JP2004075560A - 3-quinuclidinone enol ester and method for producing optically active 3-quinuclidinol ester using the same - Google Patents

3-quinuclidinone enol ester and method for producing optically active 3-quinuclidinol ester using the same Download PDF

Info

Publication number
JP2004075560A
JP2004075560A JP2002234650A JP2002234650A JP2004075560A JP 2004075560 A JP2004075560 A JP 2004075560A JP 2002234650 A JP2002234650 A JP 2002234650A JP 2002234650 A JP2002234650 A JP 2002234650A JP 2004075560 A JP2004075560 A JP 2004075560A
Authority
JP
Japan
Prior art keywords
quinuclidinone
ester
quinuclidinol
optically active
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002234650A
Other languages
Japanese (ja)
Inventor
Tsutomu Aoki
青木 強
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaken Fine Chemicals Co Ltd
Original Assignee
Kawaken Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaken Fine Chemicals Co Ltd filed Critical Kawaken Fine Chemicals Co Ltd
Priority to JP2002234650A priority Critical patent/JP2004075560A/en
Publication of JP2004075560A publication Critical patent/JP2004075560A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an optically active 3-quinuclidinol ester from 3-quinuclidinone by a simple operation in a high yield. <P>SOLUTION: The method for producing the optically active 3-quinuclidinol ester represented by general formula (4) (R<SP>1</SP>is a 1-5C hydrocarbon group) comprises producing a new 3-quinuclidinone enol ester represented by formula (1) from a corresponding 3-quinuclidinone and hydrogenating a carbon-carbon double bond part in the enol ester in the presence of a complex catalyst of a transition metal of the group VIII containing a chiral bidentate ligand with phosphorus as a coordinating atom. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、3−キヌクリジノンエノールエステルおよびそれを使用した光学活性3−キヌクリジノールエステルの製造方法に関する。光学活性3−キヌクリジノールエステルは医薬、農薬の中間体として有用な化合物である。
【0002】
【従来の技術】
これまで光学活性なキヌクリジノールエステルは、ラセミ体のキヌクリジノールを酢酸、酪酸等のカルボン酸とエステルを形成させた後に、微生物あるいは酵素を用いて、望まない鏡像体のみを優先的に加水分解し、望ましい鏡像体のエステル体を抽出等により得る方法が知られていた。これらの生物学的な触媒を用いる方法では、反応に長時間を要する上に、基質濃度が低いなどの問題があった(特開平11−196890号公報など)。また、ラセミ体を光学分割する方法では、望ましい鏡像体の収率は、最大でもケトン体から50%の収率でしか得られず、望まない鏡像体は、廃棄物となるなどの問題もあった。
【0003】
また、特開平9−194480号公報には、ロジウム−ホスフィン錯体による単純ケトンの一種である3−キヌクリジノンの還元例が開示されている。しかしながら同技術開示においても3−キヌクリジノンを特定の誘導体に転換しない場合には、開示技術を用いても、その光学収率が1%以下しか得られず、また3−キヌクリジノンを特定の誘導体に転換した場合にも、煩雑な製造工程が必要とされており、簡便でしかも単純ケトンの不斉還元に関して高性能な触媒の開発が求められていた。
【0004】
【発明が解決しようとする課題】
本発明は、3−キヌクリジノンから、簡便な操作により高い収率で光学活性3−キヌクリジノールエステルを製造する方法およびその製造方法の中間体として有用な新規3−キヌクリジノンエノールエステルを提供しようとするものである。
【0005】
【課題を解決するための手段】
本発明者らは、3−キヌクリジノンから対応する新規エノールエステルを製造し、該エノールエステル中の炭素−炭素二重結合部分を、リンを配位原子とするキラルな二座配位子を有する第VIII族遷移金族錯体触媒の存在下に水素化することにより、望ましい鏡像体の含有率の高い3−キヌクリジノールエステルが得られることを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、一般式(1)
【0007】
【化5】

Figure 2004075560
【0008】
(式中、Rは、炭素数1〜5の炭化水素基を表す。)
で表される新規3−キヌクリジノンエノールエステルに関するものであり、
さらに、本発明は、
I.3−キヌクリジノンを化学式(2)
【0009】
【化6】
Figure 2004075560
【0010】
で表される3−キヌクリジノンリチウムエノラートに変換し、一般式(3)
(RCO)O  (3)
(式中、Rは前記定義に同じ。)で表される酸無水物と反応させて、一般式(1)
【0011】
【化7】
Figure 2004075560
【0012】
(式中、Rは前記定義に同じ。)で表される3−キヌクリジノンエノールエステルを製造し、
II.前記工程Iで得られた3−キヌクリジノンエノールエステルを、リンを配位原子とするキラルな二座配位子を有する第VIII族遷移金族錯体触媒の存在下に水素化することを特徴とする一般式(4)
【0013】
【化8】
Figure 2004075560
【0014】
(式中、Rは前記定義に同じ。)で表される光学活性3−キヌクリジノールエステルの製造方法に関するものである。
【0015】
【発明の実施の形態】
本発明の一般式(1)で表れる3−キヌクリジノンエノールエステルとしては、1−アザビシクロ[2,2,2]オクタ−2−エン−1−オール酢酸エステル、1−アザビシクロ[2,2,2]オクタ−2−エン−1−オールプロピオン酸エステル、
1−アザビシクロ[2,2,2]オクタ−2−エン−1−オール酪酸エステル、1−アザビシクロ[2,2,2]オクタ−2−エン−1−オール吉草酸エステル、
1−アザビシクロ[2,2,2]オクタ−2−エン−1−オールカプロン酸エステルが挙げられる。
【0016】
前記工程Iによる3−キヌクリジノンエノールエステルの製造について説明する。ジアルキルアミンから公知の方法(「精密有機合成」450頁、L.F.Tietze,Th.Eischer著、高野誠一・小笠原國郎訳、南江堂など)により発生させたリチウムジアルキルアミド溶液(エーテル系溶剤)に3−キヌクリジノンを滴下して反応させることにより前記一般式(2)で表される3−キヌクリジノンリチウムエノラートの溶液を得る。
【0017】
リチウムジアルキルアミドとしては、リチウムジイソプロピルアミド(以下、LDAと略称)、リチウムイソプロピルシクロヘキシルアミド、リチウム2,2,6,6−テトラメチルピペリジンなどが例示できる。原料である二級アミンの入手し易さから、LDAが好ましい。3−キヌクリジノンに対してジアルキルアミンを、1.0〜2.0倍モル使用してリチウムジアルキルアミド溶液(エーテル系溶剤)を合成し、そのまま使用する。1.0倍モルより少ない場合は3−キヌクリジノンとの反応が完結せず、2.0倍モルより多い場合は、副生するジアルキルアミンや水酸化リチウムの除去が煩雑となり好ましくない。
【0018】
エーテル系溶剤としては、ジエチルエーテル、テトラヒドロフラン(以下、THFと略称)などが例示できる。LDAの溶解度が高いことから、THFが好ましい。
【0019】
3−キヌクリジノンの滴下温度としては、−100〜−60℃が好ましい。温度が−60℃を越えると副反応が進行し易くなり、−100℃未満では未反応物が残存し易くなり好ましくない。
【0020】
得られた3−キヌクリジノンリチウムエノラートの溶液に、前記一般式(3)で表される酸無水物溶液(エーテル系溶剤)を滴下して反応させることにより、前記一般式(1)で表される3−キヌクリジノンエノールエステルを製造できる。
【0021】
前記一般式(3)で表される酸無水物としては、無水酢酸、無水プロピオン酸、無水吉草酸、無水酪酸、無水カプロン酸が挙げられる。酸無水物の使用量としては、3−キヌクリジノンに対して、1.0〜3.0倍モルが好ましい。1.0倍モルより少ない場合は3−キヌクリジノンリチウムエノラートとの反応が完結せず、3.0倍モルより多い場合は未反応の酸無水物の除去が煩雑となり好ましくない。
【0022】
エーテル系溶剤は、3−キヌクリジノンの重量に対して、合計で10〜50倍になるように添加する。
【0023】
反応温度としては、−100〜0℃が好ましい。温度が0℃を越えると副反応が進行し易くなり、−100℃未満では未反応物が残存し易くなり好ましくない。
【0024】
反応後は、抽出、蒸留、クロマトグラフィーなどの操作により前記一般式(1)で表される3−キヌクリジノンエノールエステルを単離できる。
【0025】
前記工程IIによる前記一般式(4)で表される光学活性3−キヌクリジノールエステルの製造について説明する。前記工程Iで得られた3−キヌクリジノンエノールエステルを、溶媒中、リンを配位原子とするキラルな二座配位子を有する第VIII族遷移金族錯体触媒の存在下に水素化することにより、前記一般式(4)で表される光学活性3−キヌクリジノールエステルを製造できる。
【0026】
リンを配位原子とするキラルな二座配位子を有する第VIII族遷移金族錯体触媒としては、[Rh((R,S)−BPPFOH)Cl]、[Rh((R)−(BINAP))Cl]、[Rh((L)−CandyPhos)(COD)]BF、[Ru((R)−(BINAP))(p−シメン)I]I、RuCl((R)−(BINAP)NEt、[Ru((R)−(BINAP))(CHCO]、などが例示できる。ここで、(R)−BINAPは(R)−2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフチルを、(R,S)−BPPFOHは1,1’−ビス(ジフェニルホスフィノ)−2−[(1R)−1−ヒドロキシエチル]−(1S)−フェロセンを、(L)−CandyPhosは(1L)−3,4−ビス(O−ジフェニルホスフィノ)−1,2,5,6−テトラ−O−メチル−chiro−イノシトールを、CODは1,5−シクロオクタジエンを、NBDは2,5−ノルボルナジエンを表す。
【0027】
[Rh((L)−CandyPhos)(COD)]BFの製造方法は特願2001−228012号明細書に、RuCl((R)−(BINAP)NEtの製造方法は特開昭61−63690号公報に、[Ru((R)−(BINAP))(p−シメン)I]Iの製造方法は特開平5−111639号公報に、[Ru((R)−(BINAP))(CHCO]の製造方法は特開昭62−265293号公報に記載されている。
【0028】
リンを配位原子とするキラルな二座配位子を有する第VIII族遷移金族錯体触媒は、単離しなくとも、その製造に使用した溶媒の溶液として、そのまま当該反応に使用することができる。
【0029】
リンを配位原子とするキラルな二座配位子を有する第VIII族遷移金族錯体触媒の使用量は特に限定されないが、3−キヌクリジノンエノールエステルに対して、1〜0.01モル%使用する。0.01モル%未満では未反応の3−キヌクリジノンエノールエステルが残存し易く、1モル%を越える量を添加しても化学収率や鏡像体過剰率は向上せず、経済的な面から好ましくない。
【0030】
溶媒としては、反応に不活性な溶媒で水以外のものが使用できるが、原料である3−キヌクリジノンエノールエステルや生成物である3−キヌクリジノールエステルの溶解性が良好で副反応が少ないことから、THFやジオキサンなどが好ましい。溶媒の使用量は特に限定されないが、5〜30倍の容量を使用する。
【0031】
また、反応温度としては、0〜80℃が好ましい。0℃未満では反応が完結しないことがあり、80℃を越えると副反応が増大するので好ましくない。
【0032】
水素圧は、常圧から10MPaの範囲で任意に選択されるが、経済性および効率性の面から、0.3MPa〜7.0MPaが好ましい。
【0033】
反応後は、抽出、蒸留、クロマトグラフィーなどの操作により、前記一般式(4)で表される光学活性3−キヌクリジノールエステルを単離できる。
【0034】
また、得られた光学活性3−キヌクリジノールエステルは、エステル部位を加水分解することで、容易に光学活性3−キヌクリジノールへと誘導することができる。
【0035】
【実施例】
以下に実施例を示し、更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0036】
<実施例1> 1−アザビシクロ[2,2,2]オクタ−2−エン−1−オール酪酸エステルの合成
THF280mLにジイソプロピルアミン18gを加え、−70℃に冷却した。この溶液にn−ブチルリチウムの1.6Mn−ヘキサン溶液100mLを滴下した。反応液を、−5〜0℃に昇温した後、30分攪拌した。その後、−78℃に冷却し、3−キヌクリジノン13.3gをTHF40mLに溶解した溶液を滴下し、−78℃で1時間反応させた。この溶液に無水酪酸 18.7gを滴下し、反応させた。反応後、水300mLを加え、THF層と水層を分液した。水層から、トルエン100mLで3回抽出し、トルエン層を先のTHF層と合わせた。合わせた有機層を1M 塩酸200mLで抽出、この水層のpHを8〜9に調整し、トルエンで抽出、有機層を無水硫酸ナトリウムで乾燥後、濃縮し1−アザビシクロ[2,2,2]オクタ−2−エン−1−オール酪酸エステルをオイル状物として得た。(収量17.4g 、収率83.6%)
【0037】
H NMR(250MHz, CDCl, ppm)
δ 6.23 (1H, s, C−H)  δ 3.29−2.84 (2H, m, CH)  δ 2.67−2.57 (2H, m, CH)  δ 2.42 (2H, q, CO−CH−) δ 1.87−1.80 (2H, m, −CH−)
δ 1.78−1.64 (4H, m, CH×2)  δ 1.00 (3H, t, −CH
【0038】
13C NMR(63MHz, CDCl, ppm)
δ 171.6(−CO−)  δ 157.0(−C(=)−O)  δ 126.2(=C(−)−H)  δ 49.5(N−CH−)  δ 35.8(−CO−−)  δ 31.2(CH)  δ 29.0(HC−−)  δ 18.3(−−CH)  δ 13.6(CH
【0039】
GC/MS
Calcd for C1117NO  M : 195.13 m/z.  Found: 195
【0040】
<実施例2>
窒素ガスを導入したフラスコ中で[Rh(COD)Cl] 25.1mg(Rhとして102.4μmol) 、(R,S)−BPPFOH70.2mg(122.8μmol)をTHF10mLに溶解し、室温下攪拌することで[Rh((R,S)−BPPFOH)Cl]錯体の溶液を合成した。
【0041】
内容積200mLのインコネル製耐圧反応器に、実施例1で合成した1−アザビシクロ[2,2,2]オクタ−2−エン−1−オール酪酸エステル5.0g(25.6mmol)、THF85mLを加え溶解した。この耐圧容器に先のロジウム錯体溶液を添加した後に、耐圧容器内を窒素ガスで置換した。さらに水素ガスで置換した後、水素ガス0.5MPaを導入し30℃で3日間攪拌した。反応液を減圧下濃縮し、溶媒を留去し、3−キヌクリジノール酪酸エステル 4.95gを得た(収率 98%)。
【0042】
残渣をHPLC(カラム: CHIRALCEL OD 4.6mm×250mm ;ダイセル化学工業(株)製を2本連結,溶離液:n−ヘキサン800容量, 2−プロパノール200容量, トリフルオロ酢酸1容量の混液)で分析したところ、鏡像体過剰率58%ee(R)であった。
【0043】
<実施例3>
窒素ガスを導入したフラスコ中で[Rh(COD)Cl] 5.0mg(Rhとして20.4μmol)、(L)−CandyPhos13.6mg(22.4μmol)をTHF 5mLに溶解し、室温で攪拌する。この溶液にAgBF4mgを加えて攪拌し、不溶物をろ過し、[Rh((L)−CandyPhos)(COD)]BF錯体の溶液を合成した。
【0044】
内容積200mLのインコネル製耐圧反応器に、実施例1で合成した1−アザビシクロ[2,2,2]オクタ−2−エン−1−オール酪酸エステル2.0g(10.2mmol)、THF38mLを加え溶解した。この耐圧容器に先のロジウム錯体溶液を添加した後に、耐圧容器内を窒素ガスで置換した。さらに水素ガスで置換した後、水素ガス0.5MPaを導入し30℃で3日間攪拌した。反応液を減圧下濃縮し、溶媒を留去し、3−キヌクリジノール酪酸エステル4.95gを得た(収率 98%)。
【0045】
残渣を、実施例2と同様にしてHPLCで分析したところ、鏡像体過剰率57%ee(R)であった。
【0046】
【発明の効果】
本発明によれば、3−キヌクリジノンから、新規化合物である3−キヌクリジノンエノールエステルを経由して、簡便な操作により高い収率で光学活性3−キヌクリジノールエステルを製造することができる。[0001]
[Industrial applications]
The present invention relates to a 3-quinuclidinone enol ester and a method for producing an optically active 3-quinuclidinol ester using the same. Optically active 3-quinuclidinol esters are compounds useful as intermediates for pharmaceuticals and agricultural chemicals.
[0002]
[Prior art]
Hitherto, optically active quinuclidinol esters have been obtained by forming racemic quinuclidinol with carboxylic acids such as acetic acid and butyric acid, and then preferentially hydrolyzing only the undesired enantiomers using microorganisms or enzymes. A method for obtaining a desired enantiomer ester by extraction or the like has been known. The methods using these biological catalysts have problems such as a long reaction time and a low substrate concentration (Japanese Patent Application Laid-Open No. H11-196890). Further, in the method of optically resolving a racemate, a desirable enantiomer yield can be obtained at a maximum of only 50% from a ketone body, and there is a problem that an undesired enantiomer becomes waste. Was.
[0003]
JP-A-9-194480 discloses an example of the reduction of 3-quinuclidinone, which is a kind of simple ketone, with a rhodium-phosphine complex. However, in the same technical disclosure, when 3-quinuclidinone is not converted to a specific derivative, the optical yield is only 1% or less even when the disclosed technology is used, and 3-quinuclidinone is converted to a specific derivative. In such a case, complicated production steps are required, and the development of a simple and high-performance catalyst for asymmetric reduction of simple ketones has been demanded.
[0004]
[Problems to be solved by the invention]
The present invention provides a method for producing optically active 3-quinuclidinol ester from 3-quinuclidinone in a high yield by a simple operation and a novel 3-quinuclidinone enol ester useful as an intermediate in the production method. What you are trying to do.
[0005]
[Means for Solving the Problems]
The present inventors have produced a corresponding novel enol ester from 3-quinuclidinone, and have a carbon-carbon double bond moiety in the enol ester having a chiral bidentate ligand having phosphorus as a coordinating atom. It has been found that hydrogenation in the presence of a Group VIII transition metal complex catalyst can provide a 3-quinuclidinol ester having a high content of a desired enantiomer, thereby completing the present invention.
[0006]
That is, the present invention relates to the general formula (1)
[0007]
Embedded image
Figure 2004075560
[0008]
(In the formula, R 1 represents a hydrocarbon group having 1 to 5 carbon atoms.)
With respect to a novel 3-quinuclidinone enol ester represented by
Further, the present invention provides
I. 3-quinuclidinone is represented by the chemical formula (2)
[0009]
Embedded image
Figure 2004075560
[0010]
Is converted to a 3-quinuclidinone lithium enolate represented by the general formula (3)
(R 1 CO) 2 O (3)
(Wherein R 1 is as defined above), and reacted with an acid anhydride represented by the general formula (1)
[0011]
Embedded image
Figure 2004075560
[0012]
(Wherein R 1 is as defined above) to produce a 3-quinuclidinone enol ester represented by the formula:
II. Hydrogenating the 3-quinuclidinone enol ester obtained in the step I in the presence of a group VIII transition metal complex catalyst having a chiral bidentate ligand having phosphorus as a coordinating atom. General formula (4)
[0013]
Embedded image
Figure 2004075560
[0014]
(In the formula, R 1 has the same definition as above.) The present invention relates to a method for producing an optically active 3-quinuclidinol ester represented by the formula:
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the 3-quinuclidinone enol ester represented by the general formula (1) of the present invention include 1-azabicyclo [2,2,2] oct-2-en-1-ol acetate, 1-azabicyclo [2,2, 2] oct-2-en-1-olpropionic acid ester,
1-azabicyclo [2,2,2] oct-2-en-1-ol butyrate, 1-azabicyclo [2,2,2] oct-2-en-1-ol valerate,
1-Azabicyclo [2,2,2] oct-2-en-1-olcaproic acid ester is exemplified.
[0016]
The production of the 3-quinuclidinone enol ester in the step I will be described. Lithium dialkylamide solution (ether-based solvent) generated from dialkylamine by a known method ("Precision Organic Synthesis", page 450, LF Tietze, Th. Eischer, translated by Seiichi Takano and Kunio Ogasawara, Nankodo, etc.) To give a solution of 3-quinuclidinone lithium enolate represented by the general formula (2).
[0017]
Examples of the lithium dialkylamide include lithium diisopropylamide (hereinafter abbreviated as LDA), lithium isopropylcyclohexylamide, and lithium 2,2,6,6-tetramethylpiperidine. LDA is preferred because of the availability of the secondary amine as a raw material. A lithium dialkylamide solution (ether-based solvent) is synthesized using 1.0 to 2.0 moles of a dialkylamine with respect to 3-quinuclidinone, and is used as it is. If the molar ratio is less than 1.0, the reaction with 3-quinuclidinone is not completed. If the molar ratio is greater than 2.0, removal of by-product dialkylamine and lithium hydroxide is complicated, which is not preferable.
[0018]
Examples of the ether solvent include diethyl ether and tetrahydrofuran (hereinafter abbreviated as THF). THF is preferred because of the high solubility of LDA.
[0019]
The dropping temperature of 3-quinuclidinone is preferably from -100 to -60C. When the temperature exceeds -60 ° C, side reactions tend to proceed easily, and when the temperature is lower than -100 ° C, unreacted substances tend to remain, which is not preferable.
[0020]
An acid anhydride solution (ether-based solvent) represented by the general formula (3) is added dropwise to the obtained solution of 3-quinuclidinone lithium enolate to cause a reaction, so that the solution represented by the general formula (1) is obtained. 3-quinuclidinone enol ester can be produced.
[0021]
Examples of the acid anhydride represented by the general formula (3) include acetic anhydride, propionic anhydride, valeric anhydride, butyric anhydride, and caproic anhydride. The amount of the acid anhydride to be used is preferably 1.0 to 3.0 times the molar amount of 3-quinuclidinone. If it is less than 1.0 mole, the reaction with 3-quinuclidinone lithium enolate will not be completed, and if it is more than 3.0 moles, removal of unreacted acid anhydride will be complicated, which is not preferable.
[0022]
The ether solvent is added so as to be 10 to 50 times the total weight of 3-quinuclidinone.
[0023]
The reaction temperature is preferably from -100 to 0C. If the temperature exceeds 0 ° C., a side reaction easily proceeds, and if the temperature is lower than −100 ° C., unreacted substances tend to remain, which is not preferable.
[0024]
After the reaction, the 3-quinuclidinone enol ester represented by the general formula (1) can be isolated by operations such as extraction, distillation, and chromatography.
[0025]
The production of the optically active 3-quinuclidinol ester represented by the general formula (4) in the step II will be described. The 3-quinuclidinone enol ester obtained in the step I is hydrogenated in a solvent in the presence of a Group VIII transition metal complex catalyst having a chiral bidentate ligand having phosphorus as a coordinating atom. Thereby, the optically active 3-quinuclidinol ester represented by the general formula (4) can be produced.
[0026]
Examples of the Group VIII transition metal complex catalyst having a chiral bidentate ligand having phosphorus as a coordinating atom include [Rh 2 ((R, S) -BPPFOH) 2 Cl 2 ], [Rh 2 ((R )-(BINAP)) 2 Cl 2 ], [Rh ((L) -CandyPhos) (COD)] BF 4 , [Ru ((R)-(BINAP)) (p-cymene) I] I, Ru 2 Cl 4 ((R) - (BINAP ) 2 NEt 3, [Ru ((R) - (BINAP)) (CH 3 CO 2) 2]., etc. can be exemplified here, (R) -BINAP is (R) -2,2'-bis (diphenylphosphino) -1,1'-binaphthyl; (R, S) -BPPFOH is 1,1'-bis (diphenylphosphino) -2-[(1R) -1- Hydroxyethyl]-(1S) -ferrocene is converted to (L) -Can dyphos is (1L) -3,4-bis (O-diphenylphosphino) -1,2,5,6-tetra-O-methyl-chiro-inositol, COD is 1,5-cyclooctadiene, NBD Represents 2,5-norbornadiene.
[0027]
[Rh ((L) -CandyPhos) (COD)] manufacturing method of BF 4 are in EP Application No. 2001-228012, Ru 2 Cl 4 (( R) - (BINAP) 2 manufacturing method of NEt 3 Japanese Patent JP-A-61-63690 discloses a method for producing [Ru ((R)-(BINAP)) (p-cymene) I] I disclosed in Japanese Patent Application Laid-Open No. H5-111639, which discloses [Ru ((R)-(BINAP)-(BINAP)]. ) (CH 3 CO 2 ) 2 ] is described in JP-A-62-265293.
[0028]
The group VIII transition metal complex catalyst having a chiral bidentate ligand having phosphorus as a coordinating atom can be used as it is in the reaction as a solution of the solvent used for its production without isolation. .
[0029]
The amount of the Group VIII transition metal complex catalyst having a chiral bidentate ligand having phosphorus as a coordinating atom is not particularly limited, but is preferably 1 to 0.01 mol based on 3-quinuclidinone enol ester. %use. If the amount is less than 0.01 mol%, unreacted 3-quinuclidinone enol ester tends to remain, and even if the amount exceeds 1 mol%, the chemical yield and the enantiomeric excess are not improved, and the economical aspect is not improved. Is not preferred.
[0030]
As the solvent, a solvent inert to the reaction other than water can be used. However, the solubility of the 3-quinuclidinone enol ester as a raw material and the 3-quinuclidinol ester as a product is good, and a side reaction is caused. Is small, so that THF, dioxane and the like are preferable. The amount of the solvent used is not particularly limited, but a 5 to 30 times volume is used.
[0031]
The reaction temperature is preferably from 0 to 80C. If the temperature is lower than 0 ° C., the reaction may not be completed.
[0032]
The hydrogen pressure is arbitrarily selected within a range from normal pressure to 10 MPa, but from the viewpoint of economy and efficiency, 0.3 MPa to 7.0 MPa is preferable.
[0033]
After the reaction, the optically active 3-quinuclidinol ester represented by the general formula (4) can be isolated by operations such as extraction, distillation, and chromatography.
[0034]
Further, the obtained optically active 3-quinuclidinol ester can be easily converted to optically active 3-quinuclidinol by hydrolyzing the ester site.
[0035]
【Example】
Hereinafter, examples will be shown and described in more detail, but the present invention is not limited to these examples.
[0036]
<Example 1> Synthesis of 1-azabicyclo [2,2,2] oct-2-en-1-ol butyrate 18 g of diisopropylamine was added to 280 mL of THF, and the mixture was cooled to -70 ° C. To this solution, 100 mL of a 1.6 Mn-hexane solution of n-butyllithium was added dropwise. After the temperature of the reaction solution was raised to -5 to 0 ° C, it was stirred for 30 minutes. Thereafter, the mixture was cooled to -78 ° C, a solution of 13.3 g of 3-quinuclidinone dissolved in 40 mL of THF was added dropwise, and the mixture was reacted at -78 ° C for 1 hour. 18.7 g of butyric anhydride was added dropwise to this solution and reacted. After the reaction, 300 mL of water was added, and the THF layer and the aqueous layer were separated. The aqueous layer was extracted three times with 100 mL of toluene, and the toluene layer was combined with the previous THF layer. The combined organic layer was extracted with 200 mL of 1M hydrochloric acid, the pH of the aqueous layer was adjusted to 8 to 9, extracted with toluene, and the organic layer was dried over anhydrous sodium sulfate, concentrated, and concentrated to give 1-azabicyclo [2,2,2]. Oct-2-en-1-ol butyrate was obtained as an oil. (Yield 17.4 g, 83.6% yield)
[0037]
1 H NMR (250 MHz, CDCl 3 , ppm)
δ 6.23 (1H, s, CH) δ 3.29-2.84 (2H, m, CH 2 ) δ 2.67-2.57 (2H, m, CH 2 ) δ 2.42 ( 2H, q, CO-CH 2 -) δ 1.87-1.80 (2H, m, -CH 2 -)
δ 1.78-1.64 (4H, m, CH 2 × 2) δ 1.00 (3H, t, -CH 3 )
[0038]
13 C NMR (63 MHz, CDCl 3 , ppm)
δ 171.6 (-CO-) δ 157.0 (-C (=)-O) δ 126.2 (= C (-)-H) δ 49.5 (N-CH 2- ) δ 35.8 (-CO- C H 2 -) δ 31.2 (CH) δ 29.0 (HC- C H 2 -) δ 18.3 (- C H 2 -CH 3) δ 13.6 (CH 3)
[0039]
GC / MS
Calcd for C 11 H 17 NO 2 M +: 195.13 m / z. Found: 195
[0040]
<Example 2>
In a flask into which nitrogen gas has been introduced, 25.1 mg of [Rh (COD) Cl] 2 (102.4 μmol as Rh) and 70.2 mg of (R, S) -BPPFOH (122.8 μmol) are dissolved in 10 mL of THF and stirred at room temperature. Thus, a solution of the [Rh 2 ((R, S) -BPPFOH) 2 Cl 2 ] complex was synthesized.
[0041]
5.0 g (25.6 mmol) of 1-azabicyclo [2,2,2] oct-2-en-1-olbutyrate synthesized in Example 1 and 85 mL of THF were added to a pressure-resistant reactor made of Inconel having an internal volume of 200 mL. Dissolved. After the rhodium complex solution was added to the pressure vessel, the inside of the pressure vessel was replaced with nitrogen gas. After replacing with hydrogen gas, 0.5 MPa of hydrogen gas was introduced, and the mixture was stirred at 30 ° C. for 3 days. The reaction solution was concentrated under reduced pressure, and the solvent was distilled off to obtain 4.95 g of 3-quinuclidinol butyrate (98% yield).
[0042]
The residue was subjected to HPLC (column: CHIRALCEL OD 4.6 mm × 250 mm; two units of Daicel Chemical Industries, Ltd. connected, eluent: a mixture of 800 volumes of n-hexane, 200 volumes of 2-propanol, and 1 volume of trifluoroacetic acid). Analysis showed that the enantiomeric excess was 58% ee (R).
[0043]
<Example 3>
In a flask was introduced nitrogen gas [Rh (COD) Cl] 2 5.0mg (20.4μmol as Rh), dissolved in THF 5 mL of (L) -CandyPhos13.6mg (22.4μmol), stirred at room temperature . 4 mg of AgBF 4 was added to this solution, and the mixture was stirred. The insoluble material was filtered off to synthesize a solution of [Rh ((L) -CandyPhos) (COD)] BF 4 complex.
[0044]
2.0 g (10.2 mmol) of 1-azabicyclo [2,2,2] oct-2-en-1-olbutyrate synthesized in Example 1 and 38 mL of THF were added to a pressure-resistant reactor made of Inconel having an internal volume of 200 mL. Dissolved. After the rhodium complex solution was added to the pressure vessel, the inside of the pressure vessel was replaced with nitrogen gas. After replacing with hydrogen gas, 0.5 MPa of hydrogen gas was introduced, and the mixture was stirred at 30 ° C. for 3 days. The reaction solution was concentrated under reduced pressure, and the solvent was distilled off to obtain 4.95 g of 3-quinuclidinol butyrate (98% yield).
[0045]
When the residue was analyzed by HPLC in the same manner as in Example 2, the enantiomeric excess was 57% ee (R).
[0046]
【The invention's effect】
According to the present invention, an optically active 3-quinuclidinol ester can be produced from 3-quinuclidinone in a high yield by a simple operation via a novel compound, 3-quinuclidinone enol ester. .

Claims (2)

一般式(1)
Figure 2004075560
(式中、Rは、炭素数1〜5の炭化水素基を表す。)で表される3−キヌクリジノンエノールエステル。
General formula (1)
Figure 2004075560
(Wherein, R 1 represents a hydrocarbon group having 1 to 5 carbon atoms.) 3-quinuclidinone enol ester represented by the formula:
I.3−キヌクリジノンを化学式(2)
Figure 2004075560
で表される3−キヌクリジノンリチウムエノラートに変換し、一般式(3)
(RCO)O  (3)
(式中、Rは、炭素数1〜5の炭化水素基を表す。)で表される酸無水物と反応させて、一般式(1)
Figure 2004075560
(式中、Rは前記定義に同じ。)で表される3−キヌクリジノンエノールエステルを製造し、
II.前記3−キヌクリジノンエノールエステルを、リンを配位原子とするキラルな二座配位子を有する第VIII族遷移金族錯体触媒の存在下に水素化することを特徴とする一般式(4)
Figure 2004075560
(式中、Rは前記と同じ。)で表される光学活性3−キヌクリジノールエステルの製造方法。
I. 3-quinuclidinone is represented by the chemical formula (2)
Figure 2004075560
Is converted to a 3-quinuclidinone lithium enolate represented by the general formula (3)
(R 1 CO) 2 O (3)
(Wherein, R 1 represents a hydrocarbon group having 1 to 5 carbon atoms), and reacted with an acid anhydride represented by the general formula (1).
Figure 2004075560
(Wherein R 1 is as defined above) to produce a 3-quinuclidinone enol ester represented by the formula:
II. Hydrogenation of the 3-quinuclidinone enol ester in the presence of a group VIII transition metal complex catalyst having a chiral bidentate ligand having phosphorus as a coordinating atom; )
Figure 2004075560
(In the formula, R 1 is the same as described above.) A method for producing an optically active 3-quinuclidinol ester represented by the formula:
JP2002234650A 2002-08-12 2002-08-12 3-quinuclidinone enol ester and method for producing optically active 3-quinuclidinol ester using the same Pending JP2004075560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234650A JP2004075560A (en) 2002-08-12 2002-08-12 3-quinuclidinone enol ester and method for producing optically active 3-quinuclidinol ester using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234650A JP2004075560A (en) 2002-08-12 2002-08-12 3-quinuclidinone enol ester and method for producing optically active 3-quinuclidinol ester using the same

Publications (1)

Publication Number Publication Date
JP2004075560A true JP2004075560A (en) 2004-03-11

Family

ID=32019402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234650A Pending JP2004075560A (en) 2002-08-12 2002-08-12 3-quinuclidinone enol ester and method for producing optically active 3-quinuclidinol ester using the same

Country Status (1)

Country Link
JP (1) JP2004075560A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1650207A1 (en) * 2004-08-27 2006-04-26 Takasago International Corporation Process for producing optically active 3-quinuclidinols
JP2009533424A (en) * 2006-04-11 2009-09-17 ビアル−ポルテア アンド シー.エイ., エス.エイ. Preparation of eslicarbazepine and related compounds by asymmetric hydrogenation
JP2020117459A (en) * 2019-01-23 2020-08-06 国立研究開発法人産業技術総合研究所 Rhodium complex having bidentate phosphine ligand and method for producing the same, and hydrosilylation of halogenated allyl using rhodium complex having bidentate phosphine ligand

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1650207A1 (en) * 2004-08-27 2006-04-26 Takasago International Corporation Process for producing optically active 3-quinuclidinols
US7462722B2 (en) 2004-08-27 2008-12-09 Takasago International Corporation Process for producing optically active-3-quinuclidinols
JP2009533424A (en) * 2006-04-11 2009-09-17 ビアル−ポルテア アンド シー.エイ., エス.エイ. Preparation of eslicarbazepine and related compounds by asymmetric hydrogenation
JP2020117459A (en) * 2019-01-23 2020-08-06 国立研究開発法人産業技術総合研究所 Rhodium complex having bidentate phosphine ligand and method for producing the same, and hydrosilylation of halogenated allyl using rhodium complex having bidentate phosphine ligand
JP7169648B2 (en) 2019-01-23 2022-11-11 国立研究開発法人産業技術総合研究所 Rhodium complex having bidentate phosphine ligand, method for producing the same, and hydrosilylation of allyl halide using rhodium complex having bidentate phosphine ligand

Similar Documents

Publication Publication Date Title
JP5671456B2 (en) Novel ruthenium carbonyl complex having a tridentate ligand, and production method and use thereof
EP1802561B1 (en) Method for the production of optically active carbonyl compounds
Peach et al. Asymmetric transfer hydrogenation of α, β-unsaturated, α-tosyloxy and α-substituted ketones
EP2095875B1 (en) Homogeneous asymmetric hydrogenation catalyst
WO2008132057A1 (en) Method for synthesizing optically active carbonyl compounds
EP0643065A1 (en) Novel bisphosphines for asymetric hydrogenation catalysts
EP1276745B1 (en) Ruthenium-diphosphine complexes and their use as catalysts
EP0478147B1 (en) Process for producing optically active gamma-butyrolactone derivatives
US6583312B2 (en) Process for preparing optically active trimethyllactic acid and its esters
JP2004075560A (en) 3-quinuclidinone enol ester and method for producing optically active 3-quinuclidinol ester using the same
EP1213279B1 (en) Venlafaxine production process
JP3493206B2 (en) Process for producing optically active β-amino acids
WO2010114151A1 (en) Method for producing alcohol compound and catalyst therefor
EP0673911A1 (en) Process for producing optically active carboxylic acids and chiral ligands for this purpose
JP2008063335A (en) Method for producing 1,2-diol from carbonyl compound
EP1601635B1 (en) Process for producing optically active alcohol in the presence of rhodium, a chiral ferrocenyldiphosphine and an optically active diamine
JP3569280B1 (en) Method for producing optically active alcohol
JP4308155B2 (en) Process for producing δ-iminomalonic acid derivative and catalyst therefor
JP2003277380A (en) Optically active 3-quinuclidinol
JPH09268146A (en) Production of optically active fluorine-containing hydroxy compound
JP2002069026A (en) Method for manufacturing (e)-3-methyl-2- cyclopentadecenone
JPH11302226A (en) Production of optically active alcohol
JP5507499B2 (en) 1,2-bis (dialkylphosphino) -4,5- (methylenedioxy) benzene derivative, process for producing the same, and 1,2-bis (dialkylphosphino) -4,5- (methylenedioxy) benzene derivative Complex with bismuth as ligand and asymmetric hydrogenation method
JP2005306804A (en) Method for producing optically active 3-quinuclidinol
CN1980883B (en) Method for the production of optically active alkyl succinic acid monoalkyl esters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090811