between a heat exchanger and an indoor heat exchanger and which can be removed from the refrigerant circuit or cut off from the refrigerant circuit by switching valves, The chloride recovery operation for recovering the chloride remaining therein includes a step of incorporating the chloride recovery means into a refrigerant circuit, a step of filling the refrigerant after evacuation of the extension pipe and the inside of the indoor unit, and an operation of the compressor And the chloride times Means for circulating a refrigerant through the means to trap chlorides, and stopping the compressor to disconnect the chloride recovery means from the refrigerant circuit or to shut off the refrigerant circuit by switching valves. Operating method of the refrigerating air conditioner. 前記塩化物回収運転は、室外機と室内機を交換する工事中に行うことを特徴とする請求項6記載の冷凍空調装置の運転方法。The method for operating a refrigeration / air-conditioning apparatus according to claim 6, wherein the chloride recovery operation is performed during a work for replacing an outdoor unit and an indoor unit. 前記塩化物回収運転は、新冷媒機へ交換後、新冷媒回路で空気調和運転や冷凍運転を開始してからの総運転時間が所定時間経過する毎に、一定時間だけ行うことを特徴とする請求項6記載の冷凍空調装置の運転方法。The chloride recovery operation is characterized in that, after the replacement with a new refrigerant machine, every time a predetermined time elapses from the start of the air conditioning operation or the refrigeration operation in the new refrigerant circuit, a predetermined time is elapsed, and the chloride recovery operation is performed for a predetermined time. An operation method of the refrigeration / air-conditioning apparatus according to claim 6. 前記塩化物回収運転は、所定時間経過するまで、あるいは冷媒回路中に残留する塩化物量が所定管理値以下になるまで行うことを特徴とする請求項6に記載の冷凍空調装置の運転方法。The method according to claim 6, wherein the chloride recovery operation is performed until a predetermined time elapses or until an amount of chloride remaining in the refrigerant circuit becomes equal to or less than a predetermined management value. 変更前の作動冷媒が塩素を含む弗化炭素水素系冷媒であり、変更後の作動冷媒が塩素を含まない弗化炭素水素系冷媒、炭素水素系冷媒、自然冷媒であることを特徴とする請求項1ないし請求項5のいずれかに記載の冷凍空調装置。The working refrigerant before the change is a hydrocarbon-based fluorocarbon-based refrigerant containing chlorine, and the working refrigerant after the change is a hydrocarbon-based hydrocarbon-free refrigerant containing no chlorine, a hydrocarbon-based refrigerant, and a natural refrigerant. The refrigeration / air-conditioning apparatus according to any one of claims 1 to 5.
JP2002238851A 2002-08-20 2002-08-20 Refrigeration air conditioner and operation method thereof Expired - Lifetime JP3855884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002238851A JP3855884B2 (en) 2002-08-20 2002-08-20 Refrigeration air conditioner and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002238851A JP3855884B2 (en) 2002-08-20 2002-08-20 Refrigeration air conditioner and operation method thereof

Publications (3)

Publication Number Publication Date
JP2004077034A true JP2004077034A (en) 2004-03-11
JP2004077034A5 JP2004077034A5 (en) 2005-03-10
JP3855884B2 JP3855884B2 (en) 2006-12-13

Family

ID=32022112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002238851A Expired - Lifetime JP3855884B2 (en) 2002-08-20 2002-08-20 Refrigeration air conditioner and operation method thereof

Country Status (1)

Country Link
JP (1) JP3855884B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025924A (en) * 2006-07-21 2008-02-07 Daikin Ind Ltd Refrigerant filling method in refrigerating device using carbon dioxide as refrigerant
JP2010032126A (en) * 2008-07-29 2010-02-12 Mitsubishi Electric Corp Air conditioner
JP2014009832A (en) * 2012-06-28 2014-01-20 Mitsubishi Heavy Ind Ltd Air conditioner
JP2015031476A (en) * 2013-08-06 2015-02-16 株式会社エイ・シー・ピー Cooling-heating system pipe passage cleaning method and pipe passage cleaning unit used for this method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025924A (en) * 2006-07-21 2008-02-07 Daikin Ind Ltd Refrigerant filling method in refrigerating device using carbon dioxide as refrigerant
US8479526B2 (en) 2006-07-21 2013-07-09 Daikin Industries, Ltd. Refrigerant charging method for refrigeration device having carbon dioxide as refrigerant
US9869498B2 (en) 2006-07-21 2018-01-16 Daikin Industries, Ltd. Refrigerant charging method for refrigeration device having carbon dioxide as refrigerant
JP2010032126A (en) * 2008-07-29 2010-02-12 Mitsubishi Electric Corp Air conditioner
JP2014009832A (en) * 2012-06-28 2014-01-20 Mitsubishi Heavy Ind Ltd Air conditioner
JP2015031476A (en) * 2013-08-06 2015-02-16 株式会社エイ・シー・ピー Cooling-heating system pipe passage cleaning method and pipe passage cleaning unit used for this method

Also Published As

Publication number Publication date
JP3855884B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
EP2312241B1 (en) Refrigerating cycle apparatus, and air-conditioning apparatus
JP5871880B2 (en) Refrigeration cycle equipment
JP3882841B2 (en) Air conditioner, heat source unit, and method of updating air conditioner
JP2004077034A (en) Refrigeration air conditioner and its operating method
JP4391559B2 (en) Refrigerant changing method of refrigerant circuit for refrigeration apparatus and refrigeration apparatus
JP2004263885A (en) Cleaning method of refrigerant pipe, renewing method of air conditioner and air conditioner
JP2004270974A (en) Method for changing refrigerant in refrigerant circuit for freezing and refrigerating device
JP4110818B2 (en) Refrigeration equipment
JP3680740B2 (en) How to use existing refrigerant piping, how to install air conditioner, air conditioner
JP4060786B2 (en) Refrigeration air conditioner
JPH1130458A (en) Air conditioner and method of using the same
JP4517834B2 (en) How to use existing refrigerant piping
JP5137726B2 (en) Air conditioner
JP4279080B2 (en) Refrigeration air conditioner and update method thereof
JP2003279199A (en) Refrigerating cycle, air-conditioner, freezer, working refrigerant changing method, and working refrigerant changing repair method
JP2008202909A (en) Refrigerating apparatus and method of removing foreign matter in the apparatus
JP2004077034A5 (en)
JP2004333121A (en) Method for updating air conditioner, and air conditioner
JP2000088403A (en) Air conditioner
JP4425457B2 (en) Refrigeration cycle apparatus and operation method thereof
JP3379426B2 (en) Thermal storage type air conditioner
JP2017203571A (en) Refrigeration cycle device
JP4061495B2 (en) Refrigeration equipment
JP2007163024A (en) Method of cleaning inside of duct, apparatus for collecting impurity, and method of implementation
JPH10132432A (en) Moisture removal trial running method of refrigeration cycle device and refrigeration cycle device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R151 Written notification of patent or utility model registration

Ref document number: 3855884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term