JP2004071312A - Heat self supporting solid oxide fuel cell system - Google Patents

Heat self supporting solid oxide fuel cell system Download PDF

Info

Publication number
JP2004071312A
JP2004071312A JP2002228036A JP2002228036A JP2004071312A JP 2004071312 A JP2004071312 A JP 2004071312A JP 2002228036 A JP2002228036 A JP 2002228036A JP 2002228036 A JP2002228036 A JP 2002228036A JP 2004071312 A JP2004071312 A JP 2004071312A
Authority
JP
Japan
Prior art keywords
heat
storage material
load operation
stack
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002228036A
Other languages
Japanese (ja)
Other versions
JP4008305B2 (en
Inventor
Hisataka Yakabe
矢加部 久孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2002228036A priority Critical patent/JP4008305B2/en
Publication of JP2004071312A publication Critical patent/JP2004071312A/en
Application granted granted Critical
Publication of JP4008305B2 publication Critical patent/JP4008305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a heat self supporting solid oxide fuel cell system in which heat self supporting can be achieved even at the time of partial load operation. <P>SOLUTION: As for the heat self supporting solid oxide fuel cell system, a solid oxide fuel cell stack and an off-gas combustion part and, in addition, a heat storage material layer are arranged in a heat-insulated vessel, and in the heat storage material layer, an air inlet tube and an air outlet tube are arranged, and at the same time a by-pass flow path is installed against that flow path, and in the full load operation, surplus heat is stored in the heat storage material layer and at the same time the air is supplied into the stack by letting the air bypass into a bypass flow path, and in the partial load operation, the air is returned into the stack by letting the air pass through the heat storage material, and the heat stored in the full load operation is recovered and returned to the stack. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、熱自立型固体酸化物形燃料電池システムに関し、より具体的には全負荷運転時に加え、部分負荷運転時においても熱自立させるようにしてなる熱自立型固体酸化物形燃料電池システムに関する。
【0002】
【従来の技術】
固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cells)は850〜1000℃程度という高温で運転されるが、最近ではそれより低温、例えば750℃程度というような温度で運転されるものも開発されつつある。従来、SOFCを運転するに際しては、全負荷運転が基本であり、しかも常時運転することが想定されている。しかし、現実には、例えば昼間に全負荷運転をし、夜間には低負荷運転をすることが考えられる。
【0003】
SOFCにおいては、上記のように高温で運転され、全負荷運転時には熱余り状態である。しかし、低負荷運転時には、電池内部の発熱に比して外部への散熱が大きくり、この場合でも、熱自立、すなわちSOFCの運転時に、発電に関して発生する熱とは別に別途余分なエネルギーを無駄に消費することなく、運転温度が所定の温度に維持され、保温される状態とすることが必要である。
【0004】
ここで、一般的には、SOFCシステムにおいては、システムケールが大きい場合には内部発熱に対して外部への放熱量が小さくなるため、熱自立は容易となる。また、SOFCスタックのエネルギー密度を増加させると、SOFC自体コンパクトにできるために熱自立しやすくなる。しかし一方で、発電効率が低下するため、一般的には、セル電位が例えば0.7V程度の条件で所定の出力となるように設計される。したがって、この条件を全負荷運転とし、全負荷運転時に熱自立することが要求される。
【0005】
ところで、SOFCスタックにおいては、その燃料利用率は高々80〜85%程度であるので、スタックで利用されない20〜15%の燃料は燃焼して利用される。このため、SOFCシステムでは、通常、SOFCスタックとオフガス燃焼部が断熱材を配した断熱容器に収容されている。すなわち、オフガス燃焼部では燃料極からのオフガスを空気極からのオフガスで燃焼させる。燃焼ガスは、SOFCスタックに供給する燃料及び空気の加熱に利用した後、SOFCシステム外へ排出される。この排出燃焼ガス(燃焼排ガス)は、例えばコジェネレーションシステムにおける水蒸気発生用や給湯用に利用されるが、水蒸気や給湯の需要量にも限度がある。
【0006】
また、電力需要家の使用用途によっては、夜間には部分負荷運転という使用条件となることから、全負荷運転時はもちろん、部分負荷運転時にも熱自立することが望ましい。部分負荷運転時には通常熱不足となり、また断熱容器からの放熱は不可避であることから、部分負荷運転時に熱不足が生じた場合には熱不足を補い、SOFCシステムを保温する必要がある。
【0007】
【発明が解決しようとする課題】
本発明は、SOFCシステムにおける上記のような事情に鑑み、それらの問題点を解決するためになされたものであり、SOFCシステムにおいて、全負荷運転時はもちろん、部分負荷運転時にも熱自立を図るようにしてなる熱自立型固体酸化物形燃料電池システムを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、(1)熱自立型固体酸化物形燃料電池システムであって、断熱容器内に、固体酸化物形燃料電池スタック及びオフガス燃焼部を配置するとともに、蓄熱材層を配置することにより、全負荷運転時の燃料電池内発熱を利用して自己保温するようにしてなることを特徴とする熱自立型固体酸化物形燃料電池システムを提供する。
【0009】
本発明は、(2)熱自立型固体酸化物形燃料電池システムであって、断熱容器内に、固体酸化物形燃料電池スタック及びオフガス燃焼部に加えて蓄熱材層を配置し、且つ、蓄熱材層に空気導入管及び空気導出管を配置するとともに、その流路に対してバイパス流路を設け、全負荷運転時には、余剰熱を蓄熱材層に蓄熱するとともに、空気をバイパス流路にバイパスさせてスタックに供給し、部分負荷運転時には、空気を蓄熱材に通して全負荷運転時に蓄熱した熱を回収してスタックに戻すようにしてなることを特徴とする熱自立型固体酸化物形燃料電池システムを提供する。
【0010】
本発明は、(3)前記(2)の熱自立型固体酸化物形燃料電池システムにおいて、蓄熱材層の空気導出管からスタックに至る空気流路に電気ヒーターを配置し、部分負荷運転時に、空気を蓄熱材に通して全負荷運転時に蓄熱した熱を回収してスタックに戻すとともに、蓄熱材からの回収熱量だけでは熱量が不足する場合もしくは温度調節が困難である場合、電気ヒーターを付加的に利用して温度調節を行うようにしてなることを特徴とする熱自立型固体酸化物形燃料電池システムを提供する。
【0011】
本発明は、(4)前記(2)の熱自立型固体酸化物形燃料電池システムにおいて、燃料極オフガスの一部を原燃料にリサイクルさせる流路を設け、燃料極オフガス中の水蒸気を内部改質に利用するとともに、燃料極オフガス中の未利用燃料を再利用するようにしてなることを特徴とする熱自立型固体酸化物形燃料電池システムを提供する。
【0012】
本発明は、(5)断熱容器内に、固体酸化物形燃料電池スタック、オフガス燃焼部及び蓄熱材層を配置し、蓄熱材層に空気導入管及び導出管を配置するとともに、その流路に対してバイパス流路を設け、且つ、スタックからの燃料極オフガス導管を、順次、CO変成器及び水素吸蔵体容器に連結してなり、全負荷運転時には、余剰熱を蓄熱材層に蓄熱するとともに、空気をバイパス流路にバイパスさせてスタックに供給し、且つ、燃料極オフガスをCO変成器を経て水素吸蔵体容器に通して水素を貯蔵し、部分負荷運転時には、空気を蓄熱材に通して全負荷運転時に蓄熱した熱を回収してスタックに戻すとともに、水素吸蔵体容器中の水素を燃料として発電するようにしてなることを特徴とする熱自立型固体酸化物形燃料電池システムを提供する。
【0013】
【発明の実施の形態】
本発明は、断熱容器内に、SOFCスタック及びオフガス燃焼部を配置してなるSOFCシステムにおいて、該断熱容器内に蓄熱材層を配置し、全負荷運転時に加え、部分負荷運転時においても電池内発熱の熱を利用して自己保温するようにしてなることを特徴とする。断熱容器に配置する断熱材としてはスラグウールやガラスウール、あるいは各種耐火物その他適宜の材料が用いられる。
【0014】
SOFCシステムにおける通常の全負荷運転では基本的に熱余りの状態である。そこで、本発明においては、SOFCシステムにおいて、全負荷運転時の余剰熱を蓄熱材に吸収させて蓄熱しておき、部分負荷運転時に、蓄熱材の熱をSOFCスタックにフィードバックして利用する。
【0015】
図1はSOFCシステムにおける全負荷運転時の熱バランスを説明する図である。図1のとおり、断熱材を配置した断熱容器内にSOFCスタックとオフガス燃焼部が収容されている。ここで、SOFCスタックの出力が10kWのシステムの場合を例にすると、その仕様は表1のようになり、全負荷運転時の熱バランスは表2のとおりとなる。
【0016】
熱回収後の排ガス温度は約230℃であり、熱バランスはQ1+Q5=Q3+Q6=20kWとなる。しかし、これはQ1+Q5≦Q3+Q6において、その≦のうち=の場合であり、SOFCスタックの全負荷運転時には、通常、熱余りの状態、すなわちQ1+Q5<Q3+Q6となる。
【0017】
【表1】

Figure 2004071312
【0018】
【表2】
Figure 2004071312
【0019】
一方、同じくSOFCスタックの出力が10kWのシステムを20%の部分負荷で運転する場合、すなわち2kWの発電時の熱収支は表3のとおりとなる。ここでの熱バランスはQ1+Q5=4.9kW>Q3+Q6=4.4kWとなる。すなわち放散熱の方が発熱量よりも大きくなり、熱バランスが崩れる。
【0020】
【表3】
Figure 2004071312
【0021】
そこで、本発明においては、SOFCシステムの全負荷運転時における余剰熱をシステム内に配置した蓄熱材層に蓄熱しておき、そして、その部分負荷運転時に当該全負荷運転時に蓄熱した熱をスタックにフィードバックするものである。システムの保温に必要な熱量の不足分は500Wである。例えば昼間に16時間全負荷運転をし、夜間に8時間程度部分負荷運転をする場合、8時間の保温で必要とされる熱量は500×3600×8=1.15×10Jとなる。
【0022】
蓄熱材の比熱が1J/K/gである場合、蓄熱状態を900℃とし、最終放熱温度を200℃とすると、17kgの蓄熱材による蓄熱量は(900−200)×17×10=1.19×10Jとなり、これにより部分負荷運転時の保温のために必要な熱量を確保することができる。蓄熱材としては、耐熱性で熱容量が大きい材料であれば特に限定はなく、その例としては、例えばセラミックス、れんが、石、コンクリート、塩化カルシウム6水塩などが挙げられる。
【0023】
また、前述のとおり、SOFCスタックにおいては、その燃料利用率は高々80〜85%程度であり、スタックで利用されない残余の燃料(20〜15%)は燃料極オフガスとして排出される。そこで、本発明(5)においては、蓄熱材を利用して、全負荷運転時だけでなく、部分負荷運転時においても電池内発熱(=SOFCシステム内発熱)の熱を利用して自己保温するのに加え、全負荷運転時に燃料極オフガス中の水素を水素吸蔵体に貯蔵しておき、この水素を部分負荷運転時の燃料として発電する。
【0024】
水素吸蔵体としては、水素含有ガスから水素を選択的に吸蔵し、水素以外のガスは吸蔵しないか、実質上吸蔵しない材料であれば特に限定はないが、その例としては、例えば水素吸蔵合金(Hydrogen Storage Alloy)やカーボンナノチューブなどが挙げられる。これによって燃料極オフガス中の水素を選択的に貯蔵し、貯蔵された水素は加熱することにより放出される。水素吸蔵合金の例としては、例えばTiFe0.9Mn0.1、MgNi、CaNiS、LaNi、LaNi4.7Al0.3、MmNi4.5Al0.5(Mm=ミッシュメタル)、MmNi4.15Fe0.85(Mm=ミッシュメタル)等を挙げることができる。
【0025】
この態様では、断熱容器内に、SOFCスタック、オフガス燃焼部及び蓄熱材層を配置し、蓄熱材層に空気導入管及び導出管を配置するとともに、該蓄熱材層を介する流路に対するバイパス流路を断熱容器外に設け、且つ、スタックからの燃料極オフガス導管を、順次、CO変成器及び水素吸蔵体容器に連結する。
【0026】
そして、全負荷運転時に、余剰熱を蓄熱材層に蓄熱するとともに、空気をバイパス流路にバイパスさせてスタックに供給し、且つ、燃料極オフガスをCO変成器を経て水素吸蔵体容器に通し、燃料極オフガス中の水素を貯蔵する。一方、部分負荷運転時には、空気を蓄熱材に通して全負荷運転時に蓄熱していた熱を回収してスタックに戻すとともに、水素吸蔵体容器中の水素を放出し、これを燃料として発電する。
【0027】
【実施例】
以下、実施例を基に本発明をさらに詳しく説明するが、本発明がこれら実施例に限定されないことはもちろんである。
【0028】
〈実施例1〉
図2は本実施例1を示す図である。断熱材を配した断熱容器内に、下部から上部へ順次SOFCスタック、オフガス燃焼部及び蓄熱材層を配置する。そして、蓄熱材層に空気導入管及び空気導出管を配置するとともに、その空気流路に対してバイパス流路を設ける。バイパス流路は断熱容器外に配置する。また、オフガス燃焼部からの燃焼排ガスを熱源としてスタックへ導入する空気及び燃料を加熱する熱交換器を設ける。
【0029】
オフガス燃焼部は、SOFCスタックに連設するか、あるいはその近傍に配置する。オフガス燃焼部では燃料極オフガスを空気極オフガスで燃焼させ、その熱を蓄熱材層の蓄熱材に蓄熱する。燃焼ガスは、▲1▼蓄熱材層に直接通してもよく、▲2▼蓄熱材層に配置した管内に通してもよい。▲2▼の場合には間接熱交換になるが、間接熱交換の仕方として、管内を通すのに代えて、▲3▼オフガス燃焼部を囲むように蓄熱材層を配置して、燃焼熱をその壁面を通して蓄熱するようにしてよい。また、蓄熱材層は、SOFCスタックとともに断熱容器に収容されているので、蓄熱材にはSOFCスタックでの発生熱も蓄熱される。
【0030】
全負荷発電時には、上記余剰熱を蓄熱材に蓄熱し、且つ、空気をバイパス流路を経てスタックの空気極に供給する。空気は、蓄熱材層を通らず、断熱容器外に配置されたバイパス流路を通ってバイパスするので冷却効果が高められる。空気は、熱交換器で、オフガス燃焼部からの燃焼排ガスとの熱交換によってのみ予熱され、スタックの空気極に導入される。一方、部分負荷運転時には、空気を空気導入管を介して蓄熱材に供給する。空気は、蓄熱材との直接熱交換により全負荷発電時に蓄熱した熱を回収し、空気導出管を経て、さらに熱交換器で加熱され、スタックの空気極に導入される。
【0031】
このように、断熱容器内に、SOFCスタック及びオフガス燃焼部に加え、蓄熱材層を配置しておくことにより、全負荷運転時に余剰熱を蓄熱材に蓄熱する。そして、この熱を部分負荷運転時にシステム保温用の熱としてフィードバックする。この熱により部分負荷運転時の内部発熱不足を補うことにより、例えばその保温用に、別途、燃料を無駄に消費することなく、システムを保温することができる。
【0032】
〈実施例2〉
図3は本実施例2を示す図である。SOFCスタックの空気極への空気流路に電気ヒーターを設ける。他の構成は実施例1(図2)の場合と同様である。これにより、部分負荷運転時に、蓄熱材層から回収する熱量だけでは熱量が不足する場合、もしくは蓄熱材層から回収する熱量だけではシステムの温度調節が困難である場合に、付加的に電気ヒーターを利用して温度調節を行う。電気ヒーターの電源としては深夜電力等の安価な電気を利用することができる。
【0033】
〈実施例3〉
図4〜5は本実施例3を示す図で、図4は全負荷運転時、図5は部分負荷運転時を示している。図4〜5のとおり、SOFCスタックの燃料極からのオフガスの一部をリサイクルさせて再利用するようにする。他の構成は実施例1(図2)の場合と同様である。SOFCスタックにおいては、例えば都市ガスを原燃料とする場合、その主成分はメタンである。メタンは通常水蒸気を添加して予備改質するか、SOFCスタックの燃料極において水蒸気で内部改質して水素と一酸化炭素に変え、これを燃料として発電する。
【0034】
このため、原燃料には水の添加が不可欠であるが、本実施例においては、燃料極オフガスの一部をリサイクルさせて原燃料に添加し、該オフガス中の水蒸気を内部改質に利用し、併せて該オフガス中の未利用の燃料を再利用する。図5は、全負荷運転時にバイパスさせていた空気の流れを、部分負荷運転時に徐々に蓄熱材層の方に切り替えて、蓄熱材層から全負荷運転時に蓄熱した熱を回収している状態を示している。なお、図4〜5において、実線で示す配管は流体が矢印(→)の方向に流れていることを示し、点線で示す配管は流体が流れていないことを示し、この点図6〜7においても同様である。
【0035】
〈実施例4〉
図6〜7は蓄熱材に加えて水素吸蔵体を用いた例を示す図で、図6は全負荷運転時、図7は部分負荷運転時を示している。断熱容器内にSOFCスタック、オフガス燃焼部及び蓄熱材層を配置したシステムに、CO変成器及び水素吸蔵体容器を併置し、SOFCスタックからの燃料極オフガスを、順次、CO変成器及び水素吸蔵体容器に通すように構成されている。空気極オフガスは、全負荷運転時に、熱交換器1に通して導入燃料及び空気の加熱源として利用する。他の構成は実施例3(図4〜5)の場合と同様である。
【0036】
図6のとおり、全負荷運転時には、余剰熱を蓄熱材に蓄熱し、且つ、空気をバイパス流路、熱交換器1を経てスタックの空気極に供給する。そして、オフガス燃焼部は作動させず、燃料極オフガスを熱交換器1、CO変成器、熱交換器2を経て水素吸蔵体容器に導入して水素を貯蔵する。熱交換器1及び熱交換器2の熱源としては燃料極オフガスを利用する。また、空気極オフガスは、オフガス燃焼部に通して蓄熱した後、熱交換器1に通して導入燃料及び空気の加熱源として利用する。空気極オフガスは、蓄熱材層に直接通して直接熱交換により蓄熱してもよく、蓄熱材層に配置した管内に通して間接熱交換により蓄熱してよい。
【0037】
一方、図7のとおり、部分負荷発電時には、オフガス燃焼部を作動させ、また空気を空気導入管を介して蓄熱材に供給する。ここで蓄熱材との直接熱交換により熱を回収し、空気導出管、熱交換器1を経てスタックの空気極に導入する。加えて、水素吸蔵体容器中の水素を放出し、この水素をSOFCスタックでの燃料として利用して発電する。水素の放出には、オフガス燃焼部から熱交換器1を経た燃焼排ガスの熱を利用することができる。この場合、燃焼排ガスは水素吸蔵体を間接的に加熱した後、排出される。
【0038】
【発明の効果】
本発明によれば、SOFCシステムにおいて、全負荷運転時に加え、部分負荷運転時にも熱自立を図ることができる。
【図面の簡単な説明】
【図1】SOFCシステムにおける全負荷運転時の熱バランスを説明する図
【図2】実施例1を示す図
【図3】実施例2を示す図
【図4】実施例3を示す図
【図5】実施例3を示す図
【図6】実施例4を示す図
【図7】実施例4を示す図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a self-supporting solid oxide fuel cell system, and more specifically, to a self-supporting solid oxide fuel cell system which is made to be self-supporting even during partial load operation in addition to full load operation. About.
[0002]
[Prior art]
Solid oxide fuel cells (SOFC) are operated at a high temperature of about 850 to 1000 ° C., but recently, a fuel cell operated at a lower temperature, for example, about 750 ° C., has been developed. It is getting. Conventionally, when operating an SOFC, full load operation is fundamental, and it is assumed that the SOFC is always operated. However, in reality, it is conceivable, for example, to perform full-load operation during the day and low-load operation at night.
[0003]
The SOFC is operated at a high temperature as described above, and is in an excessive heat state at the time of full load operation. However, during low-load operation, the heat dissipated to the outside is greater than the heat generated inside the battery. Even in this case, the heat becomes independent, that is, extra energy is wasted separately from the heat generated during power generation during the operation of the SOFC. It is necessary to keep the operating temperature at a predetermined temperature and keep the temperature without consuming it.
[0004]
Here, in general, in the SOFC system, when the system kale is large, the amount of heat radiated to the outside becomes small with respect to internal heat generation, so that the heat independence becomes easy. In addition, when the energy density of the SOFC stack is increased, the SOFC itself can be made compact, so that it becomes easier to stand by itself. On the other hand, however, since the power generation efficiency is reduced, the power supply is generally designed to have a predetermined output under the condition that the cell potential is, for example, about 0.7 V. Therefore, it is required that this condition be a full-load operation and that the vehicle be self-sustaining during the full-load operation.
[0005]
By the way, in the SOFC stack, the fuel utilization rate is at most about 80 to 85%, so that 20 to 15% of the fuel not used in the stack is burned and used. For this reason, in the SOFC system, the SOFC stack and the off-gas combustion unit are usually housed in a heat insulating container provided with a heat insulating material. That is, the off-gas burning section burns off-gas from the fuel electrode with off-gas from the air electrode. After the combustion gas is used for heating fuel and air supplied to the SOFC stack, it is discharged outside the SOFC system. The exhaust combustion gas (combustion exhaust gas) is used, for example, for generating steam and supplying hot water in a cogeneration system, but the demand for steam and hot water is limited.
[0006]
In addition, depending on the usage of the electric power consumer, since the usage condition is a partial load operation at night, it is desirable that the heat independence be achieved not only during the full load operation but also during the partial load operation. Since heat is usually insufficient during the partial load operation and heat radiation from the heat insulating container is inevitable, it is necessary to compensate for the insufficient heat and maintain the temperature of the SOFC system when the heat shortage occurs during the partial load operation.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances in an SOFC system, and has been made to solve those problems. In an SOFC system, heat independence is achieved not only at full load operation but also at partial load operation. It is an object of the present invention to provide a thermally independent solid oxide fuel cell system configured as described above.
[0008]
[Means for Solving the Problems]
The present invention provides (1) a self-supporting solid oxide fuel cell system, in which a solid oxide fuel cell stack and an off-gas combustion section are arranged in a heat insulating container, and a heat storage material layer is arranged. A self-sustaining solid oxide fuel cell system characterized by self-heating by utilizing heat generated in the fuel cell during full load operation.
[0009]
The present invention relates to (2) a heat-independent solid oxide fuel cell system, in which a heat storage material layer is disposed in a heat insulating container in addition to a solid oxide fuel cell stack and an off-gas combustion section, and heat storage is performed. In addition to arranging an air introduction pipe and an air outlet pipe in the material layer, a bypass flow path is provided for the flow path, and during full load operation, excess heat is stored in the heat storage material layer and air is bypassed to the bypass flow path. The fuel is supplied to the stack, and at the time of partial load operation, air is passed through the heat storage material to recover heat stored at the time of full load operation and returned to the stack. Provide a battery system.
[0010]
According to the present invention, (3) in the thermally self-supporting solid oxide fuel cell system of the above (2), an electric heater is arranged in an air flow passage from the air outlet pipe of the heat storage material layer to the stack, and at the time of partial load operation, Pass the air through the heat storage material to recover the heat stored during full load operation and return it to the stack.If the amount of heat recovered from the heat storage material alone is insufficient or it is difficult to control the temperature, add an electric heater. The present invention provides a thermally independent solid oxide fuel cell system characterized in that temperature control is performed by utilizing the method.
[0011]
According to the present invention, (4) in the thermally self-supporting solid oxide fuel cell system of the above (2), a flow path for recycling a part of the anode off-gas into raw fuel is provided, and the steam in the anode off-gas is internally reformed. The present invention provides a thermally independent solid oxide fuel cell system characterized by utilizing unused fuel in fuel electrode off-gas while reusing the fuel.
[0012]
The present invention provides (5) arranging a solid oxide fuel cell stack, an off-gas combustion section, and a heat storage material layer in a heat insulating container, arranging an air introduction pipe and a discharge pipe in the heat storage material layer, and providing a flow path in the flow path thereof. On the other hand, a bypass flow path is provided, and the fuel electrode off-gas conduit from the stack is connected to the CO converter and the hydrogen storage vessel in order, so that during full load operation, excess heat is stored in the heat storage material layer. The air is supplied to the stack by bypassing the air to the bypass flow path, and the fuel electrode off-gas is passed through the CO converter to the hydrogen storage container to store hydrogen. During partial load operation, the air is passed through the heat storage material. A self-supporting solid oxide fuel cell system characterized in that heat stored during full load operation is recovered and returned to the stack, and power is generated using hydrogen in the hydrogen storage container as fuel. That.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to an SOFC system in which an SOFC stack and an off-gas combustion section are arranged in an insulated container, in which a heat storage material layer is arranged in the insulated container and added to the battery during full load operation and also during partial load operation. It is characterized by self-heating by utilizing the heat of heat generation. Slag wool, glass wool, various refractories, and other suitable materials are used as the heat insulating material disposed in the heat insulating container.
[0014]
In a normal full load operation in an SOFC system, basically, there is a surplus state. Therefore, in the present invention, in the SOFC system, excess heat during full load operation is absorbed by the heat storage material to store heat, and during partial load operation, the heat of the heat storage material is fed back to the SOFC stack and used.
[0015]
FIG. 1 is a diagram for explaining the heat balance at the time of full load operation in the SOFC system. As shown in FIG. 1, the SOFC stack and the off-gas combustion section are accommodated in a heat insulating container in which a heat insulating material is arranged. Here, as an example, in the case of a system in which the output of the SOFC stack is 10 kW, the specifications are as shown in Table 1, and the heat balance at the time of full load operation is as shown in Table 2.
[0016]
The exhaust gas temperature after heat recovery is about 230 ° C., and the heat balance is Q1 + Q5 = Q3 + Q6 = 20 kW. However, this is the case where Q in Q1 + Q5 ≦ Q3 + Q6, and during the full load operation of the SOFC stack, usually, the state of excess heat, ie, Q1 + Q5 <Q3 + Q6.
[0017]
[Table 1]
Figure 2004071312
[0018]
[Table 2]
Figure 2004071312
[0019]
On the other hand, when the system with the output of the SOFC stack of 10 kW is operated at the partial load of 20%, that is, the heat balance at the time of the power generation of 2 kW is as shown in Table 3. The heat balance here is Q1 + Q5 = 4.9 kW> Q3 + Q6 = 4.4 kW. That is, the dissipated heat is larger than the calorific value, and the heat balance is lost.
[0020]
[Table 3]
Figure 2004071312
[0021]
Therefore, in the present invention, the excess heat during the full load operation of the SOFC system is stored in the heat storage material layer arranged in the system, and the heat stored during the full load operation is stored in the stack during the partial load operation. Give feedback. The shortfall in the amount of heat required to keep the system warm is 500W. For example, when a full-load operation is performed for 16 hours in the daytime and a partial load operation is performed for about 8 hours at night, the amount of heat required for keeping heat for 8 hours is 500 × 3600 × 8 = 1.15 × 10 7 J.
[0022]
If the specific heat of the heat storage material is 1 J / K / g, the heat storage state is 900 ° C., and the final heat radiation temperature is 200 ° C., the heat storage amount of the 17 kg heat storage material is (900−200) × 17 × 10 3 = 1. .19 × 10 7 J, whereby it is possible to secure the amount of heat necessary for keeping the temperature during partial load operation. The heat storage material is not particularly limited as long as it is heat-resistant and has a large heat capacity. Examples thereof include ceramics, brick, stone, concrete, calcium chloride hexahydrate and the like.
[0023]
Further, as described above, in the SOFC stack, the fuel utilization rate is at most about 80 to 85%, and the remaining fuel (20 to 15%) not used in the stack is discharged as fuel electrode off-gas. Accordingly, in the present invention (5), the heat storage material is used to self-maintain the heat by using the heat generated in the battery (= the heat generated in the SOFC system) not only during the full load operation but also during the partial load operation. In addition, hydrogen in the fuel electrode off-gas is stored in the hydrogen storage during full load operation, and this hydrogen is used as fuel during partial load operation.
[0024]
The hydrogen storage material is not particularly limited as long as it is a material that selectively stores hydrogen from a hydrogen-containing gas and does not store or substantially does not store a gas other than hydrogen. Examples of the hydrogen storage body include a hydrogen storage alloy. (Hydrogen Storage Alloy) and carbon nanotubes. As a result, hydrogen in the anode offgas is selectively stored, and the stored hydrogen is released by heating. Examples of the hydrogen storage alloy include, for example, TiFe 0.9 Mn 0.1 , Mg 2 Ni, CaNiS, LaNi 5 , LaNi 4.7 Al 0.3 , MmNi 4.5 Al 0.5 (Mm = Misch metal) , MmNi 4.15 Fe 0.85 (Mm = Misch metal).
[0025]
In this aspect, the SOFC stack, the off-gas combustion section, and the heat storage material layer are arranged in the heat insulating container, the air introduction pipe and the discharge pipe are arranged in the heat storage material layer, and the bypass flow path to the flow path through the heat storage material layer is provided. Is provided outside the heat insulating container, and the anode off-gas conduit from the stack is sequentially connected to the CO converter and the hydrogen storage container.
[0026]
And, at the time of full load operation, while storing excess heat in the heat storage material layer, supplying air to the stack by bypassing air to the bypass flow path, and passing fuel electrode off-gas through the CO converter to the hydrogen storage container, Stores hydrogen in anode offgas. On the other hand, at the time of the partial load operation, air is passed through the heat storage material to recover the heat stored at the time of the full load operation and returned to the stack. At the same time, the hydrogen in the hydrogen storage container is released, and the hydrogen is used as fuel to generate power.
[0027]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples.
[0028]
<Example 1>
FIG. 2 is a diagram illustrating the first embodiment. The SOFC stack, the off-gas combustion unit, and the heat storage material layer are sequentially arranged from the lower part to the upper part in the heat insulating container provided with the heat insulating material. Then, the air inlet pipe and the air outlet pipe are arranged in the heat storage material layer, and a bypass flow path is provided for the air flow path. The bypass flow path is arranged outside the heat insulating container. Further, a heat exchanger is provided for heating air and fuel introduced into the stack using the combustion exhaust gas from the off-gas combustion section as a heat source.
[0029]
The off-gas combustion section is connected to the SOFC stack or is disposed in the vicinity thereof. The off-gas combustion unit burns the fuel electrode off-gas with the air electrode off-gas and stores the heat in the heat storage material of the heat storage material layer. The combustion gas may be passed directly through (1) the heat storage material layer, or (2) through a pipe arranged in the heat storage material layer. In the case of (2), indirect heat exchange is performed. As a method of indirect heat exchange, instead of passing through the pipe, (3) a heat storage material layer is arranged so as to surround the off-gas combustion section, and the combustion heat is reduced. Heat may be stored through the wall. Further, since the heat storage material layer is housed in the heat insulating container together with the SOFC stack, the heat storage material also stores heat generated in the SOFC stack.
[0030]
At the time of full load power generation, the surplus heat is stored in the heat storage material, and air is supplied to the air electrode of the stack via the bypass flow path. Air does not pass through the heat storage material layer but bypasses through the bypass flow path arranged outside the heat insulating container, so that the cooling effect is enhanced. The air is preheated in the heat exchanger only by heat exchange with the flue gas from the off-gas combustion section and is introduced into the cathode of the stack. On the other hand, during the partial load operation, air is supplied to the heat storage material via the air introduction pipe. The air recovers the heat stored during full load power generation by direct heat exchange with the heat storage material, passes through the air outlet pipe, is further heated by the heat exchanger, and is introduced into the air electrode of the stack.
[0031]
In this way, by arranging the heat storage material layer in addition to the SOFC stack and the off-gas combustion section in the heat insulating container, excess heat is stored in the heat storage material during full load operation. Then, this heat is fed back as heat for keeping the system warm during the partial load operation. By supplementing the shortage of internal heat generation during the partial load operation by this heat, the system can be kept warm without wasting fuel separately, for example, for keeping the heat.
[0032]
<Example 2>
FIG. 3 is a diagram showing the second embodiment. An electric heater is provided in the air flow path to the air electrode of the SOFC stack. Other configurations are the same as those of the first embodiment (FIG. 2). In this way, during partial load operation, if the amount of heat recovered from the heat storage material layer alone is insufficient, or if it is difficult to control the temperature of the system only by the amount of heat recovered from the heat storage material layer, the electric heater can be additionally provided. Use to control the temperature. Inexpensive electricity such as midnight electricity can be used as a power source for the electric heater.
[0033]
<Example 3>
4 and 5 show the third embodiment. FIG. 4 shows a full load operation, and FIG. 5 shows a partial load operation. As shown in FIGS. 4 and 5, a part of the offgas from the fuel electrode of the SOFC stack is recycled and reused. Other configurations are the same as those of the first embodiment (FIG. 2). In a SOFC stack, for example, when city gas is used as a raw fuel, the main component is methane. Methane is usually pre-reformed by adding steam, or internally reformed with steam at the fuel electrode of the SOFC stack to convert it into hydrogen and carbon monoxide, which is used as fuel for power generation.
[0034]
For this reason, the addition of water is indispensable to the raw fuel, but in this embodiment, part of the fuel electrode off-gas is recycled and added to the raw fuel, and the steam in the off-gas is used for internal reforming. In addition, unused fuel in the off-gas is reused. FIG. 5 shows a state in which the air flow bypassed during full load operation is gradually switched to the heat storage material layer during partial load operation, and the heat stored during full load operation is recovered from the heat storage material layer. Is shown. 4 and 5, pipes shown by solid lines indicate that fluid is flowing in the direction of the arrow (→), and pipes shown by dotted lines indicate that fluid is not flowing. The same is true for
[0035]
<Example 4>
6 and 7 show examples in which a hydrogen storage material is used in addition to the heat storage material. FIG. 6 shows a full load operation, and FIG. 7 shows a partial load operation. A CO converter and a hydrogen storage container are provided in a system in which an SOFC stack, an off-gas combustion section, and a heat storage material layer are arranged in an insulated container. It is configured to pass through a container. The air electrode off-gas is used as a heating source for the introduced fuel and air through the heat exchanger 1 during full load operation. Other configurations are the same as those of the third embodiment (FIGS. 4 and 5).
[0036]
As shown in FIG. 6, during full load operation, surplus heat is stored in the heat storage material, and air is supplied to the air electrode of the stack via the bypass passage and the heat exchanger 1. Then, the off-gas combustion unit is not operated, and the fuel electrode off-gas is introduced into the hydrogen storage container via the heat exchanger 1, the CO converter, and the heat exchanger 2 to store hydrogen. A fuel electrode off-gas is used as a heat source for the heat exchangers 1 and 2. The air electrode off-gas passes through the off-gas combustion unit to store heat, and then passes through the heat exchanger 1 to be used as a heating source for the introduced fuel and air. The air electrode off-gas may pass directly through the heat storage material layer to store heat by direct heat exchange, or may pass through a tube arranged in the heat storage material layer to store heat by indirect heat exchange.
[0037]
On the other hand, as shown in FIG. 7, at the time of partial load power generation, the off-gas combustion unit is operated, and air is supplied to the heat storage material via the air introduction pipe. Here, heat is recovered by direct heat exchange with the heat storage material, and introduced into the air electrode of the stack via the air outlet pipe and the heat exchanger 1. In addition, hydrogen in the hydrogen storage container is released, and the hydrogen is used as fuel in the SOFC stack to generate power. For the release of hydrogen, the heat of the combustion exhaust gas from the off-gas combustion section through the heat exchanger 1 can be used. In this case, the combustion exhaust gas is discharged after indirectly heating the hydrogen storage body.
[0038]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, in a SOFC system, the heat independence can be aimed at at the time of partial load driving | operation in addition to the full load driving | operation.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a heat balance at the time of full load operation in an SOFC system. FIG. 2 is a diagram showing a first embodiment. FIG. 3 is a diagram showing a second embodiment. FIG. 4 is a diagram showing a third embodiment. 5 is a diagram showing a third embodiment. FIG. 6 is a diagram showing a fourth embodiment. FIG. 7 is a diagram showing a fourth embodiment.

Claims (6)

熱自立型固体酸化物形燃料電池システムであって、断熱容器内に、固体酸化物形燃料電池スタック及びオフガス燃焼部を配置するとともに、蓄熱材層を配置することにより、全負荷運転時の燃料電池内発熱を利用して自己保温するようにしてなることを特徴とする熱自立型固体酸化物形燃料電池システム。A self-supporting solid oxide fuel cell system comprising a solid oxide fuel cell stack and an off-gas combustion section in a heat-insulating container, and a heat storage material layer arranged in the heat-insulating vessel to provide a fuel for full load operation. A self-supporting solid oxide fuel cell system characterized by self-heating by utilizing heat generated in a battery. 熱自立型固体酸化物形燃料電池システムであって、断熱容器内に、固体酸化物形燃料電池スタック及びオフガス燃焼部に加えて蓄熱材層を配置し、且つ、蓄熱材層に空気導入管及び空気導出管を配置するとともに、その流路に対してバイパス流路を設け、全負荷運転時には、余剰熱を蓄熱材層に蓄熱するとともに、空気をバイパス流路にバイパスさせてスタックに供給し、部分負荷運転時には、空気を蓄熱材に通して全負荷運転時に蓄熱した熱を回収してスタックに戻すようにしてなることを特徴とする熱自立型固体酸化物形燃料電池システム。A heat-independent solid oxide fuel cell system, in which a heat storage material layer is arranged in addition to a solid oxide fuel cell stack and an off-gas combustion section in an insulated container, and an air introduction pipe and a heat storage material layer are provided in the heat storage material layer. Along with an air outlet pipe, a bypass flow path is provided for the flow path, and during full load operation, excess heat is stored in the heat storage material layer, and air is bypassed to the bypass flow path and supplied to the stack. A heat-independent solid oxide fuel cell system wherein air is passed through a heat storage material during partial load operation to recover heat stored during full load operation and returned to the stack. 請求項2に記載の熱自立型固体酸化物形燃料電池システムにおいて、蓄熱材層の空気導出管からスタックに至る空気流路に電気ヒーターを配置し、部分負荷運転時に、空気を蓄熱材に通して全負荷運転時に蓄熱した熱を回収してスタックに戻すとともに、蓄熱材からの回収熱量だけでは熱量が不足する場合もしくは温度調節が困難である場合、電気ヒーターを付加的に利用して温度調節を行うようにしてなることを特徴とする熱自立型固体酸化物形燃料電池システム。3. The heat independent type solid oxide fuel cell system according to claim 2, wherein an electric heater is disposed in an air flow path from the air outlet pipe of the heat storage material layer to the stack, and air is passed through the heat storage material during partial load operation. In addition to recovering the heat stored during full load operation and returning it to the stack, if the amount of heat recovered from the heat storage material alone is insufficient or it is difficult to control the temperature, use an additional electric heater to control the temperature A thermally self-supporting solid oxide fuel cell system. 請求項2に記載の熱自立型固体酸化物形燃料電池システムにおいて、燃料極オフガスの一部を原燃料にリサイクルさせる流路を設け、燃料極オフガス中の水蒸気を内部改質に利用するとともに、燃料極オフガス中の未利用燃料を再利用するようにしてなることを特徴とする熱自立型固体酸化物形燃料電池システム。In the thermally self-supporting solid oxide fuel cell system according to claim 2, a flow path for recycling a part of the anode off-gas as raw fuel is provided, and the steam in the anode off-gas is used for internal reforming, A self-supporting solid oxide fuel cell system characterized by reusing unused fuel in fuel electrode off-gas. 断熱容器内に、固体酸化物形燃料電池スタック、オフガス燃焼部及び蓄熱材層を配置し、蓄熱材層に空気導入管及び導出管を配置するとともに、その流路に対してバイパス流路を設け、且つ、スタックからの燃料極オフガス導管を、順次、CO変成器及び水素吸蔵体容器に連結してなり、全負荷運転時には、余剰熱を蓄熱材層に蓄熱するとともに、空気をバイパス流路にバイパスさせてスタックに供給し、且つ、燃料極オフガスをCO変成器を経て水素吸蔵体容器に通して水素を貯蔵し、部分負荷運転時には、空気を蓄熱材に通して全負荷運転時に蓄熱した熱を回収してスタックに戻すとともに、水素吸蔵体容器中の水素を燃料として発電するようにしてなることを特徴とする熱自立型固体酸化物形燃料電池システム。In a heat insulating container, a solid oxide fuel cell stack, an off-gas combustion section, and a heat storage material layer are arranged, and an air introduction pipe and a discharge pipe are arranged in the heat storage material layer, and a bypass flow path is provided for the flow path. The fuel electrode off-gas conduit from the stack is connected to the CO converter and the hydrogen storage vessel in order, so that during full load operation, excess heat is stored in the heat storage material layer and air is supplied to the bypass flow path. The fuel is bypassed and supplied to the stack, and the fuel electrode off-gas is passed through a CO converter and passed through a hydrogen storage container to store hydrogen. During partial load operation, air is passed through a heat storage material to store heat during full load operation. And recovering the fuel to the stack and generating power using hydrogen in the hydrogen storage container as fuel. 前記水素吸蔵体容器に充填する水素吸蔵体が水素吸蔵合金又はカーボンナノチューブであることを特徴とする請求項5に記載の熱自立型固体酸化物形燃料電池システム。6. The thermally self-supporting solid oxide fuel cell system according to claim 5, wherein the hydrogen storage material filled in the hydrogen storage container is a hydrogen storage alloy or a carbon nanotube.
JP2002228036A 2002-08-05 2002-08-05 Thermal self-supporting solid oxide fuel cell system Expired - Fee Related JP4008305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228036A JP4008305B2 (en) 2002-08-05 2002-08-05 Thermal self-supporting solid oxide fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228036A JP4008305B2 (en) 2002-08-05 2002-08-05 Thermal self-supporting solid oxide fuel cell system

Publications (2)

Publication Number Publication Date
JP2004071312A true JP2004071312A (en) 2004-03-04
JP4008305B2 JP4008305B2 (en) 2007-11-14

Family

ID=32014829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228036A Expired - Fee Related JP4008305B2 (en) 2002-08-05 2002-08-05 Thermal self-supporting solid oxide fuel cell system

Country Status (1)

Country Link
JP (1) JP4008305B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327513A (en) * 2004-05-12 2005-11-24 Tokyo Gas Co Ltd Hot standby method for solid oxide fuel cell and system for the same
JP2006100006A (en) * 2004-09-28 2006-04-13 Kyocera Corp Fuel battery and its operation method
JP2006310214A (en) * 2005-05-02 2006-11-09 Daikin Ind Ltd Solid oxide fuel cell
JP2006318909A (en) * 2005-05-09 2006-11-24 Modine Mfg Co High temperature fuel cell system having integral heat exchange network
WO2007139059A1 (en) * 2006-05-30 2007-12-06 Kabushiki Kaisha Toshiba Fuel cell
JP2008533668A (en) * 2005-03-11 2008-08-21 バラード パワー システムズ インコーポレイティド Fuel cell stack shutdown method and design
WO2009016944A1 (en) 2007-08-01 2009-02-05 Honda Motor Co., Ltd. Fuel cell system and method of operating the fuel cell system
JP2009193808A (en) * 2008-02-14 2009-08-27 Hitachi Ltd Solid oxide fuel cell
JP2010534913A (en) * 2007-07-26 2010-11-11 ブルーム エナジー コーポレーション Hotbox design with multi-stream heat exchanger and single air control
JP2011029114A (en) * 2009-07-29 2011-02-10 Kyocera Corp Fuel cell module and fuel cell device
WO2012043698A1 (en) * 2010-09-29 2012-04-05 Toto株式会社 Solid oxide fuel cell
JP2012094479A (en) * 2010-09-29 2012-05-17 Toto Ltd Solid oxide fuel cell
JP2012151082A (en) * 2010-12-27 2012-08-09 Toto Ltd Solid oxide fuel cell
JP2012166112A (en) * 2011-02-10 2012-09-06 Sumitomo Electric Ind Ltd Apparatus and system for gas decomposition
JP2012212572A (en) * 2011-03-31 2012-11-01 Toto Ltd Solid oxide fuel cell
JP2012212573A (en) * 2011-03-31 2012-11-01 Toto Ltd Solid oxide fuel cell
JP2012234745A (en) * 2011-05-06 2012-11-29 Konica Minolta Holdings Inc Secondary battery type fuel cell system
JP2012243402A (en) * 2011-05-16 2012-12-10 Denso Corp Fuel cell system
JP2013012443A (en) * 2011-06-30 2013-01-17 Toto Ltd Solid oxide fuel cell
JP2013012444A (en) * 2011-06-30 2013-01-17 Toto Ltd Solid oxide fuel cell
JP2013016356A (en) * 2011-07-04 2013-01-24 Toto Ltd Solid oxide fuel cell
US8367263B2 (en) 2006-02-02 2013-02-05 Ritsumeikan Trust Fuel cell, fuel cell apparatus, vehicle and co-generation system including the same and fuel cell operation method
JP2013114838A (en) * 2011-11-28 2013-06-10 Konica Minolta Inc Fuel cell system
JP2014017076A (en) * 2012-07-06 2014-01-30 Miura Co Ltd Fuel cell system
JP6103127B1 (en) * 2016-11-10 2017-03-29 富士電機株式会社 Fuel cell system and operation method thereof
WO2017209123A1 (en) * 2016-05-31 2017-12-07 日立造船株式会社 Fuel cell system
JP2018120653A (en) * 2017-01-23 2018-08-02 株式会社デンソー Fuel cell device
CN108777313A (en) * 2018-05-30 2018-11-09 武汉华科福赛新能源有限责任公司 A kind of hot suspend mode of solid oxide fuel cell and hot start method
CN111029615A (en) * 2019-12-04 2020-04-17 浙江清华长三角研究院 High-temperature solid oxide fuel cell system and quick starting method thereof
CN113072038A (en) * 2021-04-09 2021-07-06 氢源风新动力科技(苏州)有限公司 Solid-state hydrogen source reactor
WO2021224212A1 (en) * 2020-05-05 2021-11-11 Robert Bosch Gmbh Device for accommodating a fuel cell stack

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570904B2 (en) * 2004-05-12 2010-10-27 東京瓦斯株式会社 Hot standby method of solid oxide fuel cell system and its system
JP2005327513A (en) * 2004-05-12 2005-11-24 Tokyo Gas Co Ltd Hot standby method for solid oxide fuel cell and system for the same
JP2006100006A (en) * 2004-09-28 2006-04-13 Kyocera Corp Fuel battery and its operation method
JP2008533668A (en) * 2005-03-11 2008-08-21 バラード パワー システムズ インコーポレイティド Fuel cell stack shutdown method and design
JP2006310214A (en) * 2005-05-02 2006-11-09 Daikin Ind Ltd Solid oxide fuel cell
US8691462B2 (en) 2005-05-09 2014-04-08 Modine Manufacturing Company High temperature fuel cell system with integrated heat exchanger network
JP2006318909A (en) * 2005-05-09 2006-11-24 Modine Mfg Co High temperature fuel cell system having integral heat exchange network
US9413017B2 (en) 2005-05-09 2016-08-09 Bloom Energy Corporation High temperature fuel cell system with integrated heat exchanger network
US8367263B2 (en) 2006-02-02 2013-02-05 Ritsumeikan Trust Fuel cell, fuel cell apparatus, vehicle and co-generation system including the same and fuel cell operation method
WO2007139059A1 (en) * 2006-05-30 2007-12-06 Kabushiki Kaisha Toshiba Fuel cell
JP2010534913A (en) * 2007-07-26 2010-11-11 ブルーム エナジー コーポレーション Hotbox design with multi-stream heat exchanger and single air control
US9166240B2 (en) 2007-07-26 2015-10-20 Bloom Energy Corporation Hot box design with a multi-stream heat exchanger and single air control
WO2009016944A1 (en) 2007-08-01 2009-02-05 Honda Motor Co., Ltd. Fuel cell system and method of operating the fuel cell system
JP2009193808A (en) * 2008-02-14 2009-08-27 Hitachi Ltd Solid oxide fuel cell
JP2011029114A (en) * 2009-07-29 2011-02-10 Kyocera Corp Fuel cell module and fuel cell device
JP2012094479A (en) * 2010-09-29 2012-05-17 Toto Ltd Solid oxide fuel cell
US9531018B2 (en) 2010-09-29 2016-12-27 Toto Ltd. Solid oxide fuel cell system for producing variable generated power based on power demand
JP2012094477A (en) * 2010-09-29 2012-05-17 Toto Ltd Solid oxide fuel cell
WO2012043698A1 (en) * 2010-09-29 2012-04-05 Toto株式会社 Solid oxide fuel cell
JP2012151082A (en) * 2010-12-27 2012-08-09 Toto Ltd Solid oxide fuel cell
JP2012166112A (en) * 2011-02-10 2012-09-06 Sumitomo Electric Ind Ltd Apparatus and system for gas decomposition
JP2012212572A (en) * 2011-03-31 2012-11-01 Toto Ltd Solid oxide fuel cell
JP2012212573A (en) * 2011-03-31 2012-11-01 Toto Ltd Solid oxide fuel cell
JP2012234745A (en) * 2011-05-06 2012-11-29 Konica Minolta Holdings Inc Secondary battery type fuel cell system
JP2012243402A (en) * 2011-05-16 2012-12-10 Denso Corp Fuel cell system
JP2013012443A (en) * 2011-06-30 2013-01-17 Toto Ltd Solid oxide fuel cell
JP2013012444A (en) * 2011-06-30 2013-01-17 Toto Ltd Solid oxide fuel cell
JP2013016356A (en) * 2011-07-04 2013-01-24 Toto Ltd Solid oxide fuel cell
JP2013114838A (en) * 2011-11-28 2013-06-10 Konica Minolta Inc Fuel cell system
JP2014017076A (en) * 2012-07-06 2014-01-30 Miura Co Ltd Fuel cell system
CN109196698A (en) * 2016-05-31 2019-01-11 日立造船株式会社 Fuel cell system
WO2017209123A1 (en) * 2016-05-31 2017-12-07 日立造船株式会社 Fuel cell system
JP2017216123A (en) * 2016-05-31 2017-12-07 日立造船株式会社 Fuel cell system
US11056699B2 (en) 2016-05-31 2021-07-06 Hitachi Zosen Corporation Fuel cell system
CN109196698B (en) * 2016-05-31 2021-05-11 日立造船株式会社 Fuel cell system
JP6103127B1 (en) * 2016-11-10 2017-03-29 富士電機株式会社 Fuel cell system and operation method thereof
JP2018078039A (en) * 2016-11-10 2018-05-17 富士電機株式会社 Fuel cell system and operational method thereof
JP2018120653A (en) * 2017-01-23 2018-08-02 株式会社デンソー Fuel cell device
CN108777313A (en) * 2018-05-30 2018-11-09 武汉华科福赛新能源有限责任公司 A kind of hot suspend mode of solid oxide fuel cell and hot start method
CN111029615A (en) * 2019-12-04 2020-04-17 浙江清华长三角研究院 High-temperature solid oxide fuel cell system and quick starting method thereof
WO2021224212A1 (en) * 2020-05-05 2021-11-11 Robert Bosch Gmbh Device for accommodating a fuel cell stack
CN113072038A (en) * 2021-04-09 2021-07-06 氢源风新动力科技(苏州)有限公司 Solid-state hydrogen source reactor

Also Published As

Publication number Publication date
JP4008305B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP4008305B2 (en) Thermal self-supporting solid oxide fuel cell system
Han et al. Development of a high-energy-density portable/mobile hydrogen energy storage system incorporating an electrolyzer, a metal hydride and a fuel cell
KR20180036859A (en) Renewable energy hybrid system with reversible SOFC/SOEC
JP3942983B2 (en) Thermal self-supporting solid oxide fuel cell system
JP2020121944A (en) Hydrocarbon synthesis system
JP2008262727A (en) Phosphoric acid type fuel cell power-generating device
JP3704299B2 (en) Combined system of solid oxide fuel cell and industrial process using combustion and its operation method
EP2790257A1 (en) Fuel cell system
JP3611065B2 (en) Integrated fuel cell power generator
JPH11238520A (en) Fuel cell power generating apparatus
JP2001313053A (en) Fuel cell system
JP4052784B2 (en) Combined heat and power fuel cell power generator and method of operating the same
JP3789706B2 (en) CO conversion unit and polymer electrolyte fuel cell power generation system
JP2001185167A (en) Fuel cell cogeneration system
JP2004039430A (en) Fuel cell generator and its operation method
JP3928675B2 (en) Combined generator of fuel cell and gas turbine
JP3897149B2 (en) Solid oxide fuel cell and Stirling engine combined system
JP4781655B2 (en) Fuel cell system and control method of fuel cell system
JPH11135140A (en) Combined power generating facilities recycling anode exhaust gas
JP3377523B2 (en) Fuel cell system
JP3467759B2 (en) Control method of outlet temperature of reformer
KR20130030998A (en) Home fuel cell boiler system having combustion catalysis device
JP3137143B2 (en) Temperature control method for fuel cell power plant and fuel cell power plant equipped with temperature control device
JP3263936B2 (en) Fuel cell generator
JP2006156015A (en) Fuel cell system and fuel gas supply method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees