JP2004068231A - Method for producing polyacrylonitrile-based fiber and device for stretching yarn in bath - Google Patents

Method for producing polyacrylonitrile-based fiber and device for stretching yarn in bath Download PDF

Info

Publication number
JP2004068231A
JP2004068231A JP2002232992A JP2002232992A JP2004068231A JP 2004068231 A JP2004068231 A JP 2004068231A JP 2002232992 A JP2002232992 A JP 2002232992A JP 2002232992 A JP2002232992 A JP 2002232992A JP 2004068231 A JP2004068231 A JP 2004068231A
Authority
JP
Japan
Prior art keywords
yarn
hot water
water bath
polyacrylonitrile
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002232992A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Ozaki
尾崎 充利
Kazuhisa Narisawa
成澤 和久
Makoto Kobayashi
木林 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002232992A priority Critical patent/JP2004068231A/en
Publication of JP2004068231A publication Critical patent/JP2004068231A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To produce a polyacrylonitrile-based fiber having less defects and a good quality by inhibiting the adhesion among single fibers in a hot water stretching process of the polyacrylonitrile-based fiber production and improving stretching property. <P>SOLUTION: This method for producing the polyacrylonitrile-based fiber by stretching the yarn obtained by spinning the polyacrylonitrile-based polymer, in a hot water bath is characterized by setting ≤3,000dTex/mm yarn density M of the yarn progressing into the hot water bath and stretching under ≤2.5mN/dTex tension on the yarn, and a device for stretching the yarn in the bath suitable for being used in the method is provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、主として炭素繊維用前駆体繊維などに使用されるポリアクリロニトリル系繊維の製造技術に関するものであり、さらに詳しくは、熱水浴中延伸での接着を防止し、延伸性を向上することで品位の優れたポリアクリロニトリル系繊維を効率よく製造することができるポリアクリロニトリル系繊維の製造方法および糸条の浴延伸装置に関するものである。
【0002】
【従来の技術】
炭素繊維は、その優れた比強度、比弾性率から近年大型構造部材・スポーツ用品等、広く使用されるようになってきている。この炭素繊維は、前駆体繊維の違いにより、ポリアクリロニトリル(以下PANと略記する)系繊維を前駆体としたPAN系炭素繊維、石油や石炭から抽出したピッチから得た繊維を前駆体としたピッチ系炭素繊維、再生セルロース繊維を前駆体としたセルロース系炭素繊維等に分類される。この中でもPAN系炭素繊維は特に優れた特性を有し、広い範囲の用途にて用いられている。PAN系重合体を繊維化するための紡糸方法としては、乾式紡糸法、湿式紡糸法、乾湿式紡糸法などが良く知られている。その中でも、得られる繊維の表面形態が平滑で円形を保持しやすく、その表層緻密性を高くしやすい乾湿式紡糸法は、高性能の炭素繊維が得られやすいこともあって広く用いられている。しかし、この乾湿式紡糸方法で得られるPAN系繊維は、その表層平滑度が高いため、熱水浴中で延伸倍率を上げると単繊維間での接着が起きやすい。糸条に単繊維間の接着が発生すると炭素化後にその部分が欠陥として残り、最終的に得られる炭素繊維の物性低下を招く原因となることがある。このように、PAN系炭素繊維の特性は、前駆体であるPAN系繊維の特性および性状により大きく左右されることは良く知られており、その特性および性状を制御するため多くの検討が従来よりなされて来た。特に、PAN系繊維を製造するにあたり、糸条を熱水浴中で延伸する際に、糸条を構成する単繊維同士が接着し易いため、熱水浴延伸での接着を抑制するための技術も多く提案されている。
【0003】
たとえば、特許第2853484号公報には、熱水浴延伸での接着を抑制するために、延伸浴入り側ローラーの温度を規定する技術が提供されている。しかし、この技術では、糸条の温度斑を制御することが出来ないため、特に繊度が大きい糸条の場合、接着抑制効果が十分でないという問題がある。
【0004】
また、特許第3039093号公報には、熱水浴延伸での接着を抑制するために、特定糸条密度指数の糸条を特定形状のガイドによって糸幅規制して延伸する技術が提供されている。しかし、この技術をそのまま用いても接着抑制効果は十分とは言えなかったのが実状であった。
【0005】
【発明が解決しようとする課題】
本発明は、PAN系繊維製造における熱水延伸工程での単繊維間の接着を抑制し、延伸性を向上することにより、欠陥が少なく品位の良いPAN系繊維を効率よく製造する方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明のPAN系繊維は、前記課題を解決するために次の構成を有する。すなわち、ポリアクリロニトリル系重合体を紡糸して得られた糸条を熱水浴中で延伸してポリアクリロニトリル系繊維を製造するに際して、熱水浴に進入する糸条の糸条密度Mを3,000dTex/mm以下とし、糸条に加える張力を2.5mN/dTex以下として延伸することを特徴とするポリアクリロニトリル系繊維の製造方法である。
【0007】
また、本発明の糸条の浴延伸装置は、前記課題を解決するために次の構成を有する。すなわち、熱水浴を形成するための熱水漕と、糸条を熱水浴に導入するためのガイドと、糸条に延伸を付与するための延伸付与手段を有し、かつ、前記ガイドが熱水浴の液面上に配されてなることを特徴とする糸条の浴延伸装置である。
【0008】
【発明の実施の形態】
以下、本発明をより詳細に説明する。
【0009】
本発明者らは、単繊維同士の接着が発生し易い場所や接着発生に影響を及ぼす因子について広範囲にわたる検討を重ねた結果、ポリアクリロニトリル系重合体を紡糸して得られた糸条を熱水浴に導入する際に、糸条密度と張力を適正な範囲に制御することにより、劇的な接着抑制効果が得られることを見出した。
【0010】
本発明においては、まずPAN系重合体を紡糸して糸条を得る。通常、PAN系重合体としては、アクリロニトリルを95重量%以上含み、必要に応じてさらにコモノマーを5重量%以内で共重合したものを用いることができる。コモノマーとしては、アクリル酸、メタクリル酸、イタコン酸等の有機酸、そのメチル、エチル、プロピル、イソプロピル等エステル、および/またはそのアンモニウム、テトラメチルアンモニウム、テトラエチルアンモニウム等の塩、さらにはアクリリルアミド等の不飽和アミド化合物等が使用できる。PAN系重合体は、通常、有機、または無機の溶媒に溶解した状態の紡糸用原液として調整される。
【0011】
次に、PAN系重合体を口金に通して繊維となす、いわゆる紡糸をする訳であるが、この場合、直接凝固浴中に紡糸して凝固糸条を得る湿式紡糸法や、一旦気相中に紡出した糸条を凝固浴に導入して凝固糸条とせしめる乾湿式紡糸法など、一般に知られた紡糸法を採用することができるが、得られる繊維の断面形態が円形で表面形態が平滑となり易いことに起因して、熱水浴中延伸において接着が発生しやすい乾湿式紡糸法に採用した場合に、本発明は特に顕著な効果を奏する。また、延伸に供する糸条は1糸条あたりのフィラメント数が、3,000本以上100,000本以下の場合に特に顕著な効果を奏する。
【0012】
得られた凝固糸条中には凝固浴中の溶媒成分が通常残存し、残存する溶媒成分が多すぎる前駆体繊維は、それを焼成して炭素繊維にしようとすると、高温の炭化雰囲気中にこれら溶媒成分などが飛散し、得られる炭素繊維に、破壊の開始点となる欠陥を形成させ、ひいては得られる炭素繊維の物性を低下させることになるため、凝固糸条に残存する溶媒成分を例えば熱水中で洗浄除去する洗浄工程を経由するのが一般的である。この洗浄工程は、後述する熱水浴中での延伸工程に先だって行っても良いし後で行っても良く、さらには、後述する熱水浴中での延伸工程で洗浄工程を兼ねても良い。
【0013】
本発明では、PAN系重合体を紡糸して得られる糸条を熱水浴中にて延伸する。
【0014】
本発明で言う熱水浴とは、30〜98℃、好ましくは60〜95℃の熱水を満たした浴であり、糸条の入り側と出側に、糸条が接して速度を規制する駆動ローラーを配置することで糸条を延伸させることができる。熱水の温度が低すぎると実質的に延伸されないこともあり、熱水の温度が高すぎると、熱水浴周辺の温度および湿度も高くなり、浴周辺の作業環境が悪化する。駆動ローラーは、単一の熱水浴の入りと出側に配置することも出来るが、複数の熱水浴に渡り、各熱水浴の間はフリーローラーを配置しても、各熱水浴に入る際の糸条の状態を本発明に規定する範囲に制御することにより好適になし得る。この入り側と出側の駆動ローラーの速度差で糸条の延伸倍率を制御することができる。
【0015】
糸条を熱水浴中で延伸する際には、糸条に高い張力および温度を与えることで延伸されるが、それに伴い単繊維同士の接着が誘発される。特に糸条最外層に位置する単繊維が、熱水浴中に配されたローラーに圧着されることにより接着が生じている。すなわち、糸条が熱水浴に進入したまさにその瞬間に、単繊維同士の接着は発生しているということを発明者らは発見し、この瞬間における糸条状態を適切な条件下に制御することによって本発明に至ったのである。
【0016】
本発明では、この熱水浴中での糸条の延伸に際して、熱水浴に糸条が進入する際の糸条密度Mを3000dTex/mm以下、好ましくは100〜3,000dTex/mm、より好ましくは400〜2,500dTex/mm、さらに好ましくは1,000〜2,000dTex/mmにするとともに、糸条に加える張力を2.5mN/dTex以下、好ましくは2.0mN/dTex以下とするのである。
【0017】
なお、本発明で言う糸条密度Mとは、次の式(1)で定義される値をいい、糸条の拡がり程度の目安となる。
【0018】
M(dTex/mm)=D(dTex)/L(mm)  ・・・ (1)
ここで、Dは熱水浴に進入する際のトータル繊度であり、Lは熱水浴に進入する際の糸束の幅である。
【0019】
糸条密度が大きすぎると、糸条内での温度斑、張力斑が大きくなり、接着抑制効果が低減する一方、あまりに小さすぎると、糸条を大きく拡げるために、糸条を必要以上にしごくことになり、糸痛みが発生し易くなる。
【0020】
また、ここでの糸条に加える張力が大きすぎると、接着抑制効果が低減する一方、張力があまりに小さすぎると、実質的に延伸がなされない。
【0021】
上記した条件を満たすためには、図1に示すような浴延伸装置を用いるのがよい。図1において、熱水槽5に熱水6が溜められ熱水浴が形成されている。糸条を熱水浴に導入するためのガイド3aが、熱水浴液面に接するよう設けられている。糸条は駆動ローラーなどの延伸付与手段(図示せず)で延伸される。
糸条は、まず駆動ローラー(図示せず)で工程速度が規制されてから、入り側ローラー2a,2bを経てガイド3aで拡幅され、熱水浴に導入される。熱水浴に導入された糸条は浸漬ローラー2cで折り返されて熱水浴から引き出され、出側ローラー2dを経て駆動ローラーで工程速度が規制される。ガイド3aは必ずしも熱水浴に液面に接していなくても液面上直近にあっても良いが、熱水浴液面に接するよう配されることにより浴延伸での前記した条件をより高い精度で制御することができる。図2は、入り側ローラー2bに替えてガイド3b、3cを用いた糸条延伸装置の例である。
【0022】
このように、紡糸された糸条を熱水中にて延伸するに際し、糸条が熱水に進入する直前でガイドに接触せしめることにより、糸条をしごき、拡幅することができ、糸束中への熱水の進入を促進し、熱水浴に進入した際の温度斑を低減し単糸間の接着を抑制することができる。糸条がローラーに接した状態で熱水浴に進入する場合には、ローラー上で糸条内単繊維の相対的な動きがほとんど無く、その位置が固定した状態にて熱水浴に進入することになるため、温度斑や張力斑を低減させることができず、単繊維間の接着が、特に糸条表層部に位置する単繊維間で多発することになる。このような観点から、熱水浴に接するガイドとしては、フリーローラーよりもむしろ非回転で棒状の形状を有することが好ましい。湾曲状、V型等のガイドを用いた場合、熱水浴に進入する時間が糸条内の単繊維ごとで異なることとなり、それに伴い、延伸する際に糸条内で張力斑が生じ、ひいては、張力の高い部分において接着が発生しやすくなることがある。熱水浴液面に接して存在するガイド以外に用いるガイドは、湾曲状、V型等のものを用いても本発明の効果にさほど影響は与えない。
【0023】
ガイドの材質は、糸条が過度の擦過を受けないように糸条との摩擦係数の低いものを選択する。例えば、ステンレス等合金表面に硬質クロームメッキを施したもの、セラミックス等が用いられる。ガイド表面が鏡面仕上げ、梨地処理されたもの等を使用すると糸条が過度の擦過を受けないようにするのに好適である。
【0024】
本発明の方法を用いると、熱水の温度に依存せず熱水浴中での糸条内での接着を低減することができる。
【0025】
本発明において、熱水浴液面に接するガイドと糸条の間の応力を2.0mN/dTex以下、好ましくは1.5mN/dTex以下にするのが良い。この応力は、熱水浴中で糸条に加わる糸束進行方向の張力を張力計で実測し、この張力をガイド軸方面にベクトル分割して求めることができる。なお、後述する実施例では張力計として、TENSION METER HS−3000(EIKO(株)製)を用いた。このガイドと糸条の間の応力が大きすぎると、糸条内での接着抑制効果が低下しがちであり、小さすぎると、糸条の拡幅効果が低くなりがちである。糸条の拡幅効果はガイドの段数(個数)を増やせば高めることも可能ではあるが、あまりに多くのガイドを使用するのは生産性の観点からは得策ではない。
【0026】
ガイドと糸条の間の応力を調整する手段としては、ガイドと糸条との接触角を変更するが一般的であるが、延伸倍率を変更しても良い。この接触角の好適な範囲は1°以上30°以下、好ましくは2°以上20°以下であり、延伸倍率の好適な範囲は、2.0倍以上10.0倍以下であり、上記応力を所定の範囲に収めるよう適宜設定することができる。
【0027】
熱水浴中での延伸において上記のようなガイド配置を取ることにより、飛躍的に糸条内の単繊維間の接着が低減した上で、熱水浴中の延伸倍率が2倍以上10倍以下と高くすることが可能となる。このように熱水浴中での延伸倍率を高めることにより、延伸に伴う繊維の配向性を向上させることができ、熱水浴中で延伸された糸条は、接着もほとんどなく、高い配向性を示すため、高性能な炭素繊維を製造するのに好適である。
【0028】
本発明において、熱水中で延伸された糸条は、必要に応じて、油剤付与工程、乾燥緻密化工程、2次延伸工程等の工程を適宜経てPAN系繊維となる。油剤付与工程で用いる油剤としては、PAN系繊維を炭素繊維となす場合には、炭素化において膠着抑制効果の高い変性シリコーン系油剤を用いるのが良い。また、乾燥緻密化工程は、加熱ローラー等を用いて行えるが、その温度、時間は適宜選択できる。乾燥緻密化工程後に2次延伸工程を採用することもでき、2次延伸としては乾熱延伸も採用できるが、後延伸性の良好な加圧スチーム中での延伸を好ましく採用できる。
【0029】
本発明では、接着を低減して熱水浴中の延伸倍率を向上することができるが、前述の2次延伸工程を採用した場合、そこでの延伸倍率をも向上させることができるという特徴もある。本発明で2次延伸工程での延伸倍率が向上する理由は必ずしも明確とはなっていないが、2次延伸に供する糸条内での単繊維間接着が多いと、乾熱中や加圧スチーム中等で延伸した際、その接着部分が単繊維切れの起点となるため、2次延伸時の倍率を高く設定することができないものと考えられる。本発明により、熱水浴延伸および2次延伸とを合わせた全延伸倍率を10倍以上30倍以下という高く設定でき、高性能な炭素繊維の前駆体として好適なPAN系繊維を製造することができるようになる。
【0030】
以上の様な製造法により得られるPAN系繊維は、単繊維間の接着もほとんどなく、品位も良好で、高性能な炭素繊維を得るに好適なものとなる。
【0031】
【実施例】
次に、実施例を用いて本発明をさらに具体的に説明する。本実施例では、糸条の単繊維間接着状態、炭素繊維のストランド強度および弾性率は次のような手順で測定を行った。
(糸条の単繊維間接着状態)
油剤が付与されていない糸条を長さ約5mm程度に切断し、非イオン系界面活性剤ノイゲンSS(登録商標、第一工業製薬(株)製)の0.1重量%水溶液に分散させ、攪拌機で60rpmで撹拌した後に、黒色濾紙で濾過して目視にて接着状態を判定した。判定は5段階にて行い、ほとんど接着のない状態を1級、ほとんど全ての単繊維が接着している状態を5級として間を等間隔に分配して級判定を行った。
(炭素繊維のストランド強度および弾性率)
脂環式エポキシ樹脂”ベークライト”(登録商標)ERL−4221(ユニオン・カーバイド(株)製)を1000gに、三フッ化ホウ素モノエチルアミンを30gおよびアセトンを40g混合した樹脂組成物を、炭素繊維に付与し複数のローラー上を走行させることにより含浸させた。これを130℃、35分間加熱して樹脂を硬化させることで、樹脂含浸ストランドを得た。得られた樹脂含浸ストランドをJIS R7601に規定する方法に従ってストランド強度および弾性率を測定した。
(実施例1)
アクリロニトリル99重量%と、アクリル酸1重量%を共重合したPAN系重合体の20重量%ジメチルスルホキシド溶液を紡糸原液として用いた。この紡糸原液を0.10mmφの径で4,000ホールの吐出孔を有する紡糸口金から吐出させ、一旦不活性雰囲気を経由して10℃、30重量%のジメチルスルホキシド水溶液を満たした凝固浴中に進入させて凝固させることで凝固糸条を得た。得られた凝固糸条を30℃の温水浴中で水洗した。この水洗糸を、図1に示すような糸条延伸装置を2段に配して延伸を行った。なお、1段目の糸条延伸装置も2段目の糸条延伸装置も、入り側ローラー2a,2b、浸漬ローラー2c、出側ローラー2dはいずれも、表面硬質クロームメッキを施したステンレス鋼のローラーを用い、熱水浴液面に接するガイド3aは、ステンレス鋼製の2mmφ円柱棒に鏡面仕上げを施したものを用い、熱水1aの温度は90℃とした。なお、ガイド3aと糸条のなす角度は2゜であった。ここで、熱水浴に進入する糸条の糸条密度は1,800dTex/mmとし、糸条に1.5mN/dTexの張力を加えて、熱水浴中延伸での延伸倍率を3.0倍とした。2段目の熱水浴から浴外に引き出した延伸糸条は、接着状態が1.0級と極めて良好であった。
【0032】
得られた延伸糸条に付着量1.0重量%となるように変性シリコーン系油剤を付与し、180℃の乾燥ローラーにて繊維中の水分率が実質的に0%になるまで乾燥させた。乾燥糸条を160℃の飽和加圧スチーム中にて全延伸倍率が16倍となるように延伸し、単繊維繊度1.11dTex、フィラメント数4000本のPAN系繊維束を得た。得られたPAN系繊維束は毛羽もなく品位も良好であった。
【0033】
得られたPAN系繊維束を260℃の熱空気循環炉中、延伸倍率0.90倍にて耐炎化処理を行い、次いで、窒素中、最高温度700℃の熱処理炉にて延伸倍率0.98倍で予備炭素化し、続いて不活性雰囲気中、最高温度1,300℃の高温熱処理炉にて延伸倍率0.95倍で炭素化して炭素繊維束となした。この炭素繊維束を陽極として硫酸水溶液を電解液とした陽極酸化を行い、更にビスフェノール−A−ジグリシジルエーテルの水系化物を炭素繊維重量に対して1.0重量%付与して乾燥して巻き取った。
【0034】
得られた炭素繊維束は毛羽もなく品位は良好であった。製造条件および得られた炭素繊維束の特性などを表1にまとめた。
(実施例2)
熱水浴での延伸倍率を4倍、全延伸倍率を20倍に変更した以外は実施例1と同様にしてPAN系繊維束および炭素繊維束を得た。熱水浴に進入する糸条の糸条密度、および糸条に加える張力は表1に示すとおりであった。得られたPAN系繊維束および炭素繊維束は毛羽もなく品位は良好であった。製造条件および得られた炭素繊維束の特性などを表1にまとめた。
(実施例3)
糸条延伸装置として図2に示すものを用い、それを2段に配するように変更した以外は実施例1と同様にしてPAN系繊維束および炭素繊維束を得た。なお、ガイド3aと糸条のなす角度は2゜であった。熱水浴に進入する糸条の糸条密度は1,800dTex/mm、糸条に加える張力は表1に示すとおりであった。得られたPAN系繊維束および炭素繊維束は毛羽もなく品位は良好であった。製造条件および得られた炭素繊維束の特性などを表1にまとめた。
(比較例1)
糸条延伸装置として図3に示すものを用い、それを2段に配するように変更した以外は実施例1と同様にしてPAN系繊維束および炭素繊維束を得た。熱水浴に進入する糸条の糸条密度、および糸条に加える張力は表1に示すとおりであった。得られたPAN系繊維束は単繊維間の接着も多く品位の低いものであった。また、得られた炭素繊維束は、原料であるPAN系繊維束における単繊維間接着の多さを反映して、低い物性のものであった。製造条件および得られた炭素繊維束の特性などを表1にまとめた。
(比較例2)
糸条延伸装置として図3に示すものを用い、それを2段に配するように変更した以外は実施例2と同様にしてPAN系繊維束および炭素繊維束を得た。熱水浴に進入する糸条の糸条密度、および糸条に加える張力は表1に示すとおりであった。得られたPAN系繊維束は単繊維間の接着も多く品位の悪いものであった。製造条件および得られた炭素繊維束の特性などを表1にまとめた。
(比較例3)
熱水浴に進入する際の糸条密度を4,000dTex/mmとする以外は実施例3と同様にしてPAN系繊維束を得た。熱水浴での延伸倍率、および糸条に加える張力は表1に示すとおりであった。得られたPAN系繊維は単繊維間の接着も多く品位の悪いものであった。製造条件および得られた炭素繊維束の特性などを表1にまとめた。
(実施例4)
凝固浴から引き上げた4,000フィラメントの繊維束を3本合糸して12,000本の糸条とするように変更した以外は実施例1と同様にしてPAN系繊維束および炭素繊維束を得た。熱水浴に進入する糸条の糸条密度、および糸条に加える張力は表1に示すとおりであった。得られたPAN系繊維束および炭素繊維束は毛羽もなく品位は良好であった。製造条件および得られた炭素繊維束の特性などを表1にまとめた。
(実施例5)
凝固浴から引き上げた4,000フィラメントの繊維束を3本合糸して12,000本の糸条とするように変更した以外は実施例2と同様にしてPAN系繊維束および炭素繊維束を得た。熱水浴に進入する糸条の糸条密度、および糸条に加える張力は表1に示すとおりであった。得られたPAN系繊維束および炭素繊維束は毛羽もなく品位は良好であった。製造条件および得られた炭素繊維束の特性などを表1にまとめた。
(比較例4)
凝固浴から引き上げた4,000フィラメントの繊維束を3本合糸して12,000本の糸条とするように変更した以外は比較例1と同様にしてPAN系繊維束および炭素繊維束を得た。熱水浴に進入する糸条の糸条密度、および糸条に加える張力は表1に示すとおりであった。得られたPAN系繊維束は単繊維間の接着も多く品位の低いものであった。また、得られた炭素繊維束は、原料であるPAN系繊維束における単繊維間接着の多さを反映して、低い物性のものであった。製造条件および得られた炭素繊維束の特性などを表1にまとめた。
(比較例5)
凝固浴から引き上げた4,000フィラメントの繊維束を3本合糸して12,000本の糸条とするように変更した以外は比較例2と同様にしてPAN系繊維束および炭素繊維束を得た。熱水浴に進入する糸条の糸条密度、および糸条に加える張力は表1に示すとおりであった。2段目の熱水浴から浴外に引き出した延伸糸条は、接着状態が4.5級と単繊維間の接着が多いものであった。製造条件および得られた炭素繊維束の特性などを表1にまとめた。
【0035】
【表1】

Figure 2004068231
【0036】
【発明の効果】
本発明によれば、熱水浴中で生じる接着を回避し、PAN系繊維の品位、ひいてはこれを焼成して得られる炭素繊維の特性を向上させうる。さらには、熱水浴での接着を抑制させることによりPAN系繊維製造の際の全延伸倍率を向上させられ安価にPAN系繊維を製造しうる。
【図面の簡単な説明】
【図1】本発明の浴延伸装置の一例を示す模式的な側面透視図である。
【図2】本発明の浴延伸装置の他の一例を示す模式的な側面透視図である。
【図3】従来の延伸装置の例を示す模式的な側面透視図である。
【符号の説明】
1  熱水
2a、2b  入り側ローラー
2c、2d  出側ローラー
3a  熱水浴液面に接するガイド
3b、3c ガイド
4  糸条
5  熱水槽[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a production technique of polyacrylonitrile fibers mainly used for precursor fibers for carbon fibers and the like, and more specifically, to prevent adhesion during drawing in a hot water bath and improve drawability. The present invention relates to a method for producing polyacrylonitrile-based fibers, which can efficiently produce high-quality polyacrylonitrile-based fibers, and a yarn bath stretching apparatus.
[0002]
[Prior art]
BACKGROUND ART Carbon fibers have been widely used in recent years, such as large structural members and sports goods, due to their excellent specific strength and specific elastic modulus. Depending on the difference in the precursor fiber, the carbon fiber is a PAN-based carbon fiber obtained by using a polyacrylonitrile (hereinafter abbreviated as PAN) -based fiber as a precursor, or a pitch obtained by using a fiber obtained from a pitch extracted from petroleum or coal as a precursor. Carbon fibers, and cellulosic carbon fibers using regenerated cellulose fibers as precursors. Among them, PAN-based carbon fibers have particularly excellent properties and are used in a wide range of applications. As a spinning method for fiberizing a PAN-based polymer, a dry spinning method, a wet spinning method, a dry-wet spinning method, and the like are well known. Among them, the dry-wet spinning method in which the surface morphology of the obtained fiber is easy to maintain a smooth and circular shape and the surface layer denseness is easy to increase is widely used because high-performance carbon fiber is easily obtained. . However, since the PAN-based fiber obtained by this dry-wet spinning method has a high surface smoothness, adhesion between single fibers tends to occur when the draw ratio is increased in a hot water bath. When the adhesion between the single fibers occurs in the yarn, that portion remains as a defect after carbonization, which may cause deterioration in the physical properties of the finally obtained carbon fiber. As described above, it is well known that the properties of the PAN-based carbon fiber largely depend on the properties and properties of the precursor PAN-based fiber, and many studies have been made to control the properties and properties. It has been done. In particular, in producing a PAN-based fiber, when the yarn is stretched in a hot water bath, the single fibers constituting the yarn are easily adhered to each other. Therefore, a technique for suppressing adhesion in hot water bath stretching. Many have been proposed.
[0003]
For example, Japanese Patent No. 2853484 provides a technique for regulating the temperature of a roller on the side into which a stretching bath is inserted in order to suppress adhesion in hot water bath stretching. However, this technique cannot control the temperature unevenness of the yarn, and thus has a problem that the adhesion suppressing effect is not sufficient, particularly in the case of a yarn having a large fineness.
[0004]
Further, Japanese Patent No. 3039093 provides a technique of stretching a yarn having a specific yarn density index by regulating the yarn width thereof with a guide having a specific shape in order to suppress adhesion in hot water bath stretching. . However, the fact is that even if this technique was used as it was, the effect of suppressing the adhesion was not sufficient.
[0005]
[Problems to be solved by the invention]
The present invention provides a method for efficiently producing a high-quality PAN-based fiber with few defects by suppressing adhesion between single fibers in a hot water drawing step in PAN-based fiber production and improving drawability. The purpose is to:
[0006]
[Means for Solving the Problems]
The PAN fiber of the present invention has the following configuration in order to solve the above-mentioned problems. That is, when a yarn obtained by spinning a polyacrylonitrile polymer is drawn in a hot water bath to produce a polyacrylonitrile fiber, the yarn density M of the yarn entering the hot water bath is set to 3, 000 dTex / mm or less, and a tension applied to the yarn is 2.5 mN / dTex or less, which is a method for producing polyacrylonitrile fiber.
[0007]
Further, the yarn bath stretching apparatus of the present invention has the following configuration in order to solve the above problems. That is, a hot water tank for forming a hot water bath, a guide for introducing the yarn into the hot water bath, and a stretching means for giving stretching to the yarn, and the guide is provided with A yarn bath stretching apparatus, which is arranged on a liquid surface of a hot water bath.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0009]
The present inventors have conducted extensive studies on places where single fibers are likely to adhere to each other and factors that influence the occurrence of adhesion. As a result, the yarn obtained by spinning the polyacrylonitrile-based polymer was treated with hot water. When introduced into a bath, it was found that by controlling the yarn density and the tension in an appropriate range, a dramatic effect of suppressing adhesion could be obtained.
[0010]
In the present invention, first, a PAN-based polymer is spun to obtain a yarn. Usually, as the PAN-based polymer, one containing 95% by weight or more of acrylonitrile and further copolymerizing a comonomer within 5% by weight as needed can be used. Examples of the comonomer include organic acids such as acrylic acid, methacrylic acid, and itaconic acid, esters thereof such as methyl, ethyl, propyl, and isopropyl, and / or salts thereof such as ammonium, tetramethylammonium, and tetraethylammonium, and acrylylamide and the like. And the like. The PAN-based polymer is usually prepared as a stock solution for spinning dissolved in an organic or inorganic solvent.
[0011]
Next, a so-called spinning is performed, in which the PAN-based polymer is passed through a die to form a fiber. In this case, a wet spinning method of directly spinning in a coagulation bath to obtain a coagulated yarn, A commonly known spinning method such as a dry-wet spinning method in which the spun yarn is introduced into a coagulation bath to form a coagulated yarn can be adopted, but the cross-sectional shape of the resulting fiber is circular and the surface shape is The present invention has a particularly remarkable effect when adopted in a dry-wet spinning method in which adhesion is likely to occur during drawing in a hot water bath due to easy smoothing. Further, the yarn to be drawn has a particularly remarkable effect when the number of filaments per yarn is 3,000 or more and 100,000 or less.
[0012]
The solvent component in the coagulation bath usually remains in the obtained coagulated yarn, and the precursor fiber containing too much solvent component remains in a high-temperature carbonized atmosphere when it is baked into carbon fiber. Since these solvent components and the like are scattered, the resulting carbon fibers form defects serving as starting points of destruction, and thus reduce the physical properties of the obtained carbon fibers. It is common to go through a washing step of washing and removing in hot water. This washing step may be performed before or after the stretching step in a hot water bath described below, and may also serve as the washing step in the stretching step in a hot water bath described later. .
[0013]
In the present invention, a yarn obtained by spinning a PAN-based polymer is drawn in a hot water bath.
[0014]
The hot water bath referred to in the present invention is a bath filled with hot water at 30 to 98 ° C., preferably 60 to 95 ° C. The yarn is in contact with the entry side and the exit side of the yarn to regulate the speed. By arranging the driving roller, the yarn can be drawn. If the temperature of the hot water is too low, the film may not be stretched substantially. If the temperature of the hot water is too high, the temperature and humidity around the hot water bath also increase, and the working environment around the bath deteriorates. The drive roller can be placed on the entrance and exit side of a single hot water bath, but it can extend over multiple hot water baths. By controlling the state of the yarn at the time of entry into the range specified in the present invention, it can be suitably achieved. The draw ratio of the yarn can be controlled by the speed difference between the drive rollers on the entrance side and the exit side.
[0015]
When a yarn is stretched in a hot water bath, the yarn is stretched by applying a high tension and temperature to the yarn, and with this, adhesion between the single fibers is induced. In particular, the single fiber located in the outermost layer of the yarn is bonded to a roller arranged in a hot water bath by pressure bonding to cause adhesion. That is, at the very moment when the yarn enters the hot water bath, the inventors have discovered that adhesion between the single fibers has occurred, and control the yarn state at this moment under appropriate conditions. This has led to the present invention.
[0016]
In the present invention, when the yarn is stretched in the hot water bath, the yarn density M when the yarn enters the hot water bath is 3000 dTex / mm or less, preferably 100 to 3,000 dTex / mm, more preferably. Is 400 to 2,500 dTex / mm, more preferably 1,000 to 2,000 dTex / mm, and the tension applied to the yarn is 2.5 mN / dTex or less, preferably 2.0 mN / dTex or less. .
[0017]
In addition, the yarn density M referred to in the present invention refers to a value defined by the following equation (1), which is a measure of the extent of the yarn.
[0018]
M (dTex / mm) = D (dTex) / L (mm) (1)
Here, D is the total fineness when entering the hot water bath, and L is the width of the yarn bundle when entering the hot water bath.
[0019]
If the yarn density is too large, the temperature unevenness and tension unevenness in the yarn become large, and the adhesion suppressing effect is reduced.On the other hand, if the yarn density is too small, the yarn is greatly expanded in order to greatly expand the yarn. As a result, thread pain is likely to occur.
[0020]
In addition, if the tension applied to the yarn here is too large, the adhesion suppressing effect is reduced, while if the tension is too small, the yarn is not substantially stretched.
[0021]
In order to satisfy the above conditions, it is preferable to use a bath stretching apparatus as shown in FIG. In FIG. 1, hot water 6 is stored in a hot water tank 5 to form a hot water bath. A guide 3a for introducing the yarn into the hot water bath is provided so as to be in contact with the liquid surface of the hot water bath. The yarn is drawn by a drawing applying means (not shown) such as a driving roller.
The process speed of the yarn is first regulated by a driving roller (not shown), and then the yarn is widened by a guide 3a via entry rollers 2a and 2b, and introduced into a hot water bath. The yarn introduced into the hot water bath is folded back by the immersion roller 2c and drawn out of the hot water bath, and the process speed is regulated by the driving roller via the outlet roller 2d. The guide 3a may not necessarily be in contact with the liquid surface of the hot water bath or may be in the vicinity of the liquid surface. It can be controlled with precision. FIG. 2 shows an example of a yarn drawing device using guides 3b and 3c instead of the entry-side roller 2b.
[0022]
As described above, when the spun yarn is stretched in hot water, the yarn is brought into contact with the guide immediately before entering the hot water, so that the yarn can be squeezed and widened, and the yarn can be expanded. To promote the entry of hot water into the hot water bath, reduce the temperature unevenness when entering the hot water bath, and suppress the adhesion between single yarns. When the yarn enters the hot water bath in contact with the roller, there is almost no relative movement of the single fiber in the yarn on the roller, and the yarn enters the hot water bath with its position fixed. Therefore, unevenness in temperature and unevenness in tension cannot be reduced, and the adhesion between the single fibers frequently occurs particularly between the single fibers located in the yarn surface layer portion. From such a viewpoint, it is preferable that the guide in contact with the hot water bath has a non-rotating, rod-like shape rather than a free roller. When a curved or V-shaped guide is used, the time for entering the hot water bath is different for each single fiber in the yarn, and accordingly, when stretched, tension unevenness occurs in the yarn, and as a result, In some cases, adhesion may easily occur in a portion having a high tension. Even if a guide used in addition to the guide existing in contact with the liquid surface of the hot water bath has a curved shape or a V-shaped guide, the effect of the present invention is not significantly affected.
[0023]
The material of the guide is selected to have a low coefficient of friction with the yarn so that the yarn is not excessively rubbed. For example, a material in which hard chrome plating is applied to the surface of an alloy such as stainless steel, ceramics, or the like is used. Use of a mirror-finished or matte-finished guide surface is suitable for preventing the yarn from being excessively abraded.
[0024]
By using the method of the present invention, adhesion within the yarn in a hot water bath can be reduced independently of the temperature of hot water.
[0025]
In the present invention, the stress between the guide and the yarn in contact with the liquid surface of the hot water bath is set to 2.0 mN / dTex or less, preferably 1.5 mN / dTex or less. This stress can be obtained by actually measuring the tension applied to the yarn in the direction of the yarn bundle in the hot water bath with a tensiometer, and dividing this tension into the guide shaft direction by vector. In the examples described later, TENSION METER HS-3000 (manufactured by EIKO Corporation) was used as a tensiometer. If the stress between the guide and the yarn is too large, the effect of suppressing adhesion within the yarn tends to decrease, and if it is too small, the effect of widening the yarn tends to decrease. Although the effect of widening the yarn can be increased by increasing the number of guide steps (number), it is not advisable to use too many guides from the viewpoint of productivity.
[0026]
As a means for adjusting the stress between the guide and the yarn, the contact angle between the guide and the yarn is generally changed, but the draw ratio may be changed. The preferred range of the contact angle is 1 ° or more and 30 ° or less, preferably 2 ° or more and 20 ° or less, and the preferred range of the draw ratio is 2.0 or more and 10.0 or less. It can be set appropriately so as to fall within a predetermined range.
[0027]
By adopting the above guide arrangement in the drawing in the hot water bath, the adhesion between the single fibers in the yarn is remarkably reduced, and the drawing magnification in the hot water bath is 2 times or more and 10 times. It is possible to increase the following. By increasing the draw ratio in a hot water bath in this way, the orientation of the fibers accompanying the drawing can be improved, and the yarn drawn in the hot water bath has little adhesion and high orientation. Therefore, it is suitable for producing a high-performance carbon fiber.
[0028]
In the present invention, the yarn drawn in hot water becomes a PAN-based fiber through an oil agent application step, a dry densification step, a secondary drawing step, and the like, as necessary. As the oil agent used in the oil agent applying step, when the PAN-based fiber is made of carbon fiber, it is preferable to use a modified silicone-based oil agent having a high sticking suppression effect in carbonization. The drying and densification step can be performed using a heating roller or the like, and the temperature and time can be appropriately selected. After the dry densification step, a secondary stretching step may be employed, and as the secondary stretching, dry heat stretching may be employed, but stretching in pressurized steam having good post-stretchability can be preferably employed.
[0029]
In the present invention, the stretching ratio in a hot water bath can be improved by reducing the adhesion, but when the above-described secondary stretching step is employed, there is also a feature that the stretching ratio there can be improved. . The reason why the draw ratio in the secondary drawing step is improved by the present invention is not always clear, but if there is a large amount of adhesion between the single fibers in the yarn to be subjected to the secondary drawing, it may occur during dry heat or pressure steam. When the film is stretched in the above manner, it is considered that the magnification at the time of the second stretching cannot be set high because the bonded portion becomes the starting point of the single fiber break. According to the present invention, the total draw ratio of hot water bath stretching and secondary stretching can be set as high as 10 times or more and 30 times or less, and a PAN-based fiber suitable as a high-performance carbon fiber precursor can be produced. become able to.
[0030]
The PAN-based fiber obtained by the above-described production method has little adhesion between single fibers, has good quality, and is suitable for obtaining high-performance carbon fibers.
[0031]
【Example】
Next, the present invention will be described more specifically with reference to examples. In this example, the bonding state between the single fibers of the yarn, the strand strength and the elastic modulus of the carbon fiber were measured by the following procedure.
(Adhesion between yarn and single fiber)
The oil-free yarn is cut to a length of about 5 mm and dispersed in a 0.1% by weight aqueous solution of a nonionic surfactant Neugen SS (registered trademark, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.). After stirring at 60 rpm with a stirrer, the mixture was filtered through black filter paper and the adhesion was visually determined. Judgment was performed in five stages, and the state where almost no adhesion was made was class 1, and the state where almost all single fibers were adhered was class 5 and the intervals were distributed at equal intervals to make a classification judgment.
(Strand strength and elastic modulus of carbon fiber)
A carbon fiber was prepared by mixing a resin composition obtained by mixing alicyclic epoxy resin “Bakelite” (registered trademark) ERL-4221 (manufactured by Union Carbide Co., Ltd.) with 1000 g, boron trifluoride monoethylamine 30 g and acetone 40 g. It was applied and impregnated by running on a plurality of rollers. This was heated at 130 ° C. for 35 minutes to cure the resin, thereby obtaining a resin-impregnated strand. The obtained resin-impregnated strand was measured for strand strength and elastic modulus according to the method specified in JIS R7601.
(Example 1)
A 20% by weight dimethyl sulfoxide solution of a PAN-based polymer obtained by copolymerizing 99% by weight of acrylonitrile and 1% by weight of acrylic acid was used as a spinning solution. This spinning stock solution is discharged from a spinneret having a diameter of 0.10 mmφ and a discharge hole of 4,000 holes, and once passed through an inert atmosphere into a coagulation bath filled with a 30% by weight aqueous solution of dimethyl sulfoxide at 10 ° C. The coagulated yarn was obtained by intruding and solidifying. The obtained coagulated yarn was washed in a warm water bath at 30 ° C. The washed yarn was drawn by arranging a yarn drawing device as shown in FIG. 1 in two stages. In both the first-stage yarn stretching device and the second-stage yarn stretching device, the entrance-side rollers 2a and 2b, the immersion roller 2c, and the exit-side roller 2d are all made of stainless steel having a surface hard chrome plating. As the guide 3a in contact with the liquid surface of the hot water bath using a roller, a mirror-finished stainless steel 2 mmφ cylindrical rod was used, and the temperature of the hot water 1a was 90 ° C. The angle between the guide 3a and the thread was 2 °. Here, the yarn density of the yarn entering the hot water bath is 1,800 dTex / mm, a tension of 1.5 mN / dTex is applied to the yarn, and the draw ratio in the drawing in the hot water bath is 3.0. Doubled. The drawn yarn drawn out of the second-stage hot water bath out of the bath had an extremely good adhesion of 1.0 class.
[0032]
A modified silicone oil agent was applied to the obtained drawn yarn so as to have an adhesion amount of 1.0% by weight, and dried with a drying roller at 180 ° C. until the moisture content in the fiber became substantially 0%. . The dried yarn was stretched in a saturated pressurized steam at 160 ° C. so that the total draw ratio became 16 times, to obtain a PAN-based fiber bundle having a single fiber fineness of 1.11 dTex and a number of filaments of 4000. The obtained PAN fiber bundle had no fluff and good quality.
[0033]
The obtained PAN-based fiber bundle is subjected to oxidizing treatment in a hot air circulating furnace at 260 ° C. at a draw ratio of 0.90, and then in a heat treatment furnace at a maximum temperature of 700 ° C. in nitrogen at a draw ratio of 0.98. The carbon fiber bundle was carbonized at a draw ratio of 0.95 times in an inert atmosphere at a high temperature of 1,300 ° C. in a high-temperature heat treatment furnace. Using the carbon fiber bundle as an anode, anodic oxidation using an aqueous solution of sulfuric acid as an electrolytic solution is performed, and an aqueous hydrate of bisphenol-A-diglycidyl ether is applied to the carbon fiber in an amount of 1.0% by weight, dried and wound up. Was.
[0034]
The quality of the obtained carbon fiber bundle was good without fuzz. Table 1 summarizes the production conditions and the characteristics of the obtained carbon fiber bundle.
(Example 2)
A PAN-based fiber bundle and a carbon fiber bundle were obtained in the same manner as in Example 1, except that the draw ratio in a hot water bath was changed to 4 times and the total draw ratio was changed to 20 times. The yarn density of the yarn entering the hot water bath and the tension applied to the yarn were as shown in Table 1. The obtained PAN-based fiber bundle and carbon fiber bundle had no fluff and were of good quality. Table 1 summarizes the production conditions and the characteristics of the obtained carbon fiber bundle.
(Example 3)
A PAN-based fiber bundle and a carbon fiber bundle were obtained in the same manner as in Example 1 except that the apparatus shown in FIG. 2 was used as a yarn stretching apparatus, and was changed to be arranged in two stages. The angle between the guide 3a and the thread was 2 °. The yarn density of the yarn entering the hot water bath was 1,800 dTex / mm, and the tension applied to the yarn was as shown in Table 1. The obtained PAN-based fiber bundle and carbon fiber bundle had no fluff and were of good quality. Table 1 summarizes the production conditions and the characteristics of the obtained carbon fiber bundle.
(Comparative Example 1)
A PAN-based fiber bundle and a carbon fiber bundle were obtained in the same manner as in Example 1 except that the apparatus shown in FIG. 3 was used as a yarn stretching apparatus, and was changed to be arranged in two stages. The yarn density of the yarn entering the hot water bath and the tension applied to the yarn were as shown in Table 1. The obtained PAN-based fiber bundle was low in quality with much adhesion between single fibers. Further, the obtained carbon fiber bundle had low physical properties, reflecting the large amount of adhesion between single fibers in the PAN-based fiber bundle as the raw material. Table 1 summarizes the production conditions and the characteristics of the obtained carbon fiber bundle.
(Comparative Example 2)
A PAN-based fiber bundle and a carbon fiber bundle were obtained in the same manner as in Example 2 except that the apparatus shown in FIG. 3 was used as the yarn stretching apparatus, and was changed to be arranged in two stages. The yarn density of the yarn entering the hot water bath and the tension applied to the yarn were as shown in Table 1. The obtained PAN-based fiber bundle was poor in quality because of a large amount of adhesion between single fibers. Table 1 summarizes the production conditions and the characteristics of the obtained carbon fiber bundle.
(Comparative Example 3)
A PAN-based fiber bundle was obtained in the same manner as in Example 3, except that the yarn density when entering the hot water bath was 4,000 dTex / mm. The draw ratio in a hot water bath and the tension applied to the yarn were as shown in Table 1. The resulting PAN-based fiber had poor adhesion due to a large amount of adhesion between single fibers. Table 1 summarizes the production conditions and the characteristics of the obtained carbon fiber bundle.
(Example 4)
A PAN-based fiber bundle and a carbon fiber bundle were prepared in the same manner as in Example 1 except that three fiber bundles of 4,000 filaments pulled out of the coagulation bath were combined into three to form 12,000 yarns. Obtained. The yarn density of the yarn entering the hot water bath and the tension applied to the yarn were as shown in Table 1. The obtained PAN-based fiber bundle and carbon fiber bundle had no fluff and were of good quality. Table 1 summarizes the production conditions and the characteristics of the obtained carbon fiber bundle.
(Example 5)
A PAN-based fiber bundle and a carbon fiber bundle were prepared in the same manner as in Example 2 except that three 4,000 filament fiber bundles pulled up from the coagulation bath were combined into three yarns to make 12,000 yarns. Obtained. The yarn density of the yarn entering the hot water bath and the tension applied to the yarn were as shown in Table 1. The obtained PAN-based fiber bundle and carbon fiber bundle had no fluff and were of good quality. Table 1 summarizes the production conditions and the characteristics of the obtained carbon fiber bundle.
(Comparative Example 4)
A PAN-based fiber bundle and a carbon fiber bundle were produced in the same manner as in Comparative Example 1 except that three 4,000 filament fiber bundles pulled out of the coagulation bath were combined into three yarns to obtain 12,000 yarns. Obtained. The yarn density of the yarn entering the hot water bath and the tension applied to the yarn were as shown in Table 1. The obtained PAN-based fiber bundle was low in quality with much adhesion between single fibers. Further, the obtained carbon fiber bundle had low physical properties, reflecting the large amount of adhesion between single fibers in the PAN-based fiber bundle as the raw material. Table 1 summarizes the production conditions and the characteristics of the obtained carbon fiber bundle.
(Comparative Example 5)
A PAN-based fiber bundle and a carbon fiber bundle were prepared in the same manner as in Comparative Example 2 except that three 4,000 filament fiber bundles pulled out of the coagulation bath were combined into 32,000 yarns. Obtained. The yarn density of the yarn entering the hot water bath and the tension applied to the yarn were as shown in Table 1. The drawn yarn drawn out of the second-stage hot water bath out of the bath had an adhesion state of 4.5 class and a large amount of adhesion between single fibers. Table 1 summarizes the production conditions and the characteristics of the obtained carbon fiber bundle.
[0035]
[Table 1]
Figure 2004068231
[0036]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, adhesion which arises in a hot water bath can be avoided, and the quality of PAN type fiber, and the characteristic of the carbon fiber obtained by baking this can be improved. Further, by suppressing the adhesion in a hot water bath, the total draw ratio in producing the PAN-based fiber can be improved, and the PAN-based fiber can be produced at low cost.
[Brief description of the drawings]
FIG. 1 is a schematic side perspective view showing an example of a bath stretching apparatus of the present invention.
FIG. 2 is a schematic side perspective view showing another example of the bath stretching apparatus of the present invention.
FIG. 3 is a schematic side perspective view showing an example of a conventional stretching apparatus.
[Explanation of symbols]
1 Hot water 2a, 2b Inlet rollers 2c, 2d Outlet rollers 3a Guides 3b, 3c in contact with the surface of hot water bath Guide 4 Thread 5 Hot water tank

Claims (11)

ポリアクリロニトリル系重合体を紡糸して得られた糸条を熱水浴中で延伸してポリアクリロニトリル系繊維を製造する方法において、熱水浴に進入する糸条の糸条密度Mを3,000dTex/mm以下とし、糸条に加える張力を2.5mN/dTex以下とすることを特徴とするポリアクリロニトリル系繊維の製造方法。In a method for producing a polyacrylonitrile-based fiber by drawing a yarn obtained by spinning a polyacrylonitrile-based polymer in a hot water bath, the yarn density M of the yarn entering the hot water bath is 3,000 dTex. / Mm or less, and a tension applied to the yarn is 2.5 mN / dTex or less, a method for producing polyacrylonitrile-based fibers. 1糸条あたりのフィラメント数が3,000〜100,000本である請求項1に記載のポリアクリロニトリル系繊維の製造方法。The method for producing a polyacrylonitrile fiber according to claim 1, wherein the number of filaments per yarn is 3,000 to 100,000. 糸条が熱水浴に進入する前に、前記糸条を少なくとも1つのガイドに接触せしめ糸条密度を前記範囲となるよう制御する請求項1または2に記載のポリアクリロニトリル系繊維の製造方法。The method for producing a polyacrylonitrile-based fiber according to claim 1, wherein the yarn is brought into contact with at least one guide to control the yarn density within the range before the yarn enters the hot water bath. 熱水浴液面に最も近いガイドが熱水浴液面に接していることを特徴とする請求項3記載のポリアクリロニトリル系繊維の製造方法。4. The method for producing polyacrylonitrile fiber according to claim 3, wherein the guide closest to the hot water bath liquid surface is in contact with the hot water bath liquid surface. 熱水浴液面に接しているガイドが棒状である請求項4に記載のポリアクリロニトリル系繊維の製造方法。The method for producing a polyacrylonitrile-based fiber according to claim 4, wherein the guide in contact with the liquid surface of the hot water bath has a rod shape. 熱水浴液面に接しているガイドと糸条の間の応力が2.0mN/dTex以下である請求項4または5に記載のポリアクリロニトリル系繊維の製造方法。The method for producing a polyacrylonitrile-based fiber according to claim 4 or 5, wherein the stress between the guide and the thread in contact with the liquid surface of the hot water bath is 2.0 mN / dTex or less. 熱水浴液面に接しているガイドと糸条のなす接触角度が1°〜30°である請求項4〜6のいずれかに記載のポリアクリロニトリル系繊維の製造方法。The method for producing a polyacrylonitrile-based fiber according to any one of claims 4 to 6, wherein a contact angle between the guide and the thread in contact with the liquid surface of the hot water bath is 1 ° to 30 °. 糸条に対する熱水浴中での延伸倍率が2倍以上であり、全延伸倍率が10倍以上である請求項1〜7のいずれかに記載のポリアクリロニトリル系繊維の製造方法。The method for producing a polyacrylonitrile-based fiber according to any one of claims 1 to 7, wherein a draw ratio of the yarn in a hot water bath is 2 or more, and a total draw ratio is 10 or more. 紡糸法が乾湿式紡糸法である請求項1〜8のいずれかに記載のポリアクリロニトリル系繊維の製造方法。The method for producing a polyacrylonitrile-based fiber according to any one of claims 1 to 8, wherein the spinning method is a dry-wet spinning method. 熱水浴を形成するための熱水漕と、糸条を熱水浴に導入するためのガイドと、糸条に延伸を付与するための延伸付与手段を有し、かつ、前記ガイドが熱水浴の液面上に配されてなることを特徴とする糸条の浴延伸装置。A hot water tank for forming a hot water bath, a guide for introducing the yarn into the hot water bath, and a stretching means for giving stretching to the yarn, and the guide is provided with hot water A yarn bath stretching apparatus, which is arranged on a liquid surface of a bath. 前記ガイドは、熱水浴液面に接して配されている請求項10に記載の糸条の浴延伸装置。The yarn drawing apparatus according to claim 10, wherein the guide is disposed in contact with a liquid surface of the hot water bath.
JP2002232992A 2002-08-09 2002-08-09 Method for producing polyacrylonitrile-based fiber and device for stretching yarn in bath Pending JP2004068231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232992A JP2004068231A (en) 2002-08-09 2002-08-09 Method for producing polyacrylonitrile-based fiber and device for stretching yarn in bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232992A JP2004068231A (en) 2002-08-09 2002-08-09 Method for producing polyacrylonitrile-based fiber and device for stretching yarn in bath

Publications (1)

Publication Number Publication Date
JP2004068231A true JP2004068231A (en) 2004-03-04

Family

ID=32018237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232992A Pending JP2004068231A (en) 2002-08-09 2002-08-09 Method for producing polyacrylonitrile-based fiber and device for stretching yarn in bath

Country Status (1)

Country Link
JP (1) JP2004068231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199823A (en) * 2015-04-10 2016-12-01 帝人株式会社 Fiber bundle manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199823A (en) * 2015-04-10 2016-12-01 帝人株式会社 Fiber bundle manufacturing method

Similar Documents

Publication Publication Date Title
JP5100758B2 (en) Carbon fiber strand and method for producing the same
KR100570592B1 (en) Acrylonitril-Based Precursor Fiber for Carbon Fiber and Method for Production Thereof
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JPWO2017204026A1 (en) Carbon fiber bundle and method for producing the same
JP4228009B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
WO2020090597A1 (en) Methods for producing carbon fiber precursor fiber and carbon fiber
JP2008240203A (en) Steam drawing apparatus and method for producing precursor yarn for carbon fiber
JP2004068231A (en) Method for producing polyacrylonitrile-based fiber and device for stretching yarn in bath
JP2006188792A (en) Spinning bath apparatus and acrylic fiber bundle
JP2875667B2 (en) Method of stretching acrylic yarn for carbon fiber precursor in bath
JP2007321267A (en) Method for producing polyacrylonitrile-based fiber and carbon fiber
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JP2004060126A (en) Carbon fiber and method for producing the same
JP2002309438A (en) Method for producing acrylic fiber
JP6729665B2 (en) Acrylonitrile precursor fiber bundle for carbon fiber and method for producing the same
EP3699333B1 (en) Method for manufacturing oxidized fiber bundle, method for manufacturing carbon fiber bundle, and joining apparatus
JP6107222B2 (en) A method for producing an acrylic precursor fiber for carbon fiber, and a method for producing carbon fiber.
JP7408406B2 (en) Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device
JP2555826B2 (en) Acrylic yarn manufacturing method for carbon fiber precursor
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JP2012219382A (en) Method for producing precursor fiber bundle of polyacrylonitrile-based carbon fiber, and precursor fiber bundle of polyacrylonitrile-based carbon fiber obtained by using the same
JP2004346447A (en) Method for producing acrylic fiber
JP2853484B2 (en) Method for producing high-performance acrylic fiber and wet drawing apparatus
JP2023163084A (en) Manufacturing method of polyacrylonitrile fiber and carbon fiber
JP2004076208A (en) Method for producing carbon fiber precursor bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Effective date: 20070417

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20071009

Free format text: JAPANESE INTERMEDIATE CODE: A02