JP2009174410A - Engine - Google Patents

Engine Download PDF

Info

Publication number
JP2009174410A
JP2009174410A JP2008013363A JP2008013363A JP2009174410A JP 2009174410 A JP2009174410 A JP 2009174410A JP 2008013363 A JP2008013363 A JP 2008013363A JP 2008013363 A JP2008013363 A JP 2008013363A JP 2009174410 A JP2009174410 A JP 2009174410A
Authority
JP
Japan
Prior art keywords
plasma
engine
air
power supply
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008013363A
Other languages
Japanese (ja)
Other versions
JP5117202B2 (en
Inventor
Takashi Tsutsumizaki
高司 堤崎
Tomomi Ishikawa
友美 石川
Hitoshi Okabe
仁 岡部
Hideya Nishiyama
秀哉 西山
Kazunari Katagiri
一成 片桐
Hidemasa Takana
秀匡 高奈
Yukiyoshi Nakano
是克 仲野
Tomoki Nakajima
智樹 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Honda Motor Co Ltd
Original Assignee
Tohoku University NUC
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Honda Motor Co Ltd filed Critical Tohoku University NUC
Priority to JP2008013363A priority Critical patent/JP5117202B2/en
Publication of JP2009174410A publication Critical patent/JP2009174410A/en
Application granted granted Critical
Publication of JP5117202B2 publication Critical patent/JP5117202B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To improve energy efficiency of the whole engine while generating plasma from air circulating in an intake passage for improving combustion efficiency, in an engine including a plasma generation means which generates plasma from air circulating in the intake passage and is attached to an intake device connected to an engine body and having the intake passage supplying air from the outside into a combustion chamber formed in an engine body while the tip of an ignition plug is faced thereto. <P>SOLUTION: A control means 83 controls electric power distribution to the plasma generation means 63 from an electric power supply means 82 with at least one of voltage and frequency varied, according to a result detected by an operating condition detection means 84 detecting the operating condition of the engine E. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、点火プラグの先端を臨ませてエンジン本体内に形成される燃焼室に外部から空気を供給するための吸気通路を有して前記エンジン本体に接続される吸気装置に、前記吸気通路を流通する空気をプラズマ化するプラズマ発生手段が付設されるエンジンに関する。   The present invention provides an intake passage connected to the engine body having an intake passage for supplying air from the outside to a combustion chamber formed in the engine body with the tip of the spark plug facing. The present invention relates to an engine provided with plasma generating means for converting air flowing through the air into plasma.

吸気装置に付設されたプラズマ発生装置に高電圧を印加することでプラズマ化された混合気を燃焼室に供給して燃焼効率を改善したエンジンが、特許文献1で知られている。
特開平08−200190号公報
An engine in which combustion efficiency is improved by supplying a plasma mixture to a combustion chamber by applying a high voltage to a plasma generator attached to an intake device is known from Patent Document 1.
Japanese Patent Application Laid-Open No. 08-200190

ところで、一般的に燃焼効率はエンジンの低負荷・低回転領域では低く、高負荷・高回転領域では高いという傾向がある。すなわち高負荷・高回転領域では燃焼効率の改善の余地が低いということが言える。したがって低負荷・低回転領域では混合気のプラズマ化によって燃費の低減が期待できるものの、高負荷・高回転領域では低負荷・低回転領域ほど燃費の低減が期待できず、プラズマを発生させるために必要な消費電力による燃料消費量の増加が、プラズマ発生による燃費低減量を上回ってしまい、エンジン全体のエネルギー効率低下を招く可能性がある。   By the way, the combustion efficiency generally tends to be low in the low load / low rotation region of the engine and high in the high load / high rotation region. That is, it can be said that there is little room for improvement in combustion efficiency in the high load / high rotation region. In order to generate plasma in the low load / low rotation region, the fuel consumption can be expected to be reduced by making the air-fuel mixture into a plasma, but in the high load / high rotation region, the fuel consumption cannot be reduced as the low load / low rotation region. The increase in fuel consumption due to the necessary power consumption may exceed the amount of fuel consumption reduction due to the generation of plasma, which may lead to a reduction in the energy efficiency of the entire engine.

本発明は、かかる事情に鑑みてなされたものであり、燃焼効率を改善するために吸気通路を流通する空気のプラズマ化を可能としつつ、エンジン全体のエネルギー効率を高めたエンジンを提供することを目的とする。   The present invention has been made in view of such circumstances, and provides an engine in which the energy efficiency of the entire engine is improved while enabling the air flowing through the intake passage to be plasmatized in order to improve the combustion efficiency. Objective.

上記目的を達成するために、請求項1記載の発明は、点火プラグの先端を臨ませてエンジン本体内に形成される燃焼室に外部から空気を供給するための吸気通路を有して前記エンジン本体に接続される吸気装置に、前記吸気通路を流通する空気をプラズマ化するプラズマ発生手段が付設されるエンジンにおいて、前記プラズマ発生手段に電圧および周波数の少なくとも一方を可変として電力を供給する電力供給手段と、エンジンの運転状態を検出する運転状態検出手段と、該運転状態検出手段の検出結果に応じて前記電力供給手段から前記プラズマ発生手段への電力供給を制御する制御手段とを備えることを特徴とする。   In order to achieve the above object, the invention according to claim 1 has an intake passage for supplying air from the outside to a combustion chamber formed in the engine body with the tip of the spark plug facing. In an engine in which an air intake device connected to a main body is provided with plasma generating means for converting air flowing through the intake passage into plasma, electric power supply for supplying electric power with variable voltage and / or frequency to the plasma generating means Means, an operating state detecting means for detecting the operating state of the engine, and a control means for controlling power supply from the power supply means to the plasma generating means in accordance with a detection result of the operating state detecting means. Features.

また請求項2記載の発明は、請求項1記載の発明の構成に加えて、前記運転状態検出手段が、前記吸気装置が備えるスロットル弁の開度を検出するスロットル開度センサならびにエンジン回転数を検出するエンジン回転数センサの少なくとも一方を備えることを特徴とする。   According to a second aspect of the present invention, in addition to the configuration of the first aspect of the present invention, the operating state detecting means includes a throttle opening degree sensor for detecting an opening degree of a throttle valve provided in the intake device and an engine speed. It has at least one of the engine speed sensors to detect.

請求項3記載の発明は、請求項2記載の発明の構成に加えて、前記制御手段が、前記運転状態検出手段による検出値が低回転・低負荷領域にあるとき以外は前記プラズマ発生手段によるプラズマ発生を回避するように前記電力供給手段を制御することを特徴とする。   According to a third aspect of the invention, in addition to the configuration of the second aspect of the invention, the control means uses the plasma generation means except when the detected value by the operating state detection means is in a low rotation / low load region. The power supply means is controlled so as to avoid plasma generation.

さらに請求項4記載の発明は、請求項1〜3のいずれかに記載の発明の構成に加えて、前記制御手段が、プラズマ発生手段によるプラズマ発生要求量が同一であるときには低電圧かつ高周波の電力を供給するように前記電力供給手段を制御することを特徴とする。   In addition to the configuration of the invention according to any one of claims 1 to 3, the invention according to claim 4 is characterized in that the control means has a low voltage and a high frequency when the required plasma generation amount by the plasma generation means is the same. The power supply means is controlled to supply power.

請求項1〜4記載の発明によれば、エンジンの運転状態に応じて電力供給手段を制御することによって、エンジンの運転状態に応じた適切なプラズマ発生を実現し、エンジン全体のエネルギー効率を高めることができる。   According to the first to fourth aspects of the present invention, by controlling the power supply means in accordance with the operating state of the engine, appropriate plasma generation according to the operating state of the engine is realized, and the energy efficiency of the entire engine is increased. be able to.

また特に請求項3記載の発明によれば、混合気のプラズマ化によって燃費の低減が期待できる低負荷・低回転領域ではプラズマを発生させて燃焼効率の向上を図るものの、低負荷・低回転領域ほど燃費の低減が期待できない高負荷・高回転領域ではプラズマを発生させないようにして、プラズマを発生させるために必要な消費電力による燃料消費量の増加が、プラズマ発生による燃費低減量を上回ることがないようにして、エンジン全体のエネルギー効率を高めることができる。   In particular, according to the third aspect of the present invention, although plasma is generated in a low load / low rotation region where a reduction in fuel consumption can be expected by making the air-fuel mixture into a plasma, the combustion efficiency is improved and the low load / low rotation region is achieved. The increase in fuel consumption due to the power consumption required to generate plasma may exceed the reduction in fuel consumption due to plasma generation by avoiding the generation of plasma in the high load / high rotation range where reduction in fuel consumption cannot be expected. In this way, the energy efficiency of the entire engine can be increased.

さらに特に請求項4記載の発明によれば、吸気通路内での不所望な着火が生じることを防止することができる。すなわちプラズマ発生量は、印加電圧および周波数にほぼ比例するものであり、印加電圧を低くしても高周波数とすることで充分なプラズマを発生することができるので、電圧を極力低くして混合気が吸気通路内で着火しないようにすることができる。   Furthermore, according to the invention described in claim 4, it is possible to prevent undesired ignition in the intake passage. In other words, the amount of plasma generated is approximately proportional to the applied voltage and frequency, and even if the applied voltage is lowered, sufficient plasma can be generated by increasing the frequency. Can be prevented from igniting in the intake passage.

以下、本発明の実施の形態を、添付の図面に示した本発明の一実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on one embodiment of the present invention shown in the accompanying drawings.

図1〜図9は本発明の一実施例を示すものであり、図1は本発明を適用した自動二輪車の側面図、図2はエンジンの側面図、図3はエンジンの要部拡大縦断側面図、図4は図3の4−4線断面図、図5は非プラズマ用空気およびプラズマ用空気のエンジン負荷に対する変化を示す図、図6は図4の6−6線拡大断面図、図7は電圧および周波数に対するオゾン発生量の関係を示す図、図8はスロットル開度およびエンジン回転数に応じた周波数設定例を示す図、図9はスロットル開度およびエンジン回転数に応じた電圧設定例を示す図である。   1 to 9 show an embodiment of the present invention, FIG. 1 is a side view of a motorcycle to which the present invention is applied, FIG. 2 is a side view of the engine, and FIG. 3 is an enlarged vertical side view of the main part of the engine. 4 is a cross-sectional view taken along line 4-4 of FIG. 3, FIG. 5 is a diagram showing changes of non-plasma air and plasma air with respect to the engine load, and FIG. 6 is an enlarged cross-sectional view taken along line 6-6 of FIG. 7 is a diagram showing the relationship between the amount of ozone generated with respect to voltage and frequency, FIG. 8 is a diagram showing a frequency setting example according to the throttle opening and the engine speed, and FIG. 9 is a voltage setting according to the throttle opening and the engine speed. It is a figure which shows an example.

先ず図1において、本発明が適用されるエンジンEは、空冷の単気筒4ストロークエンジンであり、自動二輪車にクランクシャフト11の軸線を車幅方向に沿わせた横置き配置で搭載される。   First, in FIG. 1, an engine E to which the present invention is applied is an air-cooled single-cylinder four-stroke engine, and is mounted on a motorcycle in a lateral arrangement in which the axis of a crankshaft 11 is aligned in the vehicle width direction.

自動二輪車の車体フレームFは、前輪WFを軸支するフロントフォーク12を操向可能に支承するヘッドパイプ13と、該ヘッドパイプ13から後下がりに延びるメインフレーム14と、該メインフレーム14の後部から後上がりに延びる左右一対のリヤフレーム15…と、前記メインフレーム14の後端に連設されて下方に延びるピボットプレート16とを備え、前記エンジンEの一部および車体フレームFは車体カバー17で覆われる。   A body frame F of the motorcycle includes a head pipe 13 that supports a front fork 12 that pivotally supports a front wheel WF, a main frame 14 that extends rearwardly downward from the head pipe 13, and a rear portion of the main frame 14. A pair of left and right rear frames 15 that extend rearward and a pivot plate 16 that is connected to the rear end of the main frame 14 and extends downward. A part of the engine E and the vehicle body frame F are provided by a vehicle body cover 17. Covered.

前記フロントフォーク12の上端部にはバー状の操向ハンドル18が連結され、前記ピボットプレート16に枢軸19を介して前端部が揺動可能に支承されるスイングアーム20の後部には後輪WRが軸支され、前記両リヤフレーム15…のうち左側のリヤフレーム15およびスイングアーム20間にはリヤクッションユニット21が設けられる。また前記車体フレームFの後部上に配置される乗車用シート22の下方に配置される燃料タンク23が前記両リヤフレーム15…の後部間に設けられる。   A bar-shaped steering handle 18 is connected to the upper end portion of the front fork 12, and a rear wheel WR is mounted on the rear portion of a swing arm 20 that is pivotally supported on the pivot plate 16 via a pivot 19. A rear cushion unit 21 is provided between the left rear frame 15 and the swing arm 20 of the rear frames 15. Further, a fuel tank 23 disposed below the riding seat 22 disposed on the rear portion of the vehicle body frame F is provided between the rear portions of the rear frames 15.

図2において、前記エンジンEのエンジン本体25は、前記クランクシャフト11を回転自在に支承するクランクケース26と、ほぼ水平となるように前傾したシリンダ軸線を有して前記クランクケース26に結合されるシリンダブロック27と、前記クランクケース26とは反対側でシリンダブロック27に結合されるシリンダヘッド28とを備え、前記クランクシャフト11から伝達される回転動力を択一的に選択された複数変速段で変速する歯車式変速機構を含む前記変速機が前記クランクケース26内に収容され、前記変速機の出力軸29および前記後輪WRの車軸30間には、無端状のチェーン31を含む動力伝達手段32が設けられる。   In FIG. 2, the engine body 25 of the engine E is coupled to the crankcase 26 with a crankcase 26 that rotatably supports the crankshaft 11 and a cylinder axis that is inclined forward so as to be substantially horizontal. A plurality of shift speeds selected from rotational power transmitted from the crankshaft 11, and a cylinder head 28 coupled to the cylinder block 27 on the opposite side of the crankcase 26. The transmission including the gear-type transmission mechanism that changes the speed is accommodated in the crankcase 26, and a power transmission including an endless chain 31 is provided between the output shaft 29 of the transmission and the axle 30 of the rear wheel WR. Means 32 are provided.

図3を併せて参照して、前記シリンダブロック27に形成されたシリンダボア33にはピストン34が摺動可能に嵌合されており、このピストン34はコネクティングロッド35を介して前記クランクシャフト11に連接される。エンジン本体25におけるシリンダブロック27およびシリンダヘッド28間には前記ピストン34の頂部を臨ませる燃焼室36が形成されており、点火プラグ37(図4参照)がその先端を燃焼室36に臨ませるようにしてシリンダヘッド28に取付けられる。   Referring also to FIG. 3, a piston 34 is slidably fitted to a cylinder bore 33 formed in the cylinder block 27, and the piston 34 is connected to the crankshaft 11 via a connecting rod 35. Is done. A combustion chamber 36 that faces the top of the piston 34 is formed between the cylinder block 27 and the cylinder head 28 in the engine main body 25, and a spark plug 37 (see FIG. 4) faces its front end to the combustion chamber 36. And attached to the cylinder head 28.

シリンダヘッド28には前記燃焼室36に通じ得る吸気ポート39がシリンダヘッド28の上部側壁に開口するようにして設けられるとともに、前記燃焼室36に通じ得る排気ポート40がシリンダヘッド28の下部側壁に開口するようにして設けられ、吸気ポート39を開閉する吸気弁41ならびに排気ポート40を開閉する排気弁42が閉弁方向にばね付勢されつつ開閉作動可能としてシリンダヘッド28に配設される。   An intake port 39 that can communicate with the combustion chamber 36 is provided in the cylinder head 28 so as to open on the upper side wall of the cylinder head 28, and an exhaust port 40 that can communicate with the combustion chamber 36 is provided on the lower side wall of the cylinder head 28. An intake valve 41 that opens and closes the intake port 39 and an exhaust valve 42 that opens and closes the exhaust port 40 are disposed in the cylinder head 28 so as to be able to open and close while being biased in the valve closing direction.

前記吸気弁41および前記排気弁42は、前記クランクシャフト11と平行な軸線を有してシリンダヘッド28に回転自在に支承されるカムシャフト43と、該カムシャフト43に設けられる吸気側動弁カム44で揺動駆動されるようにして前記吸気側動弁カム44および前記吸気弁41間に介設される吸気側ロッカアーム46と、前記カムシャフト43に設けられる排気側動弁カム45で揺動駆動されるようにして前記排気側動弁カム45および前記排気弁42間に介設される排気側ロッカアーム47とを備える動弁装置48で開閉駆動され、前記カムシャフト43には、前記クランクシャフト11の回転動力が1/2の減速比で伝達される。   The intake valve 41 and the exhaust valve 42 have a cam shaft 43 that has an axis parallel to the crankshaft 11 and is rotatably supported by the cylinder head 28, and an intake side valve cam provided on the camshaft 43. 44, swinging is performed by an intake side rocker arm 46 interposed between the intake side valve cam 44 and the intake valve 41, and an exhaust side valve cam 45 provided on the camshaft 43. The camshaft 43 is driven to open and close by a valve operating device 48 having an exhaust side rocker arm 47 interposed between the exhaust side valve cam 45 and the exhaust valve 42. 11 is transmitted at a reduction ratio of 1/2.

前記排気ポート40には排気装置49が接続されるものであり、この排気装置49は、前記排気ポート40に通じるようにしてシリンダヘッド28の下部側壁に上流端が接続される排気管50と、前記後輪WRの右側方に配置されて前記排気管50の下流端に接続される排気マフラー51(図1参照)とを備える。   An exhaust device 49 is connected to the exhaust port 40, and the exhaust device 49 includes an exhaust pipe 50 having an upstream end connected to the lower side wall of the cylinder head 28 so as to communicate with the exhaust port 40, and An exhaust muffler 51 (see FIG. 1) disposed on the right side of the rear wheel WR and connected to the downstream end of the exhaust pipe 50.

図4を併せて参照して、前記吸気ポート39には吸気装置53が接続されるものであり、この吸気装置53は、前記エンジン本体25の前方斜め上方に配置されて前記メインフレーム14に支持されるエアクリーナ54と、該エアクリーナ54に上流端が接続されるスロットルボディ55と、前記吸気ポート39に通じて前記シリンダヘッド28の上部側壁および前記スロットルボディ55の下流端間を接続する吸気管56とを備え、吸気管56は、電気的および熱的な絶縁材料たとえばゴムによって形成される。   Referring also to FIG. 4, an intake device 53 is connected to the intake port 39. The intake device 53 is disposed obliquely above and forward of the engine body 25 and is supported by the main frame 14. An air cleaner 54, a throttle body 55 having an upstream end connected to the air cleaner 54, and an intake pipe 56 that connects the upper side wall of the cylinder head 28 and the downstream end of the throttle body 55 through the intake port 39. The intake pipe 56 is formed of an electrically and thermally insulating material such as rubber.

前記吸気装置53のスロットルボディ55および吸気管56内には、外部からエアクリーナ54に導入されて該エアクリーナ54で浄化される空気を前記吸気ポート39から前記燃焼室36に供給するための吸気通路57が形成されており、この吸気通路57の開度を制御するバタフライ型のスロットル弁58が、スロットルボディ55に回動自在に軸支された弁軸59に固定され、スロットルボディ55から突出した弁軸59の一端には、運転者の操作によって牽引されるスロットルワイヤ61が巻き掛け、連結されるスロットルドラム60が固定され、前記弁軸59は前記スロットル弁58の閉弁方向にばね付勢される。   In the throttle body 55 and the intake pipe 56 of the intake device 53, an intake passage 57 for supplying air introduced into the air cleaner 54 from the outside and purified by the air cleaner 54 from the intake port 39 to the combustion chamber 36. A butterfly throttle valve 58 that controls the opening degree of the intake passage 57 is fixed to a valve shaft 59 that is pivotally supported by the throttle body 55 and protrudes from the throttle body 55. A throttle wire 61 pulled by a driver's operation is wound around one end of the shaft 59, and the throttle drum 60 to be connected is fixed. The valve shaft 59 is spring-biased in the valve closing direction of the throttle valve 58. The

またスロットルボディ55には、前記スロットル弁58よりも下流側で前記吸気通路57に燃料を噴射する燃料噴射弁62が取付けられており、スロットル弁58で流量制御された空気が前記燃料噴射弁62から噴射された燃料と混合して形成された混合気が、前記吸気弁41の開弁時に吸気ポート39から前記燃焼室36に供給されることになり、燃焼室36内で前記点火プラグ37の点火によって燃焼する。   A fuel injection valve 62 for injecting fuel into the intake passage 57 is attached to the throttle body 55 downstream of the throttle valve 58, and air whose flow rate is controlled by the throttle valve 58 is the fuel injection valve 62. When the intake valve 41 is opened, the air-fuel mixture formed by mixing with the fuel injected from the intake port 39 is supplied from the intake port 39 to the combustion chamber 36. Burns by ignition.

前記吸気装置53には、前記吸気通路57を流通する空気をプラズマ化するプラズマ発生手段63が付設されており、このプラズマ発生手段63は、前記スロットル弁58よりも上流側で前記吸気通路57に通じるようにしてスロットルボディ55に上流端が接続される空気導入管64の下流端と、前記燃料噴射弁62の噴口62aよりも下流側で前記吸気通路57に通じるようにしてスロットルボディ55に下流端が接続されるプラズマ供給管65の上流端との間に設けられる。   The intake device 53 is provided with plasma generating means 63 for converting the air flowing through the intake passage 57 into plasma. The plasma generating means 63 is connected to the intake passage 57 upstream of the throttle valve 58. A downstream end of an air introduction pipe 64 that is connected to the throttle body 55 at an upstream end thereof and a downstream side of the throttle passage 55 that communicates with the intake passage 57 at a downstream side of the injection port 62a of the fuel injection valve 62. It is provided between the upstream end of the plasma supply pipe 65 to which the end is connected.

前記空気導入管64の中間部には、前記スロットル弁58が固定された前記弁軸59の他端側を回動自在に軸支する軸支部64aが設けられており、この軸支部64aはスロットルボディ55に連結される。すなわち前記弁軸59の他端側は、スロットルボディ55と、前記空気導入管64の軸支部64aとで回動自在に支承されており、空気導入管64内に形成された空気導入通路66の空気流通量を制御する空気制御弁67が前記空気導入通路66内で前記弁軸59に設けられる。前記空気制御弁67はスロットル弁58の開度が大きくなるにつれて開度が大きくなるようにスロットル弁58と連動して開閉作動するものであり、プラズマ発生手段63に導入される空気量すなわちプラズマ用空気量と、スロットル弁58で制御される非プラズマ用空気量とは、図5で示すようにエンジン負荷の増大に応じて増大することになる。   An intermediate portion of the air introduction pipe 64 is provided with a shaft support portion 64a that rotatably supports the other end side of the valve shaft 59 to which the throttle valve 58 is fixed. The shaft support portion 64a is a throttle. Connected to the body 55. That is, the other end side of the valve shaft 59 is rotatably supported by the throttle body 55 and the shaft support portion 64a of the air introduction pipe 64, and an air introduction passage 66 formed in the air introduction pipe 64 is supported. An air control valve 67 for controlling the amount of air flow is provided in the valve shaft 59 in the air introduction passage 66. The air control valve 67 opens and closes in conjunction with the throttle valve 58 so that the opening degree of the throttle valve 58 increases as the opening degree of the throttle valve 58 increases. The air amount and the non-plasma air amount controlled by the throttle valve 58 increase as the engine load increases as shown in FIG.

而して前記非プラズマ用空気および前記プラズマ用空気の総量が、エンジンEの運転状態に適合した空燃比が得られるように吸入空気として吸気ポート57に供給され、その空気総量が、図5の鎖線で示すようにエンジン負荷の増大に応じて大きくなるのであるが、非プラズマ用空気量に対するプラズマ用空気量の割合がエンジン負荷が小さくなるのに応じて大きくなるように、またエンジンEの低負荷運転域ではプラズマ用空気量が非プラズマ用空気量よりも多く、エンジンEの高負荷運転域ではプラズマ用空気量が非プラズマ用空気量よりも少なくなるように、スロットル弁58の開度に対する空気制御弁67の開度が設定される。   Thus, the total amount of the non-plasma air and the plasma air is supplied to the intake port 57 as intake air so that an air-fuel ratio suitable for the operating state of the engine E can be obtained. As indicated by the chain line, the ratio increases as the engine load increases, but the ratio of the plasma air amount to the non-plasma air amount increases as the engine load decreases. The amount of plasma air is larger than the amount of non-plasma air in the load operation region, and the amount of plasma air is smaller than the amount of non-plasma air in the high load operation region of the engine E. The opening degree of the air control valve 67 is set.

このようにスロットル弁58で制御される非プラズマ用空気量に対するプラズマ用空気量の割合がエンジン負荷が小さくなるのに応じて大きくなるよう制御されると、エンジンEの低負荷運低域で設定空燃比を維持しつつ燃焼性の向上効果を高めることができ、しかもエンジンEの低負荷運転域ではプラズマ用空気量が非プラズマ用空気量よりも多いので燃焼性の向上効果をより一層高めることができる。   Thus, when the ratio of the plasma air amount to the non-plasma air amount controlled by the throttle valve 58 is controlled so as to increase as the engine load decreases, it is set in the low load operating range of the engine E. The effect of improving combustibility can be enhanced while maintaining the air-fuel ratio, and the amount of plasma air is greater than the amount of non-plasma air in the low-load operation region of the engine E, so that the combustibility improvement effect is further enhanced. Can do.

図6において、前記プラズマ発生手段63は、電気的および熱的な材料から成るハウジング70と、該ハウジング70内に配置されてハウジング70に固定配置される円筒状の接地電極73と、該接地電極73の内側に固定配置される円筒状の誘電体72と、該誘電体72内に同軸に配置される円柱状の印加電極71とを備え、印加電極71および誘電体72間に環状の放電空間76が形成される。   In FIG. 6, the plasma generating means 63 includes a housing 70 made of an electrical and thermal material, a cylindrical ground electrode 73 disposed in the housing 70 and fixed to the housing 70, and the ground electrode. 73, a cylindrical dielectric 72 fixedly disposed inside 73, and a columnar application electrode 71 disposed coaxially within the dielectric 72, and an annular discharge space between the application electrode 71 and the dielectric 72 76 is formed.

ハウジング70は、その下流端に小径円筒部70aを有して円筒状に形成されており、ハウジング70の上流端は空気導入管64の下流端に同軸に接続され、前記小径円筒部70aが前記プラズマ供給管65の上流端に嵌合することでハウジング70の下流端がプラズマ供給管65の上流端に接続される。   The housing 70 is formed in a cylindrical shape having a small diameter cylindrical portion 70a at the downstream end thereof, and the upstream end of the housing 70 is coaxially connected to the downstream end of the air introduction pipe 64, and the small diameter cylindrical portion 70a is By fitting the upstream end of the plasma supply pipe 65, the downstream end of the housing 70 is connected to the upstream end of the plasma supply pipe 65.

前記誘電体72および接地電極73は、前記ハウジング70の上流端から突出して前記空気導入管64の下流端に嵌合される。また前記誘電体72の前記プラズマ供給管65側の端部は、前記印加電極71および前記接地電極73よりもプラズマ噴出方向すなわち前記プラズマ供給管65側に突出するように配置されており、このような配置構造によって、印加電極71および接地電極73間でのアークの発生が防止される。   The dielectric 72 and the ground electrode 73 protrude from the upstream end of the housing 70 and are fitted to the downstream end of the air introduction pipe 64. The end portion of the dielectric 72 on the plasma supply tube 65 side is disposed so as to protrude from the application electrode 71 and the ground electrode 73 toward the plasma ejection direction, that is, the plasma supply tube 65 side. The simple arrangement structure prevents arcing between the application electrode 71 and the ground electrode 73.

ハウジング70の前記空気導入管64側の端部には、印加電極側接続端子77および接地電極側接続端子78が設けられており、印加電極側接続端子77は電線79を介して印加電極71に接続され、接地電極側接続端子78は電線80を介して接地電極73に電気的に接続される。   An application electrode side connection terminal 77 and a ground electrode side connection terminal 78 are provided at the end of the housing 70 on the air introduction pipe 64 side. The application electrode side connection terminal 77 is connected to the application electrode 71 via an electric wire 79. The ground electrode side connection terminal 78 is electrically connected to the ground electrode 73 via the electric wire 80.

而して前記放電空間76において電圧が印加された印加電極71および接地電極73間に誘電体バリア放電が生じると、空気導入管64で導かれたプラズマ用空気がプラズマ状態となってプラズマが発生し、プラズマ状態となった空気が、スロットル弁58で流量制御されるとともに燃料噴射弁62からの燃料が混入された空気と、前記燃料噴射弁62の噴口62aよりも下流側で混合することになる。   Thus, when a dielectric barrier discharge is generated between the application electrode 71 to which a voltage is applied and the ground electrode 73 in the discharge space 76, the plasma air guided by the air introduction tube 64 enters a plasma state to generate plasma. In addition, the air in the plasma state is controlled by the throttle valve 58 and mixed with the air mixed with the fuel from the fuel injection valve 62 on the downstream side of the injection port 62a of the fuel injection valve 62. Become.

ところでプラズマ発生手段63でのプラズマ発生はその発生雰囲気圧力が低くなるほど効果的であることが知られており、燃焼室36内での混合気の着火または着火直前の時期である圧縮上死点付近での燃焼室36内に圧縮圧力に相当する圧力または該圧縮圧力以上の圧力よりも低い発生雰囲気でプラズマを発生させることができれば、プラズマの発生効率を高めることができ、それによってプラズマ発生手段63の小型、軽量化が可能となり、消費エネルギーの低減も可能となる。   By the way, it is known that the plasma generation in the plasma generating means 63 is more effective as the generated atmospheric pressure becomes lower, and the vicinity of the compression top dead center, which is the time of ignition of the air-fuel mixture in the combustion chamber 36 or just before ignition, If the plasma can be generated in the combustion chamber 36 at a pressure corresponding to the compression pressure or a generation atmosphere lower than the compression pressure, the plasma generation efficiency can be increased. Can be reduced in size and weight, and energy consumption can be reduced.

そこで、この実施例では、環状の放電空間76をスロットル弁58よりも下流側の吸気通路57に連通させているものであり、圧縮上死点付近の燃焼室36の圧力よりも低い圧力となっている前記吸気通路57に放電空間76が連通しているので、プラズマ発生手段63でのプラズマ発生効率を高め、プラズマ発生手段63の小型、軽量化ならびに消費エネルギーの低減を可能としている。   Therefore, in this embodiment, the annular discharge space 76 is communicated with the intake passage 57 downstream of the throttle valve 58, and the pressure is lower than the pressure of the combustion chamber 36 near the compression top dead center. Since the discharge space 76 communicates with the intake passage 57, the plasma generation efficiency of the plasma generation means 63 is increased, and the plasma generation means 63 can be reduced in size and weight and energy consumption can be reduced.

前記プラズマ発生手段63の前記印加電極側接続端子77および接地電極側接続端子78には電力供給手段82が接続されており、この電力供給手段82は、電圧および周波数の少なくとも一方を可変として前記プラズマ発生手段63に電力を供給することができる。   A power supply means 82 is connected to the application electrode side connection terminal 77 and the ground electrode side connection terminal 78 of the plasma generation means 63, and the power supply means 82 can change at least one of voltage and frequency and change the plasma. Electric power can be supplied to the generating means 63.

ところで空気がプラズマ化されると、オゾン、窒素酸化物および高反応性ラジカル等が生成し、プラズマ発生量が多くなるとオゾンの発生量も多くなるのであるが、図7で示すように、電圧が高くなるとオゾン発生量が高くなり、同一電圧でも周波数がA,B,C,D,E(A<B<C<D<E)と順次高くなるにつれてオゾン発生量が多くなるものであり、この実施例では、電力供給手段82からプラズマ発生手段63に供給される電力の電圧および周波数の両方を変化させることでプラズマ発生手段63でのプラズマ発生量が制御される。   By the way, when air is turned into plasma, ozone, nitrogen oxides, highly reactive radicals, etc. are generated, and when the amount of plasma generated increases, the amount of ozone generated also increases, but as shown in FIG. The higher the higher the ozone generation amount, the higher the ozone generation amount as the frequency increases in sequence A, B, C, D, E (A <B <C <D <E) even at the same voltage. In the embodiment, the amount of plasma generated in the plasma generating means 63 is controlled by changing both the voltage and frequency of the power supplied from the power supply means 82 to the plasma generating means 63.

再び図2に注目して、前記電力供給手段82から前記プラズマ発生手段63への電力供給は制御手段83によって制御される。この制御手段83には、エンジンEの運転状態を検出する運転状態検出手段84の検出値が入力されるものであり、運転状態検出手段84は、前記吸気装置53が備えるスロットル弁58の開度を検出するスロットル開度センサ85ならびにエンジン回転数を検出するエンジン回転数センサ86の少なくとも一方を備えるものであり、この実施例では、スロットル開度センサ85およびエンジン回転数センサ86の両方を備えるとともに、吸気温センサ87および油温センサ88を備える。   Referring again to FIG. 2, the power supply from the power supply means 82 to the plasma generation means 63 is controlled by the control means 83. The control means 83 is input with the detection value of the operating state detecting means 84 for detecting the operating state of the engine E. The operating state detecting means 84 is the opening of the throttle valve 58 provided in the intake device 53. At least one of a throttle opening sensor 85 for detecting the engine speed and an engine speed sensor 86 for detecting the engine speed. In this embodiment, both the throttle opening sensor 85 and the engine speed sensor 86 are provided. The intake air temperature sensor 87 and the oil temperature sensor 88 are provided.

而して前記スロットル開度センサ85は、図4で示すように、スロットル弁58および空気制御弁67が設けられる弁軸59のスロットルドラム60とは反対側の端部に連結されるようにして空気導入管64の軸支部64aに取付けられ、前記エンジン回転数センサ86は、図2で示すように、クランクシャフト11に同軸に取付けられたパルサー89の外周に対向して固定配置され、前記吸気温センサ87はエアクリーナ54に導入される空気温を検出するようにしてエアクリーナ54に取付けられ、油温センサ88はクランクケース26の底部に貯留されるオイルの温度を検出するようにしてクランクケース26に取付けられる。   Thus, as shown in FIG. 4, the throttle opening sensor 85 is connected to the end opposite to the throttle drum 60 of the valve shaft 59 provided with the throttle valve 58 and the air control valve 67. As shown in FIG. 2, the engine speed sensor 86 is fixed to the outer periphery of a pulsar 89 attached coaxially to the crankshaft 11 and is fixedly arranged to be attached to the shaft support 64a of the air introduction pipe 64. The air temperature sensor 87 is attached to the air cleaner 54 so as to detect the temperature of the air introduced into the air cleaner 54, and the oil temperature sensor 88 is detected so as to detect the temperature of the oil stored at the bottom of the crankcase 26. Mounted on.

前記制御手段83は、前記運転状態検出手段84におけるスロットル開度センサ85およびエンジン回転数センサ86の検出値が低回転・低負荷領域にあるとき以外は前記プラズマ発生手段63によるプラズマ発生を回避するように前記電力供給手段82を制御するものであり、低回転・低負荷領域にあるときの周波数が図8で示すように設定され、低回転・低負荷領域にあるときの電圧が図9で示すように設定される。しかもそのような周波数および電圧の設定値は、吸気温センサ87および油温センサ88で検出される吸気温および油温に応じて補正される。   The control means 83 avoids the generation of plasma by the plasma generation means 63 except when the detection values of the throttle opening sensor 85 and the engine speed sensor 86 in the operating state detection means 84 are in the low rotation / low load region. The power supply means 82 is controlled as described above, and the frequency when in the low rotation / low load region is set as shown in FIG. 8, and the voltage when in the low rotation / low load region is shown in FIG. Set as shown. Moreover, such set values of frequency and voltage are corrected according to the intake air temperature and the oil temperature detected by the intake air temperature sensor 87 and the oil temperature sensor 88.

さらに制御手段83は、プラズマ発生手段63によるプラズマ発生要求量が同一であるときには低電圧かつ高周波の電力を供給するように電力供給手段82を制御する。   Further, the control means 83 controls the power supply means 82 to supply low voltage and high frequency power when the plasma generation required amount by the plasma generation means 63 is the same.

次にこの実施例の作用について説明すると、プラズマ発生手段63には、電圧および周波数の少なくとも一方を可変として電力供給手段82から電力が供給され、エンジンEの運転状態を検出する運転状態検出手段84の検出結果に応じて制御手段83が前記電力供給手段82から前記プラズマ発生手段63への電力供給を制御するので、エンジンEの運転状態に応じた適切なプラズマ発生を実現し、エンジンE全体のエネルギー効率を高めることができる。   Next, the operation of this embodiment will be described. The plasma generating means 63 is supplied with electric power from the electric power supply means 82 with at least one of the voltage and frequency being variable, and an operating state detecting means 84 for detecting the operating state of the engine E. The control means 83 controls the power supply from the power supply means 82 to the plasma generation means 63 in accordance with the detection result of this, so that appropriate plasma generation according to the operating state of the engine E is realized, and the entire engine E is controlled. Energy efficiency can be increased.

また運転状態検出手段84が、スロットル弁58の開度を検出するスロットル開度センサ85ならびにエンジン回転数を検出するエンジン回転数センサ86の少なくとも一方を備えるものであり、制御手段83は、運転状態検出手段84による検出値が低回転・低負荷領域にあるとき以外は前記プラズマ発生手段63によるプラズマ発生を回避するように前記電力供給手段82を制御するものであるので、混合気のプラズマ化によって燃費の低減が期待できる低負荷・低回転領域ではプラズマを発生させて燃焼効率の向上を図るものの、低負荷・低回転領域ほど燃費の低減が期待できない高負荷・高回転領域ではプラズマを発生させないようにして、プラズマを発生させるために必要な消費電力による燃料消費量の増加が、プラズマ発生による燃費低減量を上回ることがないようにして、エンジンE全体のエネルギー効率を高めることができる。   The operating state detecting means 84 includes at least one of a throttle opening degree sensor 85 that detects the opening degree of the throttle valve 58 and an engine speed sensor 86 that detects the engine speed, and the control means 83 includes the operating state. The power supply means 82 is controlled so as to avoid the generation of plasma by the plasma generation means 63 except when the detection value by the detection means 84 is in the low rotation / low load region. Plasma is generated in the low load / low rotation region where reduction of fuel consumption can be expected to improve combustion efficiency, but plasma is not generated in the high load / high rotation region where reduction in fuel consumption cannot be expected in the low load / low rotation region Thus, the increase in fuel consumption due to the power consumption necessary to generate plasma is due to plasma generation. As never exceed the fuel consumption amount, it is possible to increase the energy efficiency of the entire engine E.

さらに制御手段83が、プラズマ発生手段によるプラズマ発生要求量が同一であるときには低電圧かつ高周波の電力を供給するように電力供給手段82を制御するので、吸気通路57内での不所望な着火が生じることを防止することができる。すなわちプラズマ発生量は、図7で示したように、印加電圧および周波数にほぼ比例するものであり、印加電圧を低くしても高周波数とすることで充分なプラズマを発生することができるので、電圧を極力低くして混合気が吸気通路57内で着火しないようにすることができる。   Further, since the control means 83 controls the power supply means 82 to supply low voltage and high frequency power when the plasma generation required amount by the plasma generation means is the same, undesired ignition in the intake passage 57 is caused. It can be prevented from occurring. That is, as shown in FIG. 7, the plasma generation amount is substantially proportional to the applied voltage and frequency, and even if the applied voltage is lowered, sufficient plasma can be generated by setting the frequency high. The voltage can be made as low as possible so that the air-fuel mixture does not ignite in the intake passage 57.

以上、本発明の実施例を説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the present invention described in the claims. It is.

たとえば上記実施例では自動二輪車用のエンジンEに本発明を適用した場合について説明したが、本発明は乗用自動車用のエンジンや、発動機や発動発電機用のエンジンにも適用可能である。   For example, although the case where the present invention is applied to the engine E for a motorcycle has been described in the above embodiment, the present invention can also be applied to an engine for a passenger car, an engine for an engine, and an engine generator.

本発明を適用した自動二輪車の側面図である。1 is a side view of a motorcycle to which the present invention is applied. エンジンの側面図である。It is a side view of an engine. エンジンの要部拡大縦断側面図である。It is a principal part expansion vertical side view of an engine. 図3の4−4線断面図である。FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 非プラズマ用空気およびプラズマ用空気のエンジン負荷に対する変化を示す図である。It is a figure which shows the change with respect to the engine load of the air for non-plasma and the air for plasma. 図4の6−6線拡大断面図である。FIG. 6 is an enlarged sectional view taken along line 6-6 in FIG. 電圧および周波数に対するオゾン発生量の関係を示す図である。It is a figure which shows the relationship of the ozone generation amount with respect to a voltage and a frequency. スロットル開度およびエンジン回転数に応じた周波数設定例を示す図である。It is a figure which shows the example of a frequency setting according to a throttle opening and an engine speed. スロットル開度およびエンジン回転数に応じた電圧設定例を示す図である。It is a figure which shows the example of a voltage setting according to a throttle opening and an engine speed.

符号の説明Explanation of symbols

25・・・エンジン本体
36・・・燃焼室
37・・・点火プラグ
53・・・吸気装置
57・・・吸気通路
58・・・スロットル弁
63・・・プラズマ発生手段
82・・・電力供給手段
83・・・制御手段
84・・・運転状態検出手段
85・・・スロットル開度センサ
86・・・エンジン回転数センサ
E・・・エンジン
25 ... Engine body 36 ... Combustion chamber 37 ... Spark plug 53 ... Intake device 57 ... Intake passage 58 ... Throttle valve 63 ... Plasma generating means 82 ... Power supply means 83 ... Control means 84 ... Operating state detection means 85 ... Throttle opening sensor 86 ... Engine speed sensor E ... Engine

Claims (4)

点火プラグ(37)の先端を臨ませてエンジン本体(25)内に形成される燃焼室(36)に外部から空気を供給するための吸気通路(57)を有して前記エンジン本体(25)に接続される吸気装置(53)に、前記吸気通路(57)を流通する空気をプラズマ化するプラズマ発生手段(63)が付設されるエンジンにおいて、前記プラズマ発生手段(63)に電圧および周波数の少なくとも一方を可変として電力を供給する電力供給手段(82)と、エンジン(E)の運転状態を検出する運転状態検出手段(84)と、該運転状態検出手段(84)の検出結果に応じて前記電力供給手段(82)から前記プラズマ発生手段(63)への電力供給を制御する制御手段(83)とを備えることを特徴とするエンジン。   The engine body (25) has an intake passage (57) for supplying air from the outside to a combustion chamber (36) formed in the engine body (25) with the front end of the spark plug (37) facing. In an engine in which a plasma generating means (63) for converting the air flowing through the intake passage (57) into a plasma is attached to an intake device (53) connected to the plasma generator, the plasma generating means (63) has a voltage and a frequency. According to the detection result of the power supply means (82) for supplying power with variable at least one, the driving state detection means (84) for detecting the driving state of the engine (E), and the driving state detection means (84) An engine comprising: control means (83) for controlling power supply from the power supply means (82) to the plasma generation means (63). 前記運転状態検出手段(84)が、前記吸気装置(53)が備えるスロットル弁(58)の開度を検出するスロットル開度センサ(85)ならびにエンジン回転数を検出するエンジン回転数センサ(86)の少なくとも一方を備えることを特徴とする請求項1記載のエンジン。   The operating state detection means (84) detects the opening of a throttle valve (58) included in the intake device (53), and an engine speed sensor (86) detects the engine speed. The engine according to claim 1, comprising at least one of the following. 前記制御手段(83)は、前記運転状態検出手段(84)による検出値が低回転・低負荷領域にあるとき以外は前記プラズマ発生手段(63)によるプラズマ発生を回避するように前記電力供給手段(82)を制御することを特徴とする請求項2記載のエンジン。   The control means (83) is configured to avoid the generation of plasma by the plasma generation means (63) except when the value detected by the operation state detection means (84) is in a low rotation / low load region. The engine according to claim 2, wherein (82) is controlled. 前記制御手段(83)が、プラズマ発生手段(63)によるプラズマ発生要求量が同一であるときには低電圧かつ高周波の電力を供給するように前記電力供給手段(82)を制御することを特徴とする請求項1〜3のいずれかに記載のエンジン。   The control means (83) controls the power supply means (82) so as to supply low voltage and high frequency power when the plasma generation required amount by the plasma generation means (63) is the same. The engine according to any one of claims 1 to 3.
JP2008013363A 2008-01-24 2008-01-24 engine Expired - Fee Related JP5117202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008013363A JP5117202B2 (en) 2008-01-24 2008-01-24 engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008013363A JP5117202B2 (en) 2008-01-24 2008-01-24 engine

Publications (2)

Publication Number Publication Date
JP2009174410A true JP2009174410A (en) 2009-08-06
JP5117202B2 JP5117202B2 (en) 2013-01-16

Family

ID=41029756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008013363A Expired - Fee Related JP5117202B2 (en) 2008-01-24 2008-01-24 engine

Country Status (1)

Country Link
JP (1) JP5117202B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110048355A1 (en) * 2008-02-28 2011-03-03 Renault S.A.S. Optimization of the excitation frequency of a radiofrequency plug
JP2016023112A (en) * 2014-07-23 2016-02-08 日野自動車株式会社 Apparatus and method for controlling ozone generation amount
WO2019024961A1 (en) 2017-07-31 2019-02-07 Cingu Gmbh Plasma applicator for the treatment of a gas, and method for pollutant reduction in combustion processes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200190A (en) * 1995-01-18 1996-08-06 Technova:Kk Internal combustion engine ignition device
JPH09184455A (en) * 1995-12-28 1997-07-15 Kazuo Motouchi Ion generator for internal combustion engine
JP2004068800A (en) * 2002-08-06 2004-03-04 Mikio Okamoto Fuel consumption reduction method of automobile
JP2004340048A (en) * 2003-05-16 2004-12-02 Hino Motors Ltd Egr device
JP2007107491A (en) * 2005-10-17 2007-04-26 Seiji Baba Combustion accelerating air treatment device for displacement type internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200190A (en) * 1995-01-18 1996-08-06 Technova:Kk Internal combustion engine ignition device
JPH09184455A (en) * 1995-12-28 1997-07-15 Kazuo Motouchi Ion generator for internal combustion engine
JP2004068800A (en) * 2002-08-06 2004-03-04 Mikio Okamoto Fuel consumption reduction method of automobile
JP2004340048A (en) * 2003-05-16 2004-12-02 Hino Motors Ltd Egr device
JP2007107491A (en) * 2005-10-17 2007-04-26 Seiji Baba Combustion accelerating air treatment device for displacement type internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110048355A1 (en) * 2008-02-28 2011-03-03 Renault S.A.S. Optimization of the excitation frequency of a radiofrequency plug
US8656880B2 (en) * 2008-02-28 2014-02-25 Renault S. A. S. Optimization of the excitation frequency of a radiofrequency plug
JP2016023112A (en) * 2014-07-23 2016-02-08 日野自動車株式会社 Apparatus and method for controlling ozone generation amount
WO2019024961A1 (en) 2017-07-31 2019-02-07 Cingu Gmbh Plasma applicator for the treatment of a gas, and method for pollutant reduction in combustion processes

Also Published As

Publication number Publication date
JP5117202B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP6673994B2 (en) engine
US8336514B2 (en) Internal combustion engine including plasma generating device
JP4477481B2 (en) Oxygen concentration sensor mounting structure
JP5117202B2 (en) engine
JP2004052724A (en) Lubricating oil feeder for engine, and outboard engine using the same
WO2016021245A1 (en) Engine unit and saddled vehicle
JP2007177688A (en) Fuel injection device for engine
WO2016121262A1 (en) Engine unit
JP4820806B2 (en) Plasma supply device for engine
US7137380B1 (en) Internal combustion engine with ignition plug and vehicle provided with the same
TWI532625B (en) Saddle riding type vehicle
JP4802165B2 (en) Internal combustion engine equipped with a plasma generator
TWI507602B (en) Saddle riding type vehicle
JP2009002191A (en) Intake control device of internal combustion engine
TWI568923B (en) Air-cooled engine unit
JP2008101529A (en) Internal combustion engine
JP4879130B2 (en) Internal combustion engine equipped with a plasma generator
WO2003078815A1 (en) Intake air negative pressure detector for internal combustion engine
TWI568928B (en) Engine unit
WO2021205549A1 (en) Saddle-ride type vehicle
JP2007120457A (en) Engine device, and vehicle provided therewith
WO2017188144A1 (en) Engine control device
JP2008267173A (en) Vehicle, its control device and control method
JP2023020231A (en) engine system
JP2015113822A (en) Intake system for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5117202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees