JPH08153854A - Manufacture of ferroelectric thin-film capacitor - Google Patents

Manufacture of ferroelectric thin-film capacitor

Info

Publication number
JPH08153854A
JPH08153854A JP577295A JP577295A JPH08153854A JP H08153854 A JPH08153854 A JP H08153854A JP 577295 A JP577295 A JP 577295A JP 577295 A JP577295 A JP 577295A JP H08153854 A JPH08153854 A JP H08153854A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric
film
temperature
ferroelectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP577295A
Other languages
Japanese (ja)
Inventor
Hitoshi Watanabe
均 渡辺
Hiroyuki Yoshimori
博之 由森
Takashi Mihara
孝士 三原
Takehiro Takahashi
武博 高橋
Kaoru Tadokoro
かおる 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYMMETRICS CORP
Olympus Corp
Symetrix Corp
Original Assignee
SYMMETRICS CORP
Olympus Optical Co Ltd
Symetrix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYMMETRICS CORP, Olympus Optical Co Ltd, Symetrix Corp filed Critical SYMMETRICS CORP
Priority to JP577295A priority Critical patent/JPH08153854A/en
Publication of JPH08153854A publication Critical patent/JPH08153854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE: To form the thin-film of a compound, capable of being applied to an actual device by conducting calcination for a very short time by quick temperature-rise heating at a temperature higher than the crystallization temperature of a lead- containing complex oxide ferroelectric and performing baking for a relatively prolonged period at the temperature higher than the crystallization temperature. CONSTITUTION: A large number of metallic atoms and decomposed and dissociated organic residual are contained in a metallic oxide thin-film on a lower electrode formed by thermally decomposing an organometallic compound, and an amorphous state not containing any crystalline structure at all is brought. The amorphous state is calcined and treated for a very short time at a temperature higher than the crystallization temperature of an aimed lead-containing complex compound ferroelectric material by one-time quick temperature-rise heating. Baking for a relatively prolonged period is conducted at the temperature higher than the crystallization temperature. Accordingly, the isolation-voltage characteristics of the thin-film of a lead-containing complex compound ferroelectric and a bismuth layer-shaped compound are improved, and the thin-film of the compound capable of being applied to an actual device can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、強誘電体薄膜の残留
分極特性を利用した不揮発性半導体メモリや圧電焦電セ
ンサ、さらにはトランデューサ、アクチュエータ等の電
子デバイスに供する酸化物強誘電体薄膜キャパシタの製
造方法に関するものであり、特に絶縁耐圧特性に優れた
強誘電体薄膜キャパシタの製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide ferroelectric thin film for use in electronic devices such as non-volatile semiconductor memories and piezoelectric pyroelectric sensors that utilize the remanent polarization characteristics of ferroelectric thin films, as well as transducers and actuators. The present invention relates to a method for manufacturing a capacitor, and particularly to a method for manufacturing a ferroelectric thin film capacitor having excellent withstand voltage characteristics.

【0002】[0002]

【従来の技術】従来、強誘電体化合物は、その特異な電
気特性を利用して多くの分野に利用されている。例え
ば、圧電性を利用した圧電フィルタや超音波トランスデ
ューサに、また焦電性を利用して赤外線センサやパイロ
ビジコンに、あるいは電気光学効果を利用した光変調素
子や光シャッタ等の多方面に応用されている。さらにこ
れらの材料の薄膜を利用した電子デバイスも考案され、
薄膜化の検討が精力的になされている。特に、残留分極
の安定性を利用した強誘電体薄膜キャパシタ搭載の不揮
発性メモリデバイスは、最近の記憶容量の高密度化、高
集積化競争を背景に最も注目されている分野である。
2. Description of the Related Art Conventionally, ferroelectric compounds have been used in many fields by utilizing their unique electrical characteristics. For example, it is applied to piezoelectric filters and ultrasonic transducers that utilize piezoelectricity, infrared sensors and pyrovidicons that utilize pyroelectricity, and various fields such as optical modulators and optical shutters that utilize the electro-optic effect. ing. In addition, electronic devices using thin films of these materials were also devised,
Studies on thinning are being made vigorously. In particular, a non-volatile memory device equipped with a ferroelectric thin film capacitor that utilizes the stability of remanent polarization is the field that has received the most attention due to the recent trend toward higher storage capacities and higher integration.

【0003】こうした多用途に応じて競って研究されて
いる代表材料として、PZT(チタン酸ジルコン酸
鉛)、PLZT(チタン酸ジルコン酸ランタン鉛)等、
一連の鉛含有複合酸化物強誘電体が挙げられ、多年にわ
ったて多くの研究者により実用化の検討が続けられてい
る。
Representative materials that are being competitively studied according to such versatile applications include PZT (lead zirconate titanate), PLZT (lead lanthanum zirconate titanate), and the like.
A series of lead-containing complex oxide ferroelectrics have been mentioned, and many researchers have been studying their practical use for many years.

【0004】また、その他の有望な強誘電材料として、
本発明者らによって明かにされた米国特許出願9651
90(1992年10月23日出願)、USP9811
33(1992年11月24日出願)記載のビスマス層
状ペロブスカイト型酸化物強誘電体の薄膜がある。この
材料は従来のPZT,PLZT等の薄膜に比較して分極
反転疲労(多数回分極反転を繰り返し行うことにより分
極反転能が低下して徐々に分極量が減衰する現象)特性
に優れており、その長所を活かして不揮性メモリデバイ
ス、その他の電子、光学デバイスへの応用が期待されて
いる。
As another promising ferroelectric material,
U.S. Patent Application 9651 identified by the present inventors
90 (filed October 23, 1992), USP9811
33 (filed on November 24, 1992), there is a thin film of bismuth layered perovskite type oxide ferroelectric. This material is superior in polarization reversal fatigue (a phenomenon in which the polarization reversal ability is reduced and the amount of polarization is gradually attenuated by repeating polarization reversal a number of times) is superior to conventional thin films such as PZT and PLZT. Exploiting its advantages, it is expected to be applied to non-volatile memory devices and other electronic and optical devices.

【0005】ビスマス層状ペロブスカイト型酸化物強誘
電体(以下、ビスマス層状化合物と呼ぶ)は下記の一般
式(1)で表される組成を有し、その単位結晶格子内に
頂点共有したペロブスカイト様結晶構造からなり強誘電
性を発現する部分(一部組成には非強誘電性のものもあ
る)と、これに隣接した酸化ビスマスからなる非強誘電
性部の2つの部分で構成される繰り返し単位を有する層
状構造を持ち、c軸方向に極端に長い単位格子を有す
る。
A bismuth layered perovskite type oxide ferroelectric (hereinafter referred to as a bismuth layered compound) has a composition represented by the following general formula (1), and a perovskite-like crystal having a vertex shared in its unit crystal lattice. A repeating unit composed of two parts: a part consisting of a structure and exhibiting ferroelectricity (some compositions have non-ferroelectric properties), and a non-ferroelectric part consisting of bismuth oxide adjacent to this part. And has an extremely long unit cell in the c-axis direction.

【0006】 (Bi222+(Am-1m3m+12- (1) A=Bi,Pb,Ba,Sr,Ca,Na,K,Cdの
内から選ばれる1つもしくは複数元素からなる任意比率
による組み合わせ。
(Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2− (1) A = Bi, Pb, Ba, Sr, Ca, Na, K, Cd A combination of one or more elements at any ratio.

【0007】B=Ti,Nb,Ta,W,Mo,Fe,
Co,Crの内から選ばれる1つもしくは複数元素から
なる任意比率による組み合わせ。m=1〜5の自然数。
このビスマス層状化合物のうち、実用デバイスに応用で
きる強誘電性を示すものとしては、Bi4 Ti3
12(チタン酸ビスマス)を始めとしてSrBi4 Ti4
15(チタン酸ストロンチウムビスマス)、SrBi2
Ta29 (タンタル酸ストロンチウムビスマス)Sr
Bi2 Nb29 (ニオブ酸ストロンチウムビスマス)
等が挙げられる。またこれらの2種類もしくはそれ以上
の組み合せによる固溶体薄膜、例えばSrBi2 Nb1
Ta19 も優れた強誘電性を示すことが知られてい
る。
B = Ti, Nb, Ta, W, Mo, Fe,
A combination of one or more elements selected from Co and Cr in an arbitrary ratio. A natural number of m = 1 to 5.
Of these bismuth layered compounds, those showing ferroelectricity applicable to practical devices include Bi 4 Ti 3 O.
12 (bismuth titanate) and other SrBi 4 Ti 4
O 15 (strontium bismuth titanate), SrBi 2
Ta 2 O 9 (strontium bismuth tantalate) Sr
Bi 2 Nb 2 O 9 (Strontium Bismuth Niobate)
Etc. Also, a solid solution thin film made of a combination of two or more of these, such as SrBi 2 Nb 1
It is known that Ta 1 O 9 also exhibits excellent ferroelectricity.

【0008】これらの鉛含有複合酸化物強誘電体やビス
マス層状化合物の薄膜を基板上に形成するためには、一
般的な薄膜形成方法、即ちスパッタ法に代表される真空
成膜法、ゾルゲル法、有機化合物熱分解法(MOD法)
に代表される溶液塗布法、化学気相蒸気法(CVD
法)、ミストデポジション(溶液状原料を微小な霧滴状
にして基板上に堆積させるCVD類似の方法)等があ
る。
In order to form thin films of these lead-containing complex oxide ferroelectrics and bismuth layered compounds on a substrate, a general thin film forming method, that is, a vacuum film forming method typified by a sputtering method and a sol-gel method are used. , Pyrolysis of organic compounds (MOD method)
Solution coating method, a chemical vapor deposition method (CVD
Method), mist deposition (a method similar to CVD in which a liquid material is made into fine mist droplets and deposited on a substrate).

【0009】スパッタリング等の真空成膜法において
は、基板上である程度の結晶化を行わせ、かつ内部応力
の蓄積を防止して基板密着性を向上させるために、基板
加熱が常套手段として用いられる。しかし、上記ビスマ
ス層状化合物の組成中ビスマス、鉛含有複合酸化物強誘
電体中の鉛等の酸化物は他の金属元素または酸化物に比
較して飽和蒸気圧が非常に大きく、高真空下ではさらに
容易に蒸発して、得られる薄膜の組成はターゲットもし
くは蒸発源の組成とは大きくずれてしまうという問題が
あり、再現性、制御性共に未だ確立されてはいない。
In a vacuum film forming method such as sputtering, substrate heating is used as a conventional means in order to perform crystallization to some extent on a substrate and prevent accumulation of internal stress to improve substrate adhesion. . However, bismuth in the composition of the bismuth layered compound, oxides such as lead in the lead-containing composite oxide ferroelectric have a very large saturated vapor pressure compared to other metal elements or oxides, and under high vacuum. Furthermore, there is a problem in that the composition of the thin film obtained by evaporation easily deviates greatly from the composition of the target or evaporation source, and reproducibility and controllability have not yet been established.

【0010】そのため三元系、四元系化合物のような複
雑な組成を有する化合物薄膜を正確に組成制御し、常温
常圧環境下で大面積に成膜するには、ゾルゲル法、MO
D法が有利である。次いでこれらの方法と共通の原料溶
液を利用できるミストデポジション法がこれに準ずる。
MOD法については本発明者らはビスマス層状化合物薄
膜の成膜プロセスに関し米国特許出願65656(19
92年5月21日出願)の出願を行っている。
Therefore, in order to precisely control the composition of a compound thin film having a complicated composition such as a ternary or quaternary compound and form a large area under a normal temperature and normal pressure environment, the sol-gel method, MO
Method D is advantageous. Next, the mist deposition method, which can use a raw material solution common to these methods, is based on this.
Regarding the MOD method, the inventors of the present invention relate to a film forming process of a bismuth layered compound thin film in US Patent Application No.
(Filed on May 21, 1992).

【0011】ゾルゲル法やMOD法によって金属有機化
合物の前駆体混合物からなる塗膜を乾燥し、次いで急速
昇温加熱による仮焼処理を施すことにより、続くアニー
ル処理での結晶化反応を促進し、組成的にも安定した結
晶化膜を得、電気的特性にも優れた薄膜キャパシタを形
成することができる。しかし、本発明者らがさらなる研
究を重ねたところ、この従来プロセスでは残留分極量の
絶対値やヒステリシスカーブの飽和特性などは耐疲労特
性とともに良好な再現性を得ることができたが、薄膜の
絶縁耐圧特性が低く、PZT薄膜では5〜10Vでリー
ク電流が増加し、ビスマス層状化合物においては2〜3
Vの直流低電圧でも絶縁破壊を起こす場合があることが
判明した。
A sol-gel method or a MOD method is used to dry a coating film composed of a precursor mixture of metal-organic compounds, and then subjected to a calcination treatment by rapid heating to accelerate the crystallization reaction in the subsequent annealing treatment. It is possible to obtain a crystallized film having a stable composition and form a thin film capacitor having excellent electrical characteristics. However, as a result of further research conducted by the present inventors, in this conventional process, the absolute value of the residual polarization amount, the saturation characteristic of the hysteresis curve, and the like were able to obtain good reproducibility together with fatigue resistance. Withstand voltage characteristics are low, leakage current increases at 5-10V for PZT thin films, and 2-3 for bismuth layered compounds.
It was found that dielectric breakdown may occur even at a DC low voltage of V.

【0012】強誘電体薄膜キャパシタの実用レベルとし
ては半導体デバイス応用で少なくとも5Vの印加電圧に
対して絶縁性が保たれ、リーク電流が少ない薄膜が必要
である。こうした鉛含有複合酸化物強誘電体やビスマス
層状化合物の薄膜の耐圧特性の速やかな改善が要求され
ていた。
As a practical level of a ferroelectric thin film capacitor, a thin film which can maintain an insulating property with respect to an applied voltage of at least 5 V and has a small leak current is used in semiconductor device applications. There has been a demand for prompt improvement of the withstand voltage characteristics of thin films of such lead-containing complex oxide ferroelectrics and bismuth layered compounds.

【0013】[0013]

【発明が解決しようとする課題】この発明はこうした事
情を考慮してなされたもので、従来プロセスによる鉛含
有複合酸化物強誘電体及びビスマス層状化合物の薄膜の
絶縁耐圧特性を改善し、実際のデバイスに応用が可能な
当該化合物の薄膜を形成できる強誘電体薄膜キャパシタ
の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has improved the withstand voltage characteristics of thin films of a lead-containing complex oxide ferroelectric and a bismuth layered compound by a conventional process, It is an object of the present invention to provide a method of manufacturing a ferroelectric thin film capacitor that can form a thin film of the compound applicable to a device.

【0014】[0014]

【課題を解決するための手段】この発明は実用デバイス
用途に供すべく、これに関わる鉛含有複合酸化物強誘電
体及びビスマス層状化合物薄膜の絶縁耐圧性改善を、金
属有機化合物前駆体からなる薄膜を加熱酸化して得た金
属酸化物薄膜を、従来プロセスよりも高い温度、詳しく
は目的とする鉛含有複合酸化物強誘電体又はビスマス層
状化合物強誘電体の結晶化温度よりも高温にて急速昇温
加熱による極短時間の仮焼処理を行い、次いで同結晶化
温度よりも高い温度にて相対的に長時間の焼成処理を行
うことにより解決した。
The present invention aims to improve the dielectric strength of a lead-containing complex oxide ferroelectric material and a bismuth layered compound thin film, which are related to this, for use in a practical device, and to improve the withstand voltage of the metal-organic compound precursor. The metal oxide thin film obtained by heat-oxidizing is rapidly heated at a higher temperature than the conventional process, more specifically, at a temperature higher than the crystallization temperature of the target lead-containing complex oxide ferroelectric or bismuth layered compound ferroelectric. The problem was solved by performing a calcination treatment by heating for an extremely short time and then performing a calcination treatment for a relatively long time at a temperature higher than the crystallization temperature.

【0015】本発明による強誘電体薄膜キャパシタの製
造方法について以下に詳しく説明する。この発明は、半
導体基板上に電気伝導性の金属薄膜または酸化物薄膜か
らなる下部電極層を形成する工程と、下部電極層上に目
的の強誘電体材料の構成元素に相当する複数金属の有機
化合物からなる前駆体混合物を主成分とする薄膜を形成
する工程と、この薄膜を加熱酸化して金属酸化物薄膜を
形成する工程と、形成された酸化物薄膜に少なくとも1
回の急速昇温加熱処理を施す工程と、形成された強誘電
体薄膜上に電気伝導性の金属薄膜または酸化物薄膜から
なる上部電極層を形成する工程と、上部電極層及び強誘
電体薄膜、下部電極層などを所定の形状にエッチング加
工してキャパシタ構造を形成する工程と、これに再加熱
処理を行う工程でなる強誘電体薄膜キャパシタの製造方
法において、急速昇温加熱処理温度が目的とする強誘電
体材料の結晶化温度以上であることを特徴とする強誘電
体薄膜キャパシタの製造方法である。
The method of manufacturing the ferroelectric thin film capacitor according to the present invention will be described in detail below. This invention comprises a step of forming a lower electrode layer made of an electrically conductive metal thin film or an oxide thin film on a semiconductor substrate, and a plurality of metal organic compounds corresponding to constituent elements of a target ferroelectric material on the lower electrode layer. A step of forming a thin film containing a precursor mixture of a compound as a main component; a step of heating and oxidizing the thin film to form a metal oxide thin film;
A step of performing a rapid heating process at a rapid temperature, a step of forming an upper electrode layer made of an electrically conductive metal thin film or an oxide thin film on the formed ferroelectric thin film, the upper electrode layer and the ferroelectric thin film In the method for manufacturing a ferroelectric thin film capacitor, which includes a step of forming a capacitor structure by etching a lower electrode layer and the like into a predetermined shape and a step of performing a reheating process on the capacitor structure, a rapid heating temperature is used. Is a crystallization temperature of the ferroelectric material or higher.

【0016】この発明において、前記強誘電体薄膜が一
般式(1)で表現されるビスマス層状化合物であること
を特徴とする。 (Bi222+(Am-1m3m+12- (1) A=Bi,Pb,Ba,Sr,Ca,Na,K,Cdの
内から選ばれる1つもしくは複数元素からなる任意比率
による組み合わせ。
In the present invention, the ferroelectric thin film is a bismuth layered compound represented by the general formula (1). (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2- (1) A = one selected from Bi, Pb, Ba, Sr, Ca, Na, K, and Cd, or Combination of multiple elements at any ratio.

【0017】B=Ti,Nb,Ta,W,Mo,Fe,
Co,Crの内から選ばれる1つもしくは複数元素から
なる任意比率による組み合わせ。m=1〜5の自然数。
B = Ti, Nb, Ta, W, Mo, Fe,
A combination of one or more elements selected from Co and Cr in an arbitrary ratio. A natural number of m = 1 to 5.

【0018】この発明において、前記強誘電体薄膜が一
般式(2)で表現されるPZTもしくはその変性体であ
ることを特徴とする。 (Pb1-x+ax )(Zr1-y-z Tiyz )O3 +βMeO (2) a=0〜0.2 A=Ca,Sr,Ba,Th,La,Y,Sm,Dy,
Ce,Bi,Sbのうちから選ばれる1つもしくは複数
元素からなる任意比率による組み合わせ。
In the present invention, the ferroelectric thin film is PZT represented by the general formula (2) or a modified product thereof. (Pb 1-x + a A x) (Zr 1-yz Ti y B z) O 3 + βMeO (2) a = 0~0.2 A = Ca, Sr, Ba, Th, La, Y, Sm, Dy ,
A combination of one or more elements selected from Ce, Bi, and Sb in an arbitrary ratio.

【0019】x=0〜0.3 y=0〜0.9 B=Hf,Sn,Nb,Ta,W,Moのうちから選ば
れる1つもしくは複数元素からなる任意比率による組み
合わせ。
X = 0 to 0.3 y = 0 to 0.9 B = Hf, Sn, Nb, Ta, W, Mo A combination of one or a plurality of elements selected from arbitrary ratios.

【0020】z=0〜0.3 β=0〜0.05 Me=La,Y,Sm,Dy,Ce,Bi,Sb,N
b,Ta,W,Mo,Cr,Co,Ni,Fe,Cu,
Si,Ge,U,Scのうちから選ばれる1つもしくは
複数元素からなる任意比率による組み合わせ。
Z = 0 to 0.3 β = 0 to 0.05 Me = La, Y, Sm, Dy, Ce, Bi, Sb, N
b, Ta, W, Mo, Cr, Co, Ni, Fe, Cu,
A combination of one or more elements selected from Si, Ge, U and Sc in an arbitrary ratio.

【0021】[0021]

【作用】この発明において、金属有機化合物の熱分解に
よって形成される下部電極上の金属酸化物薄膜中には金
属原子と分解解離した有機物残渣が多く含有されてお
り、全体には全く結晶構造を含まない非晶質状態になっ
ている。これを少なくとも1回の急速昇温加熱処理を目
的の強誘電体材料の結晶化温度以上で施すことにより強
誘電体薄膜を形成する。この工程の初期段階において前
記金属酸化物薄膜中に目的とする酸化物強誘電体の微小
な結晶核が無数に発生させることができる。薄膜は急激
な温度変化を伴って結晶化温度以上に一気に加熱され、
これにより引き起こされる機械的な引っ張りやせん断応
力、熱的な歪み、集中が生じてこれらを中心に核生成さ
れ、無数の核を瞬時に発生させると考えられる。
In the present invention, the metal oxide thin film formed on the lower electrode by the thermal decomposition of the metal organic compound contains a large amount of organic residues that are decomposed and dissociated with the metal atoms, and the whole has a crystal structure. It is in an amorphous state that does not contain it. This is subjected to at least one rapid heating process at a temperature above the crystallization temperature of the intended ferroelectric material to form a ferroelectric thin film. In the initial stage of this step, countless minute crystal nuclei of the target oxide ferroelectric can be generated in the metal oxide thin film. The thin film is heated above the crystallization temperature all at once with a sudden temperature change,
It is considered that mechanical tension, shear stress, thermal strain, and concentration caused by this occur, nucleation occurs around these, and innumerable nuclei are instantly generated.

【0022】急速昇温加熱処理の条件(昇温速度、処理
温度及び保持時間)を適当に選ぶことによって結晶核の
発生密度を制御でき、さらに保持時間に対応した結晶成
長を促す。発生させる結晶核の密度を高めることにより
粒子間の距離も密度に比例して短くなり効率的で均一な
結晶化反応が促進され、同時に結晶粒同士の融合も起こ
り粒径の揃った緻密な強誘電体薄膜が短時間で形成され
る。
The density of crystal nuclei can be controlled by appropriately selecting the conditions (temperature rising rate, processing temperature and holding time) of the rapid heating process, and further promotes crystal growth corresponding to the holding time. By increasing the density of the generated crystal nuclei, the distance between the particles is shortened in proportion to the density and an efficient and uniform crystallization reaction is promoted. The dielectric thin film is formed in a short time.

【0023】本発明の成膜プロセスで形成された鉛含有
複合酸化物強誘電体及びビスマス層状化合物薄膜からな
る薄膜キャパシタは各結晶粒子表面の欠陥層が少なく、
粒界層に分散する非強誘電相も最小限に抑えられた緻密
な膜構造によって極めて優れた絶縁耐圧性を示す。
The thin film capacitor comprising the lead-containing composite oxide ferroelectric and the bismuth layered compound thin film formed by the film forming process of the present invention has few defect layers on the surface of each crystal grain,
Due to the dense film structure in which the non-ferroelectric phase dispersed in the grain boundary layer is also minimized, it exhibits extremely excellent dielectric strength.

【0024】さらに急速昇温加熱処理は、非常に短時間
で結晶成成させるために、薄膜組成中の蒸発欠乏し易い
酸化ビスマスや酸化鉛の化合物が結晶格子中に取り込ま
れて加熱焼成時にも失われず、組成の制御が容易になり
薄膜の表面、内部ともに欠陥密度の低い均質な薄膜を得
ることができる。
Further, in the rapid temperature rising heat treatment, since crystal formation is performed in a very short time, a compound of bismuth oxide or lead oxide in the thin film composition, which is easily vaporized and deficient, is taken into the crystal lattice and is also heated and baked. It is not lost and the composition can be easily controlled, and a uniform thin film having a low defect density on the surface and inside can be obtained.

【0025】この発明において、強誘電体薄膜は、式
(1)のビスマス層状化合物である。従って、本発明に
関わるビスマス層状化合物強誘電体は2次元的に広がり
を有する酸化ビスマス層と強誘電性ペロブスカイト構造
が規則的に重なり合って形成する繰り返し単位からなる
層状結晶構造を有する。多くのビスマス層状化合物は鉛
含有複合酸化物に比べて分極反転疲労に対する耐久性が
高い。
In the present invention, the ferroelectric thin film is the bismuth layered compound of the formula (1). Therefore, the bismuth layer compound ferroelectric according to the present invention has a layered crystal structure composed of repeating units formed by regularly overlapping the bismuth oxide layer having a two-dimensional spread and the ferroelectric perovskite structure. Many bismuth layered compounds have higher durability against polarization inversion fatigue than lead-containing composite oxides.

【0026】本発明の成膜プロセスをもってビスマス層
状化合物を成膜することによって、分極反転疲労特性に
優れ、かつ高絶縁耐圧性の強誘電体薄膜キャパシタを提
供できる。
By forming a bismuth layered compound by the film forming process of the present invention, it is possible to provide a ferroelectric thin film capacitor having excellent polarization inversion fatigue characteristics and high withstand voltage.

【0027】この発明において、強誘電体薄膜は、式
(2)のPZTもしくはその変性体である。従って、本
発明に関わるPZT系強誘電体は大きな分極性能を有
し、キャパシタ面積を小さくしても大きな電流を取り出
すことができ、メモリ用途などにおいて記憶容量の高密
度化、セル面積の小型化に有利である。
In the present invention, the ferroelectric thin film is PZT of the formula (2) or its modified product. Therefore, the PZT-based ferroelectric material according to the present invention has a large polarization performance, and a large current can be taken out even if the capacitor area is made small, so that the storage capacity can be made high and the cell area can be made small in memory applications. Is advantageous to.

【0028】本発明の成膜プロセスをもって鉛含有複合
酸化物強誘電体薄膜を成膜することによって、分極反転
疲労特性に優れ、かつ高絶縁耐圧性の強誘電体薄膜キャ
パシタを提供できる。
By forming a lead-containing composite oxide ferroelectric thin film by the film forming process of the present invention, it is possible to provide a ferroelectric thin film capacitor having excellent polarization reversal fatigue characteristics and high withstand voltage.

【0029】[0029]

【実施例】【Example】

(比較例1)従来プロセスによるSrBi2 Ta29
薄膜を形成してキャパシタを構成しこれを比較例1とし
た。
(Comparative Example 1) SrBi 2 Ta 2 O 9 by the conventional process
A thin film was formed to form a capacitor, which was referred to as Comparative Example 1.

【0030】前駆体溶液としてSr,Bi,Taの各2
エチルヘキサン酸塩のキシレン溶液を用い、Biを化学
量論比に対して10%過剰に添加した。塗布濃度を0.
15Mとし、振り切り速度2000rpmで200nm
白金電極を設けたシリコン基板上に成膜した。塗膜の乾
燥を250℃で5分間行った後、ランプアニーラを用い
て125℃/秒の昇温速度で725℃まで加熱し酸素中
で30秒間の急速昇温ベークを施した。塗布成膜からベ
ークまでの工程を3回繰り返して多層膜とし、酸素気流
中で800℃、60分間のアニール(1次アニール)を
行った。その結果、膜厚240nmのSrBi2 Ta2
9 薄膜を得た。膜厚200nmの上部白金電極を強誘
電体薄膜上にスパッタ成膜し、イオンミルを用いてエッ
チングを行ってキャパシタを形成した。キャパシタ面積
は100μm×100μm(=10000μm2 )であ
る。最後に基板全体を酸素気流中で800℃、30分間
の2次アニールを行った。
As a precursor solution, 2 each of Sr, Bi and Ta
Using a solution of ethyl hexanoate in xylene, Bi was added in a 10% excess with respect to the stoichiometric ratio. The coating density is 0.
15M, 200nm at a speed of 2000rpm
A film was formed on a silicon substrate provided with a platinum electrode. After the coating film was dried at 250 ° C. for 5 minutes, it was heated to 725 ° C. at a temperature rising rate of 125 ° C./sec using a lamp annealer and subjected to a rapid temperature rising bake for 30 seconds in oxygen. The process from coating film formation to baking was repeated 3 times to form a multilayer film, and annealing (primary annealing) was performed at 800 ° C. for 60 minutes in an oxygen stream. As a result, SrBi 2 Ta 2 with a film thickness of 240 nm was formed.
An O 9 thin film was obtained. An upper platinum electrode having a film thickness of 200 nm was formed on the ferroelectric thin film by sputtering, and etching was performed using an ion mill to form a capacitor. The capacitor area is 100 μm × 100 μm (= 10000 μm 2 ). Finally, the entire substrate was subjected to secondary annealing at 800 ° C. for 30 minutes in an oxygen stream.

【0031】上記比較例1と同じ溶液を用いて以下の実
施例を作成した。特に記載されていないプロセスパラメ
ータは比較例1と同一である。 (実施例1)急速昇温加熱処理を125℃/秒の昇温速
度、保持温度800℃、保持時間30秒間の条件で行い
膜厚240nmの3層膜を作成した。その後、1次アニ
ールを行なわずに、膜厚200nmの上部白金電極を強
誘電体薄膜上にスパッタ成膜し、イオンミルを用いてエ
ッチングを行ってキャパシタを形成した。最後に基板全
体を酸素気流中で800℃、30分間の2次アニールを
施してこれを実施例1とした。
The following examples were prepared using the same solution as in Comparative Example 1 above. Process parameters not particularly described are the same as those in Comparative Example 1. (Example 1) A rapid heating process was performed under the conditions of a heating rate of 125 ° C / sec, a holding temperature of 800 ° C, and a holding time of 30 seconds to form a three-layer film having a film thickness of 240 nm. Then, without performing primary annealing, an upper platinum electrode having a film thickness of 200 nm was sputter-deposited on the ferroelectric thin film and etched using an ion mill to form a capacitor. Finally, the whole substrate was subjected to secondary annealing in an oxygen stream at 800 ° C. for 30 minutes, and this was set as Example 1.

【0032】(実施例2)急速昇温加熱処理を125℃
/秒の昇温速度、保持温度800℃、保持時間30秒間
の条件で行い膜厚240nmの3層膜を作成し、酸素気
流中で400℃、60分間の1次アニールを行った。そ
の他のプロセス条件は比較例1と同じとして薄膜キャパ
シタを形成し、最後に基板全体を酸素気流中で800
℃,30分間の2次アニールを施した。
(Embodiment 2) Rapid heating process at 125 ° C.
A three-layer film having a film thickness of 240 nm was formed under the conditions of a temperature rising rate of / sec, a holding temperature of 800 ° C., and a holding time of 30 seconds, and primary annealing was performed at 400 ° C. for 60 minutes in an oxygen stream. Other process conditions were the same as in Comparative Example 1, and a thin film capacitor was formed.
Secondary annealing was performed at 30 ° C. for 30 minutes.

【0033】(実施例3)急速昇温加熱処理を125℃
/秒の昇温速度、保持温度800℃、保持時間30秒間
の条件で行い膜厚240nmの3層膜を作成し、酸素気
流中で800℃、60分間のアニールを行って、他の実
施例と同じ工程を経てキャパシタを形成した。最後に基
板全体を酸素気流中で800℃、30分間の2次アニー
ルを行いこれを実施例3とした。
(Embodiment 3) Rapid heating treatment at 125 ° C.
Another example was performed under the conditions of a temperature rising rate of 1 / second, a holding temperature of 800 ° C., and a holding time of 30 seconds to form a three-layer film having a film thickness of 240 nm, and annealing at 800 ° C. for 60 minutes in an oxygen stream. A capacitor was formed through the same steps as above. Finally, the entire substrate was subjected to secondary annealing in an oxygen stream at 800 ° C. for 30 minutes, and this was set as Example 3.

【0034】(実施例4)急速昇温加熱処理を125℃
/秒の昇温速度、保持温度850℃、保持時間30秒間
の条件で行い3層膜を作成した。その他のプロセス条件
は実施例3と同じとし薄膜キャパシタを形成した。これ
を実施例4とした。
(Embodiment 4) Rapid heating process at 125 ° C.
A three-layer film was formed under the conditions of a heating rate of / sec, a holding temperature of 850 ° C., and a holding time of 30 seconds. Other process conditions were the same as in Example 3 to form a thin film capacitor. This is Example 4.

【0035】図1に比較例1及び実施例1〜4のヒステ
リシスカーブを示す。測定は通常のソヤータワー回路を
用い±2,±4,±6,±8,±10Vのサイン波を印
加しオシロスコープを観察した各入力電圧に対するヒス
テリシスカーブを重ねて示した。
FIG. 1 shows the hysteresis curves of Comparative Example 1 and Examples 1 to 4. In the measurement, a normal Soyer tower circuit was used to apply sine waves of ± 2, ± 4, ± 6, ± 8, and ± 10 V, and a hysteresis curve for each input voltage was observed by observing an oscilloscope.

【0036】図2〜図6に比較例1及び実施例1〜4の
電流−電圧カーブ(I−Vカーブ)を示す。測定はヒュ
ーレットパッカード社製半導体パラメータアナライザー
(商品名:hp−4145)を用いて上下電極間に流れ
る電流値を測定した。
2 to 6 show current-voltage curves (IV curves) of Comparative Example 1 and Examples 1 to 4. For the measurement, a semiconductor parameter analyzer (product name: hp-4145) manufactured by Hewlett-Packard Company was used to measure the current value flowing between the upper and lower electrodes.

【0037】図1のヒステリシスカーブを比較すると、
実施例1及び2は残留分極量2Prが他に比べて小さい
のに対して比較例1と実施例3,4はほぼ同じ値を示す
が、いずれも良好な飽和特性を示している。
Comparing the hysteresis curves of FIG. 1,
Although the remanent polarization amount 2Pr is smaller in Examples 1 and 2 than in the other cases, Comparative Example 1 and Examples 3 and 4 show almost the same value, but both show good saturation characteristics.

【0038】図2〜図6はI−V特性を示す。ある印加
電圧に対し、強誘電体薄膜を通過する電流量を示した図
である。比較例1はおよそ7Vまで電流値は10-5(A
/cm2 )台で安定しているが、それ以上ではスパイク状
のリーク電流が観察され印加電圧18Vでついに絶縁破
壊が起こっている。これに対し、実施例1及び2は10
V以上までリーク電流は増加せず、さらに実施例3は2
0Vまで安定、実施例4は25V以上まで破壊すること
なく安定なI−V電流特性を示している。即ち、急速昇
温加熱処理を800℃以上で行う事によって、リーク電
流の少ない、絶縁耐圧特性に優れる強誘電体キャパシタ
が得られる。
2 to 6 show IV characteristics. It is a figure showing the amount of electric current which passes through a ferroelectric thin film to a certain applied voltage. Comparative Example 1 has a current value of 10 −5 (A
/ Cm 2 ), it is stable, but beyond that, spike-like leak current is observed and dielectric breakdown finally occurs at an applied voltage of 18V. On the other hand, in Examples 1 and 2, 10
The leak current does not increase up to V or more, and further, in Example 3, 2
Stable up to 0 V, and Example 4 shows stable IV current characteristics up to 25 V or more without breaking. That is, by performing the rapid temperature rising heat treatment at 800 ° C. or higher, it is possible to obtain a ferroelectric capacitor having a small leak current and excellent dielectric strength characteristics.

【0039】以上の結果から本発明の効果が明らかであ
ることが示される。 (比較例2)従来プロセスによるPb(Zr0.4 Ti
0.6 )O3 薄膜を形成してキャパシタを構成しこれを比
較例2とした。
From the above results, it is shown that the effect of the present invention is clear. (Comparative Example 2) Pb (Zr 0.4 Ti by the conventional process
A 0.6 ) O 3 thin film was formed to form a capacitor, which was designated as Comparative Example 2.

【0040】前駆体溶液としてPbの酢酸塩、Zr,T
iの各イソプロポキシドの2メトキシエタノール溶液を
用い、Pbを化学量論比に対して7%過剰に添加した。
これに酢酸、蒸留水を溶液中の金属と当量モル混合した
2メトキシエタノール溶液を加え塗布濃度を0.5Mと
し、振り切り速度2000rpmで厚さ200nmの白
金電極を設けたシリコン基板上に成膜した。塗膜の乾燥
を200℃で5分間行ったあと、ランプアニーラを用い
て125℃/秒の昇温速度で650℃まで加熱し酸素中
で30秒間の急速昇温ベークを施した。塗布成膜からベ
ークまでの工程を3回繰り返して多層膜とし、酸素気流
中で700℃、60分間のアニールを行った。その結
果、膜厚300nmのPb(Zr0.4 Ti0.6 )O3
膜を得た。膜厚200nmの上部白金電極を強誘電体薄
膜上にスパッタ成膜し、イオンミルを用いてエッチング
を行ってキャパシタを形成した。キャパシタの面積は1
00μm×100μm(=10000μm2 )である。
最後に基板全体を酸素気流中で700℃、30分間の2
次元アニールを行った。
As a precursor solution, Pb acetate, Zr, T
Using a solution of each isopropoxide of i in 2 methoxyethanol, Pb was added in a 7% excess over the stoichiometric ratio.
A solution of 2 methoxyethanol in which acetic acid and distilled water were mixed with the metal in the solution in an equimolar amount was added to this to give a coating concentration of 0.5 M, and a film was formed on a silicon substrate provided with a platinum electrode having a thickness of 200 nm at a cutoff speed of 2000 rpm. . After the coating film was dried at 200 ° C. for 5 minutes, it was heated to 650 ° C. at a temperature rising rate of 125 ° C./sec using a lamp annealer and subjected to rapid temperature rising bake for 30 seconds in oxygen. The process from coating film formation to baking was repeated three times to form a multilayer film, which was annealed at 700 ° C. for 60 minutes in an oxygen stream. As a result, a Pb (Zr 0.4 Ti 0.6 ) O 3 thin film having a film thickness of 300 nm was obtained. An upper platinum electrode having a film thickness of 200 nm was formed on the ferroelectric thin film by sputtering, and etching was performed using an ion mill to form a capacitor. Area of capacitor is 1
The size is 00 μm × 100 μm (= 10000 μm 2 ).
Finally, the entire substrate is kept in an oxygen stream at 700 ° C for 30 minutes for 2 minutes.
Dimensional annealing was performed.

【0041】上記比較例2と同じ溶液を用いて以下の実
施例を作成した。特に記載されていないプロセスパラメ
ータは比較例2と同一である。 (実施例5)急速昇温熱処理を125℃/秒の昇温速
度、保持温度750℃、保持時間30秒間の条件で行い
膜厚300nmの3層膜を作成し、酸素気流中で750
℃、60分間のアニールを行った。上部白金電極を成膜
しイオンミルを用いてエッチングを行ってキャパシタを
形成した。最後に基板全体を酸素気流中で750℃、3
0分間の2次アニールを施してこれを実施例5とした。
The following examples were prepared using the same solution as in Comparative Example 2 above. Process parameters not particularly described are the same as those in Comparative Example 2. (Example 5) A rapid temperature rising heat treatment was performed under conditions of a temperature rising rate of 125 ° C / sec, a holding temperature of 750 ° C, and a holding time of 30 seconds to form a three-layer film having a film thickness of 300 nm, and 750 in an oxygen stream.
Annealing was performed at 60 ° C. for 60 minutes. The upper platinum electrode was formed into a film and was etched using an ion mill to form a capacitor. Finally, the whole substrate was exposed to oxygen at 750 ° C for 3
Secondary annealing was performed for 0 minutes, and this was set as Example 5.

【0042】図7に比較例2及び実施例5の電流−電圧
カーブ(1−Vカーブ)を示す。比較例2はおよそ10
Vまで電流値は10-5A/cm2 を示しているが、それ
以上では電圧増加にともないリーク電流が徐々に増大し
て、約30Vで絶縁破壊が起こっている。これに対し、
実施例5は同様に10V近辺で10-5A/cm2と同じ
値を示すが、30V以上までリーク電流はほとんど増加
しない。
FIG. 7 shows current-voltage curves (1-V curves) of Comparative Example 2 and Example 5. Comparative Example 2 is about 10
The current value shows 10 −5 A / cm 2 up to V, but beyond that, the leak current gradually increases with increasing voltage, and dielectric breakdown occurs at about 30V. In contrast,
Example 5 similarly shows the same value as 10 −5 A / cm 2 around 10 V, but the leak current hardly increases up to 30 V or more.

【0043】なお、本実施例5中では下部電極層及び上
部電極層を構成する電気伝導性金属が白金である場合に
ついて説明したが、強誘電体薄膜の仮焼、焼成温度に耐
える高融点を有し、かつ強誘電体構成元素と相互に合金
化反応などの化学的相互作用を有しないロジウム、パラ
ジウム、ルテニウム、ルビジウム、イリジウム、オスミ
ウムなどの貴金属元素のいずれかまたはそれらの合金で
あってもよく、さらには酸化性雰囲気中で安定であり、
かつそれ自体が酸素の規則的配列を結晶構造中に有して
酸化物強誘電体との界面整合性を優れる酸化インジウム
−酸化錫の複合化合物または酸化ルテニウム、酸化ルビ
ジウム、酸化イリジウム、酸化オスミウムの貴金属元素
の酸化物のいずれかであってもよい。またこれら金属と
酸化物の積層構造で構成されてもよい。
In the fifth embodiment, the case where the electrically conductive metal forming the lower electrode layer and the upper electrode layer is platinum has been described, but it has a high melting point that can withstand the calcination and firing temperatures of the ferroelectric thin film. Any of noble metal elements such as rhodium, palladium, ruthenium, rubidium, iridium, osmium, etc., or alloys thereof, which have and have no chemical interaction such as alloying reaction with the ferroelectric constituent elements. Well, and stable in an oxidizing atmosphere,
And by itself having a regular arrangement of oxygen in the crystal structure and excellent interfacial compatibility with the oxide ferroelectric, indium oxide-tin oxide composite compound or ruthenium oxide, rubidium oxide, iridium oxide, osmium oxide. It may be any oxide of a noble metal element. Further, it may have a laminated structure of these metals and oxides.

【0044】以上、実施例に基づいて説明してきたが、
本明細書には以下の発明が含まれる。 1.(実施例1に対応) 半導体基板上に電気伝導性の金属薄膜または酸化物薄膜
からな下部電極層を形成する工程と、下部電極層上に目
的の強誘電体材料の構成元素に相当する複数金属の有機
化合物からなる前駆体混合物を主成分とする薄膜を形成
する工程と、この薄膜を加熱酸化して金属酸化物薄膜を
形成する工程と、形成された酸化物薄膜に少なくとも1
回の急速昇温加熱処理を施す工程と、形成された強誘電
体薄膜上に電気伝導性の金属薄膜または酸化物薄膜から
なる上部電極層を形成する工程と、上部電極層及び強誘
電体薄膜、下部電極層などを所定の形状のエッチング加
工してキャパシタ構造を形成する工程と、これに再加熱
処理を行う工程でなる強誘電体薄膜キャパシタの製造方
法において、急速昇温加熱の処理温度が目的とする強誘
電体材料の結晶化温度以上であることを特徴とする強誘
電体薄膜キャパシタの製造方法。
The above description is based on the embodiment,
The present invention includes the following inventions. 1. (Corresponding to Example 1) A step of forming a lower electrode layer made of an electrically conductive metal thin film or an oxide thin film on a semiconductor substrate, and a plurality of elements corresponding to constituent elements of a target ferroelectric material on the lower electrode layer. A step of forming a thin film containing a precursor mixture composed of a metal organic compound as a main component; a step of heating and oxidizing the thin film to form a metal oxide thin film;
A step of performing a rapid heating process at a rapid temperature, a step of forming an upper electrode layer made of an electrically conductive metal thin film or an oxide thin film on the formed ferroelectric thin film, the upper electrode layer and the ferroelectric thin film In the method for manufacturing a ferroelectric thin film capacitor, which includes a step of forming a capacitor structure by etching a lower electrode layer and the like into a predetermined shape and a step of performing reheating treatment on the capacitor structure, the processing temperature for rapid heating is A method of manufacturing a ferroelectric thin film capacitor, characterized in that the temperature is equal to or higher than the crystallization temperature of a desired ferroelectric material.

【0045】(作用)金属有機化合物の熱分解によって
形成される下部電極上の金属酸化物薄膜中には金属原子
と分解解離した有機物残渣が多く含有されており、全体
には全く結晶構造を含まない非晶質状態になっている。
これを少なくとも1回の急速昇温加熱処理を目的の強誘
電体材料の結晶化温度以上で施すことにより強誘電体薄
膜を形成する。この工程の初期段階において前記金属酸
化物薄膜中に目的とする酸化物強誘電体の微小な結晶核
が無数に発生させることができる。薄膜は急激な温度変
化を伴って結晶化温度以上に一気に加熱され、これによ
り引き起こされる機械的な引っ張りやせん断応力、熱的
な歪み、集中が生じてこれらを中心に核生成され、無数
の核を瞬時に発生させると考えられる。
(Function) The metal oxide thin film formed on the lower electrode by the thermal decomposition of the metal organic compound contains a large amount of organic residues which are decomposed and dissociated with the metal atoms, and the whole contains a crystal structure. There is no amorphous state.
This is subjected to at least one rapid heating process at a temperature above the crystallization temperature of the intended ferroelectric material to form a ferroelectric thin film. In the initial stage of this step, countless minute crystal nuclei of the target oxide ferroelectric can be generated in the metal oxide thin film. The thin film is heated at a temperature above the crystallization temperature with a sudden temperature change, and mechanical tension, shear stress, thermal strain, and concentration caused by this occur, and nucleation occurs around these, and innumerable nuclei Is considered to occur instantly.

【0046】急速昇温加熱処理の条件(昇温速度、処理
温度及び保持時間)を適当に選ぶことによって結晶核の
発生密度を制御でき、さらに保持時間に対応した結晶成
長を促す。発生させる結晶核の密度を高めることにより
粒子間の距離も密度に比例して短くなり効率的な均一な
結晶化反応が促進され、同時に結晶粒同士の融合も起こ
り粒径の揃った緻密な強誘電体薄膜が短時間で形成され
る。
The density of crystal nuclei can be controlled by appropriately selecting the conditions of the rapid heating process (heating rate, processing temperature and holding time), and further promotes crystal growth corresponding to the holding time. By increasing the density of generated crystal nuclei, the distance between particles is shortened in proportion to the density, and efficient and uniform crystallization reaction is promoted. The dielectric thin film is formed in a short time.

【0047】(効果)本発明の成膜プロセスで形成され
た鉛含有複合酸化物強誘電体及びビスマス層状化合物薄
膜からなる薄膜キャパシタは各結晶粒子表面の欠陥層が
少なく、粒界層に分散する非強誘電相も最小限に抑えら
れた緻密な膜構造によって極めて優れた絶縁耐圧性を示
す。
(Effect) A thin film capacitor comprising a lead-containing composite oxide ferroelectric and a bismuth layered compound thin film formed by the film forming process of the present invention has few defect layers on the surface of each crystal grain and is dispersed in the grain boundary layer. It has an extremely high dielectric strength due to its dense film structure with the non-ferroelectric phase minimized.

【0048】さらに急速昇温加熱処理は、非常に短時間
で結晶成長させるために、薄膜組成中の蒸発欠乏し易い
酸化ビスマスや酸化鉛の化合物が結晶格子中に取り込ま
れて加熱焼成時にも失われず、組成の制御が容易になり
薄膜の表面、内部ともに欠陥密度の低い均質な薄膜を得
ることができる。 2.(実施例2〜4、実施例5に対応) 前記第1項において、前記急速昇温加熱処理を施す工程
に続いて、さらに強誘電体薄膜を加熱炉中に焼成処理を
施して強誘電体薄膜となす工程を付加し、焼成温度が前
記急速昇温加熱処理温度よりも低いことを特徴とする強
誘電体薄膜キャパシタの製造方法。
Further, in the rapid temperature rising heat treatment, since the crystal is grown in a very short time, the compound of bismuth oxide or lead oxide in the thin film composition, which is apt to be deficient in evaporation, is taken into the crystal lattice and lost during the heating and firing. Therefore, the composition can be easily controlled, and a uniform thin film having a low defect density on the surface and inside can be obtained. 2. (Corresponding to Examples 2 to 4 and Example 5) In the first item, following the step of performing the rapid temperature rising heat treatment, the ferroelectric thin film is further subjected to a firing treatment in a heating furnace to obtain the ferroelectric substance. A method of manufacturing a ferroelectric thin film capacitor, which is characterized in that a step of forming a thin film is added, and a firing temperature is lower than the rapid heating treatment temperature.

【0049】(構成)前記内容に準ずる。 (作用)急速昇温加熱処理によって微細結晶核の発生成
長を同時に行う場合、前記第1項に基づく作用効果によ
り薄膜の絶縁耐圧特性は向上するが、急激な結晶化に伴
い粒界層に未結晶成分が残留しやすくキャパシタ形成後
の強誘電性が十分に発現できなかったり、膜内部に大き
なストレスが残留して時間経過とともにクラックが発生
したりする場合がある。急速昇温加熱処理により結晶核
がある密度で形成され、同時に未結晶成分が残る状態の
薄膜をさらに結晶化温度以上で時間をかけて焼成するこ
とにより効率的で均一な結晶化反応を促進することがで
きる。同時に結晶粒同士の融合も起こり粒径の揃った緻
密な強誘電体薄膜が短時間で形成される。
(Structure) According to the above contents. (Function) When the generation and growth of fine crystal nuclei are simultaneously performed by the rapid temperature rising heat treatment, the dielectric strength characteristics of the thin film are improved by the function and effect based on the first term, but due to the rapid crystallization, the grain boundary layer is not yet formed. In some cases, the crystal component is likely to remain and the ferroelectricity after the formation of the capacitor cannot be sufficiently expressed, or a large stress remains in the film to cause cracks over time. Rapid and high-temperature heat treatment promotes an efficient and uniform crystallization reaction by baking a thin film in which crystal nuclei are formed with a certain density and at the same time uncrystallized components remain, at a temperature above the crystallization temperature for a long time. be able to. At the same time, crystal grains fuse with each other to form a dense ferroelectric thin film having a uniform grain size in a short time.

【0050】(効果)以上の本発明の成膜プロセスによ
れば、薄膜キャパシタを形成する鉛含有複合酸化物強誘
電体及びビスマス層状化合物の薄膜組成を容易に制御
し、各結晶粒子の大きさが揃った均質で緻密な膜構造を
もった極めて良好な絶縁耐圧性薄膜を得ることができ
る。 3.(実施例2〜4、実施例5に対応) 前記金属有機化合物からなる前駆体混合物を主成分とす
る薄膜を形成する手段がスピンコートによる溶液塗布法
であることを特徴とする前記第1,2記載の強誘電体薄
膜キャパシタの製造方法。
(Effects) According to the film forming process of the present invention described above, the thin film composition of the lead-containing complex oxide ferroelectric and the bismuth layered compound forming the thin film capacitor can be easily controlled, and the size of each crystal grain can be controlled. It is possible to obtain a very good withstand voltage thin film having a uniform and dense film structure in which 3. (Corresponding to Examples 2 to 4 and Example 5) The means for forming a thin film containing a precursor mixture of the metal organic compound as a main component is a solution coating method by spin coating. 3. The method for manufacturing a ferroelectric thin film capacitor as described in 2.

【0051】(構成)前記鉛含有複合酸化物強誘電体、
例えばPZTの成膜をゾルゲル法を用いて行い、酢酸鉛
三水和物、チタニウムイソプロポキシド、ジルコニウム
プロポキシドなどの有機酸塩や金属アルコキシドなどの
有機溶剤に可溶な適当な金属化合物前駆体を目的材料に
応じた組成比率で混合して、2−メトキシエタノール、
2メトキシ−1−プロパノール、2−エトキシエタノー
ルなどの有機溶媒に溶解させた前駆体溶液に必要に応じ
て水、pH調整剤、加水分解触媒などを添加してスピン
コートによって基板上に展開して薄膜を形成する。
(Constitution) The lead-containing composite oxide ferroelectric material,
For example, a PZT film is formed by using a sol-gel method, and an appropriate metal compound precursor soluble in an organic acid salt such as lead acetate trihydrate, titanium isopropoxide, zirconium propoxide, or an organic solvent such as a metal alkoxide. Is mixed at a composition ratio according to the target material, 2-methoxyethanol,
If necessary, water, a pH adjuster, a hydrolysis catalyst, etc. are added to a precursor solution dissolved in an organic solvent such as 2-methoxy-1-propanol or 2-ethoxyethanol, and the solution is spread on a substrate by spin coating. Form a thin film.

【0052】また、前記ビスマス層状化合物の場合は、
Srイソプロポキシド、Taエトキシドなどの金属アル
コキシド、2−エチルヘキサン酸ビスマス、2−エチル
ヘキサン酸ストロンチウム、n−オクタン酸ストロンチ
ウムなどの金属有機酸塩、さらにはアセチルアセトン化
合物などβジケトン化合物、その他の有機溶剤に可溶な
適当な金属化合物を目的材料の組成相当の比率で混合し
て、2−メトキシエタノール、2メトキシ−1−プロパ
ノール、2−エトキシエタノールなどの脂肪族アルコー
ル、酢酸エチル、酢酸ブチルなどのエステル系溶媒、ト
ルエン、キシレンなどの芳香族系溶媒その他の有機溶媒
に溶解させた前駆体溶液をスピンコートによって基板上
に展開して薄膜を形成するMOD法を用いる。
In the case of the bismuth layered compound,
Metal alkoxides such as Sr isopropoxide and Ta ethoxide, metal organic acid salts such as bismuth 2-ethylhexanoate, strontium 2-ethylhexanoate, and strontium n-octanoate, and β-diketone compounds such as acetylacetone compounds and other organic compounds. A suitable metal compound soluble in a solvent is mixed at a ratio corresponding to the composition of the target material, and an aliphatic alcohol such as 2-methoxyethanol, 2methoxy-1-propanol, 2-ethoxyethanol, ethyl acetate, butyl acetate, etc. The MOD method is used in which a precursor solution dissolved in an ester solvent, an aromatic solvent such as toluene or xylene, or another organic solvent is spread on a substrate by spin coating to form a thin film.

【0053】スピンコート直後の塗布膜は溶媒を多量に
含む液膜であり、これを加熱することによって有機溶媒
を蒸発除去し、さらに有機金属化合物を熱分解して金属
酸化物薄膜を形成する。形成された酸化物薄膜に対して
本発明の製造方法を適用して強誘電体材料の結晶化温度
以上で急速昇温加熱処理を施して原強誘電体薄膜(以
下、焼成工程を含む成膜プロセスにおける焼成により最
終的に形成される薄膜を強誘電体薄膜とし、これと区別
する意味で急速昇温加熱処理後、焼成前の薄膜を「原強
誘電体薄膜」と呼ぶ)とし、さらに原強誘電体薄膜を加
熱炉中で強誘電体材料の結晶化温度以上で焼成処理を施
して結晶化反応を完結させて強誘電体薄膜とする。強誘
電体薄膜上に上部電極層を形成しエッチング加工により
キャパシタ構造を形成した後、再加熱処理を行う。
The coating film immediately after spin coating is a liquid film containing a large amount of solvent. The organic solvent is evaporated and removed by heating this, and the organic metal compound is thermally decomposed to form a metal oxide thin film. By applying the manufacturing method of the present invention to the formed oxide thin film, a rapid heating process is performed at a crystallization temperature of the ferroelectric material or higher to obtain a raw ferroelectric thin film (hereinafter, a film including a firing step is formed. The thin film that is finally formed by firing in the process is a ferroelectric thin film, and in order to be distinguished from this, the thin film that has been subjected to the rapid heating treatment and before firing is referred to as the "original ferroelectric thin film"). The ferroelectric thin film is baked in a heating furnace at a temperature equal to or higher than the crystallization temperature of the ferroelectric material to complete the crystallization reaction and form a ferroelectric thin film. After forming an upper electrode layer on the ferroelectric thin film and forming a capacitor structure by etching, reheating treatment is performed.

【0054】(作用)ゾルゲル法及びMOD法の両溶液
塗布法ともに最初の溶液調製の段階において直接原料化
合物の重量または容量計測を適用できるためによりどの
ような複雑な組成配合も正確に再現することが可能であ
り、この点で他のいかなる真空成膜法と比べて優位な点
である。分子レベルで各金属元素の有機化合物が混合さ
れた状態が容易に得られるため、固相反応である結晶化
をバルクセラミックスに比較して全体のプロセス温度を
数百℃低くすることができ、半導体デバイス用途に最適
な成膜手法である。加熱酸化工程を経た均一な非晶質状
態は続く急速加熱仮焼処理による結晶核の生成を容易に
し、組成分布、特性分布のない均質な薄膜を形成するこ
とが可能となる。
(Function) Since both the sol-gel method and the MOD method can be directly applied to the measurement of the weight or volume of the raw material compound in the first solution preparation step, any complicated compositional composition can be accurately reproduced. This is an advantage over any other vacuum film forming method. Since it is easy to obtain a state in which organic compounds of each metal element are mixed at the molecular level, crystallization, which is a solid-phase reaction, can lower the overall process temperature by several hundred degrees Celsius compared to bulk ceramics. It is the most suitable film forming method for device applications. The uniform amorphous state that has undergone the heating and oxidation process facilitates the generation of crystal nuclei by the subsequent rapid heating and calcination process, and makes it possible to form a homogeneous thin film having no composition distribution or characteristic distribution.

【0055】(効果)以上述べたように溶液塗布法によ
り形成した薄膜に本発明の成膜プロセスを適用して得ら
れるビスマス層状化合物薄膜からなる薄膜キャパシタは
組成的にも、特性的にも均一な分布を示し、各結晶粒子
表面の欠陥層が少なく、粒界層に分散する非強誘電相も
最小限に抑えられた緻密な膜構造となることによって極
めて優れた絶縁耐圧性を示す。
(Effects) As described above, the thin film capacitor formed of the bismuth layer compound thin film obtained by applying the film forming process of the present invention to the thin film formed by the solution coating method has uniform composition and characteristics. Shows a uniform distribution, has a small number of defect layers on the surface of each crystal grain, and has a dense film structure in which the non-ferroelectric phase dispersed in the grain boundary layer is also minimized, thereby exhibiting extremely excellent dielectric strength.

【0056】さらに急速加熱による仮焼処理時の酸化ビ
スマスや酸化鉛の化合物の蒸発欠乏抑制についても、先
に述べた分子レベルで均一な混合体が形成される結果、
必要以上に高いプロセス温度を用いずとも十分な効果が
得られる。 4.(実施例1,2から容易に演繹可) 前記金属有機化合物からなる前駆体混合物を主成分とす
る薄膜を形成する手段が前駆体溶液噴霧によるミストデ
ポジション法であることを特徴とする前記第1,2項記
載の強誘電体薄膜キャパシタの製造方法。
Further, as for suppression of evaporation deficiency of bismuth oxide and lead oxide compounds at the time of calcination by rapid heating, a uniform mixture is formed at the molecular level as described above.
A sufficient effect can be obtained without using an unnecessarily high process temperature. 4. (Easily deducible from Examples 1 and 2) The means for forming a thin film containing a precursor mixture composed of the metal organic compound as a main component is a mist deposition method by spraying a precursor solution. 2. A method of manufacturing a ferroelectric thin film capacitor as described in 1 or 2.

【0057】(構成)溶液塗布法で用いる前駆体溶液と
全く同一の原料溶液を用いて、これを常圧もしくは減圧
下で噴霧して微小な液滴を形成し基板上に堆積させる。
所定の膜厚に到達した時点で成膜槽から取り出し、これ
を加熱することによって残留する有機溶媒の蒸発除去と
有機金属化合物の熱分解を行って金属酸化物薄膜を形成
する。形成された酸化物薄膜に対して本発明の製造方法
を適用して強誘電体材料の結晶化温度以上で急速昇温加
熱処理を施して強誘電体薄膜とするか、または未結晶化
成分を大量に残した原強誘電体薄膜となし加熱炉中で強
誘電体材料の結晶化温度以上で焼成処理を施して結晶化
反応を完結させて強誘電体薄膜とする。強誘電体薄膜上
に上部電極層を形成しエッチング加工によりキャパシタ
構造を形成した後、再加熱処理を行う。
(Structure) The same raw material solution as the precursor solution used in the solution coating method is used, and this is sprayed under normal pressure or reduced pressure to form fine droplets, which are deposited on the substrate.
When a predetermined film thickness is reached, the film is taken out of the film forming tank and heated to evaporate and remove the remaining organic solvent and thermally decompose the organic metal compound to form a metal oxide thin film. By applying the manufacturing method of the present invention to the formed oxide thin film, a rapid heating process is performed at a crystallization temperature of the ferroelectric material or higher to form a ferroelectric thin film, or an uncrystallized component is added. A large amount of the original ferroelectric thin film is left and a firing process is performed at a temperature above the crystallization temperature of the ferroelectric material in a heating furnace to complete the crystallization reaction and form a ferroelectric thin film. After forming an upper electrode layer on the ferroelectric thin film and forming a capacitor structure by etching, reheating treatment is performed.

【0058】(作用)溶液塗布法と同様の原料溶液を用
いるために、溶液及び薄膜の組成制御の再現性は良好で
あり、元素混合の状態も溶液塗布法と同等のレベルで均
一な薄膜が得られる。
(Function) Since the same raw material solution as in the solution coating method is used, the reproducibility of the composition control of the solution and the thin film is good, and the mixed state of the elements is a uniform thin film at the same level as the solution coating method. can get.

【0059】加えて、ミストデポジション法を用いるこ
との長所は、原料溶液の供給から成膜までを一貫して閉
じた系で行うことにより不純物の混入を防止でき、スピ
ンコート法では常につきまとうハネ、タマリなどの塗膜
欠陥の発生を回避できる点にある。また、気相から均一
な堆積を行うことで段差基板表面も良好なステップカバ
レージ性をもって成膜することが可能である。
In addition, the advantage of using the mist deposition method is that it is possible to prevent impurities from being mixed in by consistently performing the system from the supply of the raw material solution to the film formation in a closed system. The point is that it is possible to avoid the occurrence of coating film defects such as tampering. Further, by uniformly depositing from the vapor phase, it is possible to form a film on a stepped substrate surface with good step coverage.

【0060】(効果)ミストデポジション法により形成
した薄膜に本発明の成膜プロセスを適用して得られるビ
スマス層状化合物薄膜は組成的にも、特性的にも均一な
分布を示し、膜欠陥の少ない高品質な薄膜となる。さら
には各結晶粒子表面の欠陥層が少なく、粒界層に分散す
る非強誘電相も最小限に抑えられた緻密な膜構造となる
ことによって得られる薄膜キャパシタは極めて優れた絶
縁耐圧性を示す。
(Effect) The bismuth layered compound thin film obtained by applying the film forming process of the present invention to the thin film formed by the mist deposition method shows a uniform distribution both in terms of composition and characteristics, and causes film defects. It is a high quality thin film. Furthermore, the thin film capacitor obtained by having a dense film structure with few defect layers on the surface of each crystal grain and minimizing the non-ferroelectric phase dispersed in the grain boundary layer exhibits extremely excellent withstand voltage. .

【0061】急速加熱による仮焼処理時の易蒸発生の化
合物の蒸発欠乏抑制効果についても、溶液塗布法同様に
プロセス温度を低く抑えることができることは有利であ
る。 5.(実施例1〜5に対応) 前記金属有機化合物からなる前駆体混合物を主成分とす
る薄膜を加熱酸化して金属酸化物薄膜を形成する工程に
おいて、処理温度が500℃以下であり、非晶質状態の
金属酸化物薄膜を形成することを特徴とする前記第1〜
4項記載の強誘電体薄膜キャパシタの製造方法。
As for the effect of suppressing the evaporation deficiency of the compound that is easily vaporized during the calcination process by rapid heating, it is advantageous that the process temperature can be kept low as in the solution coating method. 5. (Corresponding to Examples 1 to 5) In the step of forming a metal oxide thin film by heating and oxidizing the thin film containing the precursor mixture of the metal organic compound as a main component, the treatment temperature is 500 ° C. or less, and the amorphous Forming a metal oxide thin film in a qualitative state;
4. A method of manufacturing a ferroelectric thin film capacitor as described in 4 above.

【0062】(構成)前記内容に準ずる。 (作用)前記PZTやビスマス層状化合物薄膜に相当す
る前駆体金属有機化合物は300〜450℃の範囲に熱
分解温度を有する。前駆体金属有機化合物の熱分解反応
において、有機部分は金属原子と解離して燃焼し二酸化
炭素と水を生成して気相中に拡散脱離するか、膜中に遊
離炭素質として残留する。同時に金属原子は酸化反応に
よって酸化物となる。目的の強誘電体の結晶性薄膜を得
るためには、これを結晶化温度まで加熱して結晶成長さ
せてやれば良いが、前駆体化合物からなる薄膜を一気に
加熱すると溶媒及び炭素質燃焼に伴う薄膜体積の収縮が
大き過ぎてクラックを多発したり、膜そのものが基板か
ら剥離してしまう。さらには、膜中の残留有機物が妨害
となって結晶化反応がスムーズに進行しない。
(Structure) According to the above contents. (Function) The precursor metal organic compound corresponding to the PZT or bismuth layered compound thin film has a thermal decomposition temperature in the range of 300 to 450 ° C. In the thermal decomposition reaction of the precursor metal organic compound, the organic portion dissociates with the metal atom and burns to generate carbon dioxide and water, which diffuses and desorbs in the gas phase or remains as free carbon in the film. At the same time, the metal atom becomes an oxide by the oxidation reaction. In order to obtain the desired crystalline thin film of the ferroelectric substance, it is sufficient to heat this to the crystallization temperature and grow the crystal, but if the thin film made of the precursor compound is heated at a stroke, it will be accompanied by the solvent and carbonaceous combustion. The shrinkage of the thin film volume is too large and many cracks occur, or the film itself peels off from the substrate. Further, the residual organic matter in the film interferes with the crystallization reaction, and the crystallization reaction does not proceed smoothly.

【0063】その結果、空隙率の大きな薄膜となって期
待する良好な特性を得られない。目的とするPZTの結
晶化温度は700℃前後、ビスマス層状化合物の結晶化
温度は800℃前後であるから、この加熱酸化工程の処
理温度を500℃以下にすることによって金属酸化物は
生成されても強誘電体の結晶化は起こらず非晶質状態の
膜が形成される。各構成元素の酸化物は均一に混合され
ており、これに本発明による急速加熱仮焼処理を施すこ
とにより極短時間内に大熱量を加えることによって残留
有機質を一挙に燃焼して膜外に完全脱離し、かつ微細結
晶核を容易に生成して目的の原強誘電体薄膜を得ること
ができる。
As a result, a thin film having a large porosity cannot be obtained, and the expected good characteristics cannot be obtained. Since the crystallization temperature of the target PZT is around 700 ° C and the crystallization temperature of the bismuth layer compound is around 800 ° C, the metal oxide is produced by setting the treatment temperature of this heating oxidation step to 500 ° C or less. However, crystallization of the ferroelectric does not occur and a film in an amorphous state is formed. The oxides of the respective constituent elements are uniformly mixed, and by applying a rapid heating calcination treatment according to the present invention to this, a large amount of heat is applied within an extremely short time to burn the residual organic matter all at once, and then to the outside of the film. The target ferroelectric thin film can be obtained by completely desorbing and easily generating fine crystal nuclei.

【0064】上述のように強誘電体薄膜形成のための各
加熱処理工程においては、溶媒揮発による体積収縮、有
機官能基の燃焼離脱に伴う体積収縮、結晶化に伴う体積
収縮等の種々の体積変化を考慮して薄膜の剥離、クラッ
キングを防止しながら段階的に進行させる必要がある。
特に乾燥及び酸化分解に係わる加熱酸化工程では堆積が
最も大きく収縮するため、本工程は溶液溶媒の沸点から
有機化合物の分解温度の範囲にわたり低温から高温へ順
番に数段階に分けて行うのが好ましい。
As described above, in each heat treatment step for forming the ferroelectric thin film, various volumes such as volume shrinkage due to solvent volatilization, volume shrinkage due to combustion and release of organic functional groups, volume shrinkage due to crystallization, etc. In consideration of changes, it is necessary to proceed in stages while preventing peeling and cracking of the thin film.
In particular, in the heating and oxidation process related to drying and oxidative decomposition, the deposition shrinks most, so this process is preferably performed in several steps in order from low temperature to high temperature over the range from the boiling point of the solution solvent to the decomposition temperature of the organic compound. .

【0065】(効果)上記説明したように前駆体化合物
からなる薄膜の加熱酸化処理温度を500℃以下に止め
る事で、次工程における原強誘電体薄膜、さらには強誘
電体薄膜の結晶化反応を速やかに進行させて優れた絶縁
耐圧特性を有した強誘電体薄膜キャパシタを成形でき
る。 6.(実施例1〜5に対応) 前記急速昇温加熱処理の昇温速度が1〜200℃/秒の
範囲であり、処理時間が5〜300秒の範囲であること
を特徴とする前記第1〜5項記載の強誘電体薄膜キャパ
シタの製造方法。
(Effect) As described above, by keeping the temperature of the heat oxidation treatment of the precursor compound thin film at 500 ° C. or lower, the crystallization reaction of the original ferroelectric thin film and further the ferroelectric thin film in the next step. Can be rapidly progressed to form a ferroelectric thin film capacitor having excellent withstand voltage characteristics. 6. (Corresponding to Examples 1 to 5) The temperature rising rate of the rapid heating process is in the range of 1 to 200 ° C / sec, and the processing time is in the range of 5 to 300 sec. 5. A method of manufacturing a ferroelectric thin film capacitor as described in 5 above.

【0066】(構成)前記内容に準ずる。 (作用)上述の急速昇温加熱によって微細結晶核を生成
するためには薄膜内部の急激な温度上昇を必要とする。
急激な温度変化を伴って結晶化温度以上に一気に加熱さ
れた薄膜内部に引き起こされる機械的な引っ張りやせん
断応力、熱的な歪み、集中が瞬時に生じてこれらの物質
的、熱的なゆらぎを中心に無数の微小結晶核が発生する
ものと考えられる。昇温速度1℃/秒以下では温度変化
が緩やかすぎて殆ど核生成を起こすことはできず、20
0℃/秒以上は精度の高い温度制御を行うためにランプ
加熱装置の上限であり実現不可能である。
(Structure) According to the above contents. (Function) In order to generate fine crystal nuclei by the above-mentioned rapid temperature rising heating, a rapid temperature rise inside the thin film is required.
Mechanical tension and shear stress, thermal strain, and concentration caused inside the thin film heated at a temperature higher than the crystallization temperature due to abrupt temperature change are instantaneously caused to cause these physical and thermal fluctuations. It is considered that innumerable minute crystal nuclei are generated at the center. When the temperature rising rate is 1 ° C./sec or less, the temperature change is too gradual and almost no nucleation occurs.
Since 0 ° C./sec or more is an upper limit of the lamp heating device, it cannot be realized because the temperature control is performed with high accuracy.

【0067】初期結晶核の生成は非常に短い時間、例え
ば1秒以内で起こっていると考えられるが、実際には基
板全体の温度が安定するまでさらに長い時間がかかる。
実用上有効な処理時間範囲は5〜300秒である。これ
以上長時間の加熱は生成した結晶核の成長を促し、急速
に結晶化反応が進み過ぎることによって粒径のバラツキ
が大きくなって一様な粒径分布が得られず、非晶質部分
がほとんど取り込まれて結晶化することによって焼成工
程での結晶成長が困難になる。
It is considered that the generation of the initial crystal nuclei takes place within a very short time, for example, within 1 second, but in reality, it takes a longer time until the temperature of the entire substrate becomes stable.
The practically effective processing time range is 5 to 300 seconds. Heating for a longer time than this promotes the growth of the generated crystal nuclei, and the crystallization reaction proceeds too rapidly, resulting in a large variation in the grain size, and a uniform grain size distribution cannot be obtained. Most of the crystals taken in and crystallized make it difficult to grow crystals in the firing process.

【0068】(効果)上記の急速加熱を実施することに
より効率良く結晶核を生成して、これを焼成工程で均一
に成長させることにより、組成的にも、特性的にも均一
な分布を示す膜欠陥の少ない高品質な強誘電体薄膜を形
成できる。多結晶粒子表面の欠陥層が少なく、粒界層に
分散する非強誘電相も最小限に抑えられた緻密な膜構造
を得ることで極めて優れた絶縁耐圧性を有する薄膜キャ
パシタを製造できる。 7.(実施例1〜5に対応) 前記金属酸化物薄膜を急速昇温加熱処理を行う雰囲気成
分が20vol%以上の酸素を含むことを特徴とする前
記第1〜6項記載の強誘電体薄膜キャパシタの製造方
法。
(Effect) By performing the above-mentioned rapid heating, the crystal nuclei are efficiently generated, and the crystal nuclei are uniformly grown in the firing step, thereby showing a uniform distribution in terms of composition and characteristics. A high quality ferroelectric thin film with few film defects can be formed. By obtaining a dense film structure in which the number of defect layers on the surface of polycrystalline particles is small and the non-ferroelectric phase dispersed in the grain boundary layer is also minimized, a thin film capacitor having extremely excellent withstand voltage can be manufactured. 7. (Corresponding to Examples 1 to 5) The ferroelectric thin film capacitor according to any one of items 1 to 6, wherein the atmosphere component for performing the rapid temperature rising heat treatment on the metal oxide thin film contains oxygen of 20 vol% or more. Manufacturing method.

【0069】(構成)前記内容に準ずる。 (作用)上記急速昇温加熱による仮焼工程を酸化性雰囲
気、好ましくは20vol%以上(空気)の酸素を含む
雰囲気下で行うことにより、前記金属酸化物薄膜中に残
留する残留炭素質を効率的に燃焼気化し、金属原子の酸
化反応を促進する。
(Structure) According to the above contents. (Function) By carrying out the calcination step by the rapid heating for heating in an oxidizing atmosphere, preferably in an atmosphere containing oxygen of 20 vol% or more (air), residual carbonaceous matter remaining in the metal oxide thin film can be efficiently removed. It burns and vaporizes, and accelerates the oxidation reaction of metal atoms.

【0070】(効果)膜中の炭素質の燃焼を促進し気化
させることで結晶化反応の阻害、格子欠陥の発生、膜密
度の低下などの原因となる炭素質不純物の濃度を低下さ
せることができる。その結果、組成的にも、特性的にも
均一な分布を示す膜欠陥の少ない高品質な強誘電体薄膜
を形成できる。各結晶粒子表面の欠陥層が少なく、粒界
層に分散する非強誘電相も最小限に抑えられた緻密な膜
構造を得ることで極めて優れた絶縁耐圧性を有する薄膜
キャパシタを製造できる。 8.前記急速昇温加熱処理により形成される強誘電体薄
膜が部分結晶化膜であり、非晶質相と結晶質強誘電相の
混合状態にあることを特徴とする前記第1〜7項記載の
強誘電体薄膜キャパシタの製造方法。
(Effect) By promoting the combustion and vaporization of carbonaceous matter in the film, it is possible to reduce the concentration of carbonaceous impurities that cause crystallization reaction inhibition, generation of lattice defects, and decrease in film density. it can. As a result, it is possible to form a high-quality ferroelectric thin film having a uniform distribution in terms of composition and characteristics and having few film defects. By obtaining a dense film structure in which the number of defect layers on the surface of each crystal grain is small and the non-ferroelectric phase dispersed in the grain boundary layer is also minimized, it is possible to manufacture a thin film capacitor having extremely excellent dielectric strength. 8. 8. The ferroelectric thin film formed by the rapid temperature rising heat treatment is a partially crystallized film, and is in a mixed state of an amorphous phase and a crystalline ferroelectric phase. Manufacturing method of ferroelectric thin film capacitor.

【0071】(構成)前記内容に準ずる。 (作用)前記金属酸化膜が急速昇温加熱されることによ
り、薄膜中に多くの結晶核が形成される。急速昇温加熱
の加熱条件として昇温速度、保持温度、保持時間を適当
に選択することにより、結晶核の大きさと密度、結晶化
部分と非晶質部分の割合などを制御することが可能であ
る。仮焼工程で微細結晶核と非晶質部分が混在した状態
で形成されることにより、次の長時間をかけての焼成工
程において周囲の非晶質部分の各酸化物分子を徐々に取
り込みながら各々の結晶核が欠陥の少ない均一な大きさ
の結晶粒子に成長する。
(Structure) According to the above contents. (Function) A large number of crystal nuclei are formed in the thin film by rapidly heating the metal oxide film. It is possible to control the size and density of crystal nuclei, the ratio of crystallized parts and amorphous parts, etc. by appropriately selecting the heating rate, holding temperature and holding time as heating conditions for rapid heating. is there. By forming fine crystal nuclei and amorphous parts in a mixed state in the calcination process, while gradually taking in each oxide molecule of the surrounding amorphous part in the subsequent firing process that takes a long time. Each crystal nucleus grows into crystal grains of uniform size with few defects.

【0072】(効果)急速昇温加熱による仮焼工程で結
晶核の高密度な生成のみを促して結晶相と非晶質相の混
合状態を得ることによって欠陥の少ない均一な大きさの
結晶粒子からなる高密度の強誘電体薄膜を得ることがで
き、その結果、極めて優れた絶縁耐圧性を有する薄膜キ
ャパシタを製造できる。 9.(実施例1〜5に対応) 前記焼成工程における昇温速度が100℃/分以下であ
り、処理時間が5分以上であることを特徴とする前記第
1〜8項記載の強誘電体薄膜キャパシタの製造方法。
(Effect) In the calcination process by rapid heating, only high-density formation of crystal nuclei is promoted to obtain a mixed state of a crystal phase and an amorphous phase, so that crystal grains of uniform size with few defects are obtained. It is possible to obtain a high-density ferroelectric thin film made of, and as a result, it is possible to manufacture a thin film capacitor having extremely excellent withstand voltage. 9. (Corresponding to Examples 1 to 5) The ferroelectric thin film according to any one of Items 1 to 8, wherein the temperature rising rate in the firing step is 100 ° C./minute or less and the treatment time is 5 minutes or more. Method of manufacturing capacitor.

【0073】(構成)前記内容に準ずる。 (作用)急速昇温加熱処理工程で形成された部分結晶化
膜である原強誘電体薄膜を、処理時間に比べて相対的に
長時間の焼成を行い、焼成温度を選ぶことにより結晶化
速度を制御しながら徐々に結晶を成長させて均質な結晶
性薄膜を形成する。急速昇温法による極短時間の温度変
化と恒温処理で形成される結晶核中には多くの結晶欠陥
が含まれるが、100℃/分以下の極めてゆっくりとし
た昇温速度で加熱し5分以上、好ましくは30分から数
時間程度の時間をかけてゆっくりと加熱処理を施すこと
でこれらの欠陥を修正し欠陥密度を低減させる。
(Structure) According to the above contents. (Function) The original ferroelectric thin film, which is a partially crystallized film formed in the rapid heating process, is baked for a relatively long time compared to the processing time, and the crystallization rate is selected by selecting the baking temperature. The crystal is gradually grown while controlling the temperature to form a homogeneous crystalline thin film. Although many crystal defects are contained in the crystal nuclei formed by the extremely short time temperature change and the constant temperature treatment by the rapid heating method, heating is performed at an extremely slow heating rate of 100 ° C / minute or less for 5 minutes. As described above, these defects are corrected and the defect density is reduced by slowly performing the heat treatment preferably for about 30 minutes to several hours.

【0074】この焼成温度は目的の強誘電体材料薄膜の
結晶化温度以上で行うが、半導体基板上に形成されてい
る集積回路が長時間の高温処理に曝されて被る熱損傷を
少なくするためにも急速昇温加熱処理する温度と等しい
か、それよりも低くすることが好ましい。
The firing temperature is higher than or equal to the crystallization temperature of the intended ferroelectric material thin film, but in order to reduce the thermal damage that the integrated circuit formed on the semiconductor substrate is exposed to a high temperature treatment for a long time, the thermal damage is reduced. Also, it is preferable that the temperature is equal to or lower than the temperature for the rapid heating process.

【0075】(効果)昇温速度が100℃/分以下、5
分以上の処理時間でもって原強誘電体薄膜を焼成処理す
ることによって、上記説明の作用により結晶欠陥の少な
い均一な粒径分布とこれに基づく高品質、高特性に絶縁
耐圧性の強誘電体薄膜キャパシタを形成することができ
る。 10.(実施例1〜5に対応) 前記急速昇温加熱処理は膜厚が0.05〜1μmの薄膜
に対して行うことを特徴とする前記第1〜9項記載の強
誘電体薄膜キャパシタの製造方法。
(Effect) Temperature rising rate is 100 ° C./min or less, 5
By firing the original ferroelectric thin film for a treatment time of not less than a minute, a uniform grain size distribution with few crystal defects and a high-quality, high-characteristic dielectric strength ferroelectric substance based on the above-mentioned action are obtained. Thin film capacitors can be formed. 10. (Corresponding to Examples 1 to 5) Manufacturing of the ferroelectric thin film capacitor described in any one of items 1 to 9, wherein the rapid heating process is performed on a thin film having a film thickness of 0.05 to 1 μm. Method.

【0076】(構成)前記内容に準ずる。 (作用)本発明に係わる仮焼処理を施す対象の薄膜は
0.05〜1μmの膜厚であることが好ましい。0.0
5μm未満の膜厚では、積層による工程が長くなり、薄
過ぎて連続膜を形成しにくく膜欠陥も増加して高品質な
薄膜が得られない。また、1層が1μmを越えると、乾
燥及び急速昇温加熱処理過程での膜体積の収縮によって
基板からの剥離現象が発生したり、クラッキングが起こ
りやすく、溶媒が蒸発する際に形成される細孔が焼成に
よっても縮潰せず多孔質膜になり易い。さらに、膜厚が
1μmを越えると通常の半導体デバイスの駆動電圧であ
る5V以下では強誘電体の分極反転に有効な電界が印加
できない。
(Structure) According to the above contents. (Function) The thin film to be subjected to the calcination treatment according to the present invention preferably has a film thickness of 0.05 to 1 μm. 0.0
If the film thickness is less than 5 μm, the process of lamination becomes long, and it is too thin to form a continuous film, and film defects increase, so that a high quality thin film cannot be obtained. If the thickness of one layer exceeds 1 μm, the phenomenon of peeling from the substrate or cracking easily occurs due to shrinkage of the film volume during the drying and rapid heating process, and fine particles formed when the solvent evaporates. The pores do not collapse even when fired and tend to become a porous film. Further, if the film thickness exceeds 1 μm, an electric field effective for reversing the polarization of the ferroelectric substance cannot be applied at a driving voltage of 5 V or less, which is a normal semiconductor device.

【0077】(効果)膜厚を限定することでクラック、
剥離のない高品質な高絶縁性の強誘電体薄膜キャパシタ
を形成することができる。 11.(実施例1〜5に対応) 前記薄膜の積層から急速昇温加熱処理までの工程を複数
回繰り返すことにより、多層膜を形成して所定の膜厚を
有する薄膜を得ることを特徴とする前記第10項記載の
強誘電体薄膜キャパシタの製造方法。
(Effect) By limiting the film thickness, cracks,
It is possible to form a high-quality and highly-insulating ferroelectric thin film capacitor without peeling. 11. (Corresponding to Examples 1 to 5) By repeating the steps from the stacking of the thin films to the rapid temperature rising heat treatment a plurality of times, a multilayer film is formed to obtain a thin film having a predetermined film thickness. Item 10. A method for manufacturing a ferroelectric thin film capacitor according to Item 10.

【0078】(構成)溶液塗布法またはミストデポジシ
ョン法を用いて前駆体金属有機化合物薄膜の形成を行い
本発明の成膜プロセスに従って加熱酸化、急速昇温加熱
処理工程までを複数回繰り返すことによって、多層化し
て所定の膜厚を有する原強誘電体薄膜を得、続いて焼成
工程以降の工程によって強誘電体薄膜キャパシタを形成
する。
(Structure) A precursor metal organic compound thin film is formed by using a solution coating method or a mist deposition method, and heating oxidation and rapid temperature rising heat treatment steps are repeated a plurality of times according to the film forming process of the present invention. Then, the ferroelectric thin film having a predetermined film thickness is obtained by multi-layering, and then the ferroelectric thin film capacitor is formed by the steps after the firing step.

【0079】(作用)前述のように乾燥及び急速昇温加
熱処理過程では膜体積の収縮が大きく基板からの剥離現
象、クラッキングの発生、溶媒蒸発の際に形成される細
孔が焼成によっても縮潰せず多孔質膜となりやすいなど
の問題は目的薄膜の膜厚が厚くなるほど生じやすい。膜
厚が1μmを越える強誘電体膜が要求される場合や1μ
m未満であっても緻密な薄膜を必要とする場合には薄膜
を多層化して、急速昇温加熱処理を各層毎に施すことに
より1層当たりの収縮に伴う過大な応力の集中を排除し
て前記クラック、膜剥離の発生、膜の空隙率の増加を抑
止することができる。
(Function) As described above, in the drying and rapid heating process, the film volume is largely shrunk, so that the phenomenon of peeling from the substrate, the occurrence of cracking, and the pores formed at the time of solvent evaporation are shrunk even by firing. The problem that a porous film that is not crushed easily becomes more likely to occur as the target thin film becomes thicker. When a ferroelectric film with a thickness of more than 1 μm is required or 1 μm
If a dense thin film is required even if it is less than m, the thin film is multi-layered and rapid heating treatment is applied to each layer to eliminate excessive stress concentration due to shrinkage per layer. It is possible to suppress the occurrence of cracks, peeling of the film, and increase in the porosity of the film.

【0080】(効果)薄膜を多層形成して本発明の成膜
プロセスに適用することで1μm以上の厚膜でも容易に
形成することが可能となる。 12.多層膜を形成する各層の構成元素比が異なること
を特徴とする前記第11項の強誘電体薄膜キャパシタの製
造方法。
(Effect) By forming a thin film in multiple layers and applying it to the film forming process of the present invention, it becomes possible to easily form a film having a thickness of 1 μm or more. 12. 12. The method for manufacturing a ferroelectric thin film capacitor as described in 11 above, wherein the constituent element ratios of the layers forming the multilayer film are different.

【0081】(構成)前記内容に準ずる。 (作用)本発明に関わるビスマス層状化合物はその構成
元素中に蒸発欠損しやすい酸化ビスマスを有し、また酸
化鉛などを含む場合もある。PZTはその構成元素に必
須な酸化鉛を有する。前駆体膜が目的化合物の化学量論
比に等しい混合比からなる場合、以降の熱処理工程中に
特定元素の蒸発脱離による欠損が生じると結晶成長が完
全に進行しなかったり、結晶欠陥密度の増大や粒界層の
厚みが増えて薄膜本来の強誘電性が損なわれ期待通りの
分極特性が得られないことがある。この場合、1層もし
くは多層でなる化学量論組成の均一薄膜上に、特定元
素、ビスマスもしくは鉛、を過剰に含有する他は同一組
成の一層もしくは多層でなる薄層を積層被覆して、薄膜
表面から内部にかけて膜厚方向に当該特定元素の濃度勾
配を持たせた多層膜を加熱焼成する。膜厚方向に異なる
機能特性を実現したい場合は、全く違う組成の薄膜どう
しを積層してもよい。
(Structure) According to the above contents. (Function) The bismuth layered compound according to the present invention has bismuth oxide which is liable to be vaporized in its constituent elements, and may contain lead oxide or the like. PZT has an essential lead oxide as its constituent element. When the precursor film has a mixing ratio equal to the stoichiometric ratio of the target compound, crystal growth does not proceed completely when defects due to evaporation and desorption of a specific element occur during the subsequent heat treatment step, or the crystal defect density In some cases, the increase in the thickness and the thickness of the grain boundary layer impair the ferroelectricity inherent in the thin film, and the expected polarization characteristics cannot be obtained. In this case, a thin film of one layer or multiple layers having the same composition except that the specific element, bismuth or lead is excessively contained is laminated on a uniform thin film of one layer or multiple layers to form a thin film. A multilayer film having a concentration gradient of the specific element in the film thickness direction from the surface to the inside is heated and baked. When it is desired to realize different functional characteristics in the film thickness direction, thin films having completely different compositions may be laminated.

【0082】(効果)本発明に従い目的の薄膜を組成変
化をつけて多層化して形成することにより薄膜表面近傍
の組成欠陥を補正し、従来の欠点である鉛、ビスマスな
どの蒸発欠乏に起因する量論組成比からの組成ずれによ
る分極性能の低下、過剰ビスマスまたは鉛の膜内残留に
よる抗電界減少、同組成の不均質化による膜質低下と電
気的短絡の発生を防止が可能となる。さらに各層に異な
る特性を有し強誘電体薄膜組成組成を配したりして、機
能特性の改善を行うこともできる。 13.(実施例1〜4に対応) 前記強誘電体薄膜が一般式(1)で表現されるビスマス
層状化合物であることを特徴とする前記第1〜12項記
載の強誘電体薄膜キャパシタの製造方法。
(Effect) According to the present invention, the intended thin film is formed in multiple layers by changing the composition to correct the composition defect near the surface of the thin film, which results from the conventional defect of evaporation deficiency of lead, bismuth and the like. It is possible to prevent deterioration of polarization performance due to composition deviation from stoichiometric composition ratio, reduction of coercive electric field due to residual excess bismuth or lead in the film, deterioration of film quality due to inhomogeneity of the composition and occurrence of electrical short circuit. Further, it is possible to improve the functional characteristics by arranging the composition of the ferroelectric thin film having different characteristics in each layer. 13. (Corresponding to Examples 1 to 4) The method for manufacturing a ferroelectric thin film capacitor according to any one of items 1 to 12, wherein the ferroelectric thin film is a bismuth layered compound represented by the general formula (1). .

【0083】 (Bi222+(Am-1m3m+12- (1) A=Bi,Pb,Ba,Sr,Ca,Na,K,Cdの
内から選ばれる1つもしくは複数元素からなる任意比率
による組み合わせ。
(Bi 2 O 2 ) 2+ (A m−1 B m O 3m + 1 ) 2− (1) A = Bi, Pb, Ba, Sr, Ca, Na, K, Cd A combination of one or more elements at any ratio.

【0084】B=Ti,Nb,Ta,W,Mo,Fe,
Co,Crの内から選ばれる1つもしくは複数元素から
なる任意比率による組み合わせ。m=1〜5の自然数。
B = Ti, Nb, Ta, W, Mo, Fe,
A combination of one or more elements selected from Co and Cr in an arbitrary ratio. A natural number of m = 1 to 5.

【0085】(構成)前記内容に準ずる。 (作用)本発明に関わるビスマス層状化合物強誘電体は
2次元的に広がりを有する酸化ビスマス層と強誘電性ペ
ロブスカイト構造が規則的に重なり合って形成する繰り
返し単位からなる層状結晶構造を有する。多くのビスマ
ス層状化合物は鉛含有複合酸化物に比べて分極反転疲労
に対する耐久性が高い。
(Structure) According to the above contents. (Function) The bismuth layered compound ferroelectric material according to the present invention has a layered crystal structure composed of repeating units formed by regularly overlapping two-dimensionally spread bismuth oxide layers and ferroelectric perovskite structures. Many bismuth layered compounds have higher durability against polarization inversion fatigue than lead-containing composite oxides.

【0086】(効果)本発明の成膜プロセスをもってビ
スマス層状化合物を成膜することによって、分極反転疲
労特性に優れ、かつ高絶縁耐圧性の強誘電体薄膜キャパ
シタを提供できる。 14.(実施例1〜4に対応) 前記ビスマス層状化合物が一般式(1′)で表現される
タンタル酸ニオブ酸ストロンチウムビスマスであること
を特徴とする前記第13項記載の強誘電体薄膜キャパシ
タの製造方法。
(Effect) By forming a bismuth layered compound by the film forming process of the present invention, it is possible to provide a ferroelectric thin film capacitor having excellent polarization inversion fatigue characteristics and high withstand voltage. 14. (Corresponding to Examples 1 to 4) The manufacture of the ferroelectric thin film capacitor according to the above item 13, wherein the bismuth layer compound is strontium bismuth tantalate niobate represented by the general formula (1 '). Method.

【0087】 SrBi2 (Ta1-x Nbx29 (1′) 0≦x≦1 (構成)請求項内容に準ずる。SrBi 2 (Ta 1-x Nb x ) 2 O 9 (1 ′) 0 ≦ x ≦ 1 (Structure) According to the claims.

【0088】(作用)本発明に関わるビスマス層状化合
物強誘電体の中でもチタン酸ニオブ酸ストロンチウムビ
スマス:SrBi2 (Ta1-x Nbx29 (0≦x
≦1)は特に分極反転疲労特性に優れ1012回以上の分
極反転を繰り返しても反転電荷量の劣化がなく、記録情
報の書き込み、読み出し、消去に伴う非常に多くの回数
に及ぶ分極反転を必要とする半導体メモリデバイス用途
に最も適している。タンタル及びニオブは互いに価数が
等しく原子半径もほとんど同じであり結晶格子内で任意
に置換しあうことが可能であり、Ta/Nb比を選ぶこ
とによって残留分極量及び分極反転の閾値である抗電界
を制御することができる。従って自由度の高いデバイス
設計が可能になる。
(Function) Among the bismuth layered compound ferroelectrics relating to the present invention, strontium bismuth niobate titanate: SrBi 2 (Ta 1-x Nb x ) 2 O 9 (0 ≦ x
≦ 1) is particularly excellent in fatigue of polarization inversion, and even if the polarization inversion is repeated 10 12 times or more, the inversion charge amount is not deteriorated, and a very large number of polarization inversions are accompanied by writing, reading, and erasing of recorded information. Most suitable for required semiconductor memory device applications. Tantalum and niobium have the same valences and almost the same atomic radii, and can be arbitrarily substituted in the crystal lattice. By selecting the Ta / Nb ratio, the remanent polarization amount and the polarization reversal threshold, The electric field can be controlled. Therefore, a device design with a high degree of freedom becomes possible.

【0089】(効果)分極反転疲労特性が特に優れたS
rBi2 (Ta1-x Nbx29 薄膜の絶縁耐圧性を
向上させて半導体メモリ用途に最適な強誘電体薄膜キャ
パシタして提供できる。 15.(実施例1〜4に対応) 前記急速昇温加熱の処理温度が800℃以上であること
を特徴とする前記第14項記載の強誘電体薄膜キャパシ
タの製造方法。
(Effect) S which is particularly excellent in polarization reversal fatigue characteristics
It is possible to provide a ferroelectric thin film capacitor suitable for semiconductor memory applications by improving the dielectric strength of the rBi 2 (Ta 1-x Nb x ) 2 O 9 thin film. 15. (Corresponding to Examples 1 to 4) The method for manufacturing a ferroelectric thin film capacitor according to the above item 14, wherein the treatment temperature of the rapid heating is 800 ° C. or higher.

【0090】(構成)前記内容に準ずる。 (作用)SrBi2 Ta29 薄膜の結晶化温度は80
0℃近傍にあり、これ以上の温度で急速昇温加熱仮焼処
理を行うことによって容易に当該材料の原強誘電体薄膜
を形成することができる。
(Structure) According to the above contents. (Function) The crystallization temperature of the SrBi 2 Ta 2 O 9 thin film is 80
The raw ferroelectric thin film of the material can be easily formed by performing a rapid temperature rising heating calcination treatment at a temperature of about 0 ° C. or higher.

【0091】(効果)800℃以上で本発明の急速昇温
加熱処理を行うことによって、絶縁耐圧性に優れたSr
Bi2 Ta29 薄膜を得、耐疲労性かつ高耐圧性の強
誘電体薄膜キャパシタを提供できる。 16.(実施例1,3,4に対応) 前記焼成工程における処理温度が800℃以上であるこ
とを特徴とする前記第14及び15項記載の強誘電体薄
膜キャパシタの製造方法。
(Effect) By performing the rapid temperature rising heat treatment of the present invention at 800 ° C. or higher, Sr excellent in withstand voltage is obtained.
It is possible to obtain a Bi 2 Ta 2 O 9 thin film and provide a ferroelectric thin film capacitor having fatigue resistance and high withstand voltage. 16. (Corresponding to Examples 1, 3 and 4) The method for producing a ferroelectric thin film capacitor as described in the above items 14 and 15, wherein the processing temperature in the firing step is 800 ° C. or higher.

【0092】(構成)前記内容に準ずる。 (作用)SrBi2 Ta29 薄膜の結晶化温度は80
0℃近傍にあり、これ以上の温度で焼成を行うことによ
って、容易に均一な粒径分布と高い膜密度を有した材料
の強誘電性薄膜を形成することができる。
(Structure) According to the above contents. (Function) The crystallization temperature of the SrBi 2 Ta 2 O 9 thin film is 80
By firing at a temperature in the vicinity of 0 ° C. and above this temperature, a ferroelectric thin film of a material having a uniform grain size distribution and a high film density can be easily formed.

【0093】(効果)800℃以上で本発明の焼成処理
を行うことによって、絶縁耐圧性に優れたSrBi2
29 薄膜を得、耐疲労性かつ高耐圧性の強誘電体薄
膜キャパシタを提供できる。 17.(実施例5に対応) 前記強誘電体薄膜が一般式(2)で表現されるPZTも
しくはその変性体であることを特徴とする前記第1〜12
項記載の強誘電体薄膜キャパシタの製造方法。
(Effect) By performing the firing treatment of the present invention at 800 ° C. or higher, SrBi 2 T excellent in withstand voltage is obtained.
It is possible to obtain an a 2 O 9 thin film and provide a ferroelectric thin film capacitor having fatigue resistance and high withstand voltage. 17. (Corresponding to Example 5) The first to twelfth features that the ferroelectric thin film is PZT represented by the general formula (2) or a modified form thereof.
6. A method for manufacturing a ferroelectric thin film capacitor as described in the item.

【0094】 (Pb1-x+ax )(Zr1-y-z Tiyz )O3 +βMeO (2) a=0〜0.2 A=Ca,Sr,Ba,Th,La,Y,Sm,Dy,
Ce,Bi,Sbのうちから選ばれる1つもしくは複数
元素からなる任意比率による組み合わせ。
(Pb 1-x + a A x ) (Zr 1-yz Ti y B z ) O 3 + βMeO (2) a = 0 to 0.2 A = Ca, Sr, Ba, Th, La, Y, Sm, Dy,
A combination of one or more elements selected from Ce, Bi, and Sb in an arbitrary ratio.

【0095】x=0〜0.3 y=0〜0.9 B=Hf,Sn,Nb,Ta,W,Moのうちから選ば
れる1つもしくは複数元素からなる任意比率による組み
合わせ。
X = 0 to 0.3 y = 0 to 0.9 B = Hf, Sn, Nb, Ta, W, Mo Any combination of one or more elements selected from Mo.

【0096】z=0〜0.3 β=0〜0.05 Me=La,Y,Sm,Dy,Ce,Bi,Sb,N
b,Ta,W,Mo,Cr,Co,Ni,Fe,Cu,
Si,Ge,U,Scのうちから選ばれる1つもしくは
複数元素からなる任意比率による組み合わせ。
Z = 0 to 0.3 β = 0 to 0.05 Me = La, Y, Sm, Dy, Ce, Bi, Sb, N
b, Ta, W, Mo, Cr, Co, Ni, Fe, Cu,
A combination of one or more elements selected from Si, Ge, U and Sc in an arbitrary ratio.

【0097】(構成)前記内容に準ずる。 (作用)本発明に関わるPZT系強誘電体は大きな分極
性能を有し、キャパシタ面積を小さくしても大きな電流
を取り出すことができ、メモリ用途などにおいて記憶容
量の高密度化、セル面積の小型化に有利である。
(Structure) According to the above contents. (Function) The PZT-based ferroelectric material according to the present invention has a large polarization performance and can take out a large current even if the capacitor area is made small. Therefore, the storage capacity can be increased and the cell area can be made small in memory applications. It is advantageous to

【0098】(効果)本発明の成膜プロセスをもって鉛
含有複合酸化物強誘電体薄膜を成膜することによって、
分極反転疲労特性に優れ、かつ高絶縁耐圧性の強誘電体
薄膜キャパシタを提供できる。 18.(実施例5に対応) 前記急速昇温加熱の処理温度が700℃以上であること
を特徴とする前記第17項記載の強誘電体薄膜キャパシ
タの製造方法。
(Effect) By forming a lead-containing complex oxide ferroelectric thin film by the film forming process of the present invention,
A ferroelectric thin film capacitor having excellent polarization inversion fatigue characteristics and high withstand voltage can be provided. 18. (Corresponding to Example 5) The method for producing a ferroelectric thin film capacitor as described in the above item 17, wherein the treatment temperature of the rapid heating is 700 ° C. or higher.

【0099】(構成)前記内容に準ずる。 (作用)上記PZT薄膜の結晶化温度は700℃近傍に
あり、これ以上の温度で急速昇温加熱仮焼処理を行うこ
とによって容易に当該材料の原強誘電体薄膜を形成する
ことができる。
(Structure) According to the above contents. (Function) The crystallization temperature of the PZT thin film is around 700 ° C., and the raw ferroelectric thin film of the material can be easily formed by performing the rapid temperature rising calcination treatment at a temperature higher than this.

【0100】(効果)700℃以上で本発明の急速昇温
加熱処理を行うことによって絶縁耐圧性に優れたPZT
薄膜を得、耐疲労性かつ高耐圧性の強誘電体薄膜キャパ
シタを提供できる。 19.(実施例5に対応) 前記焼成工程における処理温度が700℃以上であるこ
とを特徴とする前記第17及び18項記載の強誘電体薄
膜キャパシタの製造方法。
(Effect) PZT excellent in dielectric strength is obtained by performing the rapid temperature rising heat treatment of the present invention at 700 ° C. or higher.
A thin film can be obtained and a ferroelectric thin film capacitor having fatigue resistance and high withstand voltage can be provided. 19. (Corresponding to Example 5) The method for manufacturing a ferroelectric thin film capacitor as described in the above items 17 and 18, wherein the treatment temperature in the firing step is 700 ° C or higher.

【0101】(構成)前記内容に準ずる。 (作用)PZT薄膜の結晶化温度は700℃近傍にあ
り、これ以上の温度で焼成を行うことによって容易に均
一な粒径分布と高い膜密度を有した当該材料の強誘電性
薄膜を形成することができる。
(Structure) According to the above contents. (Function) The crystallization temperature of the PZT thin film is around 700 ° C., and by firing at a temperature higher than this, a ferroelectric thin film of the material having a uniform particle size distribution and a high film density can be easily formed. be able to.

【0102】(効果)700℃以上で本発明の焼成処理
を行うことによって絶縁耐圧性に優れたPZT薄膜を
得、耐疲労性かつ耐耐圧性の強誘電体薄膜キャパシタを
提供できる。
(Effect) By performing the firing treatment of the present invention at 700 ° C. or higher, a PZT thin film having excellent withstand voltage can be obtained, and a fatigue-resistant and withstand-voltage ferroelectric thin film capacitor can be provided.

【0103】[0103]

【発明の効果】以上詳述した如く本発明によれば、従来
プロセスによる鉛含有複合酸化物強誘電体及びビスマス
層状化合物の薄膜の絶縁耐圧特性を改善し、実際のデバ
イスに応用が可能な当該化合物の薄膜を形成可能な強誘
電体薄膜キャパシタの製造方法を提供できる。
As described in detail above, according to the present invention, it is possible to improve the withstand voltage characteristics of the thin films of the lead-containing complex oxide ferroelectric and the bismuth layered compound by the conventional process, and to apply them to actual devices. A method of manufacturing a ferroelectric thin film capacitor capable of forming a thin film of a compound can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】比較例1及び実施例1〜4のヒステリシスカー
ブを比較して示す説明図。
FIG. 1 is an explanatory diagram showing a comparison between hysteresis curves of Comparative Example 1 and Examples 1 to 4.

【図2】比較例1に係るI−V特性図。FIG. 2 is an IV characteristic diagram according to Comparative Example 1.

【図3】実施例1に係るI−V特性図。FIG. 3 is an IV characteristic diagram according to the first embodiment.

【図4】実施例2に係るI−V特性図。FIG. 4 is an IV characteristic diagram according to the second embodiment.

【図5】実施例3に係るI−V特性図。FIG. 5 is an IV characteristic diagram according to the third embodiment.

【図6】実施例4に係るI−V特性図。FIG. 6 is an IV characteristic diagram according to the fourth embodiment.

【図7】比較例2及び実施例5のI−V特性図。7 is an IV characteristic diagram of Comparative Example 2 and Example 5. FIG.

フロントページの続き (72)発明者 渡辺 均 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 由森 博之 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 三原 孝士 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 高橋 武博 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 田所 かおる 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内Front page continued (72) Inventor Hitoshi Watanabe 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Industry Co., Ltd. (72) Hiroyuki Yumori 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Industry Co., Ltd. (72) Inventor Takashi Mihara 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Industry Co., Ltd. (72) Inventor Takehiro Takahashi 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Inside Optical Industry Co., Ltd. (72) Inventor Kaoru 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Industry Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に電気伝導性の金属薄膜ま
たは酸化物薄膜からなる下部電極層を形成する工程と、
下部電極層上に目的の強誘電体材料の構成元素に相当す
る複数金属の有機化合物からなる前駆体混合物を主成分
とする薄膜を形成する工程と、この薄膜を加熱酸化して
金属酸化物薄膜を形成する工程と、形成された強誘電体
薄膜に少なくとも1回の急速昇温加熱処理を施す工程
と、形成された強誘電体薄膜上に電気伝導性の金属薄膜
または酸化物薄膜からなる上部電極層を形成する工程
と、上部電極層及び強誘電体薄膜、下部電極層などを所
定の形状にエッチング加工してキャパシタ構造を形成す
る工程と、これに再加熱処理を行う工程でなる強誘電体
薄膜キャパシタの製造方法において、急速昇温加熱処理
温度が目的とする強誘電体材料の結晶化温度以上である
ことを特徴とする強誘電体薄膜キャパシタの製造方法。
1. A step of forming a lower electrode layer made of an electrically conductive metal thin film or oxide thin film on a semiconductor substrate,
A step of forming on the lower electrode layer a thin film containing a precursor mixture composed of an organic compound of a plurality of metals corresponding to the constituent elements of the target ferroelectric material as a main component, and heating and oxidizing the thin film to form a metal oxide thin film. Forming the ferroelectric thin film, subjecting the formed ferroelectric thin film to at least one rapid heating treatment, and forming an electrically conductive metal thin film or oxide thin film on the formed ferroelectric thin film. Ferroelectric comprising a step of forming an electrode layer, a step of etching a top electrode layer, a ferroelectric thin film, a bottom electrode layer, etc. into a predetermined shape to form a capacitor structure, and a step of subjecting this to reheating treatment. A method of manufacturing a thin film body capacitor, wherein the rapid heating treatment temperature is equal to or higher than the crystallization temperature of the target ferroelectric material.
【請求項2】 前記強誘電体薄膜が一般式(1)で表現
されるビスマス層状化合物であることを特徴とする請求
項1記載の強誘電体薄膜キャパシタの製造方法。 (Bi222+(Am-1m3m+12- (1) A=Bi,Pb,Ba,Sr,Ca,Na,K,Cdの
内から選ばれる1つもしくは複数元素からなる任意比率
による組み合わせ。B=Ti,Nb,Ta,W,Mo,
Fe,Co,Crの内から選ばれる1つもしくは複数元
素からなる任意比率による組み合わせ。m=1〜5の自
然数。
2. The method of manufacturing a ferroelectric thin film capacitor according to claim 1, wherein the ferroelectric thin film is a bismuth layered compound represented by the general formula (1). (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2- (1) A = one selected from Bi, Pb, Ba, Sr, Ca, Na, K, and Cd, or Combination of multiple elements at any ratio. B = Ti, Nb, Ta, W, Mo,
A combination of one or more elements selected from Fe, Co and Cr in an arbitrary ratio. A natural number of m = 1 to 5.
【請求項3】 前記強誘電体薄膜が一般式(2)で表現
されるPZTもしくはその変性体であることを特徴とす
る請求項1の強誘電体薄膜キャパシタの製造方法。 (Pb1-x+a Ax )(Zr1-y-z Tiyz )O3 +βMeO (2) a=0〜0.2 A=Ca,Sr,Ba,Th,La,Y,Sm,Dy,
Ce,Bi,Sbのうちから選ばれる1つもしくは複数
元素からなる任意比率による組み合わせ。 x=0〜0.3 y=0〜0.9 B=Hf,Sn,Nb,Ta,W,Moのうちから選ば
れる1つもしくは複数元素からなる任意比率による組み
合わせ。 z=0〜0.3 β=0〜0.05 Me=La,Y,Sm,Dy,Ce,Bi,Sb,N
b,Ta,W,Mo,Cr,Co,Ni,Fe,Cu,
Si,Ge,U,Scのうちから選ばれる1つもしくは
複数元素からなる任意比率による組み合わせ。
3. The method for manufacturing a ferroelectric thin film capacitor according to claim 1, wherein the ferroelectric thin film is PZT represented by the general formula (2) or a modified form thereof. (Pb1-x + a A x ) (Zr 1-yz Ti y B z) O 3 + βMeO (2) a = 0~0.2 A = Ca, Sr, Ba, Th, La, Y, Sm, Dy,
A combination of one or more elements selected from Ce, Bi, and Sb in an arbitrary ratio. x = 0 to 0.3 y = 0 to 0.9 B = A combination of one or more elements selected from Hf, Sn, Nb, Ta, W, and Mo at an arbitrary ratio. z = 0-0.3 β = 0-0.05 Me = La, Y, Sm, Dy, Ce, Bi, Sb, N
b, Ta, W, Mo, Cr, Co, Ni, Fe, Cu,
A combination of one or more elements selected from Si, Ge, U and Sc in an arbitrary ratio.
JP577295A 1994-09-29 1995-01-18 Manufacture of ferroelectric thin-film capacitor Pending JPH08153854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP577295A JPH08153854A (en) 1994-09-29 1995-01-18 Manufacture of ferroelectric thin-film capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23509294 1994-09-29
JP6-235092 1994-09-29
JP577295A JPH08153854A (en) 1994-09-29 1995-01-18 Manufacture of ferroelectric thin-film capacitor

Publications (1)

Publication Number Publication Date
JPH08153854A true JPH08153854A (en) 1996-06-11

Family

ID=26339776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP577295A Pending JPH08153854A (en) 1994-09-29 1995-01-18 Manufacture of ferroelectric thin-film capacitor

Country Status (1)

Country Link
JP (1) JPH08153854A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002645A (en) * 2001-06-13 2003-01-08 Seiko Epson Corp Raw material liquid for ceramics
JP2004075424A (en) * 2002-08-12 2004-03-11 Mitsubishi Materials Corp Ferroelectric thin film having excellent fatigue resistance and composition for depositing the same
JP2006500785A (en) * 2002-09-26 2006-01-05 レイセオン・カンパニー Temperature compensated ferroelectric capacitor device and manufacturing method thereof
US7101026B2 (en) 1997-11-25 2006-09-05 Seiko Epson Corporation Ink jet recording head and ink jet recorder having a compression film with a compressive stress and removal part incorporated therein
US7510669B2 (en) 2005-09-30 2009-03-31 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition and piezoelectric component
WO2009145272A1 (en) 2008-05-28 2009-12-03 三菱マテリアル株式会社 Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method
WO2017110953A1 (en) * 2015-12-24 2017-06-29 株式会社Flosfia Film forming method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651201B2 (en) 1997-11-25 2010-01-26 Seiko Epson Corporation Ink jet recording head and ink jet recorder
US7101026B2 (en) 1997-11-25 2006-09-05 Seiko Epson Corporation Ink jet recording head and ink jet recorder having a compression film with a compressive stress and removal part incorporated therein
JP2003002645A (en) * 2001-06-13 2003-01-08 Seiko Epson Corp Raw material liquid for ceramics
JP2004075424A (en) * 2002-08-12 2004-03-11 Mitsubishi Materials Corp Ferroelectric thin film having excellent fatigue resistance and composition for depositing the same
JP2006500785A (en) * 2002-09-26 2006-01-05 レイセオン・カンパニー Temperature compensated ferroelectric capacitor device and manufacturing method thereof
US7510669B2 (en) 2005-09-30 2009-03-31 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition and piezoelectric component
WO2009145272A1 (en) 2008-05-28 2009-12-03 三菱マテリアル株式会社 Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method
EP2343268A1 (en) 2008-05-28 2011-07-13 Mitsubishi Materials Corporation Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
US8859051B2 (en) 2008-05-28 2014-10-14 Mitsubishi Materials Corporation Composition for ferroelectric thin film formation, method for forming ferroelectric thin film and ferroelectric thin film formed by the method thereof
US8790538B2 (en) 2008-05-28 2014-07-29 Mitsubishi Materials Corporation Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
EP2436661A1 (en) 2008-05-28 2012-04-04 Mitsubishi Materials Corporation Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
US9005358B2 (en) 2008-05-28 2015-04-14 Mitsubishi Materials Corporation Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
US9502636B2 (en) 2008-05-28 2016-11-22 Mitsubishi Materials Corporation Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
WO2017110953A1 (en) * 2015-12-24 2017-06-29 株式会社Flosfia Film forming method

Similar Documents

Publication Publication Date Title
US5439845A (en) Process for fabricating layered superlattice materials and making electronic devices including same
TWI613725B (en) Method for producing ferroelectric thin film
US6072207A (en) Process for fabricating layered superlattice materials and making electronic devices including same
EP0665981B1 (en) Process for fabricating layered superlattice materials and electronic devices including same
JP2008042069A (en) Piezoelectric element, and its manufacturing method
KR100932573B1 (en) Ferroelectric Capacitors, Method of Making Ferroelectric Capacitors, and Ferroelectric Memory
US6455106B1 (en) Method of forming oxide-ceramics film
JPH08153854A (en) Manufacture of ferroelectric thin-film capacitor
KR0156044B1 (en) Manufacture for ferroelectric thin film
US6863726B2 (en) Vapor phase growth method of oxide dielectric film
JPH09102587A (en) Ferroelectric substance thin film element
JPH10290033A (en) Piezo-electric thin film element, and actuator and ink-jet type recording head using the thin film element and manufacture of piezo-electric thin film element
JP2002521820A (en) Fabrication of layered superlattice materials and low temperature process for making electronic devices containing layered superlattice materials
JP2753170B2 (en) Crystallization method of ferroelectric film
JPH0585704A (en) Production of ferroelectric thin film
JP3294214B2 (en) Thin film capacitors
JPH09282943A (en) Manufacture of ferroelectric crystal thin film and ferroelectric capacitor
JPH10223847A (en) Manufacture of ferroelectric thin film element, ferroelectric thin film element and ferroelectric memory device
JPH08340084A (en) Manufacture of dielectric thin film and dielectric thin film manufactured by it
JP2003318369A (en) Semiconductor device and method of manufacturing the same
JP3663570B2 (en) Ferroelectric thin film, ferroelectric capacitor, and semiconductor memory device
JP2004063750A (en) Orientational ferroelectric thin film element
JP2002016235A (en) Ferroelectric capacitor and method of manufacturing the same, and semiconductor device provided with the ferroelectric capacitor
JP2001332549A (en) Forming method of crystalline oxide film and semiconductor device
JP2000164818A (en) Oxide ferroelectric thin film coating substrate and manufacture therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A601 Written request for extension of time

Effective date: 20040825

Free format text: JAPANESE INTERMEDIATE CODE: A601

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050222