JP2004067595A - Method for producing ester derivative of trifluoromethylphenylbenzoic acid - Google Patents

Method for producing ester derivative of trifluoromethylphenylbenzoic acid Download PDF

Info

Publication number
JP2004067595A
JP2004067595A JP2002229788A JP2002229788A JP2004067595A JP 2004067595 A JP2004067595 A JP 2004067595A JP 2002229788 A JP2002229788 A JP 2002229788A JP 2002229788 A JP2002229788 A JP 2002229788A JP 2004067595 A JP2004067595 A JP 2004067595A
Authority
JP
Japan
Prior art keywords
mol
trifluoromethyl
general formula
producing
chlorobenzoate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002229788A
Other languages
Japanese (ja)
Other versions
JP4096233B2 (en
JP2004067595A5 (en
Inventor
Shuichi Fujimoto
藤本 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ihara Chemical Industry Co Ltd
Original Assignee
Ihara Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihara Chemical Industry Co Ltd filed Critical Ihara Chemical Industry Co Ltd
Priority to JP2002229788A priority Critical patent/JP4096233B2/en
Publication of JP2004067595A publication Critical patent/JP2004067595A/en
Publication of JP2004067595A5 publication Critical patent/JP2004067595A5/ja
Application granted granted Critical
Publication of JP4096233B2 publication Critical patent/JP4096233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for producing an intermediate useful for producing an ester of trifluoromethylphenylbenzoic acid. <P>SOLUTION: The method for producing the ester derivative of the trifluoromethylphenylbenzoic acid represented by general formula (3) (wherein, R is an alkyl group) involves coupling an ester derivative of a halobenzoic acid represented by general formula (1) (wherein, X<SP>1</SP>is a halogen atom; and R is an alkyl group) with a halo-(trifluoromethyl)benzene derivative represented by general formula (2) (wherein, X<SP>2</SP>is a halogen atom) in the presence of a divalent nickel compound, a reduced metal, pyridine and 2,2'-bipyridyl. By the method, an objective material is produced in good selectivity by using an easily available inexpensive raw material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は農医薬の重要中間体となる、トリフルオロメチルフェニル安息香酸誘導体の製造に有用な中間体化合物の製造方法に関するものである。
【0002】
【従来の技術】
従来、特開2001−213817号公報、特開2001−316324号公報には、4−クロロ−1−(トリフルオロメチル)ベンゼンと2−クロロマグネシウムトルエンを、ビストリフェニルホスフィンジクロロパラジウムまたはビストリフェニルホスフィンジクロロニッケル存在下、グリニア(Grignard)反応でカップリングさせることにより、ビフェニル誘導体を得る方法が開示されている。また、ドイツ特許公報(DE19963563)では、4−クロロ−1−(トリフルオロメチル)ベンゼンと2−カルボキシフェニルボロン酸を、ビストリフェニルホスフィンジクロロパラジウム存在下で反応することにより(鈴木カップリング)、ビフェニル誘導体である2−(4−トリフルオロメチルフェニル)安息香酸を得る方法を開示している。
【0003】
しかし、前者の方法は、過酸化物による爆発の危険を伴う、工業的に使用困難なテトラヒドロフランを溶媒として用いている上に、過マンガン酸カリウムによる酸化工程を伴う。後者の方法では2−カルボキシフェニルボロン酸、パラジウムといった入手困難かつ高価な原料を使用するという問題点を有している。従って、何れの方法もトリフルオロメチルフェニル安息香酸の工業的製法としては、現実的には、実施に多大な困難を伴うものであった。また、特開平2−15036号公報では、塩化ニッケル、トリフェニルホスフィンを用いたクロスカップリングによるビフェニル誘導体の製造を行なっている。しかし、この方法は多量のトリフェニルホスフィンを使用しなければならない上に、ヨー化ナトリウム等の促進剤を必要とすると云う欠点があった。
【0004】
【発明が解決しようとする課題】
従来の技術の持つ欠点を解決した新しいトリフルオロメチルフェニル安息香酸の製造に有用な中間体の製造方法の開発が望まれていた。
【0005】
【課題を解決するための手段】
本発明者が上記のような問題点を解決すべく鋭意研究を重ねた結果、ハロ−(トリフルオロメチル)ベンゼンとハロ安息香酸エステル誘導体を、二価のニッケル化合物、還元金属、ピリジン及び2,2’−ビピリジルの存在下でクロスカップリングさせる事により、一般式(3)で示されるトリフルオロメチルフェニル安息香酸エステルを得ることができ、このものは加水分解するだけで容易にトリフルオロメチルフェニル安息香酸に誘導することができ、上記課題を解決できることを見出した。また、一般式(1)で表されるハロ安息香酸エステル誘導体において、エステル部(−COOR部)を2位に持つ時、このエステル部がバルキー(bulky;かさ高で、立体障害が大きいことを意味する。以下、「バルキー」なる語はこの意味を示すものとして使用する。)になれば、クロスカップリング反応による目的物選択性が高くなるとの知見も得た。これらの知見に基づき本発明を完成するに至った。
【0006】
【発明の実施の形態】
以下、本発明について詳細に説明する。
【0007】
本発明は、下記〔1〕乃至〔6〕項に記載の発明を提供する事により前記課題を解決したものである。
【0008】
〔1〕一般式(1)
【0009】
【化4】

Figure 2004067595
【0010】
(式中、Xはハロゲン原子を示し、Rは炭素数1乃至6の直鎖又は分岐アルキル基を示す。)
【0011】
で表されるハロ安息香酸エステル誘導体と、一般式(2)
【0012】
【化5】
Figure 2004067595
【0013】
(式中、Xはハロゲン原子を示す。)
【0014】
で表されるハロ−(トリフルオロメチル)ベンゼン誘導体とを、二価のニッケル化合物、2,2’−ビピリジル、還元金属、及びピリジンの存在下でクロスカップリングさせる事を特徴とする、一般式(3)
【0015】
【化6】
Figure 2004067595
【0016】
(式中、Rは前記と同じ意味を示す。)
【0017】
で表されるトリフルオロメチルフェニル安息香酸誘導体の製造方法。
【0018】
〔2〕Xが2位に置換しているものである、〔1〕項記載のトリフルオロメチルフェニル安息香酸エステル誘導体の製造方法。
【0019】
〔3〕Rは炭素数が3乃至6の直鎖又は分岐アルキル基である、〔1〕乃至〔2〕項の何れか1項に記載のトリフルオロメチルフェニル安息香酸エステル誘導体の製造方法。
【0020】
〔4〕Xが2位に置換しており、Rが、炭素数が3乃至6の直鎖又は分岐アルキル基である、〔1〕項記載のトリフルオロメチルフェニル安息香酸エステル誘導体の製造方法。
【0021】
〔5〕還元金属が亜鉛である、〔1〕乃至〔4〕項の何れか1項に記載のトリフルオロメチルフェニル安息香酸エステル誘導体の製造方法。
【0022】
〔6〕二価のニッケル化合物が二価のハロゲン化ニッケルである、〔1〕乃至〔4〕の何れか1項に記載のトリフルオロメチルフェニル安息香酸エステル誘導体の製造方法。
【0023】
〔7〕Xがクロロであり、Xがクロロである、〔1〕乃至〔4〕項の何れか1項に項記載のトリフルオロメチルフェニル安息香酸エステル誘導体の製造方法。
【0024】
〔8〕Xがクロロであり、Xが4位に置換したクロロである、〔1〕乃至〔4〕項の何れか1項に記載のトリフルオロメチルフェニル安息香酸エステル誘導体の製造方法。
【0025】
〔9〕Xが2位に置換したクロロであり、Xがクロロである、〔1〕乃至〔4〕項の何れか1項に記載のトリフルオロメチルフェニル安息香酸エステル誘導体の製造方法。
【0026】
〔10〕Xが2位に置換したクロロであり、Xが4位に置換したクロロである、〔1〕乃至〔4〕項の何れか1項に記載のトリフルオロメチルフェニル安息香酸エステル誘導体の製造方法。
【0027】
〔11〕Rがエチル基、プロピル基、イソプロピル基又はイソブチル基である、請〔1〕乃至〔4〕の何れか1項に記載のトリフルオロメチルフェニル安息香酸エステル誘導体の製造方法。
【0028】
以下、本発明について詳細に説明する。
【0029】
〔1〕項記載の発明について説明する。
【0030】
〔1〕項記載の本発明方法は、一般式(1)で表されるハロ安息香酸エステル誘導体と一般式(2)で表されるハロ−(トリフルオロメチル)ベンゼンとを、二価のニッケル化合物、還元金属、ピリジン及び2,2’−ビピリジルの存在下でクロスカップリングさせ、トリフルオロメチルフェニル安息香酸エステル誘導体を得るものである。本反応は、一般式(1)で表されるハロ安息香酸エステル誘導体(COOR体)原料でのみ、特に効率よく進行し、また、ピリジン溶媒、2,2’−ビピリジルを組み合わせて用いた場合にのみ、特異的にクロスカップリングの選択性が高く、収率良く目的物(クロスカップリングによる生成物)を得られるものである。
【0031】
まず、本発明方法の原料として用いる一般式(1)で表されるハロ安息香酸エステル誘導体について説明する。
【0032】
一般式(1)中のXは、ブロモ、クロロ、ヨ−ド等のハロゲン原子を示す。また、Rは、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基等の炭素数1乃至6(以下、炭素数については、例えば炭素数が1乃至6である場合には、これを「C1〜C6」の様に略記する。)の直鎖又は分岐C1〜C6アルキル基を示す。
【0033】
従って、当反応に使用できる一般式(1)で表されるハロ安息香酸エステル誘導体としては、具体的に例えば2−クロロ安息香酸メチル、2−クロロ安息香酸エチル、2−クロロ安息香酸n−プロピル、2−クロロ安息香酸イソプロピル、2−クロロ安息香酸ブチル、2−クロロ安息香酸イソブチル、2−ブロモ安息香酸メチル、2−ブロモ安息香酸エチル、2−ブロモ安息香酸n−プロピル、2−ブロモ安息香酸イソプロピル、2−ブロモ安息香酸ブチル、2−ブロモ安息香酸イソブチル等の2−ハロ安息香酸エステル類;4−クロロ安息香酸メチル、4−クロロ安息香酸エチル、4−クロロ安息香酸n−プロピル、4−クロロ安息香酸イソプロピル、4−クロロ安息香酸イソブチル、4−ブロモ安息香酸メチル、4−ヨード安息香酸メチル等の4−ハロ安息香酸エステル類を挙げることができる。
【0034】
当反応のクロスカップリングにおける目的物の選択性の点からは、2−ハロ安息香酸エステル類を用いた場合に、目的物の選択性が高くなり易い傾向があるので好ましく、特に2−ハロ安息香酸エステル類のエステル部(COOR部)エステル部(主にR部)がバルキーであるほどその傾向が強くなり、クロスカップリング反応における目的物の選択性が向上するので、エステル部(COOR部)のRは炭素数C2〜C6アルキルであるものが好ましく、中でもC3〜C6アルキルであるものが好ましく、さらにはRのアルキル基は分岐構造を有するものが好ましい。又、入手性からは、Xがクロロであるクロロ安息香酸エステル誘導体が好ましい。従って、原料のハロ安息香酸エステル誘導体としては、2−クロロ安息香酸メチル、2−クロロ安息香酸エチル、2−クロロ安息香酸イソプロピル、2−クロロ安息香酸ブチル、2−クロロ安息香酸イソブチル等の2−クロロ安息香酸エステル誘導体が好ましく、中でも2−クロロ安息香酸エチル、2−クロロ安息香酸イソプロピル、2−クロロ安息香酸ブチル、2−クロロ安息香酸イソブチル等の2−クロロ安息香酸エステル等を好ましいものとして例示でき、2−クロロ安息香酸イソプロピル、2−クロロ安息香酸ブチル、2−クロロ安息香酸イソブチル等を、特に好ましいものとして例示できる。
【0035】
一般式(1)で表されるハロ安息香酸エステル誘導体は、公知化合物であるか、或いは例えば下記に示すように、対応するハロ安息香酸とアルコール(ROH)とを酸存在下で脱水縮合を行なうことにより、得ることができる。
Figure 2004067595
【0036】
続いて、一般式(2)で表されるハロ−(トリフルオロメチル)ベンゼン誘導体について説明する。
【0037】
一般式(2)中のXは、ブロモ、クロロ、ヨ−ド等のハロゲン原子を示す。
【0038】
従って、当反応に使用できる一般式(2)で表されるハロ−(トリフルオロメチル)ベンゼン誘導体としては、具体的に例えば、4−クロロ−1−(トリフルオロメチル)ベンゼン、4−ブロモ−1−(トリフルオロメチル)ベンゼン、2−クロロ−1−(トリフルオロメチル)ベンゼン、2−ブロモ−1−(トリフルオロメチル)ベンゼン等を例示することができる。
【0039】
一般式(2)で表されるハロ−(トリフルオロメチル)ベンゼン誘導体は公知の化合物であるか、或いは、例えば特開昭53−82728号公報記載の方法に従って、例えば4−クロロトルエンを塩素及びフッ化水素と加熱条件下に気相で接触させ反応させる方法、等で製造することができる化合物である。
【0040】
当反応において、一般式(1)で表されるハロ安息香酸エステル誘導体と一般式(2)で表されるハロ−(トリフルオロメチル)ベンゼン誘導体のモル比は、如何なるモル比でも反応が進行するが、一般式(1)で表されるハロ安息香酸エステル誘導体1モルに対して、一般式(2)で表されるハロ−(トリフルオロメチル)ベンゼンが、通常、0.05〜50モル、好ましくは0.2〜5.0モルの範囲を例示できる。また、原料(特に一般式(2)で表されるハロ−(トリフルオロメチル)ベンゼン)を過剰量用いて、溶媒を兼ねて使用することも可能であり、一般式(2)で表されるハロ−(トリフルオロメチル)ベンゼンを理論量よりも過剰量用いた場合、クロスカップリングの選択性が向上する傾向があり好ましい。
【0041】
当反応は二価のニッケル化合物、還元金属、ピリジン、及び2,2’−ビピリジル、の存在下で行う。
【0042】
二価のニッケル化合物としては、二価のハロゲン化ニッケル(ここでハロゲンはブロモ、クロロ、フルオロ、又はヨ−ドを示す。)、具体的に例えば、ジクロロニッケル(塩化ニッケル(II))、ジブロモニッケル(臭化ニッケル(II))等;炭酸ニッケル(II);ニッケルアセテート(II)等の、無機ニッケル化合物或いは有機ニッケル化合物を例示できる。好ましいものとしては、二価のハロゲン化ニッケル、特にジクロロニッケル(塩化ニッケル(II))を挙げることができる。二価のニッケル化合物は、実質的に無水のものを使用することが好ましい。
【0043】
当反応における、二価のニッケル化合物の使用量は、一般式(1)で表されるハロ安息香酸エステル誘導体1モルに対して、0.001〜10モル、好ましくは0.01〜1.0モルの範囲であれば良い。
【0044】
当反応に用いうる還元金属としては、亜鉛等の第XII族金属;マグネシウム等の第II族金属等を例示することができるが、好ましくは第XII族金属、特に亜鉛を用いて行うのがよい。当反応における還元金属の使用量は、一般式(1)で表されるハロ安息香酸エステル誘導体1モルに対して、0.1〜100モル、好ましくは1.0〜3.0モルの範囲であれば良い。
【0045】
当反応に用いうるピリジン(Pyr.)は、還元金属、二価のニッケル化合物の配位子として機能し二価のニッケル化合物の失活を抑制すると考えられるが、過剰に用いることにより溶媒として機能させることもできる。
【0046】
当反応におけるピリジンの使用量は、一般式(1)で表されるハロ安息香酸エステル誘導体1モルに対して、2.0〜100モル、好ましくは2.0〜5.0モルの範囲であれば良い。即ち、前述の通りピリジンを溶媒として使用することも可能である。
【0047】
当反応における2,2’−ビピリジルは、主に配位子として機能するが、その使用量は、一般式(1)で表されるハロ安息香酸エステル誘導体1モルに対して、0.0005〜10モル、好ましくは0.01〜1.0モルの範囲であれば良い。
【0048】
当反応の反応温度は60℃〜150℃の範囲を例示できるが、好ましくは80℃〜120℃、更に好ましくは80℃〜100℃の範囲が良い。
【0049】
当反応の反応時間は特に制限されないが、副生物抑制の観点等から、好ましくは3時間〜6時間がよい。
【0050】
本発明方法により得られる一般式(3)で表されるトリフルオロメチルフェニル安息香酸エステルは、例えば水酸化ナトリウムを用いたアルカリ加水分解等の常法により容易に加水分解させて、医薬中間原料となるトリフルオロメチルフェニル安息香酸に容易に誘導することができる。
【0051】
従って、当反応で得られる一般式(3)で表されるトリフルオロメチルフェニル安息香酸エステル誘導体は、医薬の中間原料として有用な化合物である。
【0052】
【発明の効果】
本発明方法により、医薬中間原料たるトリフルオロメチルフェニル安息香酸エステル誘導体の新規な工業的製造法が提供される。本発明方法によればトリフルオロメチルフェニル安息香酸エステル誘導体を、入手容易かつ安価な原料を用い、簡便な操作で製造でき、ひいては、医薬中間原料たるトリフルオロメチルフェニル安息香酸を効率よく製造する事を可能とする。従って、本発明方法は工業的な利用価値が高い。
【0053】
【実施例】
次に、実施例を挙げて本発明化合物の製造方法を具体的に説明するが、本発明は、これら実施例によって何ら限定されるものではない。なお、純度はガスクロマトグラフィー分析による面積百分率の値で示した。
【0054】
実施例1;2−[4−(トリフルオロメチル)フェニル]安息香酸メチル
4−クロロ−1−(トリフルオロメチル)ベンゼン54.2g(0.3mol)、2−クロロ安息香酸メチル17.1g(0.1mol)、無水塩化ニッケル(II)0.26g(2mol%)、2,2’−ビピリジル0.16g(1mol%)、亜鉛粉末13g(0.2mol)、ピリジン23.7g(0.3mol)を窒素雰囲気下、90℃で3時間攪拌した。この溶液を冷却後、ろ過を行い、濃縮を行った。これにトルエン100mlを加え、希塩酸水50ml、水50mlで2回水洗を行った。溶媒を留去して、上記2−[4−(トリフルオロメチル)フェニル]安息香酸メチルを31.7g(純度41.0%、収率46.4(2−クロロ安息香酸メチル基準))得た。この時、2−クロロ安息香酸メチルのホモカップリング体は20.1%生成した。
【0055】
MS(GC−MS)m/z=280(M)、249(base)
【0056】
実施例2;2−[4−(トリフルオロメチル)フェニル]安息香酸イソプロピル
4−クロロ−1−(トリフルオロメチル)ベンゼン54.2g(0.3mol)、2−クロロ安息香酸イソプロピル19.8g(0.1mol)、無水塩化ニッケル(II)0.26g(2mol%)、2,2’−ビピリジル0.16g(1mol%)、亜鉛粉末13.1g(0.2mol)、ピリジン23.7g(03mol)を窒素雰囲気下、90℃で5時間攪拌した。この溶液を冷却後、ろ過を行い、濃縮を行った。これにトルエン100mlを加え、希塩酸水50l、水50mlで2回水洗を行った。溶媒を留去して、上記2−[4−(トリフルオロメチル)フェニル]安息香酸イソプロピルを35.2g(純度51.2%、収率59.2%(2−クロロ安息香酸イソプロピル基準))得た。この時、2−クロロ安息香酸イソプロピルのホモカップリング体は18.2%生成した。
【0057】
MS(GC−MS)m/z=308(M)、249(base)
【0058】
実施例3;2−[4−(トリフルオロメチル)フェニル]安息香酸ターシャリーブチル
4−クロロ−1−(トリフルオロメチル)ベンゼン14.0g(0.075mol)、2−クロロ安息香酸ターシャリーブチル5.0g(0.025mol)、無水塩化ニッケル(II)0.065g(2mol%)、2,2’−ビピリジル0.039g(1mol%)、亜鉛粉末3.3g(0.05mol)、ピリジン6.0g(0.075mol)を窒素雰囲気下、90℃で5間攪拌した。この溶液を冷却後、ろ過を行い、濃縮を行った。これにトルエン20mlを加え、希塩酸水10ml、水10mlで2回水洗を行った。溶媒を留去して、上記2−[4−(トリフルオロメチル)フェニル]安息香酸ターシャリーブチルを35.2g(純度55.3%、収率70.0%(2−クロロ安息香酸ターシャリーブチル基準))得た。この時、2−クロロ安息香酸ターシャリーブチルのホモカップリング体は6.1%生成した。
【0059】
MS(GC−MS)m/z=322(M)、249(base)
【0060】
実施例4;2−[4−(トリフルオロメチル)フェニル]安息香酸メチル
4−クロロ−1−(トリフルオロメチル)ベンゼン18.0g(0.1mol)、2−クロロ安息香酸メチル17.1g(0.1mol)、無水塩化ニッケル(II)0.26g(2mol%)、2,2’−ビピリジル0.16g(1mol%)、亜鉛粉末13.1g(0.2mol)、ピリジン23.7g(0.3mol)を窒素雰囲気下、90℃で3時間攪拌した。この溶液を冷却後、ろ過を行い、濃縮を行った。これにトルエン100mlを加え、希塩酸水50ml、水50mlで2回水洗を行った。溶媒を留去して、上記2−[4−(トリフルオロメチル)フェニル]安息香酸メチルを26.0g(純度39.2%、収率36.3%(2−クロロ安息香酸メチル基準))得た。この時、2−クロロ安息香酸メチルのホモカップリング体は28.8%生成した。
【0061】
MS(GC−MS)m/z=280(M)、249(base)
【0062】
実施例5;2−[4−(トリフルオロメチル)フェニル]安息香酸メチル
4−クロロ−1−(トリフルオロメチル)ベンゼン 90.0g(0.5mol)、2−クロロ安息香酸メチル17.1g(0.1mol)、無水塩化ニッケル(II)0.26g(2 mol%)、2,2’−ビピリジル0.16 g(1mol%)、亜鉛粉末19.6g(0.3mol)、ピリジン23.7g(0.3mol)を窒素雰囲気下、90℃で3時間攪拌した。この溶液を冷却後、ろ過を行い、濃縮を行った。これにトルエン100mlを加え、希塩酸水50ml、水50mlで2回水洗を行った。溶媒を留去して、上記2−[4−(トリフルオロメチル)フェニル]安息香酸メチルを38.5g(純度46.5%、収率64.0%(2−クロロ安息香酸メチル基準))得た。この時、2−クロロ安息香酸メチルのホモカップリング体は7.9%生成した。
【0063】
MS(GC−MS)m/z=280(M)、249(base)
【0064】
実施例5;2−[4−(トリフルオロメチル)フェニル]安息香酸メチル
4−クロロ−1−(トリフルオロメチル)ベンゼン180.0g(1.0mol)、2−クロロ安息香酸メチル17.1g(0.1mol)、無水塩化ニッケル(II)0.26g(2mol%)、2,2’−ビピリジル0.16g(1mol%)、亜鉛粉末32.7g(0.5mol)、ピリジン 47.4g(0.6mol)を窒素雰囲気下、90℃で3時間攪拌した。この溶液を冷却後、ろ過を行い、濃縮を行った。これにトルエン100mlを加え、希塩酸水50ml、水50mlで2回水洗を行った。溶媒を留去して、上記2−[4−(トリフルオロメチル)フェニル]安息香酸メチルを38.7g(純度48.1%、収率66.6%(2−クロロ安息香酸メチル基準))得た。この時、2−クロロ安息香酸メチルのホモカップリング体は6.9 %生成した。
【0065】
MS(GC−MS)m/z=280(M)、249(base)
【0066】
参考例1;2−[4−(トリフルオロメチル)フェニル]安息香酸
2−[4−(トリフルオロメチル)フェニル]安息香酸メチル31.7g(純度41.0%)、48%水酸化ナトリウム16.7g(0.2mol)をメタノール80mlに溶解し、1時間還流した。この溶液に水100mlを加えた後、メタノールを留去した。冷却後、モノクロロベンゼン50mlで3回中性分除去を行なった後、塩酸水溶液を加え、pHを5.5とした。ここで、生成した結晶をろ過し、エチルシクロヘキサン25ml×2回で結晶を洗浄した。50℃恒温槽で1晩乾燥し、上記2−[4−(トリフルオロメチル)フェニル]安息香酸を9.5g(純度99.2%)得た。収率35.7%(純分収率87%)
【0067】
H−NMR(CHCl−d,300MHz)δ=7.7−7.2(m,8H),8.02(d,1H,J=4.1Hz)
IR(neat)1684cm−1(CO),2835cm−1(OH)
MS(HPLC−MS)m/z=266(M)、249(base)
融点;167.9−169.1℃
【0068】
参考例2;2−[4−(トリフルオロメチル)フェニル]安息香酸
2−[4−(トリフルオロメチル)フェニル]安息香酸イソプロピル35.2g(純度51.2%)、48%水酸化ナトリウム16.7g(0.2mol)をメタノール80mlに溶解し、1時間還流した。この溶液に水100mlを加えた後、メタノールを留去した。冷却後、モノクロロベンゼン50mlで3回中性分除去を行なった後、塩酸水溶液を加え、pHを5.5とした。ここで、生成した結晶をろ過し、エチルシクロヘキサン25ml×2回で結晶を洗浄した。50℃恒温槽で1晩乾燥し、上記2−[4−(トリフルオロメチル)フェニル]安息香酸を13.0g(純度99.4%)得た。収率48.9%(純分収率95.5%)
【0069】
比較例1;2−[4−(トリフルオロメチル)フェニル]ベンズアルデヒド
4−クロロ−1−(トリフルオロメチル)ベンゼン54.2g(0.3mol)、2−クロロベンズアルデヒド14.0g(0.1mol)、無水塩化ニッケル(II)0.26g(2mol%)、2,2’−ビピリジル0.16g(1mol%)、亜鉛粉末13.1g(0.2mol)、ピリジン23.7g(0.3mol)を窒素雰囲気下、90℃で3時間攪拌した。この溶液を冷却後、ろ過を行い、濃縮を行い、上記2−[4−(トリフルオロメチル)フェニル]ベンズアルデヒドを19.8g(純度16.4%)得た。
【0070】
MS(GC−MS)m/z=249(base、M−1)
【0071】
比較例2;2−[4−(トリフルオロメチル)フェニル]ベンゾニトリル
4−クロロ−1−(トリフルオロメチル)ベンゼン54.2g(0.3mol)、2−クロロベンゾニトリル13.7g(0.1mol)、無水塩化ニッケル(II)0.26g(2mol%)、2,2’−ビピリジル0.16g(1mol%)、亜鉛粉末13.1g(0.2mol)、ピリジン23.7g(0.3mol)を窒素雰囲気下、120℃で3時間攪拌した。ガスクロマトグラフィー(GLC)の分析により、上記2−[4−(トリフルオロメチル)フェニル]ベンゾニトリルが5.2%生成を確認した。
【0072】
比較例3〜6;2−[4−(トリフルオロメチル)フェニル]安息香酸メチル
実施例1のピリジン(Pyr.)を、ジメチルアセトアミド(DMAC)、ジメチルホルムアミド(DMF)に変え、或いは2,2’−ビピリジル(2,2’−BiPy)をトリフェニルホスフィン(TPP)に変えた以外は、実施例1と同様にして9時間反応を行い、2−[4−(トリフルオロメチル)フェニル]安息香酸メチルを製造した。結果を(表1)に示す。なお(表1)中、「ヘテロ体」とは、クロスカップリングにより生成した目的物であり、「ホモ体」とは、2種類の原料(一般式(1)で表されるハロ安息香酸エステル誘導体と一般式(2)で表されるハロ−(トリフルオロメチル)ベンゼン)のクロスカップリングではなく、何れかの同一原料同士がカップリング反応して(ホモカップリング)生成した副生物(合計で示してある)である。
【0073】
【表1】
Figure 2004067595
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an intermediate compound useful for producing a trifluoromethylphenylbenzoic acid derivative, which is an important intermediate for agrochemicals.
[0002]
[Prior art]
Conventionally, JP-A-2001-213817 and JP-A-2001-316324 disclose 4-chloro-1- (trifluoromethyl) benzene and 2-chloromagnesium toluene with bistriphenylphosphinedichloropalladium or bistriphenylphosphinedichloro. A method of obtaining a biphenyl derivative by coupling by a Grignard reaction in the presence of nickel is disclosed. In German Patent Publication (DE19963563), biphenyl is reacted by reacting 4-chloro-1- (trifluoromethyl) benzene with 2-carboxyphenylboronic acid in the presence of bistriphenylphosphine dichloropalladium (Suzuki coupling). A method for obtaining a derivative, 2- (4-trifluoromethylphenyl) benzoic acid, is disclosed.
[0003]
However, the former method uses tetrahydrofuran, which is industrially difficult to use, with the risk of explosion due to peroxides as a solvent, and involves an oxidation step with potassium permanganate. The latter method has a problem in that it is difficult to obtain expensive raw materials such as 2-carboxyphenylboronic acid and palladium. Therefore, any of these methods has a great difficulty in practical use as an industrial production method of trifluoromethylphenylbenzoic acid. In Japanese Patent Application Laid-Open No. 2-15036, a biphenyl derivative is produced by cross-coupling using nickel chloride and triphenylphosphine. However, this method has a drawback that a large amount of triphenylphosphine must be used and an accelerator such as sodium iodide is required.
[0004]
[Problems to be solved by the invention]
It has been desired to develop a method for producing an intermediate useful for producing a new trifluoromethylphenylbenzoic acid which has solved the drawbacks of the prior art.
[0005]
[Means for Solving the Problems]
As a result of intensive studies conducted by the present inventor to solve the above problems, halo- (trifluoromethyl) benzene and halobenzoate derivatives were converted to divalent nickel compounds, reduced metals, pyridine and 2,2 By cross-coupling in the presence of 2'-bipyridyl, a trifluoromethylphenyl benzoate represented by the general formula (3) can be obtained, which can be easily obtained only by hydrolysis. It has been found that benzoic acid can be induced and the above problem can be solved. Further, in the halobenzoic acid ester derivative represented by the general formula (1), when the ester moiety (-COOR moiety) is in the 2-position, it is considered that this ester moiety is bulky and bulky and has a large steric hindrance. In the following, the term "bulky" is used to indicate this meaning.), It has been found that the selectivity of the target product by the cross-coupling reaction is increased. Based on these findings, the present invention has been completed.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0007]
The present invention has solved the above-mentioned problems by providing the inventions described in the following [1] to [6].
[0008]
[1] General formula (1)
[0009]
Embedded image
Figure 2004067595
[0010]
(In the formula, X 1 represents a halogen atom, and R represents a linear or branched alkyl group having 1 to 6 carbon atoms.)
[0011]
A halobenzoic acid ester derivative represented by the general formula (2)
[0012]
Embedded image
Figure 2004067595
[0013]
(In the formula, X 2 represents a halogen atom.)
[0014]
Wherein a halo- (trifluoromethyl) benzene derivative represented by the general formula is cross-coupled in the presence of a divalent nickel compound, 2,2′-bipyridyl, a reducing metal, and pyridine. (3)
[0015]
Embedded image
Figure 2004067595
[0016]
(In the formula, R has the same meaning as described above.)
[0017]
A method for producing a trifluoromethylphenylbenzoic acid derivative represented by the formula:
[0018]
[2] The method for producing a trifluoromethylphenylbenzoate derivative according to [1], wherein X 1 is substituted at the 2-position.
[0019]
[3] The method for producing a trifluoromethylphenyl benzoate derivative according to any one of [1] to [2], wherein R is a linear or branched alkyl group having 3 to 6 carbon atoms.
[0020]
[4] The method for producing a trifluoromethylphenyl benzoate derivative according to [1], wherein X 1 is substituted at the 2-position, and R is a linear or branched alkyl group having 3 to 6 carbon atoms. .
[0021]
[5] The method for producing a trifluoromethylphenylbenzoate derivative according to any one of [1] to [4], wherein the reducing metal is zinc.
[0022]
[6] The method for producing a trifluoromethylphenyl benzoate derivative according to any one of [1] to [4], wherein the divalent nickel compound is a divalent nickel halide.
[0023]
[7] The method for producing a trifluoromethylphenyl benzoate derivative according to any one of [1] to [4], wherein X 1 is chloro and X 2 is chloro.
[0024]
[8] The method for producing a trifluoromethylphenylbenzoate derivative according to any one of [1] to [4], wherein X 1 is chloro and X 2 is chloro substituted at the 4-position.
[0025]
[9] The method for producing a trifluoromethylphenylbenzoate derivative according to any one of [1] to [4], wherein X 1 is chloro substituted at the 2-position, and X 2 is chloro.
[0026]
[10] The trifluoromethylphenylbenzoate according to any one of [1] to [4], wherein X 1 is chloro substituted at the 2-position, and X 2 is chloro substituted at the 4-position. Method for producing derivative.
[0027]
[11] The method for producing a trifluoromethylphenyl benzoate derivative according to any one of [1] to [4], wherein R is an ethyl group, a propyl group, an isopropyl group or an isobutyl group.
[0028]
Hereinafter, the present invention will be described in detail.
[0029]
The invention described in [1] will be described.
[0030]
[1] The method of the present invention as described in the item [1], comprises converting the halobenzoic acid ester derivative represented by the general formula (1) and the halo- (trifluoromethyl) benzene represented by the general formula (2) to a divalent nickel. Cross-coupling is performed in the presence of a compound, a reducing metal, pyridine and 2,2′-bipyridyl to obtain a trifluoromethylphenylbenzoate derivative. This reaction proceeds particularly efficiently only with the halobenzoic acid ester derivative (COOR form) raw material represented by the general formula (1), and when a pyridine solvent and 2,2′-bipyridyl are used in combination. However, only the cross-coupling selectivity is high and the desired product (product by cross-coupling) can be obtained with high yield.
[0031]
First, the halobenzoic acid ester derivative represented by the general formula (1) used as a raw material of the method of the present invention will be described.
[0032]
X 1 in the general formula (1), bromo, chloro, yo - a halogen atom such as de. R represents the number of carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, n-hexyl, etc. 1 to 6 (hereinafter, when the number of carbon atoms is 1 to 6, for example, this is abbreviated as "C1 to C6") and represents a linear or branched C1 to C6 alkyl group. .
[0033]
Therefore, specific examples of the halobenzoic acid ester derivative represented by the general formula (1) that can be used in this reaction include, for example, methyl 2-chlorobenzoate, ethyl 2-chlorobenzoate, and n-propyl 2-chlorobenzoate. Isopropyl 2-chlorobenzoate, butyl 2-chlorobenzoate, isobutyl 2-chlorobenzoate, methyl 2-bromobenzoate, ethyl 2-bromobenzoate, n-propyl 2-bromobenzoate, 2-bromobenzoic acid 2-halobenzoic esters such as isopropyl, butyl 2-bromobenzoate and isobutyl 2-bromobenzoate; methyl 4-chlorobenzoate, ethyl 4-chlorobenzoate, n-propyl 4-chlorobenzoate, 4- Isopropyl chlorobenzoate, isobutyl 4-chlorobenzoate, methyl 4-bromobenzoate, methyl 4-iodobenzoate 4-halo-benzoic acid ester and the like can be mentioned.
[0034]
From the viewpoint of the selectivity of the target compound in the cross-coupling of this reaction, the use of 2-halobenzoic acid esters is preferred because the selectivity of the target compound tends to be high, and particularly preferred is 2-halobenzoate. The ester moiety (COOR moiety) of the acid ester is more bulky when the ester moiety (mainly the R moiety) is bulkier, and the selectivity of the target product in the cross-coupling reaction is improved. R is preferably a C2 to C6 alkyl, more preferably a C3 to C6 alkyl, and more preferably the alkyl group of R has a branched structure. From the viewpoint of availability, a chlorobenzoic acid ester derivative in which X 1 is chloro is preferable. Accordingly, as the halobenzoic acid ester derivative as a raw material, 2-chlorobenzoate such as methyl 2-chlorobenzoate, ethyl 2-chlorobenzoate, isopropyl 2-chlorobenzoate, butyl 2-chlorobenzoate, isobutyl 2-chlorobenzoate and the like can be used. Chlorobenzoic acid ester derivatives are preferred, and 2-chlorobenzoic acid esters such as ethyl 2-chlorobenzoate, isopropyl 2-chlorobenzoate, butyl 2-chlorobenzoate, and isobutyl 2-chlorobenzoate are preferred. Isopropyl 2-chlorobenzoate, butyl 2-chlorobenzoate, isobutyl 2-chlorobenzoate and the like can be exemplified as particularly preferred.
[0035]
The halobenzoic acid ester derivative represented by the general formula (1) is a known compound, or performs a dehydration condensation between a corresponding halobenzoic acid and an alcohol (ROH) in the presence of an acid as shown below, for example. By doing so, it can be obtained.
Figure 2004067595
[0036]
Next, the halo- (trifluoromethyl) benzene derivative represented by the general formula (2) will be described.
[0037]
X 2 in the general formula (2) represents a halogen atom such as bromo, chloro, and iodine.
[0038]
Therefore, specific examples of the halo- (trifluoromethyl) benzene derivative represented by the general formula (2) that can be used in this reaction include, for example, 4-chloro-1- (trifluoromethyl) benzene and 4-bromo- Examples thereof include 1- (trifluoromethyl) benzene, 2-chloro-1- (trifluoromethyl) benzene, and 2-bromo-1- (trifluoromethyl) benzene.
[0039]
The halo- (trifluoromethyl) benzene derivative represented by the general formula (2) is a known compound or, for example, according to the method described in JP-A-53-82728, for example, converting 4-chlorotoluene to chlorine and It is a compound that can be produced by, for example, a method in which it is brought into contact with hydrogen fluoride in a gas phase under heating conditions to cause a reaction.
[0040]
In this reaction, the reaction proceeds at any molar ratio of the halobenzoic acid ester derivative represented by the general formula (1) and the halo- (trifluoromethyl) benzene derivative represented by the general formula (2). Is usually from 0.05 to 50 mol of the halo- (trifluoromethyl) benzene represented by the general formula (2) with respect to 1 mol of the halobenzoic acid ester derivative represented by the general formula (1), Preferably, the range of 0.2 to 5.0 mol can be exemplified. It is also possible to use an excess amount of a raw material (particularly, halo- (trifluoromethyl) benzene represented by the general formula (2)) and use it as a solvent, which is represented by the general formula (2). When halo- (trifluoromethyl) benzene is used in excess of the theoretical amount, cross-coupling selectivity tends to be improved, which is preferable.
[0041]
This reaction is performed in the presence of a divalent nickel compound, a reducing metal, pyridine, and 2,2′-bipyridyl.
[0042]
Examples of the divalent nickel compound include divalent nickel halides (where halogen represents bromo, chloro, fluoro, or iodo), specifically, for example, dichloronickel (nickel (II) chloride), dibromonickel Examples thereof include inorganic nickel compounds and organic nickel compounds such as nickel (nickel (II) bromide); nickel (II) carbonate; nickel acetate (II). Preferred are divalent nickel halides, especially dichloronickel (nickel (II) chloride). It is preferable to use a substantially anhydrous divalent nickel compound.
[0043]
The amount of the divalent nickel compound used in the reaction is 0.001 to 10 mol, preferably 0.01 to 1.0 mol, per 1 mol of the halobenzoic acid ester derivative represented by the general formula (1). It may be in the molar range.
[0044]
Examples of the reducing metal that can be used in this reaction include a Group XII metal such as zinc; a Group II metal such as magnesium; and the like, and preferably a Group XII metal, particularly zinc. . The amount of the reducing metal used in this reaction is in the range of 0.1 to 100 mol, preferably 1.0 to 3.0 mol, per 1 mol of the halobenzoic acid ester derivative represented by the general formula (1). I just want it.
[0045]
Pyridine (Pyr.), Which can be used in this reaction, is considered to function as a ligand for the reducing metal and the divalent nickel compound and suppress the inactivation of the divalent nickel compound. It can also be done.
[0046]
The amount of pyridine used in this reaction is 2.0 to 100 mol, preferably 2.0 to 5.0 mol, per 1 mol of the halobenzoate derivative represented by the general formula (1). Good. That is, as described above, pyridine can be used as the solvent.
[0047]
2,2′-Bipyridyl in this reaction mainly functions as a ligand, and the amount thereof is 0.0005 to 1 mol based on 1 mol of the halobenzoic acid ester derivative represented by the general formula (1). It may be 10 mol, preferably in the range of 0.01 to 1.0 mol.
[0048]
The reaction temperature of this reaction can be exemplified in the range of 60 ° C to 150 ° C, preferably in the range of 80 ° C to 120 ° C, more preferably in the range of 80 ° C to 100 ° C.
[0049]
The reaction time of this reaction is not particularly limited, but is preferably 3 hours to 6 hours from the viewpoint of suppressing by-products.
[0050]
The trifluoromethylphenyl benzoate represented by the general formula (3) obtained by the method of the present invention is easily hydrolyzed by a conventional method such as alkali hydrolysis using sodium hydroxide, and is used as a pharmaceutical intermediate. To trifluoromethylphenylbenzoic acid.
[0051]
Therefore, the trifluoromethylphenyl benzoate derivative represented by the general formula (3) obtained by this reaction is a useful compound as an intermediate material for medicine.
[0052]
【The invention's effect】
According to the method of the present invention, a novel industrial production method of a trifluoromethylphenylbenzoic acid ester derivative as a pharmaceutical intermediate material is provided. According to the method of the present invention, a trifluoromethylphenylbenzoic acid ester derivative can be produced by a simple operation using easily available and inexpensive raw materials, and thus, it is possible to efficiently produce trifluoromethylphenylphenylbenzoic acid as a pharmaceutical intermediate raw material. Is possible. Therefore, the method of the present invention has high industrial value.
[0053]
【Example】
Next, the production method of the compound of the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In addition, the purity was shown by the value of area percentage by gas chromatography analysis.
[0054]
Example 1; Methyl 2- [4- (trifluoromethyl) phenyl] benzoate 54.2 g (0.3 mol) of 4-chloro-1- (trifluoromethyl) benzene, 17.1 g of methyl 2-chlorobenzoate ( 0.16 mol), 0.26 g (2 mol%) of anhydrous nickel (II) chloride, 0.16 g (1 mol%) of 2,2'-bipyridyl, 13 g (0.2 mol) of zinc powder, 23.7 g (0.3 mol) of pyridine ) Was stirred at 90 ° C for 3 hours under a nitrogen atmosphere. After cooling, the solution was filtered and concentrated. To this was added 100 ml of toluene, and the mixture was washed twice with 50 ml of dilute hydrochloric acid and 50 ml of water. The solvent was distilled off to obtain 31.7 g of the above methyl 2- [4- (trifluoromethyl) phenyl] benzoate (purity: 41.0%, yield: 46.4 (based on methyl 2-chlorobenzoate)). Was. At this time, 20.1% of a homo-coupling product of methyl 2-chlorobenzoate was formed.
[0055]
MS (GC-MS) m / z = 280 (M + ), 249 (base)
[0056]
Example 2: Isopropyl 2- [4- (trifluoromethyl) phenyl] benzoate 54.2 g (0.3 mol) of 4-chloro-1- (trifluoromethyl) benzene, 19.8 g of isopropyl 2-chlorobenzoate ( 0.1 mol), 0.26 g (2 mol%) of anhydrous nickel chloride (II), 0.16 g (1 mol%) of 2,2′-bipyridyl, 13.1 g (0.2 mol) of zinc powder, 23.7 g (03 mol of pyridine) ) Was stirred at 90 ° C for 5 hours under a nitrogen atmosphere. After cooling, the solution was filtered and concentrated. 100 ml of toluene was added thereto, and the mixture was washed twice with 50 l of diluted hydrochloric acid and 50 ml of water. The solvent was distilled off, and the above isopropyl 2- [4- (trifluoromethyl) phenyl] benzoate was 35.2 g (purity: 51.2%, yield: 59.2% (based on isopropyl 2-chlorobenzoate)). Obtained. At this time, 18.2% of a homo-coupling product of isopropyl 2-chlorobenzoate was produced.
[0057]
MS (GC-MS) m / z = 308 (M + ), 249 (base)
[0058]
Example 3; tert-butyl 2- [4- (trifluoromethyl) phenyl] benzoate 14.0 g (0.075 mol) of 4-chloro-1- (trifluoromethyl) benzene, tert-butyl 2-chlorobenzoate 5.0 g (0.025 mol), anhydrous nickel chloride (II) 0.065 g (2 mol%), 2,2′-bipyridyl 0.039 g (1 mol%), zinc powder 3.3 g (0.05 mol), pyridine 6 0.0 g (0.075 mol) was stirred at 90 ° C. for 5 minutes under a nitrogen atmosphere. After cooling, the solution was filtered and concentrated. 20 ml of toluene was added thereto, and the mixture was washed twice with 10 ml of diluted hydrochloric acid and 10 ml of water. The solvent was distilled off, and 35.2 g of the above tertiary butyl 2- [4- (trifluoromethyl) phenyl] benzoate (purity 55.3%, yield 70.0% (tertiary 2-chlorobenzoate) was obtained. Butyl))). At this time, 6.1% of a homo-coupling product of tert-butyl 2-chlorobenzoate was produced.
[0059]
MS (GC-MS) m / z = 322 (M + ), 249 (base)
[0060]
Example 4: Methyl 2- [4- (trifluoromethyl) phenyl] benzoate 18.0 g (0.1 mol) of 4-chloro-1- (trifluoromethyl) benzene, 17.1 g of methyl 2-chlorobenzoate ( 0.1 mol), anhydrous nickel chloride (II) 0.26 g (2 mol%), 2,2'-bipyridyl 0.16 g (1 mol%), zinc powder 13.1 g (0.2 mol), pyridine 23.7 g (0 mol%) .3 mol) was stirred at 90 ° C. for 3 hours under a nitrogen atmosphere. After cooling, the solution was filtered and concentrated. To this was added 100 ml of toluene, and the mixture was washed twice with 50 ml of dilute hydrochloric acid and 50 ml of water. The solvent was distilled off, and the above-mentioned methyl 2- [4- (trifluoromethyl) phenyl] benzoate was 26.0 g (purity: 39.2%, yield: 36.3% (based on methyl 2-chlorobenzoate)). Obtained. At this time, a 28.8% homo-coupling product of methyl 2-chlorobenzoate was produced.
[0061]
MS (GC-MS) m / z = 280 (M + ), 249 (base)
[0062]
Example 5: Methyl 2- [4- (trifluoromethyl) phenyl] benzoate 90.0 g (0.5 mol) of 4-chloro-1- (trifluoromethyl) benzene, 17.1 g of methyl 2-chlorobenzoate ( 0.16 mol), 0.26 g (2 mol%) of anhydrous nickel chloride (II), 0.16 g (1 mol%) of 2,2'-bipyridyl, 19.6 g (0.3 mol) of zinc powder, 23.7 g of pyridine (0.3 mol) was stirred at 90 ° C. for 3 hours under a nitrogen atmosphere. After cooling, the solution was filtered and concentrated. To this was added 100 ml of toluene, and the mixture was washed twice with 50 ml of dilute hydrochloric acid and 50 ml of water. The solvent was distilled off, and the above methyl 2- [4- (trifluoromethyl) phenyl] benzoate was 38.5 g (purity: 46.5%, yield: 64.0% (based on methyl 2-chlorobenzoate)). Obtained. At this time, 7.9% of a homo-coupling product of methyl 2-chlorobenzoate was formed.
[0063]
MS (GC-MS) m / z = 280 (M + ), 249 (base)
[0064]
Example 5: Methyl 2- [4- (trifluoromethyl) phenyl] benzoate 180.0 g (1.0 mol) of 4-chloro-1- (trifluoromethyl) benzene, 17.1 g of methyl 2-chlorobenzoate ( 0.1 mol), anhydrous nickel chloride (II) 0.26 g (2 mol%), 2,2'-bipyridyl 0.16 g (1 mol%), zinc powder 32.7 g (0.5 mol), pyridine 47.4 g (0 mol%). (0.6 mol) was stirred at 90 ° C. for 3 hours under a nitrogen atmosphere. After cooling, the solution was filtered and concentrated. To this was added 100 ml of toluene, and the mixture was washed twice with 50 ml of dilute hydrochloric acid and 50 ml of water. The solvent was distilled off, and the above methyl 2- [4- (trifluoromethyl) phenyl] benzoate was 38.7 g (purity: 48.1%, yield: 66.6% (based on methyl 2-chlorobenzoate)). Obtained. At this time, 6.9% of a homo-coupling product of methyl 2-chlorobenzoate was formed.
[0065]
MS (GC-MS) m / z = 280 (M + ), 249 (base)
[0066]
Reference Example 1 Methyl 2- [4- (trifluoromethyl) phenyl] benzoate 31.7 g (purity 41.0%) of 2- [4- (trifluoromethyl) phenyl] benzoate, 48% sodium hydroxide 16 0.7 g (0.2 mol) was dissolved in 80 ml of methanol and refluxed for 1 hour. After 100 ml of water was added to this solution, methanol was distilled off. After cooling, neutral components were removed three times with 50 ml of monochlorobenzene, and then an aqueous hydrochloric acid solution was added to adjust the pH to 5.5. Here, the generated crystal was filtered, and the crystal was washed twice with 25 ml of ethylcyclohexane. It was dried overnight in a 50 ° C constant temperature bath to obtain 9.5 g (purity: 99.2%) of the above 2- [4- (trifluoromethyl) phenyl] benzoic acid. Yield 35.7% (pure yield 87%)
[0067]
1 H-NMR (CHCl 3 -d 1 , 300 MHz) δ = 7.7-7.2 (m, 8H), 8.02 (d, 1H, J = 4.1 Hz)
IR (neat) 1684 cm -1 (CO), 2835 cm -1 (OH)
MS (HPLC-MS) m / z = 266 (M + ), 249 (base)
Melting point: 167.9-169.1 ° C
[0068]
Reference Example 2: 35.2 g (purity: 51.2%) of 2- [4- (trifluoromethyl) phenyl] benzoate 2- [4- (trifluoromethyl) phenyl] benzoate, 48% sodium hydroxide 16 0.7 g (0.2 mol) was dissolved in 80 ml of methanol and refluxed for 1 hour. After 100 ml of water was added to this solution, methanol was distilled off. After cooling, neutral components were removed three times with 50 ml of monochlorobenzene, and then an aqueous hydrochloric acid solution was added to adjust the pH to 5.5. Here, the generated crystal was filtered, and the crystal was washed twice with 25 ml of ethylcyclohexane. It was dried overnight in a 50 ° C constant temperature bath to obtain 13.0 g (purity: 99.4%) of the above 2- [4- (trifluoromethyl) phenyl] benzoic acid. Yield 48.9% (pure yield 95.5%)
[0069]
Comparative Example 1 2- [4- (trifluoromethyl) phenyl] benzaldehyde 54.2 g (0.3 mol) of 4-chloro-1- (trifluoromethyl) benzene, 14.0 g (0.1 mol) of 2-chlorobenzaldehyde 0.26 g (2 mol%) of anhydrous nickel chloride (II), 0.16 g (1 mol%) of 2,2′-bipyridyl, 13.1 g (0.2 mol) of zinc powder, and 23.7 g (0.3 mol) of pyridine. The mixture was stirred at 90 ° C. for 3 hours under a nitrogen atmosphere. After cooling, the solution was filtered and concentrated to obtain 19.8 g (purity: 16.4%) of the above 2- [4- (trifluoromethyl) phenyl] benzaldehyde.
[0070]
MS (GC-MS) m / z = 249 (base, M + -1)
[0071]
Comparative Example 2 54.2 g (0.3 mol) of 2- [4- (trifluoromethyl) phenyl] benzonitrile 4-chloro-1- (trifluoromethyl) benzene, 13.7 g of 2-chlorobenzonitrile (0. 1 mol), 0.26 g (2 mol%) of anhydrous nickel chloride (II), 0.16 g (1 mol%) of 2,2′-bipyridyl, 13.1 g (0.2 mol) of zinc powder, 23.7 g (0.3 mol) of pyridine ) Was stirred at 120 ° C for 3 hours under a nitrogen atmosphere. Analysis by gas chromatography (GLC) confirmed that the above 2- [4- (trifluoromethyl) phenyl] benzonitrile was produced in 5.2%.
[0072]
Comparative Examples 3 to 6: Methyl 2- [4- (trifluoromethyl) phenyl] benzoate The pyridine (Pyr.) Of Example 1 was changed to dimethylacetamide (DMAC) or dimethylformamide (DMF), or 2,2. The reaction was performed for 9 hours in the same manner as in Example 1 except that '-bipyridyl (2,2'-BiPy) was changed to triphenylphosphine (TPP), and 2- [4- (trifluoromethyl) phenyl] benzoic acid was used. Methyl acid was prepared. The results are shown in (Table 1). In Table 1, "hetero-isomer" means the target product produced by cross-coupling, and "homo-isomer" means two kinds of raw materials (halobenzoic acid ester represented by the general formula (1)) Rather than cross-coupling the derivative with the halo- (trifluoromethyl) benzene represented by the general formula (2), any by-products produced by the coupling reaction (homocoupling) between the same raw materials (total ).
[0073]
[Table 1]
Figure 2004067595

Claims (4)

一般式(1)
Figure 2004067595
(式中、Xはハロゲン原子を示し、Rは炭素数1乃至6の直鎖又は分岐アルキル基を示す。)
で表されるハロ安息香酸エステル誘導体と、一般式(2)
Figure 2004067595
(式中、Xはハロゲン原子を示す。)
で表されるハロ−(トリフルオロメチル)ベンゼン誘導体とを、二価のニッケル化合物、還元金属、ピリジン、及び2,2’−ビピリジルの存在下でクロスカップリングさせる事を特徴とする、一般式(3)
Figure 2004067595
(式中、Rは前記と同じ意味を示す。)
で表されるトリフルオロメチルフェニル安息香酸エステル誘導体の製造方法。
General formula (1)
Figure 2004067595
(In the formula, X 1 represents a halogen atom, and R represents a linear or branched alkyl group having 1 to 6 carbon atoms.)
A halobenzoic acid ester derivative represented by the general formula (2)
Figure 2004067595
(In the formula, X 2 represents a halogen atom.)
Wherein a halo- (trifluoromethyl) benzene derivative represented by the general formula is cross-coupled in the presence of a divalent nickel compound, a reduced metal, pyridine, and 2,2′-bipyridyl. (3)
Figure 2004067595
(In the formula, R has the same meaning as described above.)
A method for producing a trifluoromethylphenyl benzoate derivative represented by the formula:
が2位に置換しているものである、請求項1記載のトリフルオロメチルフェニル安息香酸エステル誘導体の製造方法。The method for producing a trifluoromethylphenylbenzoate derivative according to claim 1, wherein X 1 is substituted at the 2-position. Rは炭素数3乃至6の直鎖又は分岐アルキル基である、請求項1乃至請求項2の何れか1項に記載のトリフルオロメチルフェニル安息香酸エステル誘導体の製造方法。The method for producing a trifluoromethylphenyl benzoate derivative according to any one of claims 1 to 2, wherein R is a linear or branched alkyl group having 3 to 6 carbon atoms. が2位に置換しているものであり、Rは炭素数3乃至6の直鎖又は分岐アルキル基である、請求項1記載のトリフルオロメチルフェニル安息香酸エステル誘導体の製造方法。The method for producing a trifluoromethylphenylbenzoate derivative according to claim 1, wherein X 1 is substituted at the 2-position, and R is a linear or branched alkyl group having 3 to 6 carbon atoms.
JP2002229788A 2002-08-07 2002-08-07 Process for producing trifluoromethylphenylbenzoate derivative Expired - Fee Related JP4096233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229788A JP4096233B2 (en) 2002-08-07 2002-08-07 Process for producing trifluoromethylphenylbenzoate derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229788A JP4096233B2 (en) 2002-08-07 2002-08-07 Process for producing trifluoromethylphenylbenzoate derivative

Publications (3)

Publication Number Publication Date
JP2004067595A true JP2004067595A (en) 2004-03-04
JP2004067595A5 JP2004067595A5 (en) 2005-09-22
JP4096233B2 JP4096233B2 (en) 2008-06-04

Family

ID=32016063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229788A Expired - Fee Related JP4096233B2 (en) 2002-08-07 2002-08-07 Process for producing trifluoromethylphenylbenzoate derivative

Country Status (1)

Country Link
JP (1) JP4096233B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269519A (en) * 2003-02-19 2004-09-30 Sumitomo Chem Co Ltd Method for producing coupling compound
EP2366680A2 (en) 2010-03-20 2011-09-21 Saltigo GmbH Method for manufacturing 4'-halogenalkyl-biphenyl-2-carboxylic acids
WO2012002221A1 (en) * 2010-06-30 2012-01-05 富士フイルム株式会社 Material for light emitting element, and light emitting element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269519A (en) * 2003-02-19 2004-09-30 Sumitomo Chem Co Ltd Method for producing coupling compound
JP4552451B2 (en) * 2003-02-19 2010-09-29 住友化学株式会社 Method for producing coupling compound
EP2366680A2 (en) 2010-03-20 2011-09-21 Saltigo GmbH Method for manufacturing 4'-halogenalkyl-biphenyl-2-carboxylic acids
DE102010012133A1 (en) 2010-03-20 2011-09-22 Saltigo Gmbh Process for the preparation of 4'-haloalkyl-biphenyl-2-carboxylic acids
EP2366680A3 (en) * 2010-03-20 2011-12-21 Saltigo GmbH Method for manufacturing 4'-halogenalkyl-biphenyl-2-carboxylic acids
WO2012002221A1 (en) * 2010-06-30 2012-01-05 富士フイルム株式会社 Material for light emitting element, and light emitting element

Also Published As

Publication number Publication date
JP4096233B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
CN107250102B (en) Method for producing benzidine from azobenzene by ruthenium catalysis
JP2618220B2 (en) Method for producing intermediate for pesticide production
JP4881298B2 (en) Method for producing indenol ester or ether
JPS649978B2 (en)
JP2016040296A (en) Method for preparing (2,4-dimethylbiphenyl-3-yl)acetic acids, esters thereof and intermediate compounds
JP4096233B2 (en) Process for producing trifluoromethylphenylbenzoate derivative
JP2004524328A (en) Process for producing vinyl, aryl and heteroaryl acetic acids and derivatives thereof
JP2001139586A (en) Method for production of organic phosphorus compound and its metal salt
JP4649733B2 (en) Method for producing acetophenone compound containing trifluoromethyl group
JP3326215B2 (en) Reductive dehalogenation method
JP2000095730A (en) Production of halogenated phenylmalonic ester
KR950003328B1 (en) 1,1-(3-ethylphenyl)phenylethylene and method for its preparation
EP1122234A2 (en) Production methods of alpha, alpha, alpha-trifluoromethylphenyl-substituted benzoic acid and intermediate therefor
JP4422549B2 (en) Process for producing orthoacylbenzoic acid derivatives
JP4057271B2 (en) Novel synthesis of inolate anion
JP4516831B2 (en) Method for producing cis-jasmon
US6096894A (en) Production method of 2-(p-alkylphenyl)pyridine compound
JP5183153B2 (en) Method for producing cross-coupling compound
JP2001302582A (en) Method for producing trifluoromethylphenylacetic acid
JP4165110B2 (en) Preparation of 4-oxypyrimidine derivatives
CA2858157A1 (en) Method for producing pentafluorosulfanyl benzoic acid
JPS61282343A (en) Production of cis-2-alkyl-3-alkoxycarbonylmethylcyclopentanone
JP2000336066A (en) Preparation of 2-(4-methylphenyl)benzoic acid derivative
CN113861240A (en) Trifluoromethyl reagent and synthesis method and application thereof
KR100322237B1 (en) Process for preparing α-ketocarboxylic acid derivatives

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4096233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees