JP2004073869A - Ct画像のフィルタリング法、コンピュータ断層撮影装置およびコンピュータソフトウェア製品 - Google Patents

Ct画像のフィルタリング法、コンピュータ断層撮影装置およびコンピュータソフトウェア製品 Download PDF

Info

Publication number
JP2004073869A
JP2004073869A JP2003296324A JP2003296324A JP2004073869A JP 2004073869 A JP2004073869 A JP 2004073869A JP 2003296324 A JP2003296324 A JP 2003296324A JP 2003296324 A JP2003296324 A JP 2003296324A JP 2004073869 A JP2004073869 A JP 2004073869A
Authority
JP
Japan
Prior art keywords
image
slice
data set
convolution kernel
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003296324A
Other languages
English (en)
Inventor
Herbert Bruder
ヘルベルト ブルーダー
Thomas Flohr
トーマス フロール
Rainer Raupach
ライナー ラウパッハ
Stefan Schaller
シュテファン シャラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2004073869A publication Critical patent/JP2004073869A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S378/00X-ray or gamma ray systems or devices
    • Y10S378/901Computer tomography program or processor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

【課題】診断学上の最適な観点からCT画像のフィルタリングを改善又は簡単化する。
【解決手段】CT画像のウィンドウ制御されたフィルタリングのために、本発明による方法は次のステップを有する。
a)CT装置またはCアーム装置によりCT生データを取得するステップ、
b)CT生データから、例えば鋭い畳み込み核および例えば狭いスライス感度プロフィールにより、1次データセットを再構成するステップ、
c)ウィンドウ幅と画像鮮明度との間の関数関係としての伝達関数を用意するステップ、
d)画像処理プロセスにおいて伝達関数に基づいて、1次データセット内にある選択された断層のCT画像の画像鮮明度を、選択された断層のために選択されたウィンドウ幅に応じて自動的に計算するステップ。
【選択図】  図4

Description

 本発明は、コンピュータ断層撮影装置において鮮明度およびノイズを適合させるための画像のレトロスペクティブフィルタリング法もしくは画像のウィンドウ制御されたフィルタリング法に関する。
 例えばX線コンピュータ断層撮影法(CT)のような現代的な医療診断方法によれば、被検体の画像データを取得することができる。一般に、被検体は患者である。
 X線コンピュータ断層撮影法(以下ではCTと略称する。)は、画像形成が基本的に古典的なX線断層撮影法とは異なる特殊なX線撮影方法である。CT撮影の場合、横断断層像、すなわち体軸に対してほぼ垂直方向に向いている身体断層像が得られる。画像に表示された組織特有の物理量は断層面におけるX線減弱値の分布μ(x,y)である。多数の異なる視角からの2次元分布μ(x,y)の1次元投影が使用測定システムから供給されるが、CT画像はその1次元投影の再構成によって得られる。
 CT画像は、エンドレスに回転可能な走査システムを有するCT装置によっても、360°よりも小さい角度しか回転できない走査システムを有するCアーム装置によっても作成可能である。以下では、例えば「CT生データ」における略称部分「CT」は両タイプに関して使用する。
 投影データは、画像化すべき断層を通過するX線経路後におけるX線強度IとX線源に
おける元の強度I0とから次の吸収法則にしたがって求められる。
      ln(I/I0)=∫L μ(x,y)dl (1)
 積分経路Lは2次元の減弱分布μ(x,y)を通して観察されるX線の軌道を表す。1つの像投影は、1つの注視方向のX線により得られる被検者断層を通る線積分測定値から合成される。
 断層面において被検者のまわりを回転するX線源−検出器の組合せシステムによって、投影角αにより特性化されるあらゆる方向に由来する投影が得られる。今日における通常の装置はいわゆる「ファンビーム装置」である。この装置では、X線管と検出器アレイ(検出器の線状配置)とが、断層面において、円形測定フィールドの中心でもある回転中心のまわりを共通に回転する。非常に長い測定時間を有する「パラレルビーム装置」はここでは説明しない。しかしながら、ファンビーム投影からパラレルビーム投影への変換およびその逆の変換が可能であることから、ファンビーム装置に基づいて説明しようとする本発明は制限なしにパラレルビーム装置にも適用可能であることを指摘しておく。
 ファンビームジオメトリの場合、CT撮影は到来するX線の線積分測定値−ln(I/I0)からなり、X線は検出器位置を定めるファン角度β∈[−β0,β0](β0はファン開き角度の半分である)と投影角度α∈[0,2π]の2次元の結合とによって特色付けられる。測定システムは有限数kの検出器エレメントを持ち、測定は有限数yの投影からなるため、この結合は離散系であり、次のようにマトリックスによって表示することができる。
     P(αy,βk):[0,2π]×[−β0,β0]         (2)
もしくは
     P(y,k):(1,2,…NP)×(1,2,…NS)      (3)
 マトリックスP(y,k)はファンビームジオメトリのシヌグラム(Sinugramm)と称する。投影数yおよびチャンネル数kは1000のオーダである。
 式(1)にしたがって対数を形成すれば、投影全体の線積分、
      p(α,β)=ln(I/I0)=−∫L μ(x,y)dl (2)
が得られ、これの総計が分布μ(x,y)のラドン変換と呼ばれている。このようなラドン変換は可逆であり、したがってμ(x,y)はp(α,β)から逆変換(逆ラドン変換)によって得ることができる。この逆変換の際に一般に畳み込みアルゴリズムが適用され、このアルゴリズムでは各投影の線積分がまず特殊な関数にて畳み込まれ、それから元のビーム方向に沿って画像面上に逆投影される。畳み込みアルゴリズムを主として特徴付けるこの特殊な関数は“畳み込み核(コンボリューションカーネル)”と呼ばれる。畳み込み核の数学的形式によって、CT生データから得られるCT画像の再構成時における画質に的確に影響を及ぼすことが可能である。例えば相応の畳み込み核によって画像における位置分解能を高めるために高い周波数を強調することができ、あるいは相応の他の畳み込み核によって画像ノイズの低減のために高い周波数を抑えることもできる。まとめて言うならば、コンピュータ断層撮影法における画像再構成時に適切な畳み込み核を選定することによって、画像鮮明度/画像ノイズおよび画像コントラスト(両者は互いに相補的なふるまいをする。)により特徴付けられる画像特性に影響を及ぼさせることができる。この場合、画像鮮明度と画像ノイズとの間に直接的な比例関係があり、つまり、画像鮮明度を高めれば、同じ程度にノイズが増大する。
 μ値分布の計算によるCTにおける画像再構成の原理にはこれ以上立ち入らない。CT画像の再構成の詳細は種々発表されている(例えば非特許文献1参照)。
 もちろん、照射断層のμ値分布の計算により画像再構成の課題が既に完了したというわけではない。減弱係数μの分布は、医療の適用範囲においては、まだX線画像の形で表示されなければならない解剖学的構造を表しているにすぎない。
 ハウンズフィールド氏(G.N.Hounsfield)の提案以降において、(尺度単位cm-1を有する)線形の減弱係数μの値を無次元の目盛に変換することが一般に慣習になっている。この目盛においては水が値0を有し、空気が値−1000を有する。このCT値CT−numberへの換算式は次のとおりである。
    CT−number=1000(μ−μwater)/μwater     (4)
 CT−numberの単位は「ハウンズフィールド値」(HU)と呼ばれる。「ハウンズフィールドスケール」と呼ばれる目盛は解剖学上の組織を表示するのに非常に良く適している。というのは、HU値はμwaterの千分率での偏差を表現し、たいていの身体固有物質のμ値は水のμ値と僅かしか違わない。空気についての−1000から約3000までの数値範囲から整数だけが画像情報を媒介するものとして使用される。
 もちろん、約4000の値の全目盛範囲の表示は人間の目の識別能力をはるかに越えている。しかも、観察者にはしばしば減弱値範囲の小さい間隔、例えば約10HUだけしか違わない灰色と白色の脳物質の差分しか関心が寄せられない。
  この理由からいわゆる画像ウィンドウイング(英語:Windowing)が用いられる。この場合にCT値目盛の一部だけが選択され、自由になる灰色階調全体にわたって広げられる。この選定されたウィンドウ内では小さな減弱差も非常に良く知覚できる濃淡となり、一方ウィンドウの下のすべてのCT値は黒く表示され、ウィンドウの上のCT値は白く表示される。この画像ウィンドウはそれの中心レベルも幅も任意に変化可能である。
 今や、コンピュータ断層撮影では、多断面変換(MPRもしくは2次スライス)を採用することに関心が寄せられている。多断面変換は、ボリュームデータセット(1次データセットとも呼ばれ、通常は薄い軸方向のスライスによって代表される。)から計算された任意に傾けられた平面のCT画像を生じさせる。ピクセルは一般にボリュームデータセットで定められる位置に当たらず、MPRのスライス厚を任意に設定できることから、ピクセルが補間されなければならない。ボリュームデータセットの分解能は、とくに新しいCT装置の場合、ほぼ等方性である。この理由から、このようなボリュームデータセットから高品質のMPRが計算され、このMPRの画質は1次画像の画質と相違しない。
 もちろん、良好な診断学上の画像評価の枠内において、(主として鮮明度とノイズによって特徴づけられる)MPR画像特性を適切なフィルタリングによって操作することも同様に関心を寄せられている。多断面変換の鮮明度およびノイズは、主として1次のアキシャル画像の鮮明度およびノイズならびにMPR作成時に設定されたスライス厚によって決まる。
 したがって、異なる画像特性を持ったCT画像(とくにMPR画像)の表示に関心が寄せられている。というのは、当該組織の同じ撮影の異なる評価(すなわち、異なる臨床学的評価)が、撮影された組織の異なる様式の表示を要求するからである。
 従来技術では、2次スライスの画像特性の的確な操作は、生データから新しいボリュームデータセットが、変更された畳み込み核パラメータによる新しい画像再構成によって求められ、この新しい1次データセットに基づいて次の新たな本来の2次スライスの発生が行われることによって達成される。これは、異なる特性、例えば他の鮮明度を有する別の畳み込み核による再構成を意味する。
 この公知の方法によっては、CT画像、とくに2次スライスの画像特性を診断学上の要求にしたがって最適化しようとする上記の特別な狙いが部分的にしか実現できていない。後の利便性に合せられたパラメータによる新たな第1の再構成は、被検者軸に対して横方向のみの鮮明度を変更する。被検者軸は以下ではz軸と呼ぶ。この再構成から生じたMPRではz軸方向における画像を特徴付ける特性は変更されないままである。
 z軸方向においても所望の結果を得るためには、スライス感度プロフィール(英語:Slice Sensity Profile、SSP)をこの第1の再構成に個別に適合させなければならなかった。従来、この適合は不連続のステップでしか可能ではない、すなわち、原理的には軸方向の鮮明度とも呼び得るSSPの任意の正確な同調のための関数が今日のCT装置では使用できない。第1の再構成において任意のSSPを使用することができたとしても、適当に変更された2次スライスの発生には著しい処理労力および計算時間を必要とした。
"BBildgebende Syteme fuer die medizinische Diagnostik",3.Auflage, Muenchen:Publicis MCD Verlag,1995,Hrsg.:Morneburg Heinz,ISBN3−89578−002−2
 そこで、本発明の課題は、診断学上の最適な観点から、CT画像のフィルタリングの改善もしくは簡単化のための新しい技術を提供することにある。
 本発明によれば、次のステップa)〜d)を有するCT画像のウィンドウ制御されたフィルタリングのための本発明による第1の方法が提案される。
a)CT装置またはCアーム装置によりCT生データセットを取得するステップ、
b)CT生データセットから、例えば鋭い畳み込み核(コンボリューションカーネル)および例えば狭いスライス感度プロフィールにより1次データセットを再構成するステップ、
c)ウィンドウ幅と画像鮮明度との間の関数関係として伝達関数を用意するステップ、
d)画像処理プロセスによって伝達関数に基づいて、1次データセット内にある選択された断層のCT画像の画像鮮明度を、選択された断層のために選択されたウィンドウ幅に応じて自動計算するステップ。
 本発明による第1の方法の第1実施例によれば、画像処理プロセスにおいて、ウィンドウ幅は3次元の畳み込み核の少なくとも1つのパラメータに結合され、3次元の畳み込み核にて1次データセットが新たに畳み込み処理され、少なくとも1つの断層が画像鮮明度を変調される。
 本発明による第1の方法の第2実施例によれば、画像処理プロセスにおいて、ウィンドウ幅は2次元の畳み込み核の少なくとも1つのパラメータに結合され、2次元の畳み込み核にて少なくとも1つの断層が畳み込み処理され、画像鮮明度を変調される。
 両実施例においては、変更された核パラメータによる新たな再構成および2次スライスの新たな計算を避けられ、このことにより著しく高速の方法となる。
 はじめに1次データセットが最大に鋭い畳み込み核と最大に狭いスライス感度プロフィールで再構成されると好ましい。
 本発明によれば、断層は軸方向のスライス(アキシャルスライス)または2次スライスであってもよい。
 ウィンドウ幅の選定は使用者によってマウスまたはキーボードにより行なわれる。
 さらに、伝達関数がウィンドウ幅とスライス感度プロフィールとの間の関数関係を表すと有利である。
 さらに、本発明によれば、次のステップ(1)〜(5)を有するCT画像のレトロスペクティブフィルタリングのための本発明による第2の方法が提案される。
(1)CT装置またはCアーム装置によりCT生データセットを取得するステップ、
(2)1次データセットを、例えば鋭い畳み込み核(コンボリューションカーネル)および例えば狭いスライス感度プロフィールにより再構成するステップ、
(3)1次データセットに基づいて相応の画像特性を持った画像スタックを再構成するステップ、
(4)画像コンピュータ上で目立たずにランする画像処理プロセスによって画像スタックの変更された画像特性を計算するステップと、
(5)変更された画像特性を有するCT画像の形で画像スタックを可視化するステップ。
 本発明による第2の方法の第1実施例では、使用者は入力インタフェースを介して3次元の1次データ畳み込み核の少なくとも1つのパラメータを変更でき、この畳み込み核にて画像処理プロセスにおいて1次データセットが新たに畳み込み処理され、それから画像鮮明度を変調された新たな画像スタックが求められる。
 本発明による第2の方法の第2実施例では、使用者は入力インタフェースを介して2次元の畳み込み核の少なくとも1つのパラメータを変更でき、この2次元の畳み込み核にて画像処理プロセスにおいて画像スタックの個々の断層が個別に畳み込み処理され、画像鮮明度を変調される。
 ステップ(4)および(5)は使用者によって、満足できる画像特性が得られるまで何度も繰り返すことができる。
 画像スタックは、本発明によれば、アキシャル画像からなるスタックであってよいが、しかし任意の2次スライスからなるスタックであってもよい。
 本発明の他の特徴は、画像特性が不十分な場合に画像スタックに含まれる断層のスライス厚を変更することができるところにある。
 さらに、本発明にしたがって、今まで説明した方法のいずれかを実施するために、CT画像処理の個々のステップを実行するコンピュータを備えたコンピュータ断層撮影装置が提案される。
 同様に、本発明にしたがって、コンピュータ断層撮影装置に接続されたコンピュータ装置上でランする際に上述の方法のいずれかを実行するコンピュータソフトウェア製品が提案される。
  以下において添付図面を参照しながら実施例に基づいて本発明の他の特徴、特性および利点について説明する。
 図1には本発明にしたがって動作するファンビーム法のためのコンピュータ断層撮影装置が概略的に示されている。この装置の場合、X線管1および放射線受信器(検出器)2が共通の回転中心のまわりを回転し、この回転中心は円形測定フィールド5の中心でもあり、この回転中においては被検者3が患者寝台4上にいる。このコンピュータ断層撮影装置の代わりにCアーム装置を使用することもできる。被検者3の異なる平行な面を検査することができるようにするために、患者用寝台4は身体長手軸線(体軸)に沿って移動することができる。図から分かるように、CT撮影では横断層像、つまり体軸にほぼ垂直方向に向けられた身体断層像が生じる。この断層表示法は減弱値分布μZ(x,y)自体を表示する(zは体軸上の位置である)。コンピュータ断層撮影装置(以下、CT装置と呼ぶ)は、非常に多くの角度αにおける投影を必要とする。断層撮影を行うために、X線管1から放射されるコーンビームは平らなファンビームを形成するように絞られ、このファンビームが透視断層の1次元の中心投影を生じさせる。減弱値分布μZ(x,y)の正確な再構成のためには、このファンビームは、回転軸線に垂直でなければならず、しかも、ファンビームがあらゆる投射方向から被検体の関心部位を完全にカバーするような開きを持たなければならない。被検者を透過したファンビームは円部分に直線状に配置された検出器によって捕捉される。市販されている装置の場合、これは最大限1000個の検出器である。個々の検出器は、到来するX線に反応して、このX線の強さに比例した振幅を持つ電気信号に変換する。
 1つの投影αに属する個々の各検出器信号は、それぞれ測定電子装置7によって捕捉され、コンピュータ8に導かれる。コンピュータ8によりこの測定データはここで適宜に処理され、まず、いわゆるゴードン値にてシヌグラム(このシヌグラムにおいては投影αが対応するチャンネルβの測定値の関数としてプロットされる)の形で、しかし続いてハウンズフィールド値にて本来のX線画像の形でモニタ6において可視化される。
 本発明の狙いは、CT画像の、特に2次スライスの画像特性を診断上の視点に適合させることを可能にするために、簡単で高速の方法を提供することにある。
 本発明による第1の方法の第1実施例は、上述の従来技術に対して、生データから得られるボリュームデータセットの直接フィルタリングを行なうことにある。この場合、第1ステップにおいて、生データが検出器エレメント2により種々の投影の減弱値プロフィールの形で測定され、そして体軸に沿って隣接する別の断層において再び生データが測定される。生データは測定電子装置7に受け入れら、さらにコンピュータ8に導かれる。第2ステップにおいて、コンピュータ8はこれらのCT生データセットから1次データセット(ボリュームデータセット)を計算する。1次データセット自体は、HU値の形で、軸方向のもしくは2次スライス画像の計算のための基礎となる。本発明による方法の他のすべてのステップはCT装置のコンピュータ8において純粋に計算により実行されるか、もしくはモニタ6上で可視化される。
 1次データセットの本発明によるフィルタリングは、本発明による第1の方法の第1実施例においてはレトロスペクティブに3次元の畳み込みによって、3次元の畳み込み核を3次元マトリックスの形で直接にボリュームデータセットに適用することによって行なわれる。ボリュームデータセットは、それから生じさせられる2次スライスが所望の画像特性を有するように変更される。
 横断方向(すなわち、x−y方向)における軸方向の1次画像群の周波数特性は、使用された再構成アルゴリズムの変調伝達関数によって定められ、一般に等方性である。変調伝達関数は、どの振幅を持ったどの(位置)周波数が画像において可視であるかを定める。その場合に変調伝達関数は、主としてX線システムのジオメトリ(焦点幅、横断方向における検出器チャンネル数、1回転当たりの投影数など)および再構成の際に使用される畳み込み核(コンボリューションカーネル)に関係する。z軸方向においては、測定システム構成要素(焦点距離、検出器エレメント幅など)およびアルゴリズム構成要素(スパイラルアルゴリズムにおける軸方向の重み付け関数)からなるSSPが周波数空間における特性を決定する。一般に、この方向は、(3次元等方性分解能の場合にも)軸方向の断層面(アキシャル断層面)に対して区別される。
 画像特性上において所望の作用を有する3次元の畳み込み核は、z軸が特別な役割をなす間、z軸に関して放射対称性であるとよい。しかしながら、一般にフィルタ特性は3つのすべての空間軸に沿って異なっている。
 具体的に説明するために、フィルタリングに相当する3次元の畳み込み核はガウス関数であるとし、一般にそれの幅はすべての軸に沿って異なっている。このような畳み込み核の等ポテンシャル面は、例えば図5に示されているように、異なる半軸を有する楕円体の表面である。このような楕円体に基づいてボリュームデータセットが求められ、それからボリュームデータセットをもとに2次スライス(MPR=多断面変換)が補間される。
 本発明による第1の方法の第2実施例においては、2次スライス(MPR=多断面変換)が直接にフィルタリングされる。その場合に、通例の処置法は、設定されたスライス厚および2次スライス空間位置に基づいて2次元の畳み込み処理を行なうことである。このために必要な2次元の畳み込み核は2次元のマトリックスであり、このマトリックスは該当の2次スライスの特色ある平面を有する3次元の畳み込み核の断層によって与えられている。特色ある平面は、原点を通りかつ2次スライスに平行な平面によって一義的に確定され、2次スライスの位置を決定する。一般には、2次元の畳み込み核の等ポテンシャル線については、一般に直交座標のジオメトリに対して回転させられた軸を有する楕円が生じる。図6にこのような楕円が示されている。
 基本的に、ボリュームデータセットの3次元畳み込みとこれに続くMPRの計算(3Dフィルタ+MPR)という第1実施例と、MPRの計算とそれに続けての2次元の畳み込み核による畳み込み(MPR+2Dフィルタ)という第2実施例とは、MPR面に対して垂直な方向の特性が2次スライスの計算のためのアルゴリズによって決められるというかぎりにおいて、等価である。例えばMPRの計算時に使用者による補間関数によりスライス厚が設定される。特に2次元のフィルタリングでは、MPRの横方向の特性のみを変更しようとする場合もある。
 とくに、本発明による第1の方法の第2実施例(既に存在するMPRに2次元の畳み込み核が適用される実施例)は、唯一のステップで、既に存在するMPRの画像特性(鮮明度、ノイズ)の変更を可能にする。1MPR当たり約に100msecの典型的な計算時間の場合に、この方法は、生データから1次データセットの新たな再構成およびこれに続く2次スライスの新たな計算が行なわれる従来の方法よりも著しく高速である。100個の1次画像のスタックをもとに、これから50個の2次スライスが計算されたものとすると、従来の方法は、1秒当たり2つの再構成された1次画像を受け入れるならば、再構成のためだけに50秒を必要とする。これに加えて、さらになおも2次スライス発生の処理が行なわれる。これに対して、本発明による第1の方法の第2実施例による直接フィルタリングは約5秒を要するだけである。
 本発明による第1の方法の第2実施例である3次元畳み込みの形式は、既に計算された2次スライスの直接の畳み込みのように非常に高速であるというわけではない。というのは、2次スライスの新たな計算の前に3次元の畳み込み核を有するボリュームデータセットが新たに決定され、これが純粋な畳み込みからなるMPRよりも時間を要するからである。しかしながら、かかる方法の利点は、あとから、最終的に所望の画像特性を有する任意の2次スライスが新たに計算されたボリュームによってあてがわれるところにある。
 本発明の他の特徴は、本発明による第2の方法において、使用者に次の可能性が与えられることである。すなわち、結局はコンピュータ8にて実施される適切な可視化インタフェースにより、簡単かつ高速に(特にMPRの)CT画像の特性を診断上の要求に整合させることができる。とくに、異なる画像特性(画像鮮明度および画像ノイズ)を有する非常に様々の形式の解剖学上の組織を表示することができる。
 本発明による第2の方法は、CT値(HU値)が器官構造に応じてハウンズフィールドスケールにおいて異なる範囲を占めるという事実を利用している。
 ハウンズフィールドスケールを図2に示す。個々の器官のCT値は、使用されたX線スペクトルにはあまり依存せずに特有の範囲を占める。例えば、肺組織および脂肪はそれらの低い厚みとそれに起因する少ない減弱のために、−950〜−550もしくは−100〜−80の範囲の負のCT値を有する。たいていの他の組織は正の範囲にある。すなわち、腎臓は20〜40、心臓は40〜100、血液は50−60、肝臓は50〜70である。骨組織は、カルシウムの高い原子番号およびそれによる高い減弱のために、2000HUまでのCT値を持つ。
 従来のCT装置に関しては、ハウンズフィールドスケール全体の表示のために4096(=212)個の異なる灰色値が使用できる。しかしながら、観察者によっては最大60〜80の灰色階調しか識別することができない。この理由からCT画像形成においては既に述べたようにウィンドウイング(英語:Windowing)が行なわれる。このウィンドウイングにおいては関心のあるハウンズフィールド間隔が灰色値目盛全体に対応させられる。図3においては、これが例として目のつんだ骨組織について表示されている。対話式で使用者によってマウスまたは制御ボタンにてウィンドウが中心位置(ウィンドウレベルC)と幅(ウィンドウ幅W)により確定される。図3の例では中心位置がC=2000にあり、ウィンドウ幅がW=400にある。この場合にはウィンドウは白と黒の間で10階調に配分されている。
 一般にウィンドウイングは関心のある器官の構造が最適に現れるように行なわれる。古典的な応用例は、コントラスト豊かな気管支分枝もコントラストの乏しい肺の軟組織も診断上において重要であるCT肺撮影(胸部)である。気管支分枝の表示のためには大きなウィンドウを選ぶのが好ましく、これはノイズが視覚的に減少するという利点を有する。なぜならば、ノイズは,ウィンドウイングが大きくなるほど抑圧される最大振幅を有するからである。軟部組織の細部構造を解明するためには小さいウィンドウを選ぶのが適当である。小さいウィンドウにおいては、画像鮮明度が確かに高まるが、しかし同時にそれにともなう高いノイズ振幅を耐えなければならない。
 診断学上の視点から、画像表示のために選定されたウィンドウ幅が鮮明度パラメータ、従って画像特性を確定するのが有意義である。それゆえ、本発明の考えは、画像表示のために選択されたウィンドウ幅が画像鮮明度およびノイズに関連することにある。このために、本発明によれば、選定されたウィンドウ幅を一義的に畳み込み核に対応付ける伝達関数が定義される。かかる伝達関数が図4に示されている。横軸はウィンドウ幅を表し、縦軸は画像鮮明度を表す。伝達関数が単調上昇曲線であると有意義である。というのは、ウィンドウ幅の増大にともなって、所定の最大ノイズ振幅においてノイズが常にいっそう抑制され、画像コントラストが高められるからである。しかし、一般には、ウィンドウ幅と画像鮮明度との間において、診断を有意義に支援する任意の関係を選択することができる。
 ウィンドウ幅と画像鮮明度との間におけるこの関数関係は、CT装置のコンピュータ8において本発明によればソフトウェアにより実行可能にされているが、本発明による第2の方法の第1実施例によれば、使用者は、画像処理プロセスにおいて、ボリュームデータセット内にある1つの選択された断層のCT画像の画像鮮明度を、伝達関数に基づいて、基礎となるこのボリュームデータセットのフィルタリングによって変更することが可能である。一般の場合、既に詳細に説明したように、フィルタ特性(フィルタリングの基礎となっている畳み込み核の性質)は、3つのすべての空間軸に沿って異なっている。明らかに畳み込み核の等ポテンシャル面は異なる半軸を備えた楕円体の表面である。ボリュームデータセットのフィルタリングは、相応に変調された画像特性を備えたこのボリュームデータセットにおいてあとから任意の断層を得ることができるという利点を有する。
 しかしながら、(計算)速度の理由から、本発明による第2の方法の第2実施例においては、2次元の畳み込み核の使用によって2次スライスの直接フィルタリングが行なわれる。2次スライス(MPR)の空間位置は2次スライスに平行で且つ座標原点を通る面(以下、この面を「特定面」と呼ぶ。)によって一義的に定まる。使用される2次元の畳み込み核は、既に説明し図6に示したように、楕円の形をした特定面を備えた3次元の畳み込み核(楕円体)のスライスとして与えられている。
 本発明による第2の方法の第2実施例によるフィルタリングは、予め与えられた基準ボリュームの相応の2次断面(MPR)上で2次元の畳み込みが行なわれることによって実現される。基準ボリュームは、例えば最大に鋭い畳み込み核および最大に狭いスライス感度プロフィールでもって生データから計算された1次データセット(元のボリュームデータセット)である。
 一般に、本発明による第2の方法の第1実施例による前述のフィルタリングは、伝達関数の設定後3次元のフィルタ特性がコンピュータ8上で実行される画像処理プロセスによってウィンドウ幅に依存して適応するように行なわれる。基準ボリュームは相応の3次元の畳み込み核により所望の画像特性に整合させられ、次にそれから相応の2次断面(MPR)が計算される。最後に、それぞれの2次断面が選定されたウィンドウ幅で表示される。
 CT画像のこの種のウィンドウ制御されたフィルタリングの実践的な実現は、例えば使用者が、コンピュータ8のモニタ6上でヴァーチャルインターフェースにてマウスによりウィンドウ幅(ウィンドウ設定)を診断目的に応じて変更し、基礎となっている畳み込み核のフィルタ特性が伝達関数に従って相応に同時に変化されることによって行なわれる。ウィンドウ幅の変化によるだけで画像特性(特に鮮明度およびノイズ)を使用者の診断上の要求に合致させることができる。
 以上に説明した本発明による2つの方法は、2次スライス画像の適応化された表示のためのみならず、特にアキシャル断層像の診断上の評価のための臨床ルーチンにおいても重要である。
本発明によるファンビーム法のためのCT装置を示す概略図 人体器官ハウンズフィールド値を示すハウンズフィールドスケール図 CT画像を表示する際のウィンドウ制御の説明図 本発明による伝達関数を示す曲線図 楕円体形状の3次元の畳み込み核の等ポテンシャル面図 楕円形の等ポテンシャル線図
符号の説明
 1    X線管
 2    X線検出器
 3    被検体
 4    患者寝台
 5    円形状の測定フィールド
 6    モニタ
 7    測定電子装置
 8    コンピュータ
 9    3次元の畳み込み核を表す等ポテンシャル面
10    楕円体を切断する特定面
11    相応の2次元の畳み込み核の等ポテンシャル線

Claims (17)

  1. a)CT装置またはCアーム装置によりCT生データセットを取得するステップ、
    b)CT生データセットから畳み込み核およびスライス感度プロフィールにより1次データセットを再構成するステップ、
    c)ウィンドウ幅と画像鮮明度との間の関数関係として伝達関数を用意するステップ、
    d)画像処理プロセスによって伝達関数に基づいて、1次データセット内にある選択された断層のCT画像の画像鮮明度を、選択された断層のために選択されたウィンドウ幅に応じて自動計算するステップ、
    を有することを特徴とするCT画像のウィンドウ制御されたフィルタリング法。
  2.  画像処理プロセスにおいて、ウィンドウ幅が3次元の畳み込み核の少なくとも1つのパラメータに結合され、3次元の畳み込み核にて1次データセットが新たに畳み込み処理され、少なくとも1つの断層が画像鮮明度を変調されることを特徴とする請求項1記載の方法。
  3.  画像処理プロセスにおいて、ウィンドウ幅が2次元の畳み込み核の少なくとも1つのパラメータに結合され、2次元の畳み込み核にて少なくとも1つの断層が畳み込み処理され、画像鮮明度を変調されることを特徴とする請求項1記載の方法。
  4.  1次データセットは最大に鋭い畳み込み核および最大に狭いスライス感度プロフィールにて再構成されることを特徴とする請求項1記載の方法。
  5.  断層は軸方向のスライスであることを特徴とする請求項1乃至4の1つに記載の方法。
  6.  断層は2次スライスであることを特徴とする請求項1乃至4の1つに記載の方法。
  7.  ウィンドウ幅の選定は使用者によってマウスまたはキーボードにより行われることを特徴とする請求項1乃至6の1つに記載の方法。
  8.  伝達関数は付加的にウィンドウ幅とスライス感度プロフィールとの間の関数関係を表すことを特徴とする請求項1乃至7の1つに記載の方法。
  9. (1)CT装置またはCアーム装置によりCT生データセットを取得するステップ、
    (2)1次データセットを畳み込み核およびスライス感度プロフィールに基づいて再構成するステップ、
    (3)1次データセットに基づいて相応の画像特性を持った画像スタックを再構成するステップ、
    (4)画像コンピュータ上でランする画像処理プロセスによって画像スタックの変更された画像特性を計算するステップ、
     (5)変更された画像特性を有するCT画像の形で画像スタックを可視化するステップ、
    を有することを特徴とするCT画像のレトロスペクティブフィルタリング法。
  10.  使用者が入力インタフェースを介して3次元の1次データセット畳み込み核の少なくとも1つのパラメータを変更でき、この畳み込み核にて画像処理プロセスにおいて1次データセットが新たに畳み込み処理され、それから画像鮮明度を変調された新たな画像スタックが求められることを特徴とする請求項9記載の方法。
  11.  使用者が入力インタフェースを介して2次元の畳み込み核の少なくとも1つのパラメータを変更でき、この畳み込み核にて画像処理プロセスにおいて画像スタックの個々の断層が個別に畳み込み処理され、画像鮮明度を変調されることを特徴とする請求項9乃至10の1つに記載の方法。
  12.  ステップ(4)および(5)が使用者によって、満足できる画像特性が得られるまで繰り返されることを特徴とする請求項9乃至11の1つに記載の方法。
  13.  画像スタックはアキシャル画像のスタックであることを特徴とする請求項9乃至12の1つに記載の方法。
  14.  画像スタックは任意の2次スライスからなるスタックであることを特徴とする請求項9乃至12の1つに記載の方法。
  15.  不十分な画像特性の場合に画像スタックに含まれる断層のスライス厚も変更されることを特徴とする請求項9乃至14の1つに記載の方法。
  16.  CT画像処理の個々のステップを実行するコンピュータを備えていることを特徴とする請求項1乃至15の1つに記載の方法を実施するためのコンピュータ断層撮影装置。
  17.  コンピュータ断層撮影装置に接続されたコンピュータ装置上で請求項1乃至15の1つに記載の方法を実施するコンピュータソフトウェア製品。
JP2003296324A 2002-08-21 2003-08-20 Ct画像のフィルタリング法、コンピュータ断層撮影装置およびコンピュータソフトウェア製品 Abandoned JP2004073869A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10238322A DE10238322A1 (de) 2002-08-21 2002-08-21 Retrospektive bzw. fenstergesteuerte Filterung von Bildern zur Adaption von Schärfe und Rauschen in der Computer-Tomographie

Publications (1)

Publication Number Publication Date
JP2004073869A true JP2004073869A (ja) 2004-03-11

Family

ID=31501844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003296324A Abandoned JP2004073869A (ja) 2002-08-21 2003-08-20 Ct画像のフィルタリング法、コンピュータ断層撮影装置およびコンピュータソフトウェア製品

Country Status (4)

Country Link
US (1) US6901130B2 (ja)
JP (1) JP2004073869A (ja)
CN (1) CN1487478A (ja)
DE (1) DE10238322A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10232676B4 (de) * 2002-07-18 2006-01-19 Siemens Ag Verfahren und Vorrichtung zur Positionierung eines Patienten in einem medizinischen Diagnose- oder Therapiegerät
US20040116795A1 (en) * 2002-12-17 2004-06-17 Collins William F. Determination of dose-enhancing agent concentration and dose enhancement ratio
JP3919724B2 (ja) * 2003-09-19 2007-05-30 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 放射線計算断層画像装置および断層像データ生成方法
DE10345073A1 (de) * 2003-09-26 2005-05-04 Siemens Ag Betriebsverfahren für ein tomographiefähiges bildgebendes Untersuchungsgeräts und Röntgen-Computertomographiegerät
US20070058050A1 (en) * 2005-09-12 2007-03-15 Manuel Innocent Reconstructing a full color image from an image encoded by a bayer pattern
DE102006002037A1 (de) * 2006-01-16 2007-07-19 Siemens Ag Verfahren zur Bearbeitung diagnostischer Bilddaten
DE102006016601A1 (de) * 2006-04-06 2007-10-18 Siemens Ag Verfahren und Vorrichtung zur Bereitstellung von tomographischen Bilddaten eines Objektes
US20080081980A1 (en) * 2006-09-18 2008-04-03 Michael Maschke Apparatus and process for stroke examination and treatment using a C-arch X-ray system
WO2009040719A2 (en) * 2007-09-26 2009-04-02 Koninklijke Philips Electronics N.V. Visualization of anatomical data
US8406493B2 (en) * 2008-07-17 2013-03-26 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Multi-grayscale overlay window
CN102422326B (zh) 2009-05-07 2015-02-04 皇家飞利浦电子股份有限公司 用于生成断层摄影重建滤波器的系统和方法
ATE545111T1 (de) 2009-11-24 2012-02-15 Baumer Innotec Ag Verfahren und vorrichtung zur adaptiven filterung von dreidimensionalen bilddaten
DE102011003857B4 (de) * 2011-02-09 2016-12-15 Siemens Healthcare Gmbh Verfahren zur Anpassung einer Grauwertfensterung, Recheneinheit, Röntgeneinrichtung und Datenträger
DE102011007678A1 (de) * 2011-04-19 2012-10-25 Fachhochschule Stralsund Vermessungssystem und Vermessungsverfahren zur Vermessung unregelmäßig geformter Körper
DE102011077087A1 (de) 2011-06-07 2012-12-13 Siemens Aktiengesellschaft Verfahren zur Bilderzeugung sowie bilderzeugendes Gerät
DE102011078278A1 (de) 2011-06-29 2013-01-03 Siemens Aktiengesellschaft Verfahren zur Bilderzeugung und Bildauswertung
CN104337527B (zh) * 2013-08-07 2018-08-03 上海联影医疗科技有限公司 控制切片灵敏度分布的方法及装置
WO2015069049A1 (ko) * 2013-11-06 2015-05-14 주식회사 바텍 치과용 3차원 영상의 표시 방법 및 장치
CN104784831B (zh) * 2015-04-21 2018-09-07 苏州爱因智能设备有限公司 一种可实现全轨迹放射治疗设备
US9684982B2 (en) * 2015-09-01 2017-06-20 Siemens Healthcare Gmbh Isotropic volume reconstruction from multiple 2D scans using super-resolution techniques
US11615508B2 (en) * 2020-02-07 2023-03-28 GE Precision Healthcare LLC Systems and methods for consistent presentation of medical images using deep neural networks

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229764A (en) * 1978-07-03 1980-10-21 Michael Danos Visibility expander
US4456926A (en) * 1982-06-21 1984-06-26 Thomson-Csf Broadcast, Inc. Enhancement of fluroscopically generated images
FR2595153B1 (fr) * 1986-02-28 1990-12-07 Thomson Cgr Systeme d'imagerie numerique a reglage de l'echelle des gris, notamment pour la visualisation des vaisseaux sanguins
US4979136A (en) * 1988-03-01 1990-12-18 Transitions Research Corporation Processing system and method for enhancing image data
IL119283A0 (en) * 1996-09-19 1996-12-05 Elscint Ltd Adaptive filtering
US6801646B1 (en) * 2001-07-19 2004-10-05 Virtualscopics, Llc System and method for reducing or eliminating streak artifacts and illumination inhomogeneity in CT imaging

Also Published As

Publication number Publication date
US6901130B2 (en) 2005-05-31
CN1487478A (zh) 2004-04-07
DE10238322A1 (de) 2004-03-11
US20040066912A1 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP2004073869A (ja) Ct画像のフィルタリング法、コンピュータ断層撮影装置およびコンピュータソフトウェア製品
US10307129B2 (en) Apparatus and method for reconstructing tomography images using motion information
JP4402435B2 (ja) 軟組織空間の視覚化の方法及び装置
JP4412982B2 (ja) 組織脂肪含有量を定量化する方法及び装置
JP5348855B2 (ja) 対象の画像再構成方法およびその方法を実施するための装置
JP2019130302A (ja) 医用画像処理装置及びx線ctシステム
JP2007203046A (ja) 対象の画像スライスを作成するための方法及びシステム
WO2010028027A1 (en) Method for reconstruction in dual energy, dual source helical computed tomography
US11010960B2 (en) Method for enhanced display of image slices from 3-D volume image
CN108601570B (zh) 断层摄影图像处理设备和方法以及与方法有关的记录介质
KR101946576B1 (ko) 의료 영상 장치 및 의료 영상 처리 방법
KR101971625B1 (ko) Ct 영상을 처리하는 장치 및 방법
US20210319600A1 (en) System and Method for High Fidelity Computed Tomography
JP7199399B2 (ja) デュアルエネルギー撮像における自動管電位選択のためのシステムおよび方法
US9984476B2 (en) Methods and systems for automatic segmentation
US20160171724A1 (en) Methods and systems for real-time image reconstruction with arbitrary temporal windows
US20070165930A1 (en) Method and medical imaging apparatus for adjusting operating and evaluation parameters of the apparatus
US20240029207A1 (en) Systems and methods for adaptive blending in computed tomography imaging
US10383589B2 (en) Direct monochromatic image generation for spectral computed tomography
US7116808B2 (en) Method for producing an image sequence from volume datasets
JP2023001051A (ja) 計算機式断層写真法画像再構成のためのシステム及び方法
JP2023529382A (ja) スペクトル暗視野イメージング
JP7346546B2 (ja) Ct仮想単色撮像のための自動的適応エネルギ設定を行う方法
US11270477B2 (en) Systems and methods for tailored image texture in iterative image reconstruction
WO2016186746A1 (en) Methods and systems for automatic segmentation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20080319