JP2004068800A - Fuel consumption reduction method of automobile - Google Patents

Fuel consumption reduction method of automobile Download PDF

Info

Publication number
JP2004068800A
JP2004068800A JP2002263384A JP2002263384A JP2004068800A JP 2004068800 A JP2004068800 A JP 2004068800A JP 2002263384 A JP2002263384 A JP 2002263384A JP 2002263384 A JP2002263384 A JP 2002263384A JP 2004068800 A JP2004068800 A JP 2004068800A
Authority
JP
Japan
Prior art keywords
air
fuel consumption
far
mixture
fuel mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002263384A
Other languages
Japanese (ja)
Inventor
Mikio Okamoto
岡本 幹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002263384A priority Critical patent/JP2004068800A/en
Publication of JP2004068800A publication Critical patent/JP2004068800A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel consumption reduction method of an automobile to attempt low fuel consumption by high combustibility and high combustible output by safely and efficiently dissociating air-fuel mixture and air supplied to a gasoline engine and a diesel engine and burning them by making them in a high density ion state. <P>SOLUTION: The low fuel consumption for the high combustible output is attempted by burning the circulating air-fuel mixture and air by ionizing it in high density by arranging an extreme ultraviolet radiation radiator capable of radiating extreme ultraviolet radiation central wavelength of which is 184.9 nm uniformly in the air-fuel mixture or the air circulating in the gasoline engine or in the inside of an intake manifold of the diesel engine. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は自動車の低燃費化方法に係るもので、更に詳しくはガソリンエンジンに供給される混合気やディーゼルエンジンに供給される空気を高密度のイオン化状態となしたうえ燃焼させ、高燃焼化と高燃焼出力に伴う低燃費化を可能とする自動車の低燃費化方法に関する。
【0002】
【従来技術】
先進諸国における自動車社会化はもとより、今後の後進諸国の経済成長に伴う車社会の到来等とも相俟って既に石油資源の枯渇化が危惧されるに至っており、自動車の低燃費化は全世界的な課題として提起されており、更に我が国の如き狭少な国土に莫大数の自動車が運行されている状況下においては、膨大量に排出されてなるCO成分を初めNOx成分やHC成分等の排気ガス、及びディーゼル車において顕著な排出微粒子により大気汚染は極限に至っており、且これらによる健康被害が各地で続発しており重大な社会問題となっている。
【0003】
これがため自動車メーカーとしては、こぞって低燃費化並びに低排気ガス化エンジンの開発に着手しているものの、低燃費化並びに低排気ガスを満足させるエンジンは今だ完成されてなく、且仮令完成された場合でも既に6000万台以上に及ぶ業務用や自家用自動車が運行されている状況からして、実質的に低燃費化や低排気ガス化の効果が発揮されるまでには極めて長期間を要することとなる。
【0004】
加えて低排気ガス化を図るために各多の触媒コンバーターが開発されているものの触媒コンバーターをエキゾーストパイプに配設することは、却って燃焼排出ガスの排出に負圧を付加させることとなり、燃焼出力の実質的低下を招来し低燃費化を阻害する原因ともなる。
【0005】
発明者はかかる問題に鑑み、ガソリンエンジンやディーゼルエンジンに供給される混合気や空気を安全に且高密度のイオン化状態となしたるうえ燃焼させることにより、少なくとも30乃至50%以上の高燃焼性の向上に伴う高燃焼出力が得られること、及び高燃焼性によって排気ガスも低減化されることを究明し本発明に至った。
【0006】
【発明が解決しようとする課題】
即ち本発明はガソリンエンジンやディーゼルエンジンに供給される混合気や空気を安全に且効率良く解離させて高密度イオン状態となし燃焼させ、以って高燃焼性と高燃焼出力による低燃費化を実現する自動車の低燃費化方法を提供するものである。
【0007】
【課題を解決するための手段】
上述の課題を解決するために本発明が用いた技術的手段は、ガソリンエンジンやディーゼルエンジンに供給される混合気や空気が流通するインテークマニホールド内の該流通する混合気や空気に均等に照射でき、且混合気や空気中の酸素分子を有効に光解離させて高密度のイオン状態となすために、その中心波長が184.9nmの遠紫外線を放射しえる遠紫外線放射体を配設せしめ、光解離により混合気や空気を高密度にイオン化させ且燃焼させることにより、高燃焼性による高燃焼出力に伴う低燃費化を図る構成に存する。
【0008】
更にはエンジンの回転数により供給流通される混合気や空気量の著しい変動及び空燃比の変動に対しても安定した高密度のイオン化を図るためエンジン回転数を感知のうえ、該エンジン回転数の変動に比例して遠紫外線放射体からの放射遠紫外線強度を変化させ、光解離の促進並びに抑制により安定した高密度のイオン化を図る構成に存する。
【0009】
【作用】
本発明は上述の如き構成からなるため次の如き作用を有する。即ちエンジン内に供給される混合気や空気中に多量に混在する酸素分子に対し選択的に光解離作用を有する中心波長が184.9nmの遠紫外線をインテークマニホールド内を供給流通される混合気や空気に均等に照射させるため、極めて効率良く光解離がなされて高密度のイオン化が図られたうえエンジン内において燃焼されるものであるから、少なくとも30乃至50%以上の高燃焼性とともに燃焼出力も増大し、而も高燃焼性に伴って排出ガスも著しく減少することとなる。
【0010】
更に本発明では遠紫外線放射体からその中心波長が184.9nmの遠紫外線を混合気や空気に照射させるものであるから、一般的にイオン化手段として使用される交流放電や直流放電におけるスパークの発生危険がなく、特に引火性の高い混合気でも安全に高密度のイオン化を図ることができる。
加えてエンジン回転数の変化に伴う混合気や空気の供給流通量の増減に際してもエンジン回転数を感知し、このエンジン回転数に比例して遠紫外線の放射強度を変化させるため略均質で高密度のイオン化が図れる。
【0011】
【実施例】
以下に本発明実施例を図とともに詳細に説明すれば、図1は遠紫外線放射体の側面説明図、図2は遠紫外線放射体を形成する放射管の断面説明図であって、本発明はガソリンエンジンに供給される混合気1若しくはディーゼルエンジンに供給される空気を、安定且高密度にイオン化させたうえエンジン燃焼室において燃焼させることにより高燃焼性と高燃焼出力に伴う低燃費化及び排気ガスの低減化をも実現させるものであって、通常ガソリンエンジンにおける混合気1やディーゼルエンジンにおける空気の供給はインテークマニホールド2内を流通し供給されるため、これら混合気1や空気の高密度イオン化を図るためには、該インテークマニホールド2においてなすことが得策となる。
【0012】
ところで混合気1や空気のイオン化を図る簡便な手段としては放電極と対向極を設けるとともに、この極間に高電圧交流を印加させる交流放電方式や、放電極と対向極との極間に高電圧直流を印加する直流放電方式、或いは高電圧が印加されたプラズマ生成室内でプラズマを生成のうえビーム状に放出せしめてイオン化を図る所謂プラズマ方式等が主に空気清浄器類に採用されている。
【0013】
しかしながらこれら従来技術においてはイオン化を図る環境に直接高電圧を印加させてイオンを放出させるものであって、特にイオン化を図る環境の空気汚染や水分率(湿度)の多少及び通風量等により絶縁性が著しく変動するため、環境条件の変動によってはイオン放出の多少や頻繁な放電現象も発生する。
従って本発明における混合気1の如く引火性が高く且混合気の空燃比率や供給量も著しく変動する場合においては従来技術では極めて危険性が高く、且放電現象の発生防止のために印加電圧を著しく低下させることは高密度のイオン化が図れなくなり本発明の目的が実現できない。
【0014】
ところで高密度のイオン化を図るためには、イオン源プラズマを発生させるエネルギーの付加とともに解離される所謂イオン化物質が存在すること、及び解離されたイオンを拡散放出せしむることが要件とされる。
これがため本発明においては紫外線領域の光エネルギーによりイオン化物質が容易に光解離されること、とりわけその中心波長が184.9nmの遠紫外線においては酸素分子を選択的に且高い光解離作用を以ってイオン化がなしえること並びにガソリンエンジンに供給される混合気或いはディーゼルエンジンに供給される空気中には略20%に昇る酸素分子が混在することから、極めて高密度のイオン化がなしえることとなり、従ってインテークマニホールド2の如く狭少な閉鎖系内を流通する混合気1や空気に僅かな照射エネルギーで均等に照射させることにより安全で且高密度のイオン化を図る技術思想を採用するに至った。
【0015】
而して図1は遠紫外線放射体3の側面説明図であって、該遠紫外線放射体3はインテークマニホールド2内を流通する混合気1若しくは空気に対して、その中心波長が184.9nmの遠紫外線30を全体に亘って均等に照射させるうえから、インテークマニホールド2の内周面に略等しい内径を有するものが好都合であって、図1においてはインテークマニホールド2が断面円形の場合の状態が示されてなるが、インテークマニホールド2が楕円形や角形の場合には、その形状に合せて遠紫外線放射体3を形成すれば良い。
【0016】
遠紫外線放射体3は特段の制限はなく、放射管3Aは図2に示すように一般的に殺菌利用に供される紫外線ランプと略同様のものが利用できるが、殺菌利用に供される紫外線はその波長において略220乃至280nm程度のものが用いられるため、その素材は石英ガラスが使用されているが、遠紫外線放射体3においてはその中心波長が184.9nmの遠紫外線を主として使用するため、該放射管3Aの素材としては可能な限り高純度の石英ガラス素材が望まれる。加えて放射管3Aからの照射される紫外線は比較的広い波長領域で照射されるため、該放射管3Aの外表面に184.9nmの波長を透過させるフィルター層3Bが設けられてなるもので、該フィルター層3Bの素材としては金属酸化物の塗膜が用いられ具体的には酸化亜鉛、酸化鉄、酸化ニッケル等が挙げられる。
【0017】
当然に該紫外線放射体3を構成する放射管3Aのそれぞれの端縁には入力端子3C、3Cが設けられてなるとともに、放射管3Aの管内にはそれぞれ放電フィラメント3D、3Dが設けられており入力端子3C、3Cへの電源入力に伴って該放射管3A内で放電とともに発光し紫外線が照射される。
【0018】
かかる如くしてなる遠紫外線放射体3はその中心波長である184.9nmの遠紫外線をインテークマニホールド2内を流通供給される混合気1や空気に均等に照射させることが必要となる。
図3はインテークマニホールド2に遠紫外線放射体3を配設させた説明図であって、この場合の配設手段はインテークマニホールド2の内径と等しく形成させた遠紫外線放射体3を、該紫外線放射体3を形成する放射管3Aの略1/2程度以上が嵌入挟持される嵌入凹部4A内に放射管3Aを嵌入挟持固定させ、且該嵌入凹部4Aの両側には外方に向って所要の長さで周回延出形成された連結縁4B、4Bが一体的に形成され、而も該連結縁4B、4Bの適宜位置にはビス及びナットからなる連結具4Dでインテークマニホールド2の連結フランジ2Aに形成されたフランジ連結孔2Bとを相互に連結させる連結孔4Cが設けられた挟持連結フランジ4で配設させるものである。
【0019】
更に遠紫外線放射体3を配設させる簡便な手段としては、図4に示す如くインテークマニホールド2の先端部2Cとクリーナー5との間に介在配設させることも提案される
そして遠紫外線放射体3からの遠紫外線照射強度は、照射対象物質がガソリンエンジンにおいては空燃費所謂エアとフェールの比率A/F比がアイドリング時には1:5、経済走行時には1:17までに変動し、且供給量もアイドリング時に対し高速時には略10倍量にも変動するとともに、更には晴天若しくは雨天時の湿度差も大きく変動するものであるから、少なくともUV強度において0.2乃至2.0mW以上の遠紫外線照射強度で照射することが望まれる。
【0020】
図5は本発明の原理図であって使用電源6はバッテリーが用いられるものであるが、遠紫外線放射体3は紫外線放射ランプと同様な放射管3Aによる放電放射を採用しているため、該使用電源6はインバーター6Aを介してその周波数が50乃至60Hzの交流に一旦変換される。
このインバーター6Aは特段の制約はなく既に多くの製品が開発上市されており、例えばDC−ACインバーターとしてはブロッキング発振形のインバーターやマルチバイブレーター形のインバーターが使用できる。
【0021】
かくして所望の交流に変換された電力は、その一側の一方は遠紫外線放射体3の一方の入力端子3Cより放電フィラメント3Dを経由して他方がグローランプ6D及びコンデンサー6Eに連結されており、且変換された電力の他側の一方はスイッチ6Bより安定器6Cを経由して遠紫外線放射体3の他方の入力端子3Cより放電フィラメント3Dを経由して同様にグローランプ6D及びコンデンサー6Eと連結される配線になされている。
【0022】
かかる場合におけるそれぞれの作用を説明すれば、安定器6Cは遠紫外線放射体3を形成する放射管3Aが放電するために必要な高電圧を発生させ且安定した電流を流すためのものであり、グローランプ6Dはその電極が通常2種類の金属を貼り合せたバイメタルで形成されており、放射管3Aに放電が発生しその高温度でバイメタルが曲がり放射管3Aに電流が流れるとともに、放電フィラメント3D、3Dが加熱され放射管3A内の水銀が気化する。而して電流がスムースに流れて冷えたバイメタルは復元し電流を遮断するもので、この時安定器6Cには高電圧が発生し放電フィラメント3D、3D間に放電が起り且該放電に伴う電子が気化した水銀原子と衝突し紫外線を放射する。更にグローランプ6Dに並列配置されるコンデンサー6Eは、放射管3Aから発生する雑音電波を吸収させるためのものである。
【0023】
図6は混合気1や空気量の変動に対して安定した高密度のイオン化を図る本発明の原理図であって、ガソリンエンジンに供給される混合気1或いはディーゼルエンジンに供給される空気量は、アイドリング時と高速走行時とでは略10倍の範囲で変動するものであるから、かかる変動に対しても安定した高密度のイオン化を図るためには、その一つの対処策としては最大供給量の場合においても高燃焼性と高燃焼出力が創出しえる高密度イオン化が可能な遠紫外線照射強度で照射させる手段であるが、常時最大供給量に合せた遠紫外線照射強度で照射させるための電力を付加させる必要とともに、該遠紫外線放射体3に長期に亘って遠紫外線照射性能を保持させるうえからは最適な手段とは言えない。
【0024】
そこでエンジン回転数を感知しえる感知センサー7をクランクシャフト等の回転体に装備させてエンジン回転数を感知シグナルとして捉えたうえ制御器6Aに入力させる。
他方バッテリーからの電源6の直流をインバーター6Aにより所要周波数の交流に変換のうえ可変圧トランス7Bの二次側に入力させる。そして該可変圧トランス7Bの二次側には遠紫外線放射体3に通電付加させることにより、その遠紫外線照射強度がUV強度において最少の場合でも0.2mWから2.0mWの範囲の遠紫外線照射強度に調整しえるような出力電圧を選択しえる可変セレクター7Cが設けられてなり、且該可変セレクター7Cは制御器7Aに捉えられる感知シグナルにより連動して出力電圧を選択し遠紫外線放射体3に通電付加されるよう構成させる手段である。
【0025】
以下に本発明を用いて高燃焼性試験を行った結果を報告すれば、実験に用いた車輌はA社製排気量2580ccのガソリンエンジン車で、試験方法は該ガソリンエンジン車のインテークマニホールド先端部とエアクリーナーとの間に内径3cm外径8cm放射管径2cmの石英ガラス製の遠紫外線放射体を介在させて、供給流通する空気にその中心波長が184.9nmの遠紫外線を該供給流通する空気の中心における照射強度がUV強度で0.2mWの場合を実験区1、UV強度で2.0mWの場合を実験区2とし且無照射の場合を対照区とした。
【0026】
高燃焼性試験は実験区1、実験区2及び対照区共にエンジン始動時、1500回転時、3000回転時における排気ガス中のCO成分及びHC成分をそれぞれ3回に分けて採取し、ガスクロマトグラフで分析し残留COガス量より高燃焼性を判断したもので、結果は表1の如く3000回転時においても照射強度がUV強度で0.2mW以上あれば、高密度のイオン化により略30乃至50%以上の高燃焼性がなされていることが判断できる。
【0027】
【表1】

Figure 2004068800
【0028】
【発明の効果】
本発明は以上述べたようにガソリンエンジンに供給される混合気やディーゼルエンジンに供給される空気が流通するインテークマニホールドに、その中心波長が184.9nmの遠紫外線が放射される遠紫外線放射体が流通する混合気や空気を均等に照射するよう配設され、且混合気や空気中には多量の光解離される酸素分子が混在し、而も照射される遠紫外線波長が選択的に酸素分子を光解離するため、エンジンに供給される混合気や空気が高密度にイオン化されたうえ燃焼されるため、高燃焼性に伴う高燃焼出力が創出されて走行距離当りの燃費を大幅に低減化できるとともに、排出ガス中のCO成分やHC成分も著しく低減化されることとなる。
加えて本発明においては高密度のイオン化が光解離によるため、特に引火性の高い混合気においても極めて安全にイオン化がなしえ、且イオン化のための装置も小型、簡便、安価に装備しえる等、優れた多くの特長を具備した自動車の低燃費化方法といえる。
【図面の簡単な説明】
【図1】遠紫外線放射体の側面説明図である。
【図2】遠紫外線放射体を形成する放射管の断面説明図である。
【図3】インテークマニホールドに連結配設された遠紫外線放射体の説明図である。
【図4】インテークマニホールド先端に配設された遠紫外線放射体の説明図である。
【図5】本発明の原理図である。
【図6】エンジン回転数に比例して高密度イオン化を図る原理図である。
【符号の説明】
1  混合気
2  インテークマニホールド
2A 連結フランジ
2B フランジ連結孔
2C インテークマニホールドの先端部
3  遠紫外線放射体
3A 放射管
3B フィルター層
3C 入力端子
3D 放電フィラメント
30  遠紫外線
4  挟持連結フランジ
4A 嵌入凹部
4B 連結縁
4C 連結孔
4D 連結具
5  クリーナー
6  電源
6A インバーター
6B スイッチ
6C 安定器
6D グローランプ
6E コンデンサー
7  感知センサー
7A 制御器
7B 可変圧トランス
7C 可変セレクター[0001]
[Industrial applications]
The present invention relates to a method for reducing fuel consumption of an automobile, and more specifically, a mixture of gas supplied to a gasoline engine or air supplied to a diesel engine is burned after being made into a high-density ionized state to achieve high combustion. The present invention relates to a method for reducing fuel consumption of an automobile, which enables the reduction of fuel consumption with high combustion output.
[0002]
[Prior art]
In addition to the development of automobile society in advanced countries, the depletion of petroleum resources has already been feared due to the arrival of automobile society accompanying economic growth in the developing countries in the future. In a situation where a huge number of automobiles are operating in a small land, such as Japan, exhaust gases such as NOx components and HC components including CO components emitted in enormous amounts are also considered. In addition, air pollution has reached an extreme level due to remarkable emission particulates in diesel vehicles, and health hazards caused by these have continued in various places, which has become a serious social problem.
[0003]
As a result, automobile manufacturers have begun to develop engines with low fuel consumption and low exhaust gas, but engines that satisfy low fuel consumption and low exhaust gas have not been completed yet, and provisional orders have been completed. Even in this case, it takes a very long time before the effects of low fuel consumption and low exhaust gas are actually exhibited because more than 60 million commercial or private automobiles are already in operation. It becomes.
[0004]
In addition, although various types of catalytic converters have been developed to reduce exhaust gas emissions, arranging catalytic converters in the exhaust pipe rather adds negative pressure to the emission of combustion exhaust gas, resulting in combustion output , Causing a substantial decrease in fuel consumption, which in turn leads to a hindrance to lower fuel consumption.
[0005]
In view of such a problem, the present inventor has found that a mixture and air supplied to a gasoline engine or a diesel engine can be safely and densely ionized and burned, thereby achieving high flammability of at least 30 to 50% or more. The present inventors have found that a high combustion output can be obtained with the improvement of the exhaust gas, and that the exhaust gas can be reduced by the high flammability.
[0006]
[Problems to be solved by the invention]
That is, the present invention safely and efficiently dissociates the air-fuel mixture or air supplied to a gasoline engine or a diesel engine to form a high-density ionic state and combusts the fuel, thereby reducing fuel consumption by high combustibility and high combustion output. It is an object of the present invention to provide a method for reducing fuel consumption of an automobile to be realized.
[0007]
[Means for Solving the Problems]
The technical means used by the present invention to solve the above-mentioned problems can uniformly irradiate the flowing air-fuel mixture or air in the intake manifold through which the air-fuel mixture or air supplied to a gasoline engine or a diesel engine flows. In order to effectively dissociate oxygen molecules in the gas mixture or the air into a high-density ion state, a far-ultraviolet radiator capable of emitting far-ultraviolet light having a center wavelength of 184.9 nm is provided. The present invention has a configuration in which a fuel-air mixture or air is ionized at a high density by photodissociation and burned, thereby reducing fuel consumption due to high combustion output due to high combustibility.
[0008]
Furthermore, in order to achieve stable and high-density ionization even with remarkable fluctuations in the amount of air-fuel mixture and air supplied and circulated due to the engine speed, and fluctuations in the air-fuel ratio, the engine speed is sensed and the engine speed is controlled. The present invention has a configuration in which the intensity of radiated far ultraviolet rays from the far ultraviolet radiator is changed in proportion to the variation, and thereby stable and high-density ionization is achieved by promoting and suppressing photodissociation.
[0009]
[Action]
Since the present invention has the above-described configuration, it has the following operation. That is, the mixture supplied to the engine or the mixture supplied and circulated through the intake manifold with far ultraviolet rays having a center wavelength of 184.9 nm having a selective photodissociation action for oxygen molecules mixed in a large amount in the air. In order to uniformly irradiate air, photodissociation is performed very efficiently, high-density ionization is achieved, and the air is burned in the engine. Therefore, the combustion output is at least 30 to 50% or more, and the combustion output is also high. In addition, the exhaust gas is significantly reduced with the high flammability.
[0010]
Further, in the present invention, the mixture or air is irradiated with far ultraviolet rays having a center wavelength of 184.9 nm from the far ultraviolet radiator, so that sparks are generated in AC discharge and DC discharge generally used as ionization means. There is no danger, and high-density ionization can be achieved safely even with a highly flammable mixture.
In addition, the engine speed is also sensed when the air-fuel mixture and air supply flow increases / decreases due to changes in the engine speed. Can be ionized.
[0011]
【Example】
FIG. 1 is a side view of a far ultraviolet radiator, and FIG. 2 is a sectional view of a radiation tube forming the far ultraviolet radiator. The mixture 1 supplied to the gasoline engine or the air supplied to the diesel engine is ionized stably and at a high density and then burned in the engine combustion chamber to reduce fuel consumption and exhaust with high combustion performance and high combustion output. The gas mixture is also reduced, and the air-fuel mixture 1 in a gasoline engine and the air supply in a diesel engine are usually supplied through the intake manifold 2, so that the air-fuel mixture 1 and the air are densely ionized. In order to achieve this, it is advisable to make this in the intake manifold 2.
[0012]
By the way, as a simple means for ionizing the air-fuel mixture 1 or air, a discharge electrode and a counter electrode are provided, and an AC discharge method in which a high voltage alternating current is applied between the electrodes or a high voltage is applied between the discharge electrode and the counter electrode. A so-called plasma method in which a DC discharge method in which a voltage DC is applied, or a plasma method in which plasma is generated in a plasma generation chamber to which a high voltage is applied and then emitted in the form of a beam to perform ionization, and the like are mainly used in air purifiers. .
[0013]
However, in these conventional techniques, ions are released by directly applying a high voltage to the environment where ionization is to be performed. In particular, due to air pollution and a small amount of moisture (humidity) in the environment where ionization is to be performed and the amount of ventilation, the insulating property is high. Is remarkably fluctuated, so that some discharge of ions and a frequent discharge phenomenon occur depending on the fluctuation of environmental conditions.
Therefore, in the case where the flammability is high and the air-fuel ratio and the supply amount of the air-fuel mixture fluctuate remarkably as in the air-fuel mixture 1 of the present invention, the prior art is extremely dangerous, and the applied voltage for preventing the occurrence of a discharge phenomenon is high. Significantly lowers the ionization at a high density, and the object of the present invention cannot be realized.
[0014]
In order to achieve high-density ionization, it is required that a so-called ionized substance be dissociated with the addition of energy for generating ion source plasma, and that dissociated ions be diffused and released.
For this reason, in the present invention, the ionized substance is easily photodissociated by the light energy in the ultraviolet region. In particular, in the case of far ultraviolet whose central wavelength is 184.9 nm, oxygen molecules are selectively and highly photodissociated. And the mixture supplied to the gasoline engine or the air supplied to the diesel engine contains oxygen molecules of about 20%, so that the ionization at a very high density can be achieved. Accordingly, a technical idea has been adopted in which safe and high-density ionization is achieved by uniformly irradiating the mixture 1 or air flowing in a narrow closed system like the intake manifold 2 with a small irradiation energy.
[0015]
FIG. 1 is an explanatory side view of the far ultraviolet radiator 3. The far ultraviolet radiator 3 has a center wavelength of 184.9 nm with respect to the air-fuel mixture 1 or air flowing through the intake manifold 2. In order to uniformly irradiate the far ultraviolet rays 30 over the entirety, it is convenient that the inside diameter of the intake manifold 2 is substantially equal to that of the intake manifold 2. In FIG. 1, the state where the intake manifold 2 has a circular cross section is shown. As shown, when the intake manifold 2 is elliptical or square, the far ultraviolet radiator 3 may be formed according to the shape.
[0016]
The far ultraviolet radiator 3 is not particularly limited, and the radiating tube 3A may be substantially the same as an ultraviolet lamp generally used for sterilization as shown in FIG. Since a material having a wavelength of about 220 to 280 nm is used, quartz glass is used as the material. However, the far ultraviolet radiator 3 mainly uses far ultraviolet light having a center wavelength of 184.9 nm. As a material of the radiation tube 3A, a quartz glass material having as high a purity as possible is desired. In addition, since the ultraviolet light emitted from the radiation tube 3A is irradiated in a relatively wide wavelength range, a filter layer 3B that transmits a wavelength of 184.9 nm is provided on the outer surface of the radiation tube 3A. As a material of the filter layer 3B, a metal oxide coating film is used, and specific examples thereof include zinc oxide, iron oxide, and nickel oxide.
[0017]
Naturally, input terminals 3C, 3C are provided at the respective edges of the radiation tube 3A constituting the ultraviolet radiator 3, and discharge filaments 3D, 3D are provided in the radiation tube 3A, respectively. With the input of power to the input terminals 3C and 3C, light is emitted together with discharge in the radiation tube 3A and is irradiated with ultraviolet rays.
[0018]
The far-ultraviolet radiator 3 thus configured needs to uniformly irradiate the mixture 1 and air which are supplied and circulated in the intake manifold 2 with the far-ultraviolet having a central wavelength of 184.9 nm.
FIG. 3 is an explanatory view in which the far ultraviolet radiator 3 is provided on the intake manifold 2. In this case, the arranging means is such that the far ultraviolet radiator 3 formed to have the same inner diameter as the intake manifold 2 is used for the ultraviolet radiation. The radiation tube 3A is inserted and clamped and fixed in a fitting recess 4A in which about half or more of the radiation tube 3A forming the body 3 is fitted and clamped, and both sides of the fitting recess 4A are required to face outward. The connecting edges 4B, 4B extending around the length are integrally formed, and the connecting flanges 4A of the intake manifold 2 are connected to appropriate positions of the connecting edges 4B, 4B by connecting tools 4D made of screws and nuts. And a connecting hole 4C for connecting the flange connecting holes 2B formed in the holding member 4 to each other.
[0019]
Further, as a simple means for disposing the far ultraviolet radiator 3, it is proposed to interpose between the cleaner end 5 and the tip 2C of the intake manifold 2 as shown in FIG. The irradiation intensity of the far ultraviolet rays from the target fluctuates up to 1: 5 during idling and 1:17 during economic driving when the target substance is air-fuel ratio, so-called air-to-fail ratio, in gasoline engines, and up to 1:17 during economic driving. Since it fluctuates by about 10 times at high speed compared to idling, and furthermore, the humidity difference in fine weather or rainy weather also fluctuates greatly. Therefore, at least UV intensity of 0.2 to 2.0 mW or more in UV intensity It is desired to irradiate with.
[0020]
FIG. 5 is a diagram showing the principle of the present invention, in which a battery is used as the power source 6 to be used. However, since the far ultraviolet radiator 3 employs discharge radiation by a radiation tube 3A similar to an ultraviolet radiation lamp, The power supply 6 is once converted into an alternating current having a frequency of 50 to 60 Hz via an inverter 6A.
There are no particular restrictions on this inverter 6A, and many products have already been developed and marketed. For example, a blocking oscillation type inverter or a multivibrator type inverter can be used as a DC-AC inverter.
[0021]
The power thus converted into a desired AC is connected on one side to the glow lamp 6D and the condenser 6E via the discharge filament 3D from one input terminal 3C of the far ultraviolet radiator 3, The other side of the converted power is connected to the glow lamp 6D and the condenser 6E from the switch 6B via the ballast 6C via the other input terminal 3C of the far ultraviolet radiator 3 via the discharge filament 3D. Wiring has been made.
[0022]
Explaining each operation in such a case, the ballast 6C is for generating a high voltage necessary for the discharge tube 3A forming the far ultraviolet radiator 3 to discharge and flowing a stable current. The electrode of the glow lamp 6D is usually formed of a bimetal in which two kinds of metals are bonded to each other. Discharge occurs in the radiant tube 3A, the bimetal bends at a high temperature, current flows through the radiant tube 3A, and a discharge filament 3D is formed. 3D is heated, and mercury in the radiation tube 3A is vaporized. The current smoothly flows and the cooled bimetal is restored and interrupts the current. At this time, a high voltage is generated in the ballast 6C, a discharge occurs between the discharge filaments 3D, 3D, and electrons associated with the discharge are generated. Collide with vaporized mercury atoms and emit ultraviolet light. Further, a condenser 6E arranged in parallel with the glow lamp 6D is for absorbing noise radio waves generated from the radiation tube 3A.
[0023]
FIG. 6 is a principle diagram of the present invention for achieving stable and high-density ionization with respect to a change in the air-fuel mixture 1 or the air amount. The air-fuel mixture 1 supplied to the gasoline engine or the air amount supplied to the diesel engine is In order to achieve stable and high-density ionization even during idling and high-speed running, the maximum supply amount is one of the measures to achieve stable high-density ionization even with such fluctuations. In this case, it is a means to irradiate with the deep ultraviolet irradiation intensity that enables high density ionization that can create high flammability and high combustion output even in the case of It is not the most suitable means in order to keep the far-ultraviolet radiator 3 in the far-ultraviolet irradiation performance for a long period of time.
[0024]
Therefore, a sensor 7 for sensing the engine speed is mounted on a rotating body such as a crankshaft, and the engine speed is captured as a sensing signal and input to the controller 6A.
On the other hand, the direct current of the power supply 6 from the battery is converted into an alternating current of a required frequency by the inverter 6A and then input to the secondary side of the variable voltage transformer 7B. By energizing the far-ultraviolet radiator 3 on the secondary side of the variable-pressure transformer 7B, the far-ultraviolet radiation in the range of 0.2 mW to 2.0 mW even when the far-ultraviolet irradiation intensity is the minimum in UV intensity. A variable selector 7C for selecting an output voltage capable of adjusting the intensity is provided, and the variable selector 7C selects an output voltage in conjunction with a sensing signal captured by the controller 7A, and selects the output voltage. This means is configured to be energized.
[0025]
The results of a high flammability test performed using the present invention will be described below. The vehicle used in the test was a 2580 cc gasoline engine vehicle manufactured by Company A. The test method was the tip of the intake manifold of the gasoline engine vehicle. A far ultraviolet radiator made of quartz glass having an inner diameter of 3 cm, an outer diameter of 8 cm, and a radiating tube diameter of 2 cm is interposed between the air cleaner and the air cleaner to supply and circulate far ultraviolet light having a center wavelength of 184.9 nm in the air to be supplied and circulated. The case where the irradiation intensity at the center of the air was 0.2 mW in UV intensity was designated as experimental group 1, the case with 2.0 mW in UV intensity was designated as experimental group 2, and the case without irradiation was designated as a control group.
[0026]
In the high flammability test, the CO component and the HC component in the exhaust gas at the time of engine start, 1500 revolutions, and 3000 revolutions were sampled at three times for each of the experimental section 1, the experimental section 2 and the control section, and were subjected to gas chromatography. The analysis was performed to determine high flammability based on the residual CO gas amount. As shown in Table 1, if the irradiation intensity was 0.2 mW or more in UV intensity even at 3000 rotations, approximately 30 to 50% was obtained by high-density ionization. It can be determined that the above high flammability is achieved.
[0027]
[Table 1]
Figure 2004068800
[0028]
【The invention's effect】
As described above, according to the present invention, a far-ultraviolet radiator that emits far-ultraviolet rays having a center wavelength of 184.9 nm is provided in an intake manifold through which a mixture supplied to a gasoline engine or air supplied to a diesel engine flows. The mixture and the air are arranged so as to evenly irradiate the mixture, and the mixture and the air contain a large amount of oxygen molecules that are photodissociated. Because the air-fuel mixture and air supplied to the engine are densely ionized and burned to photodissociate the fuel, high combustion output associated with high flammability is created and fuel consumption per mileage is significantly reduced. In addition to this, the CO and HC components in the exhaust gas are significantly reduced.
In addition, in the present invention, since high-density ionization is caused by photodissociation, ionization can be performed extremely safely even in a highly flammable air-fuel mixture, and a device for ionization can be provided in a small, simple, and inexpensive manner. It can be said that this is a method of reducing fuel consumption of an automobile having many excellent features.
[Brief description of the drawings]
FIG. 1 is an explanatory side view of a far ultraviolet radiator.
FIG. 2 is an explanatory cross-sectional view of a radiation tube forming a deep ultraviolet radiator.
FIG. 3 is an explanatory view of a far ultraviolet radiator connected to an intake manifold.
FIG. 4 is an explanatory view of a far ultraviolet radiator provided at a front end of an intake manifold.
FIG. 5 is a diagram illustrating the principle of the present invention.
FIG. 6 is a principle diagram for achieving high-density ionization in proportion to the engine speed;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Air-fuel mixture 2 Intake manifold 2A Connection flange 2B Flange connection hole 2C Intake manifold tip 3 Far ultraviolet radiator 3A Radiation tube 3B Filter layer 3C Input terminal 3D Discharge filament 30 Far ultraviolet 4 Clamping connection flange 4A Fitting recess 4B Connection edge 4C Connection hole 4D Connector 5 Cleaner 6 Power supply 6A Inverter 6B Switch 6C Ballast 6D Glow lamp 6E Capacitor 7 Sensing sensor 7A Controller 7B Variable pressure transformer 7C Variable selector

Claims (2)

ガソリンエンジン若しくはディーゼルエンジンのインテークマニホールド内を流通する混合気若しくは空気に、均等に且その中心波長が184.9nmの遠紫外線を放射しえる遠紫外線放射体を配設せしめ、流通する混合気若しくは空気を高密度にイオン化させて燃焼させることにより、高燃焼出力に伴う低燃費化を図ることを特徴とする自動車の低燃費化方法。An air-fuel mixture or air flowing through an intake manifold of a gasoline engine or a diesel engine is provided with a far-ultraviolet radiator capable of uniformly emitting far-ultraviolet light having a center wavelength of 184.9 nm. A method for reducing the fuel consumption of an automobile, characterized in that the fuel is ionized at a high density and burned to reduce fuel consumption associated with a high combustion output. エンジン回転数を感知し、該エンジン回転数に伴い変化する混合気若しくは空気量に比例して遠紫外線放射強度を変化できるようにしてなる請求項1記載の自動車の低燃費化方法。2. The method for reducing fuel consumption of an automobile according to claim 1, wherein an engine speed is sensed, and a far ultraviolet radiation intensity can be changed in proportion to an amount of air-fuel mixture or air which changes with the engine speed.
JP2002263384A 2002-08-06 2002-08-06 Fuel consumption reduction method of automobile Pending JP2004068800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263384A JP2004068800A (en) 2002-08-06 2002-08-06 Fuel consumption reduction method of automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263384A JP2004068800A (en) 2002-08-06 2002-08-06 Fuel consumption reduction method of automobile

Publications (1)

Publication Number Publication Date
JP2004068800A true JP2004068800A (en) 2004-03-04

Family

ID=32024674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263384A Pending JP2004068800A (en) 2002-08-06 2002-08-06 Fuel consumption reduction method of automobile

Country Status (1)

Country Link
JP (1) JP2004068800A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174410A (en) * 2008-01-24 2009-08-06 Honda Motor Co Ltd Engine
EP3392497A1 (en) * 2017-04-20 2018-10-24 Toyota Jidosha Kabushiki Kaisha Fuel reformer for vehicle
US11415085B2 (en) * 2017-07-05 2022-08-16 Plastic Omnium Advanced Innovation And Research Vehicle system and method for injecting an aqueous solution in the combustion chamber of the internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174410A (en) * 2008-01-24 2009-08-06 Honda Motor Co Ltd Engine
EP3392497A1 (en) * 2017-04-20 2018-10-24 Toyota Jidosha Kabushiki Kaisha Fuel reformer for vehicle
CN108730078A (en) * 2017-04-20 2018-11-02 丰田自动车株式会社 The fuel reforming device of vehicle
US10626829B2 (en) 2017-04-20 2020-04-21 Toyota Jidosha Kabushiki Kaisha Fuel reformer for vehicle
US11415085B2 (en) * 2017-07-05 2022-08-16 Plastic Omnium Advanced Innovation And Research Vehicle system and method for injecting an aqueous solution in the combustion chamber of the internal combustion engine

Similar Documents

Publication Publication Date Title
US6606855B1 (en) Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas
US5433832A (en) Exhaust treatment system and method
US4195606A (en) Method and apparatus for treating air for internal combustion engines
US6212883B1 (en) Method and apparatus for treating exhaust gas from vehicles
JP2007107491A (en) Combustion accelerating air treatment device for displacement type internal combustion engine
KR19990064229A (en) Exhaust gas purification device of internal combustion engine
JP2004114045A (en) Atmospheric air cleaning apparatus
US20040185396A1 (en) Combustion enhancement with silent discharge plasma
EP2513464B1 (en) Method for treating combustion air flow in a combustion process
JP2004068800A (en) Fuel consumption reduction method of automobile
CN101368736B (en) Method and device for promoting combustion
KR200386084Y1 (en) An air guide apparatus for intake manifold of an internal combustion engine
JP2006307839A (en) Photoconductive ignition system
Akdemir et al. Effect of dielectric barrier discharges on the elimination of some flue gases
JP7004437B2 (en) Ozone gas generator and ozone gas utilization system
KR100397169B1 (en) exhaust-gas treatment apparatus
KR100210607B1 (en) Device for purifying exhaust gas of microwave plasma
JP2006214421A (en) System for lowering fuel consumption and for low exhaust gasification using high density plus ion
JPH02207812A (en) Apparatus for continuously reducing concentration of carbon monoxide and other harmful waste
JPS5893952A (en) Combustion efficiency improving method and device for combustion engine
KR20080016272A (en) Fuel save apparatus internal combustion engine
CN113677873B (en) Non-thermal plasma based exhaust particulate matter reduction device for preventing arcing
JP2003113707A (en) Removal method of internal combustion engine exhaust particulate using microwave
JP2000265909A (en) Heat retaining method, and material of combustion air and fuel reducing emission concentration of carbon dioxide, carbon monoxide and nitrogen oxides produced in rated operation, and manufacture of device therefor
EP1379761B1 (en) Emission control device and method