JP3569280B1 - Method for producing optically active alcohol - Google Patents

Method for producing optically active alcohol Download PDF

Info

Publication number
JP3569280B1
JP3569280B1 JP2004059915A JP2004059915A JP3569280B1 JP 3569280 B1 JP3569280 B1 JP 3569280B1 JP 2004059915 A JP2004059915 A JP 2004059915A JP 2004059915 A JP2004059915 A JP 2004059915A JP 3569280 B1 JP3569280 B1 JP 3569280B1
Authority
JP
Japan
Prior art keywords
optically active
group
active alcohol
carbonyl compound
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004059915A
Other languages
Japanese (ja)
Other versions
JP2004292434A (en
Inventor
豊文 伊藤
強 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaken Fine Chemicals Co Ltd
Original Assignee
Kawaken Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaken Fine Chemicals Co Ltd filed Critical Kawaken Fine Chemicals Co Ltd
Priority to JP2004059915A priority Critical patent/JP3569280B1/en
Application granted granted Critical
Publication of JP3569280B1 publication Critical patent/JP3569280B1/en
Publication of JP2004292434A publication Critical patent/JP2004292434A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

【課題】 プロキラルなカルボニル化合物を不斉水素化し、対応する光学活性アルコールを高い鏡像体過剰率で、かつ高収率に工業的に有利に製造する方法を提供する。
【解決手段】 プロキラルなカルボニル化合物を不斉水素化して光学活性アルコールを得る際に、ロジウム錯体あるいはその塩、特定の光学活性ジホスフィン、特定の光学活性ジアミンの存在下において、塩基を添加せずに水素添加することを特徴とする光学活性アルコールの製造方法。
【選択図】 なし
PROBLEM TO BE SOLVED: To provide a process for asymmetrically hydrogenating a prochiral carbonyl compound to industrially advantageously produce a corresponding optically active alcohol in a high enantiomeric excess and in a high yield.
SOLUTION: When obtaining an optically active alcohol by asymmetric hydrogenation of a prochiral carbonyl compound, in the presence of a rhodium complex or a salt thereof, a specific optically active diphosphine, and a specific optically active diamine, without adding a base. A method for producing an optically active alcohol, comprising hydrogenating.
[Selection diagram] None

Description

本発明は、プロキラルなカルボニル化合物を不斉水素化して光学活性アルコールを製造方法に関する。   The present invention relates to a method for producing an optically active alcohol by asymmetric hydrogenation of a prochiral carbonyl compound.

本発明方法の目的化合物である光学活性アルコールは種々の医薬や農薬の原料・中間体として有用である。   The optically active alcohol which is the target compound of the method of the present invention is useful as a raw material / intermediate of various medicines and agricultural chemicals.

光学活性アルコールを得る方法として、プロキラルなカルボニル化合物を不斉金属錯体触媒の存在下で不斉水素化する方法がある。特許文献1には、遷移金属触媒、アルカリ金属またはアルカリ土類金属の水酸化物などの塩基、及び光学活性含窒素化合物の存在下でカルボニル化合物を不斉水素化する方法が開示されている。特許文献2には、特定の光学活性ホスフィンと特定の光学活性ジアミンが配位したルテニウム錯体を触媒として使用し、カルボニル化合物を水素化する方法が開示されている。しかしながら、カルボニル化合物や触媒によっては、塩基を添加することにより、反応の進行を抑制することや、得られる光学活性アルコールの鏡像体過剰率の低下を引き起こすこともあった。また、カルボニル化合物によっては、特許文献2に記載されている特定の光学活性ホスフィンと特定の光学活性ジアミンが配位したルテニウム錯体を使用した場合でも、満足する鏡像体過剰率を有するアルコールが得られないことがあった。   As a method for obtaining an optically active alcohol, there is a method for asymmetric hydrogenation of a prochiral carbonyl compound in the presence of an asymmetric metal complex catalyst. Patent Document 1 discloses a method for asymmetric hydrogenation of a carbonyl compound in the presence of a transition metal catalyst, a base such as an alkali metal or alkaline earth metal hydroxide, and an optically active nitrogen-containing compound. Patent Document 2 discloses a method of hydrogenating a carbonyl compound using a ruthenium complex in which a specific optically active phosphine and a specific optically active diamine are coordinated as a catalyst. However, depending on the carbonyl compound or catalyst, addition of a base may suppress the progress of the reaction or cause a decrease in the enantiomeric excess of the obtained optically active alcohol. Further, depending on the carbonyl compound, even when a ruthenium complex in which a specific optically active phosphine and a specific optically active diamine are coordinated as described in Patent Document 2 is used, an alcohol having a satisfactory enantiomeric excess can be obtained. There was nothing.

非特許文献1には、プロキラルなカルボニル化合物を、特定の光学活性(ヒドロキシアルキルフェロセニル)ホスフィンを配位したロジウム錯体の存在下に水素化する方法が開示されている。しかしながら、カルボニル化合物によっては、満足する鏡像体過剰率を有するアルコールが得られないことがあった。   Non-Patent Document 1 discloses a method for hydrogenating a prochiral carbonyl compound in the presence of a rhodium complex to which a specific optically active (hydroxyalkylferrocenyl) phosphine is coordinated. However, depending on the carbonyl compound, an alcohol having a satisfactory enantiomeric excess may not be obtained.

医薬の原料・中間体として有用な光学活性アルコールの一つとして、光学活性3−キヌクリジノールがある。特許文献3には、3−キヌクリジノンおよびそのルイス酸との付加物、およびこれらに対応する特定の第三および第四塩からなる化合物から選んだキヌクリジノン誘導体を、キラルなジホスフィンを有するロジウム、イリジウムまたはルテニウム錯体の存在下に水素化する方法が開示されている。しかしながら、3−キヌクリジノンを不斉水素化した場合は、得られる光学活性3−キヌクリジノールの鏡像体過剰率が20%以下と極めて低かった。3−キヌクリジノンの第三および第四塩では鏡像体過剰率は向上するが、三級塩化や四級塩化、さらに水素化後に3−キヌクリジノール遊離体にする煩雑な工程が必要であった。いずれも、工業的に満足のできる方法ではなかった。
特開平8−225466号公報 特開平11−189600号公報 特開平9−194480号公報 Tetrahedron Lett., 48, 4351(1976)
Optically active 3-quinuclidinol is one of the optically active alcohols useful as raw materials and intermediates for pharmaceuticals. Patent Document 3 discloses that a quinuclidinone derivative selected from 3-quinuclidinone and an adduct thereof with a Lewis acid, and a compound corresponding to a specific tertiary and quaternary salt, is prepared by using rhodium, iridium or A method for hydrogenating in the presence of a ruthenium complex is disclosed. However, when 3-quinuclidinone was asymmetrically hydrogenated, the enantiomeric excess of the obtained optically active 3-quinuclidinol was extremely low at 20% or less. Although the enantiomer excess increases with the tertiary and quaternary salts of 3-quinuclidinone, tertiary chloride, quaternary chloride, and a complicated step of converting to a free form of 3-quinuclidinol after hydrogenation are required. None of these methods were industrially satisfactory.
JP-A-8-225466 JP-A-11-189600 JP-A-9-194480 Tetrahedron Lett., 48, 4351 (1976)

本発明が解決しようとする課題は、プロキラルなカルボニル化合物を不斉水素化し、対応する光学活性アルコールを高い鏡像体過剰率で、かつ高収率に工業的に有利に製造する方法を提供することである。   The problem to be solved by the present invention is to provide a method for asymmetrically hydrogenating a prochiral carbonyl compound to industrially advantageously produce the corresponding optically active alcohol with a high enantiomeric excess and in a high yield. It is.

本発明者らは、プロキラルなカルボニル化合物を不斉水素化して光学活性アルコールを得る際に、ロジウム錯体あるいはその塩、光学活性ジホスフィン及び光学活性ジアミンの存在下において、塩基を添加せずに水素添加することにより、所望する鏡像体の含有率の高い光学活性アルコールを得ることを見出し、本発明を完成するに至った。   The present inventors have found that when an asymmetric hydrogenation of a prochiral carbonyl compound is performed to obtain an optically active alcohol, hydrogenation is performed without adding a base in the presence of a rhodium complex or a salt thereof, an optically active diphosphine, and an optically active diamine. As a result, they have found that an optically active alcohol having a high content of a desired enantiomer is obtained, and the present invention has been completed.

すなわち、上記課題を解決するための第1の発明は、プロキラルなカルボニル化合物を不斉水素化して光学活性アルコールを得る際に、ロジウム錯体あるいはその塩、一般式(1)   That is, a first aspect of the present invention for solving the above-mentioned problems is that when a prochiral carbonyl compound is asymmetrically hydrogenated to obtain an optically active alcohol, a rhodium complex or a salt thereof, a compound represented by the general formula (1):

Figure 0003569280
(ただし式中、R1、R2、R3及びR4は互いに独立に炭素数1乃至10の置換基を有していても良い炭化水素基、R5及びR6は互いに独立に水素原子あるいは置換基を有していても良い炭素数2乃至10の炭化水素基を表す。置換基としては、水酸基、カルボニル基、アルコキシ基、アミノ基、アミド基から選ばれる少なくとも1種である。)で示される光学活性ジホスフィン配位子及び一般式(2)
Figure 0003569280
(Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrocarbon group which may have a substituent having 1 to 10 carbon atoms, and R 5 and R 6 are each independently a hydrogen atom Or a hydrocarbon group having 2 to 10 carbon atoms which may have a substituent, and the substituent is at least one selected from a hydroxyl group, a carbonyl group, an alkoxy group, an amino group, and an amide group. And an optically active diphosphine ligand represented by the general formula (2):

Figure 0003569280
(ただし式中、R7、R8、R9、R10は、互いに独立に、水素原子または置換基を有してよい炭化水素基を、Zは炭化水素基を表す。)で表される光学活性ジアミン配位子の存在下、塩基の非存在下に、水素化することを特徴とする光学活性アルコールの製造方法に関するものである。
Figure 0003569280
(Wherein, R 7 , R 8 , R 9 , and R 10 independently represent a hydrogen atom or a hydrocarbon group which may have a substituent, and Z represents a hydrocarbon group). The present invention relates to a method for producing an optically active alcohol, which comprises hydrogenating in the presence of an optically active diamine ligand and in the absence of a base.

上記課題を解決するための第2の発明は、上記第1の発明であって、光学活性ジホスフィン配位子が、一般式(3)   A second invention for solving the above-mentioned problem is the first invention, wherein the optically active diphosphine ligand has a general formula (3)

Figure 0003569280
(ただし式中、R1、R2、R3及びR4は前記と同じで、*は不斉中心を表す。)あるいは一般式(4)
Figure 0003569280
(Wherein, R 1 , R 2 , R 3 and R 4 are the same as above, and * represents an asymmetric center) or the general formula (4)

Figure 0003569280
(ただし式中、R1、R2、R3、R4及び*は前記と同じ。)から選ばれる1種であることを特徴とするものである。
Figure 0003569280
(Wherein, R 1 , R 2 , R 3 , R 4, and * are the same as described above).

上記課題を解決するための第3の発明は、上記第1あるいは第2の発明であって、プロキラルなカルボニル化合物が3−キヌクリジノンであることを特徴とするものである。   A third invention for solving the above-mentioned problems is the first or second invention, wherein the prochiral carbonyl compound is 3-quinuclidinone.

本発明によれば、プロキラルなカルボニル化合物から、高収率かつ高い鏡像体過 剰率で対応する光学活性アルコールを製造することができる。   According to the present invention, a corresponding optically active alcohol can be produced from a prochiral carbonyl compound with a high yield and a high enantiomeric excess.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明における、プロキラルなカルボニル化合物としては、2−ブタノン、3−メチル−2−ブタノン、シクロヘキシルメチルケトン、4−アミノ−2−ブタノン、3−アセチルテトラヒドロフラン、N,N−ジメチルアミノアセトンなどカルボニル基に置換基を有していてもよい飽和炭化水素基が結合したプロキラルなケトン;メチルベンジルケトン、アセトフェノン、4’−メチルアセトフェノン、3’−アミノアセトフェノン、2−アセチルナフタレン、2−アセチルフラン、3−アセチルピリジンなどカルボニル基に置換基を有していてもよい飽和炭化水素基および、置換基を有していてもよい芳香族単環または多環式基あるいはヘテロ芳香族単環または多環式基など不飽和炭化水素基が結合したプロキラルなケトン;2−ベンゾイルナフタレン、1−イソキノリニルフェニルケトンなどカルボニル基に置換基を有していてもよい芳香族単環または多環式基あるいはヘテロ芳香族単環または多環式基など不飽和炭化水素基が結合したプロキラルなケトン;2−メチルシクロヘキサノン、β−テトラロン、2,3−ジヒドロ−1H−キノリン−4−オン、3,4−ジヒドロ−2H−1−ベンゾピラン−4−オン、3−キヌクリジノンなど置換基を有してもよいプロキラルな環状ケトンなどを挙げることができる。置換基としては、水酸基、アミノ基、アルコキシ基、カルボニル基、アミド基などが例示できる。   In the present invention, examples of the prochiral carbonyl compound include carbonyl groups such as 2-butanone, 3-methyl-2-butanone, cyclohexylmethyl ketone, 4-amino-2-butanone, 3-acetyltetrahydrofuran, and N, N-dimethylaminoacetone. A prochiral ketone having an optionally substituted saturated hydrocarbon group; methylbenzylketone, acetophenone, 4′-methylacetophenone, 3′-aminoacetophenone, 2-acetylnaphthalene, 2-acetylfuran, 3 A saturated hydrocarbon group which may have a substituent on a carbonyl group such as -acetylpyridine, and an aromatic monocyclic or polycyclic group or a heteroaromatic monocyclic or polycyclic group which may have a substituent A prochiral ketone to which an unsaturated hydrocarbon group such as a group is bonded; Unsaturated hydrocarbon groups such as an aromatic monocyclic or polycyclic group or a heteroaromatic monocyclic or polycyclic group which may have a substituent on a carbonyl group such as naphthalene and 1-isoquinolinylphenyl ketone Bound prochiral ketones; 2-methylcyclohexanone, β-tetralone, 2,3-dihydro-1H-quinolin-4-one, 3,4-dihydro-2H-1-benzopyran-4-one, 3-quinuclidinone, etc. And a prochiral cyclic ketone which may have a group. Examples of the substituent include a hydroxyl group, an amino group, an alkoxy group, a carbonyl group, and an amide group.

使用するロジウム錯体あるいは塩については、光学活性ジホスフィン及び光学活性ジアミンが容易に配位子置換できる構造の化合物であれば、特に制限はない。例えば、クロロ(シクロオクタジエン)ロジウム(I)ダイマー、ブロモ(シクロオクタジエン)ロジウム(I)ダイマー、ヨード(シクロオクタジエン)ロジウム(I)ダイマー、クロロ(シクロオクタジエン)(ピペリジン)ロジウム(I)、クロロ(シクロオクタジエン)(p−トルイジン)ロジウム(I)、クロロ(ノルボルナジエン)ロジウム(I)ダイマー、アセタト(シクロオクタジエン)ロジウム(I)ダイマー、L-マンデレート(シクロオクタジエン)ロジウム(I)ダイマー、ジクロロテトラエチレンニロジウム(I)、ビス(ノルボルナジエン)ロジウム(I)テトラフルオロボレートなどが挙げられる。ロジウムの原子価は、配位子の種類及び溶媒等の外的条件により変化するために、原子状態から種々のイオンの価数までとり得る。具体的には0〜+3であり、水素化反応における触媒調製段階において、ロジウムの原子価が+1であることが望ましい。   The rhodium complex or salt to be used is not particularly limited as long as the compound has a structure in which the optically active diphosphine and the optically active diamine can be easily substituted with a ligand. For example, chloro (cyclooctadiene) rhodium (I) dimer, bromo (cyclooctadiene) rhodium (I) dimer, iodo (cyclooctadiene) rhodium (I) dimer, chloro (cyclooctadiene) (piperidine) rhodium (I) ), Chloro (cyclooctadiene) (p-toluidine) rhodium (I), chloro (norbornadiene) rhodium (I) dimer, acetato (cyclooctadiene) rhodium (I) dimer, L-mandelate (cyclooctadiene) rhodium ( I) dimer, dichlorotetraethylene iridium (I), bis (norbornadiene) rhodium (I) tetrafluoroborate and the like. The valence of rhodium varies from the atomic state to the valence of various ions because it changes depending on external conditions such as the type of ligand and solvent. Specifically, it is preferably 0 to +3, and the valence of rhodium is preferably +1 in the catalyst preparation stage in the hydrogenation reaction.

前記一般式(1)で示される光学活性ジホスフィン中のリン原子に結合するR1、R2、R3及びR4としては、互いに独立に、メチル基、エチル基、n−プロピル基、イソプロピル基などのアルキル基;シクロペンチル基、シクロヘキシル基などのシクロアルキル基;フェニル基、2−メチルフェニル基、4−メチルフェニル基、4−メトキシフェニル基、ナフチル基などのアリール基;ベンジル基などを挙げることができる。フェロセン骨格内のシクロペンタジエニル基に結合するR5及びR6としては、互いに独立に、水素原子、エチル基、n−プロピル基、イソプロピル基などのアルキル基;ビニル基などのアリル基、シクロペンチル基、シクロヘキシル基などのシクロアルキル基、フェニル基、2−メチルフェニル基などのアリール基;2−ヒドロキシエチル基、1−ヒドロキシエチル基、(1R)−1−ヒドロキシエチル基、(1S)−1−ヒドロキシエチル基、1−ヒドロキシプロピル基、(1R)−1−ヒドロキシプロピル基、(1S)−1−ヒドロキシプロピル基、2−(N,N−ジメチルアミノ)エチル基、1−(N,N−ジメチルアミノ)エチル基、(1R)−1−(N,N−ジメチルアミノ)エチル基、(1S)−1−(N,N−ジメチルアミノ)エチル基、2−メトキシエチル基、1−メトキシエチル基、(1R)−1−メトキシエチル基、2−アセチルエチル基、1−アセチルエチル基、(1R)−1−アセチルエチル基、(1S)−1−アセチルエチル基、1−フェニルヒドロキシメチル基、(1R)−1−フェニルヒドロキシメチル基、(1S)−1−フェニルヒドロキシメチル基、アセチル基、アセトアミド基などの置換基として水酸基、アミノ基、アルコキシ基、カルボニル基、アミド基を有する炭化水素基を挙げることができる。 R 1 , R 2 , R 3, and R 4 bonded to the phosphorus atom in the optically active diphosphine represented by the general formula (1) each independently represent a methyl group, an ethyl group, an n-propyl group, or an isopropyl group. Alkyl groups such as cyclopentyl group and cyclohexyl group; aryl groups such as phenyl group, 2-methylphenyl group, 4-methylphenyl group, 4-methoxyphenyl group and naphthyl group; benzyl group and the like. Can be. R 5 and R 6 bonded to the cyclopentadienyl group in the ferrocene skeleton each independently represent a hydrogen atom, an alkyl group such as an ethyl group, an n-propyl group, or an isopropyl group; an allyl group such as a vinyl group; Group, cycloalkyl group such as cyclohexyl group, aryl group such as phenyl group and 2-methylphenyl group; 2-hydroxyethyl group, 1-hydroxyethyl group, (1R) -1-hydroxyethyl group, (1S) -1 -Hydroxyethyl group, 1-hydroxypropyl group, (1R) -1-hydroxypropyl group, (1S) -1-hydroxypropyl group, 2- (N, N-dimethylamino) ethyl group, 1- (N, N -Dimethylamino) ethyl group, (1R) -1- (N, N-dimethylamino) ethyl group, (1S) -1- (N, N-dimethylamino) Ethyl group, 2-methoxyethyl group, 1-methoxyethyl group, (1R) -1-methoxyethyl group, 2-acetylethyl group, 1-acetylethyl group, (1R) -1-acetylethyl group, (1S) -1-acetylethyl group, 1-phenylhydroxymethyl group, (1R) -1-phenylhydroxymethyl group, (1S) -1-phenylhydroxymethyl group, acetyl group, acetyl group, hydroxyl group and amino group as substituents , An alkoxy group, a carbonyl group, and a hydrocarbon group having an amide group.

前記一般式(1)で表される光学活性ジホスフィンとしては、(R)−1’,2−ビス(ジフェニルホスフィノ)フェロセニルエタン、(S)−1’,2−ビス(ジフェニルホスフィノ)フェロセニルエタン、(S)−1−[(R)−1’,2−ビス(ジフェニルホスフィノ)フェロセニル]エタノール(以下、「(S,R)−BPPFOH」と略称する)、(R)−1−[(S)−1’,2−ビス(ジフェニルホスフィノ)フェロセニル]エタノール(以下、「(R,S)−BPPFOH」と略称する)、(S)−N,N−ジメチル−1−[(R)−1’,2−ビス(ジフェニルホスフィノ)フェロセニル]エチルアミン(以下、「(S,R)−BPPFA」と略称する)、(R)−N,N−ジメチル−1−[(S)−1’,2−ビス(ジフェニルホスフィノ)フェロセニル]エチルアミン(以下、「(R,S)−BPPFA」と略称する)などを挙げることができる。好ましくは、(S,R)−BPPFOH、(R,S)−BPPFOH、(S,R)−BPPFA、(R,S)−BPPFAなど、R5あるいはR6が不斉中心を有する基である一般式(1)で示される光学活性ジホスフィンである。さらに好ましくは、(S,R)−BPPFOH、(R,S)−BPPFOHなど、一般式(3)もしくは(4)で示される光学活性ジホスフィンである。 Examples of the optically active diphosphine represented by the general formula (1) include (R) -1 ′, 2-bis (diphenylphosphino) ferrocenylethane and (S) -1 ′, 2-bis (diphenylphosphino). ) Ferrocenylethane, (S) -1-[(R) -1 ′, 2-bis (diphenylphosphino) ferrocenyl] ethanol (hereinafter abbreviated as “(S, R) -BPPFOH”), (R ) -1-[(S) -1 ′, 2-bis (diphenylphosphino) ferrocenyl] ethanol (hereinafter abbreviated as “(R, S) -BPPFOH”), (S) -N, N-dimethyl- 1-[(R) -1 ′, 2-bis (diphenylphosphino) ferrocenyl] ethylamine (hereinafter abbreviated as “(S, R) -BPPFA”), (R) -N, N-dimethyl-1- [(S) -1 ′, 2-bis (diphenyl Sufino) ferrocenyl] ethylamine (hereinafter referred to as "(R, S) -BPPFA" abbreviated as), and the like. Preferably, R 5 or R 6 is a group having an asymmetric center, such as (S, R) -BPPFOH, (R, S) -BPPFOH, (S, R) -BPPFA, (R, S) -BPPFA. An optically active diphosphine represented by the general formula (1). More preferred are optically active diphosphines represented by the general formula (3) or (4), such as (S, R) -BPPFOH and (R, S) -BPPFOH.

前記一般式(2)で示される光学活性ジアミンとしては、(1S,2S)−DPEN:(1S,2S)−1,2−ジフェニル−1,2−エタンジアミン、(1R,2R)−1,2−ジフェニル−1,2−エタンジアミン(以下、「(1R,2R)−DPEN」と略称する)、(1S,2S)−1,2−シクロヘキサンジアミン、(1R,2R)−1,2−シクロヘキサンジアミン、(2S,3S)−2,3−ブタンジアミン、(2R,3R)−2,3−ブタンジアミン、(2S)−1,1−ビス(p−メトキシフェニル)−2−イソプロピル−1,2−エタンジアミン(以下、「(S)−DAIPEN」と略称する)、(2R)−1,1−ビス(p−メトキシフェニル)−2−イソプロピル−1,2−エタンジアミン(以下、「(R)−DAIPEN」と略称する)、(2S)−1,1−ビスナフチル−2−メチル−1,2−エタンジアミン、(2R)−1,1−ビスナフチル−2−メチル−1,2−エタンジアミン、(1S,2S)−TsDPEN:N−(p−トルエンスルホニル)−(1S,2S)−1,2−ジフェニル−1,2−エタンジアミン、N−(p−トルエンスルホニル)−(1R,2R)−1,2−ジフェニル−1,2−エタンジアミン(以下、「(1R,2R)−TsDPEN」と略称する)などを挙げることができる。より好ましくは、光学活性DPEN、光学活性DAIPEN、もしくは光学活性TsDPENである。   As the optically active diamine represented by the general formula (2), (1S, 2S) -DPEN: (1S, 2S) -1,2-diphenyl-1,2-ethanediamine, (1R, 2R) -1, 2-diphenyl-1,2-ethanediamine (hereinafter abbreviated as "(1R, 2R) -DPEN"), (1S, 2S) -1,2-cyclohexanediamine, (1R, 2R) -1,2- Cyclohexanediamine, (2S, 3S) -2,3-butanediamine, (2R, 3R) -2,3-butanediamine, (2S) -1,1-bis (p-methoxyphenyl) -2-isopropyl-1 , 2-ethanediamine (hereinafter abbreviated as "(S) -DAIPEN"), (2R) -1,1-bis (p-methoxyphenyl) -2-isopropyl-1,2-ethanediamine (hereinafter, referred to as "(S) -DAIPEN"). (R) -DA PEN)), (2S) -1,1-bisnaphthyl-2-methyl-1,2-ethanediamine, (2R) -1,1-bisnaphthyl-2-methyl-1,2-ethanediamine, ( 1S, 2S) -TsDPEN: N- (p-toluenesulfonyl)-(1S, 2S) -1,2-diphenyl-1,2-ethanediamine, N- (p-toluenesulfonyl)-(1R, 2R)- 1,2-diphenyl-1,2-ethanediamine (hereinafter abbreviated as “(1R, 2R) -TsDPEN”) and the like can be mentioned. More preferably, it is optically active DPEN, optically active DAIPEN, or optically active TsDPEN.

ロジウム錯体あるいはその塩の使用量は、カルボニル化合物や触媒の種類によって異なるが、カルボニル化合物に対して、通常、1/50〜1/10000倍モル、好ましくは、1/500〜1/2000倍モルである。1/10000倍モル未満では反応が極めて遅くなり未反応のカルボニル化合物が残存し易くなるので好ましくない。1/50倍モルを越えて使用しても、特段の効果は見られず、経済的に不利なので好ましくない。   The amount of the rhodium complex or a salt thereof varies depending on the type of the carbonyl compound or the catalyst, but is usually 1/50 to 1/10000 times mol, preferably 1/500 to 1/2000 times mol with respect to the carbonyl compound. It is. If the molar ratio is less than 1 / 10,000 times, the reaction becomes extremely slow and unreacted carbonyl compound tends to remain. Even if it is used in an amount of more than 1/50 mol, no particular effect is seen and it is economically disadvantageous, so that it is not preferable.

前記一般式(1)で表される光学活性ジホスフィンの使用量は、ロジウムに対して、1.0〜1.5倍モルであることが望ましい。1.0倍モル未満では、得られる光学活性アルコールの鏡像体過剰率が著しく低下する。1.5倍モルを超えて使用すると、触媒の反応性を低下させるので好ましくない。   The amount of the optically active diphosphine represented by the general formula (1) is desirably 1.0 to 1.5 times mol of rhodium. If the molar ratio is less than 1.0, the enantiomeric excess of the obtained optically active alcohol is remarkably reduced. If it is used in excess of 1.5 moles, the reactivity of the catalyst is undesirably reduced.

前記一般式(2)で表される光学活性ジアミンの使用量は、ロジウムに対して0.5〜2.0倍モルであることが望ましい。0.5倍モル未満では、得られる光学活性アルコールの光学収率が著しく低下する。2.0倍モルを超えて使用すると、触媒の反応性を著しく低下させるので好ましくない。   The amount of the optically active diamine represented by the general formula (2) is desirably 0.5 to 2.0 times the mol of rhodium. When the molar ratio is less than 0.5 times, the optical yield of the obtained optically active alcohol is significantly reduced. Use of more than 2.0 moles is undesirable because it significantly reduces the reactivity of the catalyst.

不斉水素化反応に使用する溶媒は、カルボニル化合物及び触媒を可溶化するものであれば、特に制限はない。その具体例としては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、ベンジルアルコールなどのアルコール類、ペンタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン、メシチレンのような脂肪族及び芳香族炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、1,4−ジオキサンなどのエーテル類、ジクロロメタン、クロロホルム、1,1,2,2−テトラクロロエタンなどのハロゲン化炭化水素類、酢酸エチル、γ−ブチロラクトンなどのエステル及びラクトン類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドンのようなカルボキサミド及びラクタム類である。これらの溶媒は単独で、あるいは2種類以上を混合して使用することもできる。基質が液体でかつ、触媒を可溶化するものであれば、溶媒を使用しなくてもよい。   The solvent used in the asymmetric hydrogenation reaction is not particularly limited as long as it can solubilize the carbonyl compound and the catalyst. Specific examples thereof include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and benzyl alcohol, and aliphatics such as pentane, hexane, cyclohexane, methylcyclohexane, benzene, toluene, xylene and mesitylene. And aromatic hydrocarbons, ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran, ethylene glycol dimethyl ether and 1,4-dioxane, and halogenated hydrocarbons such as dichloromethane, chloroform, 1,1,2,2-tetrachloroethane and the like. , Ethyl acetate, esters and lactones such as γ-butyrolactone, carboxamides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; It is a class. These solvents can be used alone or in combination of two or more. As long as the substrate is liquid and solubilizes the catalyst, a solvent need not be used.

溶媒の使用量は、カルボニル化合物に対して1/10〜10000重量倍であるが、好ましくは1/10〜100倍重量である。溶媒の使用量がカルボニル化合物に対して1/10未満の場合は、カルボニル化合物を溶解するのに不十分で反応性を著しく低下させるので好ましくない。カルボニル化合物に対して、溶媒を10000重量倍を越えて使用しても特段の効果は見られず、経済的に不利なので好ましくない。   The amount of the solvent used is 1/10 to 10000 times by weight, preferably 1/10 to 100 times by weight of the carbonyl compound. When the amount of the solvent used is less than 1/10 of the carbonyl compound, it is not preferable because it is insufficient to dissolve the carbonyl compound and the reactivity is significantly reduced. If the solvent is used in an amount of more than 10,000 times by weight with respect to the carbonyl compound, no particular effect is observed, and this is not preferable because it is economically disadvantageous.

水素圧は、0.1〜20MPaまで使用可能であるが、好ましくは0.5〜10MPaが望ましい。水素圧が0.1MPa未満の場合は、反応が極めて遅くなり未反応のカルボニル化合物が残存し易くなるので好ましくない。水素圧が20MPaを超えて使用しても特段の効果は認められず、経済的に不利であるので好ましくない。   The hydrogen pressure can be used up to 0.1 to 20 MPa, but preferably 0.5 to 10 MPa. If the hydrogen pressure is less than 0.1 MPa, the reaction becomes extremely slow, and unreacted carbonyl compounds tend to remain, which is not preferable. Even if the hydrogen pressure exceeds 20 MPa, no particular effect is observed, which is not preferable because it is economically disadvantageous.

反応温度は、通常−50℃〜100℃まで使用可能であるが、好ましくは10〜40℃である。温度が−50℃未満の場合は、反応が極めて遅くなり未反応のカルボニル化合物が残存し易くなるので好ましくない。温度が100℃を越えると、錯体触媒の安定性が著しく低下し、得られる光学活性アルコールの鏡像体過剰率が低下するので好ましくない。   The reaction temperature can be usually used from -50C to 100C, but is preferably from 10C to 40C. If the temperature is lower than −50 ° C., the reaction becomes extremely slow, and unreacted carbonyl compound tends to remain, which is not preferable. If the temperature exceeds 100 ° C., the stability of the complex catalyst is remarkably reduced, and the enantiomeric excess of the obtained optically active alcohol is undesirably reduced.

反応終了後は、溶媒抽出、蒸留、再結晶、クロマトグラフィーなど通常の有機合成化学的手法により、単離・精製を行い、目的物を得ることができる。目的物の構造は、1H−NMR、旋光度測定、高速液体クロマトグラフ、ガスクロマトグラフなどの公知の分析手段によって決定することができる。   After completion of the reaction, the desired product can be obtained by performing isolation and purification by ordinary organic synthetic chemistry techniques such as solvent extraction, distillation, recrystallization, and chromatography. The structure of the target substance can be determined by known analytical means such as 1H-NMR, optical rotation measurement, high performance liquid chromatography, gas chromatography and the like.

次に、実施例を示し、更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Next, examples will be shown and described in more detail, but the present invention is not limited to these examples.

窒素ガスで置換したグローブボックス内で触媒溶液を調製して、水素化反応に使用した。   A catalyst solution was prepared in a glove box purged with nitrogen gas and used for a hydrogenation reaction.

水素化反応でのカルボニル化合物の転化率は、ガスクロマトグラフで決定した。得られる光学活性アルコールの鏡像体過剰率(%ee)は、高速液体クロマトグラフで決定した。   The conversion of the carbonyl compound in the hydrogenation reaction was determined by gas chromatography. The enantiomeric excess (% ee) of the obtained optically active alcohol was determined by high performance liquid chromatography.

試験管にクロロ(シクロオクタジエン)ロジウム(I)ダイマー4.9mg、(S,R)−BPPFOH13.2mg、(1R,2R)−DPEN4.5mgをエタノール2mLに溶解し、触媒溶液を調製した。つづいて、別の試験管に3−キヌクリジノン500mgをエタノール8mLに溶解し、基質溶液を調製した。2つの溶液を混合し、内容積200mLのステンレス製耐圧反応容器内に入れ、水素を水素圧3.5MPaとなるように導入し、30℃で16時間攪拌した。反応液を減圧下濃縮し、溶媒を留去した。残渣10mgをメタノール1mLに溶解し、ガスクロマトグラフにより分析したところ、転化率は100%であった。反応液の残渣を無水酪酸と反応させて、3−キヌクリジノール酪酸エステルに変換後、高速液体クロマトグラフにより分析したところ、R−3−キヌクリジノールが鏡像体過剰率68.9%eeで生成していた。   In a test tube, 4.9 mg of chloro (cyclooctadiene) rhodium (I) dimer, 13.2 mg of (S, R) -BPPFOH, and 4.5 mg of (1R, 2R) -DPEN were dissolved in 2 mL of ethanol to prepare a catalyst solution. Subsequently, 500 mg of 3-quinuclidinone was dissolved in 8 mL of ethanol in another test tube to prepare a substrate solution. The two solutions were mixed, placed in a 200-mL stainless steel pressure-resistant reaction vessel, and hydrogen was introduced so that the hydrogen pressure became 3.5 MPa, followed by stirring at 30 ° C. for 16 hours. The reaction solution was concentrated under reduced pressure, and the solvent was distilled off. When 10 mg of the residue was dissolved in 1 mL of methanol and analyzed by gas chromatography, the conversion was 100%. The residue of the reaction solution was reacted with butyric anhydride to convert it into 3-quinuclidinol butyrate, and then analyzed by high performance liquid chromatography. As a result, it was found that R-3-quinuclidinol was formed at an enantiomeric excess of 68.9% ee. .

(S,R)−BPPFOH及び(1R,2R)DPENに代えて(R,S)−BPPFOH及び(1S,2S)−DPENを使用した以外は、実施例1と同様に処理した。転化率100%、鏡像体過剰率68.0%eeでS−3−キヌクリジノールが得られた。   Processing was performed in the same manner as in Example 1 except that (R, S) -BPPFOH and (1S, 2S) -DPEN were used instead of (S, R) -BPPFOH and (1R, 2R) DPEN. S-3-quinuclidinol was obtained at a conversion of 100% and an enantiomeric excess of 68.0% ee.

(S,R)−BPPFOHに代えて(R,S)−BPPFOHを、3−キヌクリジノン500mgに代えてアセトフェノン480mgを使用した以外は、実施例1と同様に処理した。添加率100%、鏡像体過剰率72.1%eeで(R)−1−フェニルエタノールが得られた。   The same treatment as in Example 1 was conducted, except that (R, S) -BPPFOH was used instead of (S, R) -BPPFOH and 480 mg of acetophenone was used instead of 500 mg of 3-quinuclidinone. (R) -1-phenylethanol was obtained at an addition rate of 100% and an enantiomeric excess of 72.1% ee.

(S,R)−BPPFOHに代えて(R,S)−BPPFOHを、3−キヌクリジノン500mgに代えてピルビン酸メチル408mgを使用した、実施例1と同様に処理した。添加率100%、鏡像体過剰率93.5%eeで(R)−乳酸メチルが得られた。   Treatment was performed in the same manner as in Example 1 using (R, S) -BPPFOH instead of (S, R) -BPPFOH and 408 mg of methyl pyruvate instead of 500 mg of 3-quinuclidinone. (R) -methyl lactate was obtained at an addition rate of 100% and an enantiomeric excess of 93.5% ee.

比較例1Comparative Example 1

試験管にクロロ(シクロオクタジエン)ロジウム(I)ダイマー4.9mg、(S)−1,1’−ビスナフチル−2,2’−ビス(ジフェニルホスフィン)(以下、「(S)−BINAP」と略称する)13.9mgをTHF2mLに溶解し、触媒溶液を調製した。つづいて、別の試験管に3−キヌクリジノン250mgをエタノール8mLに溶解し、基質溶液を調製した。2つの溶液を混合し、内容積200mLのステンレス製耐圧反応容器内に入れ、水素を水素圧3.5MPaとなるように導入し、30℃で20時間攪拌した。以降、実施例1と同様に処理した。転化率79%、鏡像体過剰率5.6%eeで、R−3−キヌクリジノールが得られた。   In a test tube, 4.9 mg of chloro (cyclooctadiene) rhodium (I) dimer, (S) -1,1′-bisnaphthyl-2,2′-bis (diphenylphosphine) (hereinafter “(S) -BINAP” 13.9 mg) was dissolved in 2 mL of THF to prepare a catalyst solution. Subsequently, 250 mg of 3-quinuclidinone was dissolved in 8 mL of ethanol in another test tube to prepare a substrate solution. The two solutions were mixed, placed in a stainless steel pressure-resistant reaction vessel having an internal volume of 200 mL, hydrogen was introduced so as to have a hydrogen pressure of 3.5 MPa, and the mixture was stirred at 30 ° C. for 20 hours. Thereafter, the same processing as in Example 1 was performed. R-3-quinuclidinol was obtained at a conversion of 79% and an enantiomeric excess of 5.6% ee.

比較例2Comparative Example 2

試験管にクロロ(シクロオクタジエン)ロジウム(I)ダイマー4.9mg、(S)−BINAP13.9mg、(1R,2R)−DPEN4.7mgをTHF2mLに溶解し、触媒溶液を調製した。別の試験管に3−キヌクリジノン250mgをエタノール8mLに溶解し、基質溶液を調製した。2つの溶液を混合し、内容積200mLのステンレス製耐圧反応容器内に入れ、水素を水素圧3.5MPaとなるように導入し、30℃で20時間攪拌した。以降、実施例1と同様に処理した。転化率21%、鏡像体過剰率5.2%eeで、R−3−キヌクリジノールが得られた。   In a test tube, 4.9 mg of chloro (cyclooctadiene) rhodium (I) dimer, 13.9 mg of (S) -BINAP, and 4.7 mg of (1R, 2R) -DPEN were dissolved in 2 mL of THF to prepare a catalyst solution. In another test tube, 250 mg of 3-quinuclidinone was dissolved in 8 mL of ethanol to prepare a substrate solution. The two solutions were mixed, placed in a stainless steel pressure-resistant reaction vessel having an internal volume of 200 mL, hydrogen was introduced so as to have a hydrogen pressure of 3.5 MPa, and the mixture was stirred at 30 ° C. for 20 hours. Thereafter, the same processing as in Example 1 was performed. R-3-quinuclidinol was obtained at a conversion of 21% and an enantiomeric excess of 5.2% ee.

比較例3Comparative Example 3

試験管にクロロ(シクロオクタジエン)ロジウム(I)ダイマー2.5mg、(S,R)−BPPFOH6.6mgをエタノール2mLに溶解し、触媒溶液を調製した。別の試験管に3−キヌクリジノン313mgをエタノール8mLに溶解し、基質溶液を調製した。2つの溶液を混合し、内容積200mLのステンレス製耐圧反応容器内に入れ、水素を水素圧3.5MPaとなるように導入し、30℃で16時間攪拌した。以降、実施例1と同様に処理した。転化率95%、鏡像体過剰率31.6%eeで、R−3−キヌクリジノールが得られた。   In a test tube, 2.5 mg of chloro (cyclooctadiene) rhodium (I) dimer and 6.6 mg of (S, R) -BPPFOH were dissolved in 2 mL of ethanol to prepare a catalyst solution. In another test tube, 313 mg of 3-quinuclidinone was dissolved in 8 mL of ethanol to prepare a substrate solution. The two solutions were mixed, placed in a 200-mL stainless steel pressure-resistant reaction vessel, and hydrogen was introduced so that the hydrogen pressure became 3.5 MPa, followed by stirring at 30 ° C. for 16 hours. Thereafter, the same processing as in Example 1 was performed. R-3-quinuclidinol was obtained at a conversion of 95% and an enantiomeric excess of 31.6% ee.

比較例4Comparative Example 4

試験管にクロロ(シクロオクタジエン)ロジウム(I)ダイマー4.9mg、(S,R)−BPPFOH13.2mg、(1R、2R)−DPEN4.5mgをエタノール2mLに溶解し、触媒溶液を調製した。別の試験管に3−キヌクリジノン313mg及びt−ブトキシカリウム112mgをエタノール8mLに溶解し、基質溶液を調製した。2つの溶液を混合し、内容積200mLのステンレス製耐圧反応容器内に入れ、水素を水素圧3.5MPaとなるように導入し、30℃で16時間攪拌した。以降、実施例1と同様に処理した。転化率100%、鏡像体過剰率12.1%で、R−3−キヌクリジノールが得られた。   In a test tube, 4.9 mg of chloro (cyclooctadiene) rhodium (I) dimer, 13.2 mg of (S, R) -BPPFOH, and 4.5 mg of (1R, 2R) -DPEN were dissolved in 2 mL of ethanol to prepare a catalyst solution. In another test tube, 313 mg of 3-quinuclidinone and 112 mg of potassium t-butoxy were dissolved in 8 mL of ethanol to prepare a substrate solution. The two solutions were mixed, placed in a 200-mL stainless steel pressure-resistant reaction vessel, and hydrogen was introduced so that the hydrogen pressure became 3.5 MPa, followed by stirring at 30 ° C. for 16 hours. Thereafter, the same processing as in Example 1 was performed. R-3-quinuclidinol was obtained at a conversion of 100% and an enantiomeric excess of 12.1%.

比較例5Comparative Example 5

試験管にジクロロ(p−シメン)ルテニウム(II)ダイマー6.1mg、(S,R)−BPPFOH13.2mg、(1R、2R)−DPEN4.5mgをエタノール2mLに溶解し、触媒溶液を調製した。別の試験管に3−キヌクリジノン500mgをエタノール8mLに溶解し、基質溶液を調製した。2つの溶液を混合し、内容積200mLのステンレス製耐圧反応容器内に入れ、水素を水素圧3.5MPaとなるように導入し、30℃で14時間攪拌した。以降、実施例1と同様に処理した。転化率8%、鏡像体過剰率22.2%eeで、R−3−キヌクリジノールが得られた。   In a test tube, 6.1 mg of dichloro (p-cymene) ruthenium (II) dimer, 13.2 mg of (S, R) -BPPFOH, and 4.5 mg of (1R, 2R) -DPEN were dissolved in 2 mL of ethanol to prepare a catalyst solution. In a separate test tube, 500 mg of 3-quinuclidinone was dissolved in 8 mL of ethanol to prepare a substrate solution. The two solutions were mixed, placed in a stainless steel pressure-resistant reaction vessel having an internal volume of 200 mL, hydrogen was introduced so as to have a hydrogen pressure of 3.5 MPa, and the mixture was stirred at 30 ° C. for 14 hours. Thereafter, the same processing as in Example 1 was performed. R-3-quinuclidinol was obtained at a conversion of 8% and an enantiomeric excess of 22.2% ee.

比較例6Comparative Example 6

試験管にジクロロ(p−シメン)ルテニウム(II)ダイマー6.1mg、(R,S)−BPPFOH13.2mg、(1S、2S)−DPEN4.5mgをエタノール2mLに溶解し、触媒溶液を調製した。別の試験管に3−キヌクリジノン250mgとt−ブトキシカリウム112mgをエタノール8mLに溶解し、基質溶液を調製した。2つの溶液を混合し、内容積200mLのステンレス製耐圧反応容器内に入れ、水素を水素圧3.5MPaとなるように導入し、30℃で3日間攪拌した。以降、実施例1と同様に処理した。転化率98%、鏡像体過剰率9.0%eeで、S−3−キヌクリジノールが得られた。   In a test tube, 6.1 mg of dichloro (p-cymene) ruthenium (II) dimer, 13.2 mg of (R, S) -BPPFOH, and 4.5 mg of (1S, 2S) -DPEN were dissolved in 2 mL of ethanol to prepare a catalyst solution. In another test tube, 250 mg of 3-quinuclidinone and 112 mg of potassium t-butoxide were dissolved in 8 mL of ethanol to prepare a substrate solution. The two solutions were mixed, placed in a stainless steel pressure-resistant reaction vessel having an internal volume of 200 mL, hydrogen was introduced so as to have a hydrogen pressure of 3.5 MPa, and the mixture was stirred at 30 ° C. for 3 days. Thereafter, the same processing as in Example 1 was performed. With a conversion of 98% and an enantiomeric excess of 9.0% ee, S-3-quinuclidinol was obtained.

上記の結果を、表1にまとめた。比較例4から、塩基を添加するにより、得られる光学活性アルコールの鏡像体過剰率が低いことは明らかである。また、比較例5および6から、光学活性ホスフィン、光学活性ジアミン、ルテニウム錯体触媒の存在下で水素化した場合は、極めて反応が遅く、得られる光学活性アルコールの鏡像体過剰率も低いことは明らかである。   The above results are summarized in Table 1. From Comparative Example 4, it is clear that the enantiomeric excess of the optically active alcohol obtained by adding the base is low. From Comparative Examples 5 and 6, it is clear that when hydrogenation is carried out in the presence of an optically active phosphine, an optically active diamine and a ruthenium complex catalyst, the reaction is extremely slow and the enantiomeric excess of the obtained optically active alcohol is low. It is.

Figure 0003569280
Figure 0003569280

本発明によれば、プロキラルなカルボニル化合物から、高収率かつ高い鏡像体過剰率で対応する光学活性アルコールを有用に製造することができる。
According to the present invention, a corresponding optically active alcohol can be usefully produced from a prochiral carbonyl compound in a high yield and a high enantiomeric excess.

Claims (3)

プロキラルなカルボニル化合物を不斉水素化して光学活性アルコールを得る際に、ロジウム錯体あるいはその塩、一般式(1)
Figure 0003569280
(ただし式中、R1、R2、R3及びR4は互いに独立に炭素数1乃至10の置換基を有していても良い炭化水素基、R5及びR6は互いに独立に水素原子あるいは置換基を有していても良い炭素数2乃至10の炭化水素基を表す。置換基としては、水酸基、カルボニル基、アルコキシ基、アミノ基、アミド基から選ばれる少なくとも1種である。)で示される光学活性ジホスフィン及び一般式(2)
Figure 0003569280
(ただし式中、R7、R8、R9、R10は、互いに独立に、水素原子または置換基を有してよい炭化水素基を、Zは炭化水素基を表す。)で表される光学活性ジアミンの存在下、塩基の非存在下、水素化することを特徴とする光学活性アルコールの製造方法。
When obtaining an optically active alcohol by asymmetric hydrogenation of a prochiral carbonyl compound, a rhodium complex or a salt thereof, a compound represented by the general formula (1):
Figure 0003569280
(Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrocarbon group which may have a substituent having 1 to 10 carbon atoms, and R 5 and R 6 are each independently a hydrogen atom Or a hydrocarbon group having 2 to 10 carbon atoms which may have a substituent, and the substituent is at least one selected from a hydroxyl group, a carbonyl group, an alkoxy group, an amino group, and an amide group. And an optically active diphosphine represented by the general formula (2)
Figure 0003569280
(Wherein, R 7 , R 8 , R 9 , and R 10 independently represent a hydrogen atom or a hydrocarbon group which may have a substituent, and Z represents a hydrocarbon group). A method for producing an optically active alcohol, comprising hydrogenating in the presence of an optically active diamine and in the absence of a base.
前記光学活性ジホスフィン配位子が、一般式(3)
Figure 0003569280
(ただし式中、R1、R2、R3、及びR4は前記と同じで、*は不斉中心を表す。)あるいは一般式(4)
Figure 0003569280
(ただし式中、R1、R2、R3、R4及び*は前記と同じ。)から選ばれる1種であることを特徴とする請求項1に記載の光学活性アルコールの製造方法。
The optically active diphosphine ligand has a general formula (3)
Figure 0003569280
(Wherein, R 1 , R 2 , R 3 , and R 4 are the same as above, and * represents an asymmetric center) or the general formula (4)
Figure 0003569280
2. The method for producing an optically active alcohol according to claim 1 , wherein R 1 , R 2 , R 3 , R 4 and * are the same as described above.
プロキラルなカルボニル化合物が3−キヌクリジノンであることを特徴とする請求項1または2に記載の光学活性アルコールの製造方法。 The method for producing an optically active alcohol according to claim 1 or 2, wherein the prochiral carbonyl compound is 3-quinuclidinone.
JP2004059915A 2003-03-07 2004-03-04 Method for producing optically active alcohol Expired - Lifetime JP3569280B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059915A JP3569280B1 (en) 2003-03-07 2004-03-04 Method for producing optically active alcohol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003061843 2003-03-07
JP2004059915A JP3569280B1 (en) 2003-03-07 2004-03-04 Method for producing optically active alcohol

Publications (2)

Publication Number Publication Date
JP3569280B1 true JP3569280B1 (en) 2004-09-22
JP2004292434A JP2004292434A (en) 2004-10-21

Family

ID=33134261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059915A Expired - Lifetime JP3569280B1 (en) 2003-03-07 2004-03-04 Method for producing optically active alcohol

Country Status (1)

Country Link
JP (1) JP3569280B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5172124B2 (en) 2006-09-29 2013-03-27 関東化学株式会社 Method for producing optically active quinuclidinols having a substituent at the 2-position
JP4860509B2 (en) * 2007-03-10 2012-01-25 独立行政法人科学技術振興機構 Method for producing optically active hydrazino keto ester compound
US8436181B2 (en) 2007-09-06 2013-05-07 Nippon Soda Co., Ltd. Production process of optically active 3-quinuclidinol derivative
WO2011025023A1 (en) * 2009-08-31 2011-03-03 株式会社資生堂 Cosmetic preparation for hair styling

Also Published As

Publication number Publication date
JP2004292434A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
Touge et al. Oxo-tethered ruthenium (II) complex as a bifunctional catalyst for asymmetric transfer hydrogenation and H2 hydrogenation
JP4958374B2 (en) Catalysts for asymmetric (mobile) hydrogenation
Ohkuma Asymmetric hydrogenation of ketones: Tactics to achieve high reactivity, enantioselectivity, and wide scope
JP2731377B2 (en) Method for producing optically active alcohols
EP1176135B1 (en) Process for producing optically active alcohol
JP3569280B1 (en) Method for producing optically active alcohol
Yang et al. Dynamic Kinetic Resolution of γ-Substituted Cyclic β-Ketoesters via Asymmetric Hydrogenation: Constructing Chiral Cyclic β-Hydroxyesters with Three Contiguous Stereocenters
EP1601635B1 (en) Process for producing optically active alcohol in the presence of rhodium, a chiral ferrocenyldiphosphine and an optically active diamine
Ding et al. Dynamic kinetic resolution of β-keto sulfones via asymmetric transfer hydrogenation
US6583312B2 (en) Process for preparing optically active trimethyllactic acid and its esters
EP1503979B1 (en) Process for hydrogenating unactivated imines using ruthenium complexes as catalysts
JP3771615B2 (en) Method for producing optically active benzhydrol compound
JP3159661B2 (en) Method for producing optically active alcohols
JP2003277380A (en) Optically active 3-quinuclidinol
JP2008088090A (en) Manufacturing method of optically active quinuclidinols having substituent group at 2-position
JP5330706B2 (en) Process for producing optically active 3-quinuclidinol
JPH07206768A (en) Optically active succinic acid or its derivative
JP2005298411A (en) Method for producing optically active alcohol
US7816533B2 (en) Asymmetric imine hydrogenation processes
JP2004075560A (en) 3-quinuclidinone enol ester and method for producing optically active 3-quinuclidinol ester using the same
JPH09268146A (en) Production of optically active fluorine-containing hydroxy compound
Wang et al. Synthesis of Planar‐Chiral [2.2] Paracyclophane‐Based Oxazole‐Pyrimidine Ligands and Application in Nickel‐Catalyzed 1, 2‐Reduction of α, β‐Unsaturated Ketones
JPH09110750A (en) Production of optically active cyclohexanols
JP2005306804A (en) Method for producing optically active 3-quinuclidinol
JP2008517990A (en) Method for de-enriching enantiomer-enriched substrates

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250