JP2004075424A - Ferroelectric thin film having excellent fatigue resistance and composition for depositing the same - Google Patents

Ferroelectric thin film having excellent fatigue resistance and composition for depositing the same Download PDF

Info

Publication number
JP2004075424A
JP2004075424A JP2002235288A JP2002235288A JP2004075424A JP 2004075424 A JP2004075424 A JP 2004075424A JP 2002235288 A JP2002235288 A JP 2002235288A JP 2002235288 A JP2002235288 A JP 2002235288A JP 2004075424 A JP2004075424 A JP 2004075424A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric thin
composition
component
plzt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002235288A
Other languages
Japanese (ja)
Other versions
JP4407103B2 (en
Inventor
Nobuyuki Soyama
曽山 信幸
Kazumasa Maki
牧 一誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002235288A priority Critical patent/JP4407103B2/en
Publication of JP2004075424A publication Critical patent/JP2004075424A/en
Application granted granted Critical
Publication of JP4407103B2 publication Critical patent/JP4407103B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferroelectric thin film which has excellent fatigue resistance, and to provide a composition for depositing the same. <P>SOLUTION: The composition for depositing a thin film is obtained by mixing a PLZT (lead lanthanum zirconia titanate) ferroelectric thin film component with a low melting point metal component as a fatigue resisting component to remanent polarization. Provided that the molar number of the ferroelectric thin film component is A, and the molar number of the low melting point metal component is B, the amount of the low melting point metal component to be mixed preferably satisfies B/(A+B)≤0.1. The PLZT ferroelectric thin film is excellent in fatigue resistance, so that a semiconductor device material or the like having high reliability and stability can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、残留分極に対する耐疲労特性に優れたPLZT強誘電体薄膜とその形成用組成物に関する。本発明のPLZT強誘電体薄膜は耐久性に優れるので各種の半導体デバイス材料として好適である。
【0002】
【従来の技術】
チタン酸ジルコン酸鉛(PZT)、あるいはこれにランタンをドープしたPLZTはその高い誘電率、優れた強誘電特性を有しており、その薄膜を基材表面に設けたものは各種のキヤパシタや不揮発性メモリ等の半導体デバイス材料として用いられている。従来、これらのPZTおよびPLZTについては、電気的ないし半導体特性の改善を意図して、積層構造や組成あるいは成膜方法などについて検討されている。
【0003】
例えば、ゾルゲル法やMOD法、CSD法などの原料溶液を塗布して焼成する成膜法に用いる強誘電体薄膜形成用組成物について、一般式:(PbLa)(ZrTi1−z)0(式中0.9<x<1.3、0≦y<0.1、0≦z<0.9)で示される複合金属化合物に少量の各種金属成分を混合して複合金属酸化物を形成することによって450℃以下の低温でも結晶化が可能なPLZT形成用組成物が提案されている。
【0004】
しかし、従来のPZT薄膜ないしPLZT薄膜は、残留分極Prは大きいが疲労特性が悪いと云う問題がある。疲労特性が悪いとデバイスに適用した際に長期使用に耐えられないと云う問題が生じる。
【0005】
【発明が解決しようとする課題】
本発明は従来のPZT薄膜ないしPLZT薄膜における上記問題を解決したものであり、疲労特性に優れたPZT薄膜ないしPLZT薄膜、およびこれら薄膜を形成する組成物を提供することを目的とする。なお、本発明において便宜上PZTとPLZTとを併せてPLZTと称する。
【0006】
【課題を解決する手段】
本発明は、(1)PLZT強誘電体薄膜成分に、低融点金属成分を残留分極に対する耐疲労成分として混合させたことを特徴とするPLZT強誘電体薄膜形成用組成物に関する。好ましくは、本発明は(2)PLZT強誘電体薄膜成分に、低融点金属成分を残留分極に対する耐疲労成分として混合させた薄膜形成用組成物であって、低融点金属成分の混合量が、上記強誘電体薄膜成分のモル数A、低融点金属成分のモル数Bのとき、B/(A+B)≦0.1であるPLZT強誘電体薄膜形成用組成物に関する。
【0007】
本発明の上記組成物は、(3)残留分極に対する耐疲労成分として混合される低融点金属がリチウム、カドミウム、およびスズの1種または2種以上であるPLZT強誘電体薄膜形成用組成物、(4)低融点金属成分の他に耐疲労特定を低下させない金属成分を含有するPLZT強誘電体薄膜形成用組成物を含む。
【0008】
さらに、本発明は(5)上記何れかに記載する組成物によって形成されたPLZT強誘電体薄膜、(6)上記PLZT強誘電体薄膜を有する半導体デバイス材料に関する。
【0009】
以下、本発明を具体的に説明する。
本発明に係るPLZT強誘電体薄膜形成用組成物は、PLZT強誘電体薄膜成分に、低融点金属成分を残留分極に対する耐疲労成分として混合させたことを特徴とするものである。ここでPLZT強誘電体薄膜成分とは、一般式:(PbLa)(ZrTi1−z)0(式中0.9<x<1.4、0≦y<0.1、0≦z<0.9)で示される複合金属化合物組成を云う。残留分極に対する耐疲労成分として混合される低融点金属は、好ましくは、リチウム(Li)、カドミウム(Cd)、およびスズ(Sn)の1種または2種以上である。これらLi、Cd、Snの融点は何れも350℃以下である。一方、後述する実施例の比較試料に示すようにNb、Ge、Siなどを混合しても残留分極に対する疲労特性を向上することはできない。これらNb、Ge、Siは何れも融点が900℃以上の高融点金属である。
【0010】
上記低融点金属成分の混合量は、上記強誘電体薄膜成分のモル数A、低融点金属成分のモル数Bのとき、B/(A+B)≦0.1が適当であり、B/(A+B)≦0.05が好ましい。このモル比が0.1を上回ると残留分極値の低下が大きくなりすぎるので好ましくない。
【0011】
本発明のPLZT強誘電体薄膜形成用組成物は、低融点金属成分の他に耐疲労特定を低下させない金属成分を混合してもよい。例えば、Ca,Sr,Mn,Co,Zn,Fe,Y,Al,Si,Ge,Nb,V,Ta,Bi,Sc,Mg,Ba,Hf,K,Cr,Ga,Na,Inなどを混合することができる。リチウム、カドミウムまたはスズを用いずに、PLZT成分にこれらの金属成分を混合してもPLZT膜の耐疲労特性を向上させることはできないが、これらの金属成分を混合することによって、PLZT膜形成液を焼成する際に結晶化温度を低下させることができる。
【0012】
本発明のPLZT強誘電体薄膜形成用組成物は有機金属化合物を原料として調製することができる。具体的には、例えば有機基がPLZT成分のPb、La、ZrおよびTiを含有する有機金属化合物を用い、耐疲労特性成分であるLi、Cd、Snを含有する有機金属化合物を用いればよい。これらは例えば、金属アルコキシド、金属ジオール錯体、金属トリオール錯体、金属カルボン酸塩、金属β−ジケトネート錯体、金属β−ジケトエステル錯体、金属β−イミノケト錯体、金属アミノ錯体よりなる群から選ばれる1種又は2種以上を用いることができる。このうち、Pb化合物、La化合物としては酢酸塩(酢酸鉛、酢酸ランタン)などの有機酸塩、鉛ジイソプロポキシドなどのアルコキシドが好適であり、Ti化合物としては、チタニウムテトラエトキシド、チタニウムテトライソプロボキシド、チタニウムテトラブトキシド、チタニウムジメトキシジイソプロポキシドなどのアルコキシドが好適である。金属アルコキシドはそのまま使用してもよいが、分解を促進きせるためにその部分加水分解物を使用してもよい。
【0013】
本発明のPLZT強誘電体薄膜形成用組成物を調製するには、これらの原料有機金属化合物を、例えば上記組成に相当する量比で適量な溶媒に溶解して、塗布に適した濃度に調整する。この溶媒は、一般的には、カルボン酸、アルコール、エステル、ケトン類(例えばアセトン、メチルエチルケトン)、エーテル類(例えばジメチルエーテル、ジエチルエーテル〉、シクロアルカン類(例えばシクロヘキサン、シクロへキサノール)、芳香族系(例えばベンゼン、トルエン、キシレン)、その他テトラヒドロフラン等、或いはこれらの2種以上の混合溶媒を用いることができる。なお、この有機金属化合物溶液中の有機金属化合物の合計濃度は金属酸化物換算量で0.1〜20重量%程度とするのが好ましい。この有機金属化合物溶液中には必要に応じて安定化剤としてβ−ジケトン類などを加えても良い。
【0014】
なお、上記有機金属化合物溶液は、これを濾過処理などにより、粒径0.6μm以上、好ましくは0.2μm以上のパーティクルを出来るだけ除去するのが良い。この粒径より大きいパーティクルが多数存在すると、この溶液の長期保存安定性が低下する。
【0015】
このようにして調製した本発明のPLZT強誘電体薄膜形成用溶液は、これを基板上に塗布して乾燥し、焼成してPLZT強誘電体薄膜が形成される。所望の膜厚が得られるまで塗布乾燥工程を繰り返し行った後に焼成すれば良い。乾燥工程により、溶媒が除去されると共に原料の有機金属化合物が分解して複合酸化物に転化する。乾燥は空気中、酸化雰囲気中、含水蒸気雰囲気中など処理条件に適した雰囲気で行う。また、この加熱は溶媒を除去する低温加熱と有機金属化合物を分解する高温加熱の2段階で実施しても良い。焼成は乾燥処理した塗膜を結晶化させる工程であり、これによりPLZT強誘電体薄膜が得られる。焼成雰囲気は0、N,Ar、NOまたはHなどの処理条件に適した雰囲気で行えば良い。
【0016】
【実施例および比較例】
〔実施例1〕
有機溶媒として十分に脱水処理した2−メトキシエタノールを使用し、これに酢酸鉛3水和物と酢酸ランタン1.5水和物を溶解させ、共沸蒸留により結晶水を除去した。この溶液にジルコニウムテトラt−ブトキシド、チタンテトライソプロポキシドを表1に示すモル比になるように加え、強誘電体組成とした。さらに、この溶液に残留分極に対する耐疲労特性を高める成分として、錫テトラn−ブトキシド、2−エチルヘキサンカドミニウム、リチウムエトキシドを表1のモル比になるように添加して溶解させ、溶液安定化のためアセチルアセトンを加えて本発明のPLZT強誘電体薄膜形成用溶液を調製した。
調製した薄膜形成用溶液を基板〔Pt(200nm)/TiO(50nm)/SiO/Si(100)〕の白金電極表面にスピンコート法により塗布した(500rpmで3秒間塗布した後に3000rpmで15秒間塗布)。次いで、ホットプレートを用い、400℃で10分間加熱して乾燥および仮焼成を行った。この塗布、仮焼成の工程を4回繰り返した後、急速加熱処理装置(RTA)に入れ、酸素雰囲気下で700℃に1分間焼成して膜厚1600Åの強誘電体薄膜を形成した。
この強誘電体薄膜について、±5Vのパルス型印加電圧を100kHzの周波数を連続的に印加して疲労特性を測定した。この結果を表1に示した。なお、基準試料として耐疲労成分(Li,Cd,Sn)を含まないものの疲労特性試験結果を併せて示した。
表1の結果に示すように、強誘電体薄膜の残留分極が半減するまでの印加電圧5Vにおける分極反転回数は、基準試料では10の5乗レベルであるのに対して本発明の試料は何れも10の6乗〜10の9乗レベルであり、疲労特性が格段に向上している。また、残留分極も10〜22μC/cmであり比較的大きい。
【0017】
〔比較例〕
Sn、Cd、およびLiのアルコキシドに代えて、Si、Ge、Nbのアルコキシドを用いた他は実施例1と同様にしてPLZT強誘電体薄膜を形成した。この強誘電体薄膜について実施例1と同様の疲労特性試験を行った。この結果を表2に示した。表2に示すように、何れの比較試料も分極反転回数は10の5乗レベルであり、表1の基準試料と変わらず、疲労特性の向上効果は認められなかった。
【0018】
〔実施例2〕
PLZT成分と耐疲労成分(Li,Cd,Sn)に対して、表3に示す第三成分を加えた他は実施例1と同様にしてPLZT強誘電体薄膜を形成した。この強誘電体薄膜について実施例1と同様の疲労特性試験を行った。この結果を表3に示した。表3に示すように、何れの試料も第三成分を含有しても分極反転回数は10の7乗〜108乗レベルであり、表1の本発明試料と同水準の疲労特性を有することが確認された。
【0019】
【表1】

Figure 2004075424
【0020】
【表2】
Figure 2004075424
【0021】
【表3】
Figure 2004075424
【0022】
【発明の効果】
本発明のPLZT強誘電体薄膜は耐疲労特性が優れるので、信頼性および安定性の高い半導体デバイアス材料等を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a PLZT ferroelectric thin film having excellent fatigue resistance to remanent polarization and a composition for forming the same. Since the PLZT ferroelectric thin film of the present invention has excellent durability, it is suitable as various semiconductor device materials.
[0002]
[Prior art]
Lead zirconate titanate (PZT) or PLZT doped with lanthanum has a high dielectric constant and excellent ferroelectric properties, and those having a thin film provided on a substrate surface are various types of capacitors and nonvolatiles. It is used as a semiconductor device material for non-volatile memories and the like. Hitherto, with respect to these PZTs and PLZTs, a laminated structure, a composition, a film forming method, and the like have been studied with the aim of improving electrical or semiconductor characteristics.
[0003]
For example, a sol-gel method or MOD method, ferroelectric thin film-forming composition used in the film forming method of firing by applying a raw material solution such as CSD method, the general formula: (Pb x La y) ( Zr z Ti 1- z ) A composite metal compound represented by 0 3 (where 0.9 <x <1.3, 0 ≦ y <0.1, 0 ≦ z <0.9) is mixed with a small amount of various metal components to form a composite. There has been proposed a composition for forming PLZT, which can be crystallized even at a low temperature of 450 ° C. or less by forming a metal oxide.
[0004]
However, the conventional PZT thin film or PLZT thin film has a problem that the remanent polarization Pr is large but the fatigue characteristics are poor. If the fatigue properties are poor, there arises a problem that when applied to a device, it cannot withstand long-term use.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems in the conventional PZT thin film or PLZT thin film, and to provide a PZT thin film or a PLZT thin film having excellent fatigue characteristics, and a composition for forming these thin films. In the present invention, PZT and PLZT are collectively referred to as PLZT for convenience.
[0006]
[Means to solve the problem]
The present invention relates to (1) a composition for forming a PLZT ferroelectric thin film, wherein a low melting point metal component is mixed with a PLZT ferroelectric thin film component as a fatigue resistance component against residual polarization. Preferably, the present invention is a composition for forming a thin film in which a low melting point metal component is mixed with a PLZT ferroelectric thin film component as a fatigue resistance component against remanent polarization, wherein the mixing amount of the low melting point metal component is: The present invention relates to a composition for forming a PLZT ferroelectric thin film, wherein B / (A + B) ≦ 0.1 when the number of moles of the ferroelectric thin film component is A and the number of moles of the low melting point metal component is B.
[0007]
(3) A composition for forming a PLZT ferroelectric thin film, wherein (3) a low-melting metal mixed as a fatigue-resistant component against remanent polarization is at least one of lithium, cadmium, and tin; (4) A composition for forming a PLZT ferroelectric thin film containing a metal component which does not lower the fatigue resistance in addition to the low melting point metal component.
[0008]
Further, the present invention relates to (5) a PLZT ferroelectric thin film formed by any of the above-mentioned compositions, and (6) a semiconductor device material having the PLZT ferroelectric thin film.
[0009]
Hereinafter, the present invention will be described specifically.
The composition for forming a PLZT ferroelectric thin film according to the present invention is characterized in that a low melting point metal component is mixed with a PLZT ferroelectric thin film component as a fatigue resistance component against remanent polarization. Here, the PLZT ferroelectric thin film components of the general formula: (Pb x La y) ( Zr z Ti 1-z) 0 3 ( wherein 0.9 <x <1.4,0 ≦ y < 0.1 , 0 ≦ z <0.9). The low melting point metal mixed as a fatigue resistance component against remanent polarization is preferably one or more of lithium (Li), cadmium (Cd), and tin (Sn). The melting points of Li, Cd, and Sn are all 350 ° C. or less. On the other hand, even if Nb, Ge, Si or the like is mixed as shown in a comparative sample of an example to be described later, the fatigue characteristics with respect to remanent polarization cannot be improved. These Nb, Ge, and Si are all high melting point metals having a melting point of 900 ° C. or higher.
[0010]
The mixing amount of the low melting point metal component is suitably B / (A + B) ≦ 0.1 when the number of moles of the ferroelectric thin film component is A and the number of moles of the low melting point metal component is B, and B / (A + B). ) ≦ 0.05 is preferred. If this molar ratio exceeds 0.1, the decrease in the remanent polarization value becomes too large, which is not preferable.
[0011]
In the composition for forming a PLZT ferroelectric thin film of the present invention, a metal component that does not reduce the fatigue resistance may be mixed in addition to the low melting metal component. For example, Ca, Sr, Mn, Co, Zn, Fe, Y, Al, Si, Ge, Nb, V, Ta, Bi, Sc, Mg, Ba, Hf, K, Cr, Ga, Na, In, etc. are mixed. can do. Even if these metal components are mixed with the PLZT component without using lithium, cadmium or tin, the fatigue resistance of the PLZT film cannot be improved. However, by mixing these metal components, a PLZT film forming solution can be obtained. When firing, the crystallization temperature can be lowered.
[0012]
The composition for forming a PLZT ferroelectric thin film of the present invention can be prepared using an organometallic compound as a raw material. Specifically, for example, an organic metal compound containing an organic group containing Pb, La, Zr, and Ti, which are PLZT components, and an organic metal compound containing Li, Cd, and Sn, which are fatigue resistance components, may be used. These are, for example, one selected from the group consisting of metal alkoxides, metal diol complexes, metal triol complexes, metal carboxylates, metal β-diketonate complexes, metal β-diketoester complexes, metal β-iminoketo complexes, and metal amino complexes. Alternatively, two or more kinds can be used. Among them, as the Pb compound and the La compound, organic acid salts such as acetate (lead acetate and lanthanum acetate) and alkoxides such as lead diisopropoxide are preferable, and as the Ti compound, titanium tetraethoxide and titanium tetraoxide are used. Alkoxides such as isopropoxide, titanium tetrabutoxide and titanium dimethoxydiisopropoxide are preferred. The metal alkoxide may be used as it is, or a partial hydrolyzate thereof may be used to accelerate the decomposition.
[0013]
In order to prepare the composition for forming a PLZT ferroelectric thin film of the present invention, these starting organometallic compounds are dissolved, for example, in an appropriate amount of a solvent at a ratio corresponding to the above composition and adjusted to a concentration suitable for coating. I do. This solvent is generally a carboxylic acid, alcohol, ester, ketone (eg, acetone, methyl ethyl ketone), ether (eg, dimethyl ether, diethyl ether), cycloalkane (eg, cyclohexane, cyclohexanol), aromatic type (For example, benzene, toluene, xylene), other tetrahydrofuran, or a mixed solvent of two or more thereof.The total concentration of the organometallic compound in the organometallic compound solution is expressed in terms of metal oxide. Preferably, the concentration is about 0.1 to 20% by weight, and a β-diketone or the like may be added as a stabilizer to this organometallic compound solution, if necessary.
[0014]
The organic metal compound solution is preferably filtered to remove particles having a particle diameter of 0.6 μm or more, preferably 0.2 μm or more, as much as possible. The presence of a large number of particles larger than this particle size reduces the long-term storage stability of the solution.
[0015]
The solution for forming a PLZT ferroelectric thin film of the present invention thus prepared is coated on a substrate, dried, and fired to form a PLZT ferroelectric thin film. The coating and drying steps may be repeated until the desired film thickness is obtained, followed by baking. By the drying step, the solvent is removed and the raw material organometallic compound is decomposed and converted into a composite oxide. Drying is performed in an atmosphere suitable for processing conditions, such as in air, an oxidizing atmosphere, or a steam-containing atmosphere. This heating may be performed in two stages: low-temperature heating for removing the solvent and high-temperature heating for decomposing the organometallic compound. Firing is a step of crystallizing the dried coating film, whereby a PLZT ferroelectric thin film is obtained. The firing atmosphere may be an atmosphere suitable for processing conditions such as O 2 , N 2 , Ar, N 2 O, or H 2 .
[0016]
[Examples and Comparative Examples]
[Example 1]
A sufficiently dehydrated 2-methoxyethanol was used as an organic solvent, in which lead acetate trihydrate and lanthanum acetate hemihydrate were dissolved, and water of crystallization was removed by azeotropic distillation. To this solution, zirconium tetra-t-butoxide and titanium tetraisopropoxide were added in the molar ratio shown in Table 1 to obtain a ferroelectric composition. Further, tin tetra-n-butoxide, 2-ethylhexanecadmium, and lithium ethoxide were added to the solution as components for enhancing fatigue resistance against remanent polarization in the molar ratio shown in Table 1, and dissolved to stabilize the solution. Therefore, acetylacetone was added to prepare a solution for forming a PLZT ferroelectric thin film of the present invention.
The prepared thin film forming solution was applied to the surface of a platinum electrode of a substrate [Pt (200 nm) / TiO 2 (50 nm) / SiO 2 / Si (100)] by a spin coating method (500 rpm for 3 seconds, and then 3000 rpm for 15 seconds). For 2 seconds). Then, drying and temporary baking were performed by heating at 400 ° C. for 10 minutes using a hot plate. After repeating the steps of coating and calcination four times, the film was placed in a rapid heating apparatus (RTA) and baked at 700 ° C. for 1 minute in an oxygen atmosphere to form a 1600 ° -thick ferroelectric thin film.
With respect to the ferroelectric thin film, a pulse type applied voltage of ± 5 V was continuously applied at a frequency of 100 kHz to measure the fatigue characteristics. The results are shown in Table 1. In addition, the results of a fatigue characteristic test of a reference sample that does not include a fatigue resistance component (Li, Cd, Sn) are also shown.
As shown in the results of Table 1, the number of times of polarization inversion at an applied voltage of 5 V until the remanent polarization of the ferroelectric thin film was reduced by half was 10 5 in the reference sample, whereas any of the samples of the present invention did not. Is also at the level of 10 6 to 10 9, and the fatigue characteristics are remarkably improved. Also, the remanent polarization is relatively large at 10 to 22 μC / cm 2 .
[0017]
(Comparative example)
A PLZT ferroelectric thin film was formed in the same manner as in Example 1 except that alkoxides of Si, Ge, and Nb were used instead of alkoxides of Sn, Cd, and Li. This ferroelectric thin film was subjected to the same fatigue property test as in Example 1. The results are shown in Table 2. As shown in Table 2, the number of times of polarization reversal of each of the comparative samples was at the level of 10 5, which was the same as the reference sample of Table 1, and no effect of improving the fatigue properties was observed.
[0018]
[Example 2]
A PLZT ferroelectric thin film was formed in the same manner as in Example 1 except that a third component shown in Table 3 was added to the PLZT component and the fatigue resistance component (Li, Cd, Sn). This ferroelectric thin film was subjected to the same fatigue property test as in Example 1. Table 3 shows the results. As shown in Table 3, even when any of the samples contained the third component, the number of times of polarization reversal was at the level of 10 7 to 108, and the sample had the same level of fatigue characteristics as the sample of the present invention in Table 1. confirmed.
[0019]
[Table 1]
Figure 2004075424
[0020]
[Table 2]
Figure 2004075424
[0021]
[Table 3]
Figure 2004075424
[0022]
【The invention's effect】
Since the PLZT ferroelectric thin film of the present invention has excellent fatigue resistance characteristics, a semiconductor debias material having high reliability and stability can be obtained.

Claims (6)

PLZT強誘電体薄膜成分に、低融点金属成分を残留分極に対する耐疲労成分として混合させたことを特徴とするPLZT強誘電体薄膜形成用組成物。A composition for forming a PLZT ferroelectric thin film, wherein a low melting point metal component is mixed with a PLZT ferroelectric thin film component as a fatigue resistance component against residual polarization. PLZT強誘電体薄膜成分に、低融点金属成分を残留分極に対する耐疲労成分として混合させた薄膜形成用組成物であって、低融点金属成分の混合量が、上記強誘電体薄膜成分のモル数A、低融点金属成分のモル数Bのとき、B/(A+B)≦0.1である請求項1のPLZT強誘電体薄膜形成用組成物。What is claimed is: 1. A composition for forming a thin film comprising a PLZT ferroelectric thin film component and a low melting point metal component as a fatigue resistance component against remanent polarization, wherein the mixing amount of the low melting point metal component is the number of moles of the ferroelectric thin film component A. The composition for forming a PLZT ferroelectric thin film according to claim 1, wherein B / (A + B) ≦ 0.1 when A is the number of moles of the low melting point metal component. 残留分極に対する耐疲労成分として混合される低融点金属がリチウム、カドミウム、およびスズの1種または2種以上である請求項1または2に記載するPLZT強誘電体薄膜形成用組成物。3. The composition for forming a PLZT ferroelectric thin film according to claim 1, wherein the low melting point metal mixed as a fatigue resistance component against remanent polarization is at least one of lithium, cadmium, and tin. 低融点金属成分の他に耐疲労特定を低下させない金属成分を含有する請求項1、2または3に記載するPLZT強誘電体薄膜形成用組成物。4. The composition for forming a PLZT ferroelectric thin film according to claim 1, further comprising a metal component that does not reduce fatigue resistance, in addition to the low melting point metal component. 請求項1〜4の何れかに記載する組成物によって形成されたPLZT強誘電体薄膜。A PLZT ferroelectric thin film formed from the composition according to claim 1. 請求項5のPLZT強誘電体薄膜を有する半導体デバイス材料。A semiconductor device material having the PLZT ferroelectric thin film according to claim 5.
JP2002235288A 2002-08-12 2002-08-12 Ferroelectric thin film with excellent fatigue resistance and composition for forming the same Expired - Lifetime JP4407103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235288A JP4407103B2 (en) 2002-08-12 2002-08-12 Ferroelectric thin film with excellent fatigue resistance and composition for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235288A JP4407103B2 (en) 2002-08-12 2002-08-12 Ferroelectric thin film with excellent fatigue resistance and composition for forming the same

Publications (2)

Publication Number Publication Date
JP2004075424A true JP2004075424A (en) 2004-03-11
JP4407103B2 JP4407103B2 (en) 2010-02-03

Family

ID=32019809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235288A Expired - Lifetime JP4407103B2 (en) 2002-08-12 2002-08-12 Ferroelectric thin film with excellent fatigue resistance and composition for forming the same

Country Status (1)

Country Link
JP (1) JP4407103B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200403A (en) * 1984-03-24 1985-10-09 日本曹達株式会社 Thin film dielectric unit and method of producing same
JPH06334140A (en) * 1992-12-16 1994-12-02 Ricoh Co Ltd Ferroelectric material, semiconductor memory using said material, optical recording medium and microdisplacement control element
JPH08153854A (en) * 1994-09-29 1996-06-11 Olympus Optical Co Ltd Manufacture of ferroelectric thin-film capacitor
JPH10256495A (en) * 1997-03-06 1998-09-25 Ricoh Co Ltd Nonvolatile semiconductor storage device
JP2000007430A (en) * 1998-06-19 2000-01-11 Yamaha Corp Ferroelectric material and ferroelectric memory
JP2000119020A (en) * 1998-10-14 2000-04-25 Mitsubishi Materials Corp Raw material solution for forming film of ferroelectric thin film and formation of film
JP2001072417A (en) * 1999-08-30 2001-03-21 Yamaha Corp Dielectric film, capacitor provided with the film and random access memory provided with the capacitor
JP2003002647A (en) * 2000-12-27 2003-01-08 Mitsubishi Materials Corp Plzt ferroelectric thin film, composition for forming the same, and producing method for the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200403A (en) * 1984-03-24 1985-10-09 日本曹達株式会社 Thin film dielectric unit and method of producing same
JPH06334140A (en) * 1992-12-16 1994-12-02 Ricoh Co Ltd Ferroelectric material, semiconductor memory using said material, optical recording medium and microdisplacement control element
JPH08153854A (en) * 1994-09-29 1996-06-11 Olympus Optical Co Ltd Manufacture of ferroelectric thin-film capacitor
JPH10256495A (en) * 1997-03-06 1998-09-25 Ricoh Co Ltd Nonvolatile semiconductor storage device
JP2000007430A (en) * 1998-06-19 2000-01-11 Yamaha Corp Ferroelectric material and ferroelectric memory
JP2000119020A (en) * 1998-10-14 2000-04-25 Mitsubishi Materials Corp Raw material solution for forming film of ferroelectric thin film and formation of film
JP2001072417A (en) * 1999-08-30 2001-03-21 Yamaha Corp Dielectric film, capacitor provided with the film and random access memory provided with the capacitor
JP2003002647A (en) * 2000-12-27 2003-01-08 Mitsubishi Materials Corp Plzt ferroelectric thin film, composition for forming the same, and producing method for the same

Also Published As

Publication number Publication date
JP4407103B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4329287B2 (en) PLZT or PZT ferroelectric thin film, composition for forming the same and method for forming the same
JP2001261338A (en) Raw material solution for forming titanium-containing metal oxide thin film, method of forming the same, and titanium-containing metal oxide thin film
KR102330630B1 (en) Composition for forming manganese- and niobium-doped pzt piezoelectric film
KR102334850B1 (en) Manganese- and niobium-doped pzt piezoelectric film
JP2002047011A (en) Method of forming compact perovskite metallic oxide thin film and compact perovskite metallic oxide thin film
JP4329289B2 (en) SBT ferroelectric thin film, composition for forming the same, and method for forming the same
JP4048650B2 (en) Raw material solution for forming perovskite oxide thin films
JP4042276B2 (en) Method for forming Pb-based perovskite metal oxide thin film
JP3475736B2 (en) Pb-based metal oxide thin film forming solution with excellent stability without change over time
JP4407103B2 (en) Ferroelectric thin film with excellent fatigue resistance and composition for forming the same
JP4329288B2 (en) BLT or BT ferroelectric thin film, composition for forming the same and method for forming the same
JP3456305B2 (en) Composition for forming Ba1-xSrxTiO3 thin film
JP5591485B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP2010235402A (en) Composition for ferroelectric thin film formation, method for ferroelectric thin film formation and ferroelectric thin film formed by the method
JP5526591B2 (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method
JP2007329030A (en) High dielectric film formation composition and its manufacturing method
JPH0790594A (en) Coating solution for forming titanium based multiple oxide
JP2001072926A (en) Starting solution for formation of perovskite-type oxide thin film
JP2000119022A (en) Ferroelectric thin film, raw material solution for forming the same film and formation of film
JP3146961B2 (en) Composition for forming (Ba, Sr) TiO3 dielectric thin film and method for forming (Ba, Sr) TiO3 thin film
JP2008053281A (en) High dielectric film and its forming method
JP3178363B2 (en) Ferroelectric thin film forming agent
JP3116428B2 (en) Thin film dielectric and manufacturing method thereof
JP2000001368A (en) Ferroelectric thin film, stock solution for forming same and formation of same
JP3107084B1 (en) Composition for forming ferroelectric thin film and method for forming ferroelectric thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4407103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

EXPY Cancellation because of completion of term