WO2012002221A1 - Material for light emitting element, and light emitting element - Google Patents

Material for light emitting element, and light emitting element Download PDF

Info

Publication number
WO2012002221A1
WO2012002221A1 PCT/JP2011/064275 JP2011064275W WO2012002221A1 WO 2012002221 A1 WO2012002221 A1 WO 2012002221A1 JP 2011064275 W JP2011064275 W JP 2011064275W WO 2012002221 A1 WO2012002221 A1 WO 2012002221A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
emitting element
light
general formula
Prior art date
Application number
PCT/JP2011/064275
Other languages
French (fr)
Japanese (ja)
Inventor
玲 武田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012002221A1 publication Critical patent/WO2012002221A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a light emitting element material and a light emitting element.
  • an organic electroluminescent element (hereinafter also referred to as “element” or “organic EL element”) that uses an organic thin film that emits light when excited by passing current as a light-emitting element can emit light with high brightness when driven at a low voltage. Therefore, active research and development has been carried out in recent years.
  • an organic electroluminescent element is composed of an organic layer including a light emitting layer and a pair of electrodes sandwiching the layer, and electrons injected from the cathode and holes injected from the anode are recombined in the light emitting layer, The generated exciton energy is used for light emission.
  • phosphorescent light-emitting materials have advanced the efficiency of devices.
  • an organic electroluminescent element using a phosphorescent material and a platinum complex and having excellent luminous efficiency and durability has been studied.
  • a doped element using a light emitting layer in which a light emitting material is doped in a host material is widely used.
  • Patent Document 3 includes an organic compound layer in which the content of impurities including a homo-coupled body that can be generated by a cross-coupling reaction is 0.5% by mass or less for the purpose of improving the durability of the device. A light emitting element is described.
  • Patent Document 3 purification by chromatography and recrystallization is repeatedly performed so that the content of impurities including a homo-coupled body is 0.5% by mass or less. In general, repeating the purification step increases the manufacturing cost of the material.
  • the inventors of the present invention have achieved the device performance (driving voltage, luminous efficiency, We have found conditions that do not affect durability, etc.) Thereby, the light emitting element material which can maintain a high performance with a small manufacturing load can be provided. That is, an object of the present invention is to provide a light-emitting element material that has a small influence on element performance even if impurities are contained. Another object of the present invention is to provide a light emitting device using the light emitting device material. Furthermore, another object of the present invention is to provide an illumination device and a display device using the light emitting element.
  • the ionization potential Ip (1) of the light emitting element material and the ionization potential Ip (2) of the impurity satisfy Ip (1) ⁇ Ip (2).
  • the electron affinity Ea (1) of the light emitting device material and the electron affinity Ea (2) of the impurity satisfy Ea (1) ⁇ Ea (2).
  • A1 represents an optionally substituted aryl group having 6 to 30 carbon atoms or heteroaryl group having 2 to 30 carbon atoms.
  • B1 Represents an n1-valent aryl structure having 6 to 30 carbon atoms or a heteroaryl structure having 2 to 30 carbon atoms, which may have a substituent, provided that A1 and B1 are not the same.
  • the light emitting device material represented by the general formula (1-1) is a cross-coupled body represented by the following general formula (2-1), and the impurity represented by the general formula (1-2) is The light emitting device material according to (2) above, which is a homocoupled body represented by the following general formula (2-2).
  • A2 represents an optionally substituted aryl group having 6 to 15 carbon atoms or a heteroaryl group having 4 to 15 carbon atoms.
  • B2 represents Represents an n2-valent aryl structure having 6 to 15 carbon atoms or a heteroaryl structure having 3 to 15 carbon atoms which may have a substituent, provided that A2 and B2 are not the same.
  • An atom, an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an amino group, a silyl group, or a cyano group, and each group may be further substituted with these substituents.
  • the cross-coupling body is a cross-coupling body represented by the following general formula (3-1), and the homo-coupling body is a homo-coupling body represented by the following general formula (3-2)
  • the material for a light emitting device according to (3) (3-1): (A3) n3- (B3) (3-2): (A3)-(A3) (Wherein n3 represents an integer of 1 to 6.
  • A3 represents an aryl group having 6 to 15 carbon atoms which may have a substituent.
  • B3 represents n3 which may have a substituent.
  • the cross-coupling body is a cross-coupling body represented by the following general formula (4-1), and the homo-coupling body is a homo-coupling body represented by the following general formula (4-2) (3) or the light emitting device material according to (4).
  • n4 represents an integer of 1 to 5.
  • R 4a and R 4b each independently represents an aryl group which may have a substituent, a carbazolyl group which may have a substituent, or a cyano group.
  • the substituent represents an alkyl group, an alkenyl group, or an aryl group, provided that R 4a and R 4b are not the same, and na and nb each independently represents an integer of 1 to 5.
  • the light emitting device according to (6), wherein the organic layer is an organic electroluminescent device that is sandwiched between a pair of electrodes and emits light when a voltage is applied between the electrodes.
  • the light emitting element according to (6) or (7), wherein the organic layer is a layer formed by a coating method.
  • An illumination device comprising the light emitting device according to any one of (6) to (8) above.
  • a display device comprising the light emitting device according to any one of (6) to (8).
  • the present invention it is possible to provide a material for a light emitting element that contains a specific amount of impurities but does not affect the performance of the light emitting element.
  • a material for a light-emitting element that does not affect the performance of the light-emitting element although a homo-coupled body is included in the cross-coupled body can be provided.
  • the light emitting element material can provide a light emitting element with low driving voltage and excellent light emission efficiency and durability.
  • the material used for the light-emitting element of the present invention is a material that can reduce the cost of the purification process.
  • a hydrogen atom includes an isotope (deuterium atom and the like), and an atom constituting a substituent further includes the isotope.
  • the light-emitting element material of the present invention is a light-emitting element material containing an impurity having a content of more than 0.5% by mass and not more than 10% by mass, and the impurity is any of the following [I] to [III]: Satisfy two or more conditions.
  • the ionization potential Ip (1) of the light emitting element material and the ionization potential Ip (2) of the impurity satisfy Ip (1) ⁇ Ip (2).
  • the electron affinity Ea (1) of the light emitting device material and the electron affinity Ea (2) of the impurity satisfy Ea (1) ⁇ Ea (2).
  • impurities are conventionally considered to have an adverse effect on element performance as described in Patent Document 2 described above, and it has been considered that the content thereof should be reduced as much as possible.
  • an impurity that satisfies any two of the above conditions [I] to [III] if the content of the light emitting device material is more than 0.5% by mass and 10% by mass or less, device performance ( The present inventors have found that good performance can be maintained without adversely affecting low drive voltage, luminous efficiency, and durability. Therefore, in the manufacturing process of the material for a light emitting device of the present invention, an excessive purification process is not required to reduce impurities, so that the cost of the purification process can be reduced.
  • all three light emitting device materials of the present invention are used from the viewpoint of maintaining good performance without adversely affecting device performance (low driving voltage, light emission efficiency, durability). It is more preferable that the above condition is satisfied. Further, when the light emitting device material of the present invention is used in a light emitting layer described later, it is preferable that at least [III] is satisfied among the above conditions [I] to [III], and [I] and [III Or [II] and [III] are more preferable, and when used in a layer other than the light emitting layer, at least [I] and [II] among the above conditions [I] to [III] are satisfied. It is preferable.
  • the light emitting device material is represented by the general formula (1-1), and the light emitting device material Impurities that are contained in an amount of more than 0.5% by mass and not more than 10% by mass and satisfy any two or more of the conditions [I] to [III] are represented by the following general formula (1-2)
  • the case is preferred.
  • A1 represents an optionally substituted aryl group having 6 to 30 carbon atoms or heteroaryl group having 2 to 30 carbon atoms.
  • B1 Represents an n1-valent aryl structure having 6 to 30 carbon atoms or a heteroaryl structure having 2 to 30 carbon atoms, which may have a substituent, provided that A1 and B1 are not the same.
  • the substituents may be the same or different.
  • the light-emitting element material represented by the general formula (1-1) is a cross cup of a compound represented by the following general formula (1-4) and a compound represented by the following general formula (1-5). It is preferably a cross-coupled body obtainable by a ring reaction, and a homo-coupled body in which the impurity represented by the general formula (1-2) is by-produced by the cross-coupling reaction.
  • X1 and X2 represent a halogen atom or a group containing a halogen atom.
  • the compound represented by the general formula (1-2) (homo-coupled body), etc., in addition to the target cross-coupled body represented by the general formula (1-1).
  • These homo-coupled bodies are conventionally considered to have an adverse effect on device performance as described in Patent Document 2 described above, and it has been considered that the content thereof should be reduced as much as possible.
  • the homo-coupled body represented by the general formula (1-2) and the cross-coupled body represented by the general formula (1-1) are any of the above [I] to [III].
  • the content of the homocoupled body represented by the general formula (1-2) is 0 with respect to the cross-coupled body represented by the general formula (1-1). If it is more than 5% by mass and not more than 10% by mass, the device performance (low driving voltage, luminous efficiency, durability) is not adversely affected, and good performance can be maintained.
  • a light emitting device material of the present invention comprises a homo-coupling product represented by the general formula (1-2) in a cross-coupling reaction for obtaining a cross-coupling product represented by the general formula (1-1). By selectively by-producing, the light emitting device material of the present invention can be obtained. In the process of manufacturing the light emitting device material of the present invention, an excessive purification step is not required to reduce the homo-coupled body represented by the general formula (1-2), so that the cost of the purification step can be reduced. Can do.
  • n1 represents an integer of 1 to 10.
  • n1 is preferably 1 to 6, more preferably 1 to 5, further preferably 1 to 3, and particularly preferably 1.
  • A1 represents an aryl group having 6 to 30 carbon atoms or a heteroaryl group having 2 to 30 carbon atoms, which may have a substituent.
  • the aryl group preferably has 6 to 15 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the aryl group include a phenyl group, a naphthyl group, a biphenyl group, an anthranyl group, a triphenyl group, a phenanthryl group, and a triphenylenyl group.
  • a phenyl group, a naphthyl group, a phenanthryl group, and a triphenylenyl group are preferable, and a phenyl group is more preferable.
  • the carbon number of the heteroaryl group is more preferably 2-18, and particularly preferably 2-12.
  • Examples of the hetero atom of the heteroaryl group include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • Heteroaryl groups include imidazolyl, pyridyl, quinolyl, furyl, thienyl, benzofuryl, benzothienyl, dibenzofuryl, dibenzothienyl, piperidyl, benzoxazolyl, benzimidazolyl, benzthiazolyl Group, indolyl group, carbazolyl group, azepinyl group and the like.
  • B1 represents an n1-valent aryl structure having 6 to 30 carbon atoms or a heteroaryl structure having 2 to 30 carbon atoms, which may have a substituent.
  • the aryl structure preferably has 6 to 15 carbon atoms, more preferably 6 to 12 carbon atoms.
  • Examples of the aryl structure include phenyl, naphthyl, biphenyl, anthranyl, triphenyl, phenanthryl and the like. Preferred are phenyl, naphthyl and biphenyl, and more preferred is a phenyl group.
  • the heteroaryl structure preferably has 2 to 18 carbon atoms, and more preferably 2 to 12 carbon atoms.
  • hetero atom of the heteroaryl structure examples include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • heteroaryl examples include imidazole, pyridine, quinoline, furan, thiophene, benzofuran, benzothiophene, dibenzofuran, dibenzothiophene, piperidine, benzoxazole, benzimidazole, benzthiazole, indole, carbazole, and azepine.
  • A1 and B1 are not the same.
  • the substituents that A1 and B1 may have are a halogen atom, an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an amino group, an alkoxy group, a silyl group, a carboxyl group, or a cyano group.
  • the halogen atom as a substituent include a fluorine atom, a chlorine atom, and a bromine atom. Preferably, it is a fluorine atom.
  • the alkyl group as a substituent preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, and the like, preferably methyl, ethyl, tert-butyl, and more preferably tert-butyl.
  • the number of carbon atoms of the alkenyl group as a substituent is preferably 2 to 30, more preferably 2 to 20, and particularly preferably 2 to 10.
  • alkenyl group examples include a vinyl group, an allyl group, a 2-butenyl group, and a 3-pentenyl group.
  • a vinyl group and an allyl group are preferable, and a vinyl group is more preferable.
  • the number of carbon atoms of the aryl group as a substituent is preferably 6 to 30, more preferably 6 to 20, and particularly preferably 6 to 12.
  • Examples of the aryl group include a phenyl group, a naphthyl group, a biphenyl group, an anthranyl group, a triphenyl group, and a phenanthryl group.
  • a phenyl group, a biphenyl group, and a phenanthryl group are preferable, and a phenyl group is more preferable.
  • the number of carbon atoms of the heteroaryl group as a substituent is preferably 1-30, and more preferably 1-12.
  • hetero atom examples include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • Heteroaryl groups include imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, indolyl, azepinyl, etc. Can be mentioned.
  • a carbazolyl group, an indolyl group, and an azepinyl group are preferable, and a carbazolyl group is more preferable.
  • the number of carbon atoms of the alkoxy group as a substituent is preferably 1 to 30, more preferably 1 to 20, and particularly preferably 1 to 10.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, and a tert-butoxy group. A methoxy group and a tert-butoxy group are preferable, and a methoxy group is more preferable.
  • the substituent may further have a substituent.
  • the further substituent include the halogen atom, alkyl group, aryl group, heteroaryl group, amino group, alkoxy group, silyl group, carboxyl group, A cyano group is mentioned.
  • an alkyl group and an aryl group are preferable, and a tert-butyl group and a phenyl group are more preferable.
  • A1 and B1 may have, an aryl group, a heteroaryl group, an amino group, a silyl group, and a cyano group are preferable, and an aryl group, a carbazolyl group, an indolyl group, a diarylamino group, a silyl group, and a cyano group Are more preferable, and a phenyl group, a carbazolyl group, and a cyano group are particularly preferable.
  • You may have multiple A1 and B1 each independently.
  • A1 preferably has 1 to 3 substituents, more preferably 1 substituent.
  • B1 preferably has 1 to 3 substituents, and more preferably has 1 to 2 substituents.
  • the plurality of substituents may be the same or different.
  • A1 is preferably an aryl group which may have a substituent, more preferably a phenyl group having a phenanthryl group or a carbazolyl group, and particularly preferably a phenyl group having a carbazolyl group.
  • B1 is preferably an aryl structure which may have a substituent, more preferably phenyl having a phenyl group, a carbazolyl group and / or a cyano group, and particularly preferably phenyl having a carbazolyl group.
  • the light-emitting element material represented by the general formula (1-1) and the impurity represented by the general formula (1-2) are, respectively, a cross coupling represented by the following general formula (2-1) and
  • the homo-coupled body is preferably a homo-coupled body represented by the following general formula (2-2).
  • A2 represents an optionally substituted aryl group having 6 to 15 carbon atoms or a heteroaryl group having 4 to 15 carbon atoms.
  • B2 represents Represents an n2-valent aryl structure having 6 to 15 carbon atoms or a heteroaryl structure having 3 to 15 carbon atoms which may have a substituent, provided that A2 and B2 are not the same.
  • An atom, an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an amino group, a silyl group, or a cyano group, and each group may be further substituted with these substituents. And the substituents may be the same or different.
  • n2 represents an integer of 1 to 6. n2 is more preferably 1 to 5, further preferably 1 to 3, and particularly preferably 1.
  • A2 represents an aryl group having 6 to 15 carbon atoms or a heteroaryl group having 4 to 15 carbon atoms, which may have a substituent.
  • B2 represents an n2-valent aryl structure having 6 to 15 carbon atoms or a heteroaryl structure having 3 to 15 carbon atoms, which may have a substituent.
  • aryl group and heteroaryl group represented by A2 and the aryl structure and heteroaryl structure represented by B2 are the aryl group represented by A1 in the general formulas (1-1) and (1-2), and This is the same as the heteroaryl group and the aryl structure and heteroaryl structure represented by B1.
  • the substituents that A2 and B2 may have are a halogen atom, an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an amino group, a silyl group, or a cyano group. Specific examples and preferred ranges of the respective groups are the same as those listed as the substituents that A1 and B1 in the general formulas (1-1) and (1-2) may have.
  • Preferred examples of the substituent that A2 and B2 may have are the same as A1 and B1 in the general formulas (1-1) and (1-2). A2 and B2 are not the same.
  • the cross-coupled body represented by the general formula (1-1) or (1-2) and the homo-coupled body represented by the general formula (1-2) or (2-2) are respectively
  • the cross coupling represented by the general formula (3-1) and the homo-coupled body are preferably a homo-coupled body represented by the following general formula (3-2).
  • A3 represents an aryl group having 6 to 15 carbon atoms which may have a substituent.
  • B3 represents n3 which may have a substituent.
  • the substituents may be the same or different.
  • n3 represents an integer of 1 to 6. n3 is more preferably 1 to 5, further preferably 1 to 3, and particularly preferably 1.
  • A3 represents an aryl group having 6 to 15 carbon atoms or a heteroaryl group having 4 to 15 carbon atoms, which may have a substituent.
  • B3 represents an n3-valent aryl structure having 6 to 15 carbon atoms or a heteroaryl structure having 3 to 15 carbon atoms, which may have a substituent.
  • aryl group and heteroaryl group represented by A3, and the aryl structure and heteroaryl structure represented by B3 are the aryl group represented by A1 in the general formulas (1-1) and (1-2), and This is the same as the heteroaryl group and the aryl structure and heteroaryl structure represented by B1.
  • the substituents that A3 and B3 may have are an alkyl group, an alkenyl group, an aryl group, a carbazolyl group, an indolyl group, a diarylamino group, a silyl group, or a cyano group.
  • alkyl group and aryl group are the same as the alkyl group and aryl group mentioned as the substituents that A1 and B1 of the general formulas (1-1) and (1-2) may have. .
  • substituents that A3 and B3 may have, a phenyl group, a carbazolyl group, and a cyano group are more preferable.
  • A3 and B3 are not the same.
  • cross-coupled bodies represented by the general formulas (1-1) to (3-1) and the homo-coupled bodies represented by the general formulas (1-2) to (3-2) are respectively
  • the cross coupling represented by the general formula (4-1) and the homo-coupled body are preferably a homo-coupled body represented by the following general formula (4-2).
  • R 4a and R 4b each independently represents an aryl group which may have a substituent, a carbazolyl group which may have a substituent, or a cyano group.
  • the substituent is an alkyl group, an alkenyl group, or an aryl group, provided that R 4a and R 4b are not the same, and na and nb each independently represents an integer of 1 to 5.
  • R 4a or R When a plurality of 4b are present, the plurality of R 4a or R 4b may be the same or different.
  • n4 represents an integer of 1 to 5. n4 is more preferably 1 to 3, and particularly preferably 1.
  • R 4a and R 4b each independently represent an aryl group that may have a substituent, a carbazolyl group that may have a substituent, or a cyano group. The substituent is an alkyl group, an alkenyl group, or an aryl group.
  • R 4a is preferably an unsubstituted carbazolyl group.
  • R 4b is preferably a phenyl group having a substituent, an optionally substituted carbazolyl group, or a cyano group, and more preferably an optionally substituted carbazolyl group or cyano group.
  • the substituent is preferably a tert-butyl group or a phenyl group.
  • na and nb each independently represents an integer of 1 to 5.
  • na is preferably 1 to 2, and more preferably 1.
  • nb is preferably 1 to 3, and more preferably 1 to 2.
  • R 4a and R 4b are not the same. If R 4a or R 4b there are a plurality, R 4a or R 4b the plurality of it may be the same or different.
  • the cross-coupled body represented by the general formula (4-1) and the homo-coupled body represented by the general formula (4-2) are respectively cross cloths represented by the following general formula (5-1).
  • the coupling and the homocoupled body are preferably a homocoupled body represented by the following general formula (5-2).
  • R 51 represents a phenyl group which may have a substituent or a carbazolyl group which may have a substituent.
  • R 52 and R 53 each independently have a hydrogen atom or a substituent.
  • R 51 represents a phenyl group which may have a substituent or a carbazolyl group which may have a substituent.
  • An unsubstituted carbazolyl group is preferable.
  • R 52 and R 53 each independently represent a hydrogen atom, a phenyl group which may have a substituent, a carbazolyl group which may have a substituent, or a cyano group.
  • a hydrogen atom, a phenyl group having a substituent, an optionally substituted carbazolyl group or a cyano group is preferable, and a hydrogen atom, an optionally substituted carbazolyl group or a cyano group is more preferable.
  • the substituent represents an alkyl group or an aryl group, and is preferably a tert-butyl group or a phenyl group.
  • R 52 and R 53 are not simultaneously a hydrogen atom, and when one of R 52 and R 53 is a hydrogen atom, the other is not the same as R 51 .
  • the ionization potential of the cross-coupled body represented by the general formulas (1-1) to (5-1) contained in the light emitting device material Ip (1) and the ionization potential Ip (2) of the homocoupled body represented by the general formulas (1-2) to (5-2) satisfy Ip (1) ⁇ Ip (2). If a material with a certain ionization potential (Ip) contains a small amount of a material with a relatively small Ip, the movement of holes passing through the material is prevented, which is expected when only a material with a certain Ip is used.
  • Ip (2) ⁇ Ip (1) may be 0 eV or more and 1.0 eV or less because the smaller the difference between Ip (1) and Ip (2), the smaller the effect on hole movement. It is preferably 0 eV or more and 0.5 eV or less, more preferably 0 eV or more and 0.2 eV or less, and particularly preferably 0 eV or more and 0.1 eV or less.
  • the ionization potential is measured by using an atmospheric photoelectron spectroscopy (PES) apparatus AC-2 / AC-3 manufactured by Riken Keiki Co., Ltd.
  • a solid state material such as a crystal or a crystal. It can also be measured using ultraviolet photoelectron spectroscopy (UPS), photoelectron yield analysis (PYS), etc., and the cyclic voltammetry (CV) oxidation potential and the HOMO (highest occupied molecular orbital) level by quantum chemical calculations. You can also compare.
  • UPS ultraviolet photoelectron spectroscopy
  • PYS photoelectron yield analysis
  • CV cyclic voltammetry
  • the electron affinity of the cross-coupled body represented by the general formulas (1-1) to (5-1) contained in the light emitting device material Ea (1) and the electron affinity Ea (2) of the homocoupled body represented by the general formulas (1-2) to (5-2) satisfy Ea (1) ⁇ Ea (2).
  • Ea electron affinity
  • the expected light emission characteristics can be obtained by satisfying Ea (1) ⁇ Ea (2).
  • Ea (1) -Ea (2) is 0 eV or more and 1.0 eV or less because the smaller the difference between Ea (1) and Ea (2), the smaller the influence on electron movement. It is more preferably 0 eV or more and 0.5 eV or less, further preferably 0 eV or more and 0.2 eV or less, and particularly preferably 0 eV or more and 0.1 eV or less.
  • the excitation energy of the cross coupling body represented by the general formulas (1-1) to (5-1) contained in the light emitting device material T 1 (1) and the excitation energy T 1 (2) of the homocoupled body represented by the general formulas (1-2) to (5-2) are T 1 (1) ⁇ T 1 (2) Meet.
  • T 1 When a material having a small triplet state excitation energy T 1 contains a small amount of a material having a relatively small T 1 , excitons generated in the light-emitting element are deactivated by charge recombination, and the material having a certain T 1 Although it is difficult to reproduce the expected light emission characteristics when using only this, in this embodiment, the expected light emission characteristics are obtained by satisfying T 1 (1) ⁇ T 1 (2). be able to.
  • T 1 (1) and T 1 (2) should the difference is large, and from the impact is less than the reason given to the inactivation of the exciton, T 1 (2) -T 1 (1) is more 0eV 0.1eV Or less, more preferably 0 eV or more and 1.0 eV or less.
  • the excitation energy of the triplet state can be obtained from the short wavelength end of the phosphorescence emission spectrum of the thin film of the material.
  • a material is deposited on a cleaned quartz glass substrate to a thickness of about 50 nm by vacuum deposition, and the phosphorescence emission spectrum of the thin film is measured at F-7000 Hitachi Spectrofluorimeter (Hitachi High Technologies) under liquid nitrogen temperature. Use to measure.
  • the T 1 energy can be obtained by converting the rising wavelength on the short wavelength side of the obtained emission spectrum into energy units.
  • a material used for the cross-coupling reaction is selected so that Ip, Ea, and T 1 of the by-product homo-coupled body satisfy the above conditions.
  • a homo-coupled product by-produced from a material containing boron satisfies the above conditions.
  • the cross coupling bodies represented by the general formulas (1-1) to (5-1) are represented by the general formulas (1-2) to (5-2).
  • the content of the homocoupled body satisfying at least one of the above [I] to [III] is more than 0.5% by mass and not more than 10% by mass. From the viewpoint of suppressing fluctuations in device performance, the content is preferably 5% by mass or less, and more preferably 1% by mass or less. On the other hand, if the material purification is carried out excessively, the production cost increases, so the content of the homocoupled body is preferably 0.5% by mass or more, and more preferably 0.7% by mass or more.
  • the cross-coupled bodies represented by the general formulas (1-1) to (5-1) are represented by the general formulas (1-2) to (5-2).
  • the content of the homocoupled body that is not satisfied with any of the above [I] to [III] is preferably 0.5% by mass or more, and preferably 1% by mass or more. More preferably, the content is 2% by mass or more and 5% by mass or less.
  • cross-coupling reactions that give a cross-coupled body represented by the general formula (1-1) and a corresponding homo-coupled body represented by the general formula (1-2) are shown below.
  • Ax and Ay represent a place where a bond is generated by a coupling reaction, and represent a halogen atom, a substituted sulfonate, or a group containing a metal atom before the reaction.
  • the cross-coupled body represented by the general formulas (1-1) to (5-1) according to the present invention can be obtained by a cross-coupling reaction.
  • a cross-coupled body represented by the general formula (1-1) a cross-linking between a compound represented by the following general formula (1-4) and a compound represented by the following general formula (1-5) It can be obtained by a coupling reaction.
  • X1 and X2 each represent a halogen atom, a substituted sulfonate, or a group containing a metal atom. .)
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom can be used.
  • substituted sulfonate methanesulfonate (mesylate), trifluoromethanesulfonate (triflate), nonafluorobutanesulfonate (nonaflate), Phenyl sulfonate, p-toluene sulfonate (tosylate) and the like can be used.
  • a Grignard reagent containing Mg an organoboron compound containing B, an organosilicon compound containing Si, an organotin compound containing Sn, an organozinc compound containing Zn, or the like can be used. .
  • reaction conditions for the coupling reaction are described in Chem. Rev. 1995, 95, 2457-2483. Or “Metal-Catalyzed Cross-Coupling Reactions, 2nd, Completely Revised AND Enhanced Edition” (A. Meijere (Editor), F. Diedrich (Criteria), V. Can be used. Preferred conditions for the reaction are described below.
  • transition metals can be used, and in particular, metals such as palladium, nickel, iron, ruthenium, rhodium, iridium, platinum, gold, and copper can be used. These metals alone or inorganic salts, or The reaction is conducted in the form of an organometallic complex having an appropriate ligand.
  • a divalent palladium salt or a zero-valent palladium salt is used as the palladium catalyst.
  • the divalent palladium include palladium acetate and dichlorobistoluphenylphosphine palladium
  • examples of the zero-valent palladium include tetrakistriphenylphosphine palladium and bis (dibenzylideneacetone) palladium. Palladium acetate and tetrakis (triphenylphosphine) palladium are preferable.
  • the solvent for the reaction is not particularly limited, but water; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as dichloroethane and chloroform; tetrahydrofuran, 1,2-dimethoxyethane, 1,4 -Ethers such as dioxane and diethyl ether; alcohols such as methanol, ethanol and isopropyl alcohol; esters such as ethyl acetate and butyl acetate. Of these, water, aromatic hydrocarbons, and ethers are preferable. These solvents may be used as a mixture of two or more.
  • the reaction temperature is not particularly limited. Usually, the reaction is performed between 0 ° C.
  • the above reaction may be performed by further adding a ligand as necessary.
  • the ligand include a phosphine ligand and a carbene ligand. Of these, phosphine ligands are preferred.
  • the ligand is usually used in an amount of 0.5 to 20 mol times, preferably 1 to 10 mol times, more preferably 1 to 5 mol times based on the palladium catalyst used. It is.
  • alkaline-earth metal such as alkali metal hydroxides, such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, calcium hydroxide, barium hydroxide
  • alkali metal bicarbonates such as hydroxide, sodium bicarbonate and potassium bicarbonate
  • alkaline earth metal bicarbonates such as calcium bicarbonate and barium bicarbonate
  • alkali metal carbonates such as sodium carbonate and calcium carbonate
  • alkaline earth metal carbonates such as barium carbonate
  • phosphates such as sodium phosphate and potassium phosphate.
  • alkali metal bicarbonate, alkali metal carbonate, and phosphate are preferable.
  • the amount of the base to be used is generally 0.1 to 50 mol times, preferably 1 to 20 mol times, more preferably 2 to 10 mol times based on the compound (1-4). Amount.
  • the general formulas (1-2) to (5-2) In the cross-coupling reaction, in order to selectively produce a homo-coupled product represented by the general formulas (1-2) to (5-2) as a by-product, the general formulas (1-2) to (5-2)
  • the material that gives a homo-coupled body represented by the formula (1) is equal to or more than the equivalent of the material to be paired in the cross-coupling reaction, preferably 1.1 to 10 times equivalent, more preferably 1.1 to 2 times equivalent, More preferably, 1.1 to 1.2 times equivalent is used.
  • purification by column chromatography, recrystallization or the like may be performed.
  • the impurity content that changes the performance of the light-emitting element can be reduced to an allowable amount or less by purification.
  • the light emitting device of the present invention is a light emitting device having at least one organic layer, and the light emitting device material of the present invention is included in at least one layer of the organic layer.
  • the content of the light emitting device material of the present invention in the organic layer is preferably 90% by mass or more and 100% by mass or less, more preferably 95% by mass or more and 100% by mass or less, and 99% by mass or more and 100% by mass. More preferably, it is at most mass%.
  • the content of a light emitting element material other than the light emitting material is preferably 90% by mass or more and 100% by mass or less, and 95% by mass or more. More preferably, it is 100 mass% or less, More preferably, it is 99 mass% or more and 100 mass% or less.
  • the aspect of the light emitting element of this invention is not limited, An organic electroluminescent element, a luminescent organic field effect transistor, etc. are mentioned.
  • the organic electroluminescent element emits light when an organic layer is sandwiched between a pair of electrodes and a voltage is applied between the electrodes.
  • FIG. 1 shows an example of the configuration of an organic electroluminescent device according to the present invention.
  • An organic electroluminescent element 10 according to the present invention shown in FIG. 1 has a pair of electrodes (anode 3 and cathode 9) on a substrate 2, and a light emitting layer 6 between the pair of electrodes.
  • a hole injection layer 4, a hole transport layer 5, a light emitting layer 6, a hole block layer 7, and an electron transport layer 8 are provided in this order between the anode 3 and the cathode 9.
  • at least one of the anode and the cathode is preferably transparent or translucent.
  • Anode / hole transport layer / light emitting layer / electron transport layer / cathode Anode / hole transport layer / light emitting layer / block layer / electron transport layer / cathode, Anode / hole transport layer / light emitting layer / block layer / electron transport layer / electron injection layer / cathode, Anode / hole injection layer / hole transport layer / light emitting layer / block layer / electron transport layer / cathode, Anode / hole injection layer / hole transport layer / light emitting layer / block layer / electron transport layer / cathode, Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode, Anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode, Anode / hole injection layer / hole transport layer / light emitting layer / block layer / electron transport
  • the element configuration, the substrate, the cathode, and the anode of the organic electroluminescence element are described in detail in, for example, Japanese Patent Application Laid-Open No. 2008-270736, and the matters described in the publication can be applied to the present invention.
  • the light emitting device material of the present invention may be contained in any layer of the organic layer. Preferably, it is used for any of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, and more preferably for a hole transport layer, a light emitting layer, and an electron transport layer. More preferably, it is used for the light emitting layer.
  • the light-emitting element material of the present invention is contained in the light-emitting layer
  • the light-emitting element material of the present invention is preferably included in an amount of 10 to 99% by mass, and preferably 40 to 95% by mass with respect to the total mass of the light-emitting layer.
  • the light emitting device material of the present invention is contained in a layer other than the light emitting layer, it is preferably contained in an amount of 60 to 100% by mass, more preferably 70 to 100% by mass, and more preferably 85 to 100% by mass. More preferably.
  • the substrate is preferably a substrate that does not scatter or attenuate light emitted from the organic layer.
  • an organic material it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, and workability.
  • the anode usually only needs to have a function as an electrode for supplying holes to the organic layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials.
  • the anode is usually provided as a transparent anode.
  • the cathode usually has a function as an electrode for injecting electrons into the organic layer, and there is no particular limitation on the shape, structure, size, etc., and it is known depending on the use and purpose of the light-emitting element.
  • the electrode material can be selected as appropriate.
  • the substrate, anode, and cathode the matters described in paragraph numbers [0070] to [0089] of JP-A-2008-270736 can be applied to the present invention.
  • each organic layer can be suitably formed by any of dry film forming methods such as vapor deposition and sputtering, wet film forming methods such as solution coating, transfer methods, and printing methods.
  • the light emitting material in the light emitting layer of the organic electroluminescent element of the present invention is preferably a phosphorescent light emitting material, and preferably an iridium complex and a platinum complex.
  • the light emitting material in the light emitting layer is preferably contained in an amount of 0.1% by mass to 50% by mass with respect to the mass of all compounds generally forming the light emitting layer in the light emitting layer.
  • the content is more preferably 1% by mass to 50% by mass, and further preferably 2% by mass to 40% by mass.
  • the phosphorescent light emitting material in the light emitting layer is preferably contained in the light emitting layer in an amount of 1% by mass to 30% by mass, and more preferably 2% by mass to 20% by mass from the viewpoint of durability and emission hue.
  • the thickness of the light emitting layer is not particularly limited, but is usually preferably 2 nm to 500 nm, and more preferably 3 nm to 200 nm, and more preferably 5 nm to 100 nm from the viewpoint of external quantum efficiency. More preferably.
  • the light emitting layer may be composed of only a light emitting material, or may be a mixed layer of a host material and a light emitting material.
  • the light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, and the dopant may be one kind or two or more kinds.
  • the host material is preferably a charge transport material.
  • the host material may be one kind or two or more kinds, and examples thereof include a configuration in which an electron transporting host material and a hole transporting host material are mixed.
  • the light emitting layer may include a material that does not have charge transporting properties and does not emit light.
  • the light emitting layer may be composed of a plurality of layers, and when the light emitting layer is composed of a plurality of layers, the respective emission colors may be the same or different.
  • the host material used in the present invention may contain the following compounds.
  • pyrrole indole, carbazole (eg, CBP (4,4′-di (9-carbazoyl) biphenyl)), azaindole, azacarbazole, triazole, oxazole, oxadiazole, pyrazole, imidazole, thiophene, polyarylalkane, Pyrazoline, pyrazolone, phenylenediamine, arylamine, amino-substituted chalcone, styrylanthracene, fluorenone, hydrazone, stilbene, silazane, aromatic tertiary amine compound, styrylamine compound, porphyrin compound, polysilane compound, poly (N-vinyl) Carbazole), aniline copolymers, thiophene oligomers, conductive polymer oligomers such as polythioph
  • the triplet minimum excitation energy (T 1 energy) of the host material is preferably higher than the T 1 energy of the phosphorescent light emitting material in terms of color purity, light emission efficiency, and driving durability.
  • the content of the host compound is not particularly limited, but is preferably 15% by mass or more and 95% by mass or less with respect to the total compound mass forming the light emitting layer, from the viewpoint of luminous efficiency and driving voltage.
  • fluorescent material examples include, for example, benzoxazole derivatives, benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives.
  • Condensed aromatic compounds perinone derivatives, oxadiazole derivatives, oxazine derivatives, aldazine derivatives, pyralidine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiadiazolopyridine derivatives, cyclopentadiene derivatives, styryl Complexes of amine derivatives, diketopyrrolopyrrole derivatives, aromatic dimethylidin compounds, 8-quinolinol derivatives and pyromethene derivatives
  • complexes represented, polythiophene, polyphenylene, polyphenylene vinylene polymer compounds include compounds such as organic silane derivatives.
  • phosphorescent material examples include US Pat. / 19373A2, JP-A No. 2001-247859, JP-A No. 2002-302671, JP-A No. 2002-117978, JP-A No. 2003-133074, JP-A No. 2002-1235076, JP-A No. 2003-123684, JP-A No. 2002-170684, EP No. 121157, JP-A No.
  • Examples of such a luminescent dopant include Ir complex, Pt complex, Cu complex, Re complex, W complex, Rh complex, Ru complex, Pd complex, Os complex, Eu complex, Tb complex, among others. Gd complex, Dy complex, and Ce complex are mentioned.
  • an Ir complex, a Pt complex, or a Re complex among which an Ir complex or a Pt complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond. Or Re complexes are preferred. Furthermore, from the viewpoints of luminous efficiency, driving durability, chromaticity, etc., an Ir complex, a Pt complex, or a Re complex containing a tridentate or higher polydentate ligand is particularly preferable.
  • the organic layer preferably includes a hole injection layer or a hole transport layer containing an electron-accepting dopant.
  • the electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
  • the hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side.
  • a hole blocking layer can be provided as an organic layer adjacent to the light emitting layer on the cathode side.
  • organic compounds constituting the hole blocking layer include aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate (Aluminum (III) bis (2-methyl-8-quinolinato) 4- aluminum complexes such as phenylphenolate (abbreviated as BAlq), triazole derivatives, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (2,9-Dimethyl-4,7-diphenyl-1,10-) phenanthroline derivatives such as phenanthroline (abbreviated as BCP)) and the like.
  • BAlq phenylphenolate
  • BAlq phenylphenolate
  • BCP phenanthroline
  • the thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
  • the hole blocking layer may have a single layer structure made of one or more of the materials described above, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
  • the electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side.
  • an electron blocking layer can be provided as an organic layer adjacent to the light emitting layer on the anode side.
  • the thickness of the electron blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
  • the electron blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the entire organic light emitting device may be protected by a protective layer.
  • a protective layer the matters described in JP-A-2008-270736, paragraphs [0169] to [0170] can be applied to the present invention.
  • the element of this invention may seal the whole element using a sealing container.
  • the sealing container the matters described in paragraph [0171] of JP-A-2008-270736 can be applied to the present invention.
  • the organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode.
  • a direct current which may include an alternating current component as necessary
  • the driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-290080, JP-A-7-134558, JP-A-8-234585, and JP-A-8-2441047.
  • the driving methods described in each publication, Japanese Patent No. 2784615, US Pat. Nos. 5,828,429 and 6,023,308 can be applied.
  • the organic electroluminescence device of the present invention can improve the light extraction efficiency by various known devices. For example, by processing the substrate surface shape (for example, forming a fine concavo-convex pattern), controlling the refractive index of the substrate / ITO layer / organic layer, controlling the film thickness of the substrate / ITO layer / organic layer, etc. It is possible to improve light extraction efficiency and external quantum efficiency.
  • the organic electroluminescent element of the present invention may be a so-called top emission method in which light emission is extracted from the anode side.
  • the organic electroluminescent element in the present invention may have a resonator structure.
  • a multilayer mirror made of a plurality of laminated films having different refractive indexes, a transparent or translucent electrode, a light emitting layer, and a metal electrode are superimposed on a transparent substrate.
  • the light generated in the light emitting layer resonates repeatedly with the multilayer mirror and the metal electrode as a reflection plate.
  • a transparent or translucent electrode and a metal electrode each function as a reflecting plate on a transparent substrate, and light generated in the light emitting layer repeats reflection and resonates between them.
  • the optical path length determined from the effective refractive index of the two reflectors and the refractive index and thickness of each layer between the reflectors is adjusted to an optimum value to obtain the desired resonant wavelength. Is done.
  • the calculation formula in the case of the first embodiment is described in JP-A-9-180883.
  • the calculation formula in the case of the second embodiment is described in Japanese Patent Application Laid-Open No. 2004-127795.
  • the external quantum efficiency of the organic electroluminescent element of the present invention is preferably 5% or more, more preferably 10% or more, and particularly preferably 17% or more.
  • the value of the external quantum efficiency should be the maximum value of the external quantum efficiency when the device is driven at 20 ° C., or the value of the external quantum efficiency near 100 to 300 cd / m 2 when the device is driven at 20 ° C. Can do.
  • the internal quantum efficiency of the organic electroluminescence device of the present invention is preferably 30% or more, more preferably 50% or more, and further preferably 70% or more.
  • the internal quantum efficiency of the device is calculated by dividing the external quantum efficiency by the light extraction efficiency. In a normal organic EL element, the light extraction efficiency is about 20%.
  • the organic electroluminescent element of the present invention preferably has an emission maximum wavelength (maximum intensity wavelength of emission spectrum) at 350 nm or more and 700 nm or less, more preferably 400 nm or more and 650 nm or less, and more preferably 400 nm or more and 520 nm or less as a blue light emitting element.
  • it is 400 nm to 470 nm, preferably 470 nm to 520 nm, particularly preferably 490 nm to 510 nm as a green light emitting element, and preferably 550 nm to 650 nm, particularly preferably 590 nm to 630 nm as a red light emitting element. It is.
  • the organic electroluminescent element of the present invention is suitable for light emitting devices, pixels, display elements, displays, backlights, electrophotography, illumination light sources, recording light sources, exposure light sources, reading light sources, signs, signboards, interiors, optical communications, etc. Available.
  • it is preferably used for a device that is driven in a region where light emission luminance is high, such as a light emitting device, a lighting device, and a display device.
  • FIG. 2 is a cross-sectional view schematically showing an example of the light emitting device of the present invention.
  • the light emitting device 20 in FIG. 2 includes a transparent substrate (support substrate) 2, an organic electroluminescent element 10, a sealing container 16, and the like.
  • the organic electroluminescent device 10 is configured by sequentially laminating an anode (first electrode) 3, an organic layer 11, and a cathode (second electrode) 9 on a substrate 2.
  • a protective layer 12 is laminated on the cathode 9, and a sealing container 16 is provided on the protective layer 12 with an adhesive layer 14 interposed therebetween.
  • a part of each electrode 3 and 9, a partition, an insulating layer, etc. are abbreviate
  • the adhesive layer 14 a photocurable adhesive such as an epoxy resin or a thermosetting adhesive can be used, and for example, a thermosetting adhesive sheet can also be used.
  • the use of the light-emitting device of the present invention is not particularly limited, and for example, it can be a display device such as a television, a personal computer, a mobile phone, and electronic paper in addition to a lighting device.
  • FIG. 3 is a cross-sectional view schematically showing an example of a lighting device according to an embodiment of the present invention.
  • the illumination device 40 according to the embodiment of the present invention includes the organic EL element 10 and the light scattering member 30 described above. More specifically, the lighting device 40 is configured such that the substrate 2 of the organic EL element 10 and the light scattering member 30 are in contact with each other.
  • the light scattering member 30 is not particularly limited as long as it can scatter light.
  • the light scattering member 30 is a member in which fine particles 32 are dispersed on a transparent substrate 31.
  • a glass substrate can be preferably cited.
  • the fine particles 32 transparent resin fine particles can be preferably exemplified.
  • the glass substrate and the transparent resin fine particles known ones can be used. In such an illuminating device 40, when light emitted from the organic electroluminescent element 10 is incident on the light incident surface 30A of the scattering member 30, the incident light is scattered by the light scattering member 30, and the scattered light is emitted from the light emitting surface 30B. It is emitted as illumination light.
  • a cross coupling body 6 was synthesized by the following synthesis route 4.
  • the intermediate 5 is prepared according to J.I. Am. Chem. Soc. , 1986, 108 (19), pp. Synthesized from carbazole and bromofluorobenzonitrile according to the method described in 5991-5997.
  • the cross coupling body 6 was synthesized by the same method as the synthesis of the cross coupling body 4 described above.
  • the content of the homo-coupled body 6-a with respect to the cross-coupled body 6 was 1.5% by mass.
  • Homocouple 6-a was synthesized in the same manner as homocouple 4-a.
  • Homocoupled body 6-b was synthesized by the following method.
  • Intermediate 6 was synthesized from intermediate 5 by the method described on page 100 of WO 2006/062062.
  • the homocoupled body 6-b can be synthesized by the same method as the synthesis of the cross coupling body 4 described above.
  • the cross coupling body 10 was synthesized by the following synthesis route 5 by the method described in paragraph [0080] of JP-A No. 2007-266598.
  • the content of the homo-coupled body 10-a with respect to the cross-coupled body 10 after synthesis was 2% by mass. Moreover, the NMR data of the obtained cross coupling body 10 are shown below. ⁇ (ppm, in deuterated chloroform) 7.33 (m, 2H), 7.43-7.50 (m, 4H), 7.54-7.62 (m, 6H), 7.64-7.74 (M, 7H), 7.82-7.85 (m, 2H)
  • Homocouple 10-a is described in Chemical & Pharmaceutical Bulletin, 1982, vol. 30, # 7, p. It was synthesized by the method described in 2369-2379.
  • the cross-coupled body 12 was synthesized by the following synthesis routes 6-8.
  • homo-coupled body 12-a Homocouple 12-a was synthesized by Suzuki coupling of intermediate 7 and its precursor bromide. The NMR data of homo-coupled body 12-a is shown below. ⁇ (ppm, deuterated chloroform) 8.94 (s, 2H), 8.80-8.74 (m, 4H), 8.73-8.68 (m, 6H), 8.12 (s, 2H ), 8.00 (d, 2H), 7.87 (d, 2H), 7.79 (d, 2H), 7.72-7.67 (m, 10H)
  • the cross coupling body 4 was synthesized by the following synthesis route 9.
  • Ionization potentials of the cross-coupled bodies 4, 6, 10 and 12 synthesized as described above and the homo-coupled bodies 4-a, 4-b, 6-a, 6-b, 10-a and 12-a The electron affinity and the excitation energy of the triplet state were examined as follows.
  • cross-coupled bodies Exemplified compounds 4, 6, 10 and 12
  • crystallization, recrystallization, column chromatography, and sublimation purification were repeated, A compound having a content of 99.9% by mass or more was obtained.
  • the resulting cross-coupling member, the homo-coupled compounds, each, by vacuum evaporation on a quartz substrate, and a thin film having a thickness of 50 nm, ionization potential Ip, excitation energy T 1 of the electron affinity Ea and triplet states was measured.
  • the ionization potential Ip was measured using an atmospheric photoelectron spectroscopy (PES) apparatus AC-2 manufactured by Riken Keiki Co., Ltd.
  • the excitation energy T 1 in the triplet state was measured using the F-7000 Hitachi spectrofluorometer (Hitachi High-Technologies) at a liquid nitrogen temperature, and the phosphorescence emission spectrum of the thin film was measured on the short wavelength side of the obtained emission spectrum.
  • the T 1 energy was determined by converting the rising wavelength into energy units. The measurement results are shown in Table 2 below.
  • T 1 of the column ( ⁇ ) the excitation energy T 1 of the triplet state of the homo-coupled compounds with respect to the excitation energy T 1 of the triplet state of the cross-coupling member (1) (2) T 1 (1 ) ⁇ T 1 (2) is satisfied, and ( ⁇ ) indicates that T 1 (1) ⁇ T 1 (2) is not satisfied.
  • Example 2 [Production of element] A glass substrate having a ITO film with a thickness of 0.7 mm and a 2.5 cm square (manufactured by Geomat Co., Ltd., surface resistance 10 ⁇ / ⁇ ) is placed in a cleaning container, ultrasonically cleaned in 2-propanol, and then treated with UV-ozone for 30 minutes. Went. The following organic compound layers were sequentially deposited on the transparent anode (ITO film) by vacuum deposition.
  • First layer NPD: film thickness 40 nm
  • Second layer material X and luminescent material (mass ratio 90:10): film thickness 30 nm
  • Third layer CBP: film thickness 5 nm
  • Fourth layer BAlq: film thickness 45 nm
  • 1 nm of lithium fluoride and 70 nm of metal aluminum were vapor-deposited in this order, and it was set as the cathode.
  • This is put in a glove box substituted with nitrogen gas without being exposed to the atmosphere, and sealed with a glass sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
  • XNR5516HV ultraviolet curable adhesive
  • Decay time was shorter than 0% and 5% or shorter than the reference value.
  • X Decay time was shortened by more than 15% with respect to the reference value.
  • Example 3 [Production of element]
  • the device was fabricated in the same manner except that the material X was changed to that of Table 4, and the driving voltage, the external quantum efficiency and the comparative examples 2 and 3 and Reference Example 1 were used as a reference.
  • the initial luminance decay time was evaluated. The evaluation results are shown in Table 4.
  • Example 4 [Production of element] A glass substrate having a ITO film with a thickness of 0.7 mm and a 2.5 cm square (manufactured by Geomat Co., Ltd., surface resistance 10 ⁇ / ⁇ ) is placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. Went. The following organic compound layers were sequentially deposited on the transparent anode (ITO film) by vacuum deposition.
  • ITO film transparent anode
  • First layer NPD: film thickness 40 nm
  • Second layer CBP and luminescent material (mass ratio 90:10): film thickness 30 nm
  • Third layer Material X: film thickness 5 nm
  • Fourth layer BAlq: film thickness 45 nm
  • XNR5516HV ultraviolet curable adhesive
  • Example 5 [Production of element] A glass substrate having a ITO film with a thickness of 0.7 mm and a 2.5 cm square (manufactured by Geomat Co., Ltd., surface resistance 10 ⁇ / ⁇ ) is placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. Went. The following organic compound layers were sequentially deposited on the transparent anode (ITO film) by vacuum deposition.
  • ITO film transparent anode
  • First layer Material X: film thickness 40 nm
  • Second layer CBP and luminescent material (mass ratio 90:10): film thickness 30 nm
  • Third layer CBP: film thickness 5 nm
  • Fourth layer BAlq: film thickness 45 nm
  • 1 nm of lithium fluoride and 70 nm of metal aluminum were vapor-deposited in this order, and it was set as the cathode.
  • This is put in a glove box substituted with nitrogen gas without being exposed to the atmosphere, and sealed with a glass sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
  • XNR5516HV ultraviolet curable adhesive
  • Example 6 [Production of element] A glass substrate having a 0.7 mm thickness and a 2.5 cm square ITO film (manufactured by Geomatech Co., Ltd., surface resistance 10 ⁇ / ⁇ ) is placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. Went. A solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS) to 70% with pure water was applied to this with a spin coater to provide a 50 nm hole transport layer.
  • PEDOT / PSS polystyrene sulfonate
  • a methylene chloride solution in which the material X and the light emitting material (mass ratio 95: 5) were dissolved was applied with a spin coater to obtain a light emitting layer having a thickness of 30 nm.
  • BAlq was vapor-deposited 40 nm.
  • 1 nm of lithium fluoride as a cathode buffer layer and 70 nm of aluminum as a cathode were deposited in a deposition apparatus.
  • the present invention it is possible to provide a material for a light emitting element that contains a specific amount of impurities but does not affect the performance of the light emitting element.
  • a material for a light-emitting element that does not affect the performance of the light-emitting element although a homo-coupled body is included in the cross-coupled body can be provided.
  • the light emitting element material can provide a light emitting element with low driving voltage and excellent light emission efficiency and durability.
  • the material used for the light-emitting element of the present invention is a material that can reduce the cost of the purification process.

Abstract

Disclosed is a material for a light emitting element, which is suitable for the purpose of lowering the driving voltage and improving luminous efficiency and durability of a light emitting element. Specifically disclosed is a material for a light emitting element, which contains an impurity in an amount of more than 0.5% by mass but 10% by mass or less. The material for a light emitting element is characterized in that the impurity satisfies two or more of the following conditions (I)-(III). (I) The ionization potential Ip (1) of the material for a light emitting element and the ionization potential Ip (2) of the impurity satisfy the following relation: Ip (1) ≤ Ip (2). (II) The electron affinity Ea (1) of the material for a light emitting element and the electron affinity Ea (2) of the impurity satisfy the following relation: Ea (1) ≥ Ea (2). (III) The triplet state excitation energy T1 (1) of the material for a light emitting element and the triplet state excitation energy T1 (2) of the impurity satisfy the following relation: T1 (1) ≤ T1 (2).

Description

発光素子用材料及び発光素子Light emitting device material and light emitting device
 本発明は、発光素子用材料及び発光素子に関する。 The present invention relates to a light emitting element material and a light emitting element.
 発光素子として、電流を通じることによって励起され発光する有機薄膜を用いた有機電界発光素子(以下、「素子」、「有機EL素子」ともいう)は、低電圧駆動で高輝度の発光が得られることから、近年活発な研究開発が行われている。一般に有機電界発光素子は、発光層を含む有機層及び該層を挟んだ一対の電極から構成されており、陰極から注入された電子と陽極から注入された正孔が発光層において再結合し、生成した励起子のエネルギーを発光に利用するものである。 An organic electroluminescent element (hereinafter also referred to as “element” or “organic EL element”) that uses an organic thin film that emits light when excited by passing current as a light-emitting element can emit light with high brightness when driven at a low voltage. Therefore, active research and development has been carried out in recent years. In general, an organic electroluminescent element is composed of an organic layer including a light emitting layer and a pair of electrodes sandwiching the layer, and electrons injected from the cathode and holes injected from the anode are recombined in the light emitting layer, The generated exciton energy is used for light emission.
 近年、燐光発光材料を用いることにより、素子の高効率化が進んでいる。例えば、燐光発光材料と白金錯体などを用い、発光効率及び耐久性に優れる有機電界発光素子が研究されている。また、発光材料をホスト材料中にドープした発光層を用いるドープ型素子が広く採用されている。 In recent years, the use of phosphorescent light-emitting materials has advanced the efficiency of devices. For example, an organic electroluminescent element using a phosphorescent material and a platinum complex and having excellent luminous efficiency and durability has been studied. In addition, a doped element using a light emitting layer in which a light emitting material is doped in a host material is widely used.
 有機化合物の合成方法としては、触媒存在下に、異種の原料化合物を結合させて目的とする有機化合物を得るクロスカップリング反応があるが、クロスカップリング反応では同種の原料化合物同士が反応したホモカップリング体が副生することが知られている。(特許文献1参照)。有機電界発光素子材料として用いられる多くの有機化合物も、クロスカップリング反応により得ることができる(特許文献2参照)。
 クロスカップリング反応により得る有機化合物(クロスカップリング体)を有機電界発光素子用材料とする場合、副生物のホモカップリング体は不純物であり、素子性能を悪化させる原因と考えられ、その含有量を低減することが望まれてきた。例えば、特許文献3には、素子の耐久性の向上を目的として、クロスカップリング反応により生じうる、ホモカップリング体を含む不純物の含有量を0.5質量%以下とした有機化合物層を含む発光素子が記載されている。
As a method for synthesizing organic compounds, there is a cross-coupling reaction in which different types of raw material compounds are combined in the presence of a catalyst to obtain the target organic compound. It is known that coupling bodies are by-produced. (See Patent Document 1). Many organic compounds used as organic electroluminescent element materials can also be obtained by cross-coupling reactions (see Patent Document 2).
When an organic compound (cross-coupled body) obtained by a cross-coupling reaction is used as a material for an organic electroluminescent device, the by-product homo-coupled body is an impurity, which is considered to be a cause of deteriorating device performance, and its content It has been desired to reduce this. For example, Patent Document 3 includes an organic compound layer in which the content of impurities including a homo-coupled body that can be generated by a cross-coupling reaction is 0.5% by mass or less for the purpose of improving the durability of the device. A light emitting element is described.
日本国特開2004-67595号公報Japanese Laid-Open Patent Publication No. 2004-67595 日本国特開2009-167175号公報Japanese Unexamined Patent Publication No. 2009-167175 日本国特開2002-373786号公報Japanese Unexamined Patent Publication No. 2002-373786
 特許文献3では、ホモカップリング体を含む不純物の含有量を0.5質量%以下とするために、クロマトグラフィーと再結晶法による精製を繰り返し行っている。一般に、精製工程を繰り返すことは、材料の製造コストを上昇させることになる。
 これに対して、本発明者らは、特定の不純物、特にクロスカップリング体に対して特定のホモカップリング体が共存していても、有機電界発光素子の素子性能(駆動電圧、発光効率、耐久性など)に影響を与えない条件を見出した。これにより、製造負荷が小さく、高性能を維持できる発光素子用材料を提供することができる。
 即ち、本発明の目的は、不純物が含まれていても素子性能への影響が小さい発光素子用材料を提供することである。
 また、本発明の他の目的は、該発光素子用材料を用い、発光素子を提供することである。更に、本発明の他の目的は、該発光素子を用いた照明装置及び表示装置を提供することである。
In Patent Document 3, purification by chromatography and recrystallization is repeatedly performed so that the content of impurities including a homo-coupled body is 0.5% by mass or less. In general, repeating the purification step increases the manufacturing cost of the material.
On the other hand, the inventors of the present invention have achieved the device performance (driving voltage, luminous efficiency, We have found conditions that do not affect durability, etc.) Thereby, the light emitting element material which can maintain a high performance with a small manufacturing load can be provided.
That is, an object of the present invention is to provide a light-emitting element material that has a small influence on element performance even if impurities are contained.
Another object of the present invention is to provide a light emitting device using the light emitting device material. Furthermore, another object of the present invention is to provide an illumination device and a display device using the light emitting element.
 上記課題は、下記の手段により解決される。
(1)
 含有量が0.5質量%より多く10質量%以下の不純物を含む発光素子用材料であって、該不純物が下記の[I]~[III]のいずれか2つ以上の条件を満足する、発光素子用材料。
[I]発光素子用材料のイオン化ポテンシャルIp(1)と、不純物のイオン化ポテンシャルIp(2)とが、Ip(1)≦Ip(2)である。
[II]発光素子用材料の電子親和力Ea(1)と、不純物の電子親和力Ea(2)とが、Ea(1)≧Ea(2)である。
[III]発光素子用材料の三重項状態の励起エネルギーT1(1)と、不純物の三重項状態の励起エネルギーT1(2)とが、T1(1)≦T1(2)である。
(2)
 前記発光素子用材料が下記一般式(1-1)で表され、前記不純物が下記一般式(1-2)で表される、上記(1)に記載の発光素子用材料。
  (1-1):(A1)n1-(B1)
  (1-2):(A1)-(A1)
(式中、n1は、1~10の整数を表す。A1は、置換基を有していてもよい、炭素数6~30のアリール基又は炭素数2~30のヘテロアリール基を表す。B1は、置換基を有していてもよいn1価の、炭素数6~30のアリール構造又は炭素数2~30のヘテロアリール構造を表す。ただし、A1とB1は同一ではない。前記置換基は、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アミノ基、アルコキシ基、シリル基、カルボキシル基、又はシアノ基であり、各基は更にこれらの置換基により置換されていてもよい。置換基が複数存在する場合に該置換基は同一でも異なっていてもよい。)
(3)
 前記一般式(1-1)で表される発光素子用材料が下記一般式(2-1)で表されるクロスカップリング体であり、前記一般式(1-2)で表される不純物が下記一般式(2-2)で表されるホモカップリング体である上記(2)に記載の発光素子用材料。
  (2-1):(A2)n2-(B2)
  (2-2):(A2)-(A2)
(式中、n2は1~6の整数を表す。A2は、置換基を有してもよい、炭素数6~15のアリール基又は炭素数4~15のヘテロアリール基を表す。B2は、置換基を有していてもよいn2価の、炭素数6~15のアリール構造又は炭素数3~15のヘテロアリール構造を表す。ただし、A2とB2は同一ではない。前記置換基は、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アミノ基、シリル基、又はシアノ基であり、各基は更にこれらの置換基により置換されていてもよい。置換基が複数存在する場合に該置換基は同一でも異なっていてもよい。)
(4)
 前記クロスカップリング体が下記一般式(3-1)で表されるクロスカップリング体であり、前記ホモカップリング体が下記一般式(3-2)で表されるホモカップリング体である上記(3)に記載の発光素子用材料。
  (3-1):(A3)n3-(B3)
  (3-2):(A3)-(A3)
(式中、n3は1~6の整数を表す。A3は、置換基を有してもよい、炭素数6~15のアリール基を表す。B3は、置換基を有していてもよいn3価の炭素数6~15のアリール構造を表す。ただし、A3とB3は同一ではない。前記置換基は、アルキル基、アルケニル基、アリール基、カルバゾリル基、インドリル基、ジアリールアミノ基、シリル基、又はシアノ基であり、各基は更にこれらの置換基により置換されていてもよい。置換基が複数存在する場合に該置換基は同一でも異なっていてもよい。)
(5)
 前記クロスカップリング体が下記一般式(4-1)で表されるクロスカップリング体であり、前記ホモカップリング体が下記一般式(4-2)で表されるホモカップリング体である上記(3)又は(4)に記載の発光素子用材料。
Figure JPOXMLDOC01-appb-C000002

(式中、n4は1~5の整数を表す。R4a及びR4bは、それぞれ独立に、置換基を有してもよいアリール基、置換基を有してもよいカルバゾリル基、又はシアノ基を表す。前記置換基は、アルキル基、アルケニル基、又はアリール基を表す。ただし、R4aとR4bは同一ではない。na及びnbはそれぞれ独立に1~5の整数を表す。R4a又はR4bが複数存在する場合、該複数のR4a又はR4bは同一でも異なっていてもよい。)
(6)
 少なくとも一層の有機層を有する発光素子であって、前記有機層の少なくとも一層に上記(1)~(5)のいずれか一項記載の発光素子用材料を含む発光素子。
(7)
 前記有機層が、一対の電極間に挟持され、該電極間に電圧を印加することにより発光する有機電界発光素子である、上記(6)に記載の発光素子。
(8)
 前記有機層が、塗布法により形成された層である、上記(6)又は(7)に記載の発光素子。
(9)
 上記(6)~(8)のいずれか一項記載の発光素子を有する照明装置。
(10)
 上記(6)~(8)のいずれか一項記載の発光素子を有する表示装置。
The above problem is solved by the following means.
(1)
A material for a light-emitting element containing an impurity having a content of more than 0.5% by mass and not more than 10% by mass, wherein the impurity satisfies any two or more of the following conditions [I] to [III]: Material for light emitting elements.
[I] The ionization potential Ip (1) of the light emitting element material and the ionization potential Ip (2) of the impurity satisfy Ip (1) ≦ Ip (2).
[II] The electron affinity Ea (1) of the light emitting device material and the electron affinity Ea (2) of the impurity satisfy Ea (1) ≧ Ea (2).
[III] an excited triplet state of the material for a light-emitting element energy T 1 (1), excitation energy T 1 of the triplet state of the impurities and (2), but at T 1 (1) ≦ T 1 (2) .
(2)
The light emitting device material according to (1), wherein the light emitting device material is represented by the following general formula (1-1), and the impurity is represented by the following general formula (1-2).
(1-1): (A1) n1- (B1)
(1-2): (A1)-(A1)
(Wherein n1 represents an integer of 1 to 10. A1 represents an optionally substituted aryl group having 6 to 30 carbon atoms or heteroaryl group having 2 to 30 carbon atoms. B1 Represents an n1-valent aryl structure having 6 to 30 carbon atoms or a heteroaryl structure having 2 to 30 carbon atoms, which may have a substituent, provided that A1 and B1 are not the same. , A halogen atom, an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an amino group, an alkoxy group, a silyl group, a carboxyl group, or a cyano group, and each group may be further substituted with these substituents. When a plurality of substituents are present, the substituents may be the same or different.)
(3)
The light emitting device material represented by the general formula (1-1) is a cross-coupled body represented by the following general formula (2-1), and the impurity represented by the general formula (1-2) is The light emitting device material according to (2) above, which is a homocoupled body represented by the following general formula (2-2).
(2-1): (A2) n2- (B2)
(2-2): (A2)-(A2)
(Wherein n2 represents an integer of 1 to 6. A2 represents an optionally substituted aryl group having 6 to 15 carbon atoms or a heteroaryl group having 4 to 15 carbon atoms. B2 represents Represents an n2-valent aryl structure having 6 to 15 carbon atoms or a heteroaryl structure having 3 to 15 carbon atoms which may have a substituent, provided that A2 and B2 are not the same. An atom, an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an amino group, a silyl group, or a cyano group, and each group may be further substituted with these substituents. And the substituents may be the same or different.)
(4)
The cross-coupling body is a cross-coupling body represented by the following general formula (3-1), and the homo-coupling body is a homo-coupling body represented by the following general formula (3-2) The material for a light emitting device according to (3).
(3-1): (A3) n3- (B3)
(3-2): (A3)-(A3)
(Wherein n3 represents an integer of 1 to 6. A3 represents an aryl group having 6 to 15 carbon atoms which may have a substituent. B3 represents n3 which may have a substituent. Represents a valent aryl structure having 6 to 15 carbon atoms, provided that A3 and B3 are not the same, and the substituent includes an alkyl group, an alkenyl group, an aryl group, a carbazolyl group, an indolyl group, a diarylamino group, a silyl group, Or a cyano group, and each group may be further substituted with these substituents. When a plurality of substituents are present, the substituents may be the same or different.)
(5)
The cross-coupling body is a cross-coupling body represented by the following general formula (4-1), and the homo-coupling body is a homo-coupling body represented by the following general formula (4-2) (3) or the light emitting device material according to (4).
Figure JPOXMLDOC01-appb-C000002

(Wherein n4 represents an integer of 1 to 5. R 4a and R 4b each independently represents an aryl group which may have a substituent, a carbazolyl group which may have a substituent, or a cyano group. The substituent represents an alkyl group, an alkenyl group, or an aryl group, provided that R 4a and R 4b are not the same, and na and nb each independently represents an integer of 1 to 5. R 4a or When a plurality of R 4b are present, the plurality of R 4a or R 4b may be the same or different.)
(6)
A light-emitting element having at least one organic layer, wherein the light-emitting element includes the light-emitting element material according to any one of (1) to (5) above in at least one layer of the organic layer.
(7)
The light emitting device according to (6), wherein the organic layer is an organic electroluminescent device that is sandwiched between a pair of electrodes and emits light when a voltage is applied between the electrodes.
(8)
The light emitting element according to (6) or (7), wherein the organic layer is a layer formed by a coating method.
(9)
An illumination device comprising the light emitting device according to any one of (6) to (8) above.
(10)
A display device comprising the light emitting device according to any one of (6) to (8).
 本発明によれば、特定量の不純物が含まれるものの発光素子の性能に影響を与えない発光素子用材料を提供することができる。特に、クロスカップリング体に対してホモカップリング体が含まれるものの発光素子の性能に影響を与えない発光素子用材料を提供することができる。該発光素子用材料により、駆動電圧が低く、発光効率及び耐久性に優れる発光素子を提供することができる。本発明の発光素子に用いる材料は、精製工程のコストダウンが可能な材料である。 According to the present invention, it is possible to provide a material for a light emitting element that contains a specific amount of impurities but does not affect the performance of the light emitting element. In particular, a material for a light-emitting element that does not affect the performance of the light-emitting element although a homo-coupled body is included in the cross-coupled body can be provided. The light emitting element material can provide a light emitting element with low driving voltage and excellent light emission efficiency and durability. The material used for the light-emitting element of the present invention is a material that can reduce the cost of the purification process.
本発明に係る有機EL素子の層構成の一例(第1実施形態)を示す概略図である。It is the schematic which shows an example (1st Embodiment) of the layer structure of the organic EL element which concerns on this invention. 本発明に係る発光装置の一例(第2実施形態)を示す概略図である。It is the schematic which shows an example (2nd Embodiment) of the light-emitting device which concerns on this invention. 本発明に係る照明装置の一例(第3実施形態)を示す概略図である。It is the schematic which shows an example (3rd Embodiment) of the illuminating device which concerns on this invention.
 本発明に係る一般式の説明における水素原子は同位体(重水素原子等)も含み、また更に置換基を構成する原子は、その同位体も含んでいることを表す。 In the description of the general formula according to the present invention, a hydrogen atom includes an isotope (deuterium atom and the like), and an atom constituting a substituent further includes the isotope.
 以下、本発明について詳細に説明する。
[発光素子用材料]
 本発明の発光素子用材料は、含有量が0.5質量%より多く10質量%以下の不純物を含む発光素子用材料であって、該不純物が下記の[I]~[III]のいずれか2つ以上の条件を満足する。
[I]発光素子用材料のイオン化ポテンシャルIp(1)と、不純物のイオン化ポテンシャルIp(2)とが、Ip(1)≦Ip(2)である。
[II]発光素子用材料の電子親和力Ea(1)と、不純物の電子親和力Ea(2)とが、Ea(1)≧Ea(2)である。
[III]発光素子用材料の三重項状態の励起エネルギーT1(1)と、不純物の三重項状態の励起エネルギーT1(2)とが、T1(1)≦T1(2)である。
Hereinafter, the present invention will be described in detail.
[Light emitting element materials]
The light-emitting element material of the present invention is a light-emitting element material containing an impurity having a content of more than 0.5% by mass and not more than 10% by mass, and the impurity is any of the following [I] to [III]: Satisfy two or more conditions.
[I] The ionization potential Ip (1) of the light emitting element material and the ionization potential Ip (2) of the impurity satisfy Ip (1) ≦ Ip (2).
[II] The electron affinity Ea (1) of the light emitting device material and the electron affinity Ea (2) of the impurity satisfy Ea (1) ≧ Ea (2).
[III] an excited triplet state of the material for a light-emitting element energy T 1 (1), excitation energy T 1 of the triplet state of the impurities and (2), but at T 1 (1) ≦ T 1 (2) .
 発光素子用材料において、不純物は前述の特許文献2にも記載されているように従来は素子性能に悪影響を与えるものと考えられ、その含有量をできる限り減らすことがよいとされてきた。
 しかしながら、上記の[I]~[III]のいずれか2つの条件を満足する不純物の場合、発光素子用材料中に0.5質量%より多くても10質量%以下であれば、素子性能(低駆動電圧、発光効率、耐久性)へ悪影響を与えず、良好な性能を維持できることを本発明者らは見出した。したがって、本発明の発光素子用材料の製造過程において、不純物を低減させるために過度の精製工程が必要となくなるので、精製工程のコストダウンを図ることができる。
 上記条件[I]~[III]については、素子性能(低駆動電圧、発光効率、耐久性)へ悪影響を与えず、良好な性能を維持する観点から、本発明の発光素子材料は3つ全ての条件を満足することがより好ましい。また、本発明の発光素子用材料が、後述の発光層に用いられる場合には、上記条件[I]~[III]のうち、少なくとも[III]を満たすことが好ましく、[I]及び[III]、若しくは、[II]及び[III]を満たすことがより好ましく、発光層以外に用いられる場合には、上記条件[I]~[III]のうち、少なくとも[I]と[II]を満たすことが好ましい。
In light-emitting element materials, impurities are conventionally considered to have an adverse effect on element performance as described in Patent Document 2 described above, and it has been considered that the content thereof should be reduced as much as possible.
However, in the case of an impurity that satisfies any two of the above conditions [I] to [III], if the content of the light emitting device material is more than 0.5% by mass and 10% by mass or less, device performance ( The present inventors have found that good performance can be maintained without adversely affecting low drive voltage, luminous efficiency, and durability. Therefore, in the manufacturing process of the material for a light emitting device of the present invention, an excessive purification process is not required to reduce impurities, so that the cost of the purification process can be reduced.
With respect to the above conditions [I] to [III], all three light emitting device materials of the present invention are used from the viewpoint of maintaining good performance without adversely affecting device performance (low driving voltage, light emission efficiency, durability). It is more preferable that the above condition is satisfied. Further, when the light emitting device material of the present invention is used in a light emitting layer described later, it is preferable that at least [III] is satisfied among the above conditions [I] to [III], and [I] and [III Or [II] and [III] are more preferable, and when used in a layer other than the light emitting layer, at least [I] and [II] among the above conditions [I] to [III] are satisfied. It is preferable.
 素子性能(低駆動電圧、発光効率、耐久性)に与える不純物の影響が少ないという観点から、発光素子用材料が一般式(1-1)で表されるものであって、該発光素子用材料中に0.5質量%より多く10質量%以下含まれ、かつ前記[I]~[III]のいずれか2つ以上の条件を満足する不純物が下記一般式(1-2)で表される場合が好ましい。
  (1-1):(A1)n1-(B1)
  (1-2):(A1)-(A1)
(式中、n1は、1~10の整数を表す。A1は、置換基を有していてもよい、炭素数6~30のアリール基又は炭素数2~30のヘテロアリール基を表す。B1は、置換基を有していてもよいn1価の、炭素数6~30のアリール構造又は炭素数2~30のヘテロアリール構造を表す。ただし、A1とB1は同一ではない。前記置換基は、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アミノ基、アルコキシ基、シリル基、カルボキシル基、又はシアノ基であり、各基は更にこれらの置換基により置換されていてもよい。置換基が複数存在する場合に該置換基は同一でも異なっていてもよい。)
From the viewpoint of less influence of impurities on device performance (low driving voltage, light emission efficiency, durability), the light emitting device material is represented by the general formula (1-1), and the light emitting device material Impurities that are contained in an amount of more than 0.5% by mass and not more than 10% by mass and satisfy any two or more of the conditions [I] to [III] are represented by the following general formula (1-2) The case is preferred.
(1-1): (A1) n1- (B1)
(1-2): (A1)-(A1)
(Wherein n1 represents an integer of 1 to 10. A1 represents an optionally substituted aryl group having 6 to 30 carbon atoms or heteroaryl group having 2 to 30 carbon atoms. B1 Represents an n1-valent aryl structure having 6 to 30 carbon atoms or a heteroaryl structure having 2 to 30 carbon atoms, which may have a substituent, provided that A1 and B1 are not the same. , A halogen atom, an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an amino group, an alkoxy group, a silyl group, a carboxyl group, or a cyano group, and each group may be further substituted with these substituents. When a plurality of substituents are present, the substituents may be the same or different.)
 特に、一般式(1-1)で表される発光素子用材料が、下記一般式(1-4)で表される化合物と下記一般式(1-5)で表される化合物とのクロスカップリング反応により得ることのできるクロスカップリング体であり、一般式(1-2)で表される不純物が該クロスカップリング反応により副生するホモカップリング体であることが好ましい。
  (1-4):(A1)-(X1)
  (1-5):(B1)-(X2)
(式中、A1及びB1は、それぞれ一般式(1-1)のA1及びB1に相当する基を表す。X1及びX2は、ハロゲン原子又はハロゲン原子を含む基を表す。)
 クロスカップリング反応においては、目的とする一般式(1-1)で表されるクロスカップリング体の他、前記一般式(1-2)で表される化合物(ホモカップリング体)などが副生する。これらのホモカップリング体は、前述の特許文献2に記載されているように従来は素子性能に悪影響を与えるものと考えられ、その含有量をできる限り減らすことがよいとされてきた。
 しかしながら、前述のように、一般式(1-2)で表されるホモカップリング体と一般式(1-1)で表されるクロスカップリング体が、上記[I]~[III]のいずれか2つ以上の条件を満足する場合、一般式(1-2)で表されるホモカップリング体の含有量が、一般式(1-1)で表されるクロスカップリング体に対して0.5質量%より多くても10質量%以下であれば、素子性能(低駆動電圧、発光効率、耐久性)へ悪影響を与えず、良好な性能を維持できる。
 このような本発明の発光素子材料は、一般式(1-1)で表されるクロスカップリング体を得るクロスカップリング反応において、一般式(1-2)で表されるホモカップリング体を選択的に副生させることで、本発明の発光素子用材料を得ることができる。本発明の発光素子用材料の製造過程において、一般式(1-2)で表されるホモカップリング体を低減させるために過度の精製工程が必要となくなるので、精製工程のコストダウンを図ることができる。
In particular, the light-emitting element material represented by the general formula (1-1) is a cross cup of a compound represented by the following general formula (1-4) and a compound represented by the following general formula (1-5). It is preferably a cross-coupled body obtainable by a ring reaction, and a homo-coupled body in which the impurity represented by the general formula (1-2) is by-produced by the cross-coupling reaction.
(1-4): (A1)-(X1)
(1-5): (B1)-(X2)
(In the formula, A1 and B1 each represent a group corresponding to A1 and B1 in the general formula (1-1). X1 and X2 represent a halogen atom or a group containing a halogen atom.)
In the cross-coupling reaction, the compound represented by the general formula (1-2) (homo-coupled body), etc., in addition to the target cross-coupled body represented by the general formula (1-1). To be born. These homo-coupled bodies are conventionally considered to have an adverse effect on device performance as described in Patent Document 2 described above, and it has been considered that the content thereof should be reduced as much as possible.
However, as described above, the homo-coupled body represented by the general formula (1-2) and the cross-coupled body represented by the general formula (1-1) are any of the above [I] to [III]. When the two or more conditions are satisfied, the content of the homocoupled body represented by the general formula (1-2) is 0 with respect to the cross-coupled body represented by the general formula (1-1). If it is more than 5% by mass and not more than 10% by mass, the device performance (low driving voltage, luminous efficiency, durability) is not adversely affected, and good performance can be maintained.
Such a light emitting device material of the present invention comprises a homo-coupling product represented by the general formula (1-2) in a cross-coupling reaction for obtaining a cross-coupling product represented by the general formula (1-1). By selectively by-producing, the light emitting device material of the present invention can be obtained. In the process of manufacturing the light emitting device material of the present invention, an excessive purification step is not required to reduce the homo-coupled body represented by the general formula (1-2), so that the cost of the purification step can be reduced. Can do.
 一般式(1-1)及び(1-2)について説明する。
 n1は1~10の整数を表す。n1は1~6が好ましく、1~5がより好ましく、1~3が更に好ましく、1が特に好ましい。
 A1は、置換基を有していてもよい、炭素数6~30のアリール基又は炭素数2~30のヘテロアリール基を表す。
 アリール基の炭素数は、6~15であることが好ましく、6~12であることがより好ましい。アリール基としては、フェニル基、ナフチル基、ビフェニル基、アントラニル基、トリフェニル基、フェナントリル基、トリフェニレニル基などが挙げられる。好ましくは、フェニル基、ナフチル基、フェナントリル基、トリフェニレニル基であり、より好ましくはフェニル基である。
 ヘテロアリール基の炭素数は、2~18であることがより好ましく、2~12であることが特に好ましい。ヘテロアリール基のヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子が挙げられる。ヘテロアリール基としては、イミダゾリル基、ピリジル基、キノリル基、フリル基、チエニル基、ベンゾフリル基、ベンゾチエニル基、ジベンゾフリル基、ジベンゾチエニル基、ピペリジル基、ベンズオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基、インドリル基、カルバゾリル基、アゼピニル基などが挙げられる。好ましくは、ピリジル基、フリル基、チエニル基、ベンゾフリル基、ベンゾチエニル基、ジベンゾフリル基、ジベンゾチエニル基、ピペリジル基、インドリル基、カルバゾリル基、アゼピニル基であり、より好ましくはピリジル基、フリル基、チエニル基、ジベンゾフリル基、ジベンゾチエニル基、カルバゾリル基、アゼピニル基であり、更に好ましくはピリジル基である。
The general formulas (1-1) and (1-2) will be described.
n1 represents an integer of 1 to 10. n1 is preferably 1 to 6, more preferably 1 to 5, further preferably 1 to 3, and particularly preferably 1.
A1 represents an aryl group having 6 to 30 carbon atoms or a heteroaryl group having 2 to 30 carbon atoms, which may have a substituent.
The aryl group preferably has 6 to 15 carbon atoms, and more preferably 6 to 12 carbon atoms. Examples of the aryl group include a phenyl group, a naphthyl group, a biphenyl group, an anthranyl group, a triphenyl group, a phenanthryl group, and a triphenylenyl group. A phenyl group, a naphthyl group, a phenanthryl group, and a triphenylenyl group are preferable, and a phenyl group is more preferable.
The carbon number of the heteroaryl group is more preferably 2-18, and particularly preferably 2-12. Examples of the hetero atom of the heteroaryl group include a nitrogen atom, an oxygen atom, and a sulfur atom. Heteroaryl groups include imidazolyl, pyridyl, quinolyl, furyl, thienyl, benzofuryl, benzothienyl, dibenzofuryl, dibenzothienyl, piperidyl, benzoxazolyl, benzimidazolyl, benzthiazolyl Group, indolyl group, carbazolyl group, azepinyl group and the like. Preferably, pyridyl group, furyl group, thienyl group, benzofuryl group, benzothienyl group, dibenzofuryl group, dibenzothienyl group, piperidyl group, indolyl group, carbazolyl group, azepinyl group, more preferably pyridyl group, furyl group, A thienyl group, a dibenzofuryl group, a dibenzothienyl group, a carbazolyl group, and an azepinyl group, and more preferably a pyridyl group.
 B1は、置換基を有していてもよいn1価の、炭素数6~30のアリール構造又は炭素数2~30のヘテロアリール構造を表す。
 アリール構造の炭素数は、6~15であることが好ましく、6~12であることがより好ましい。アリール構造としては、フェニル、ナフチル、ビフェニル、アントラニル、トリフェニル、フェナントリルなどが挙げられる。好ましくは、フェニル、ナフチル、ビフェニルであり、より好ましくはフェニル基である。
 ヘテロアリール構造の炭素数は、2~18であることが好ましく、2~12であることがより好ましい。ヘテロアリール構造のヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子が挙げられる。ヘテロアリールとしては、イミダゾール、ピリジン、キノリン、フラン、チオフェン、ベンゾフラン、ベンゾチオフェン、ジベンゾフラン、ジベンゾチオフェン、ピペリジン、ベンズオキサゾール、ベンズイミダゾール、ベンズチアゾール、インドール、カルバゾール、アゼピンなどが挙げられる。好ましくは、ピリジン、フラン、チオフェン、ベンゾフラン、ベンゾチオフェン、ジベンゾフラン、ジベンゾチオフェン、ピペリジン、インドール、カルバゾール、アゼピンであり、より好ましくは、ピリジン、チオフェン、ジベンゾチオフェン、ジベンゾフランであり、更に好ましくはピリジンである。
 A1とB1は同一ではない。
B1 represents an n1-valent aryl structure having 6 to 30 carbon atoms or a heteroaryl structure having 2 to 30 carbon atoms, which may have a substituent.
The aryl structure preferably has 6 to 15 carbon atoms, more preferably 6 to 12 carbon atoms. Examples of the aryl structure include phenyl, naphthyl, biphenyl, anthranyl, triphenyl, phenanthryl and the like. Preferred are phenyl, naphthyl and biphenyl, and more preferred is a phenyl group.
The heteroaryl structure preferably has 2 to 18 carbon atoms, and more preferably 2 to 12 carbon atoms. Examples of the hetero atom of the heteroaryl structure include a nitrogen atom, an oxygen atom, and a sulfur atom. Examples of heteroaryl include imidazole, pyridine, quinoline, furan, thiophene, benzofuran, benzothiophene, dibenzofuran, dibenzothiophene, piperidine, benzoxazole, benzimidazole, benzthiazole, indole, carbazole, and azepine. Preferred are pyridine, furan, thiophene, benzofuran, benzothiophene, dibenzofuran, dibenzothiophene, piperidine, indole, carbazole, and azepine, more preferably pyridine, thiophene, dibenzothiophene, and dibenzofuran, and more preferably pyridine. .
A1 and B1 are not the same.
 A1及びB1が有してもよい置換基は、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アミノ基、アルコキシ基、シリル基、カルボキシル基、又はシアノ基である。
 置換基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられる。好ましくは、フッ素原子である。
 置換基としてのアルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10が特に好ましい。アルキル基としては、メチル基、エチル基、イソプロピル基、tert-ブチル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられ、好ましくはメチル、エチル、tert-ブチルであり、より好ましくはtert-ブチルである。
 置換基としてのアルケニル基の炭素数は、2~30が好ましく、2~20がより好ましく、2~10が特に好ましい。アルケニル基としては、ビニル基、アリル基、2-ブテニル基、3-ペンテニル基などが挙げられる。好ましくはビニル基、アリル基であり、より好ましくはビニル基である。
 置換基としてのアリール基の炭素数は、6~30が好ましく、6~20がより好ましく、6~12が特に好ましい。アリール基としては、フェニル基、ナフチル基、ビフェニル基、アントラニル基、トリフェニル基、フェナントリル基などが挙げられる。好ましくは、フェニル基、ビフェニル基、フェナントリル基であり、より好ましくはフェニル基である。
 置換基としてのヘテロアリール基の炭素数は、1~30が好ましく、1~12がより好ましい。ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子が挙げられる。ヘテロアリール基としては、イミダゾリル基、ピリジル基、キノリル基、フリル基、チエニル基、ピペリジル基、モルホリノ基、ベンズオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基、カルバゾリル基、インドリル基、アゼピニル基などが挙げられる。好ましくは、カルバゾリル基、インドリル基、アゼピニル基であり、より好ましくはカルバゾリル基である。
 置換基としてのアルコキシ基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10が特に好ましい。アルコキシ基としては、メトキシ基、エトキシ基、tert-ブトキシ基などが挙げられる。好ましくはメトキシ基、tert-ブトキシ基であり、より好ましくはメトキシ基である。
The substituents that A1 and B1 may have are a halogen atom, an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an amino group, an alkoxy group, a silyl group, a carboxyl group, or a cyano group.
Examples of the halogen atom as a substituent include a fluorine atom, a chlorine atom, and a bromine atom. Preferably, it is a fluorine atom.
The alkyl group as a substituent preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, and the like, preferably methyl, ethyl, tert-butyl, and more preferably tert-butyl. Butyl.
The number of carbon atoms of the alkenyl group as a substituent is preferably 2 to 30, more preferably 2 to 20, and particularly preferably 2 to 10. Examples of the alkenyl group include a vinyl group, an allyl group, a 2-butenyl group, and a 3-pentenyl group. A vinyl group and an allyl group are preferable, and a vinyl group is more preferable.
The number of carbon atoms of the aryl group as a substituent is preferably 6 to 30, more preferably 6 to 20, and particularly preferably 6 to 12. Examples of the aryl group include a phenyl group, a naphthyl group, a biphenyl group, an anthranyl group, a triphenyl group, and a phenanthryl group. A phenyl group, a biphenyl group, and a phenanthryl group are preferable, and a phenyl group is more preferable.
The number of carbon atoms of the heteroaryl group as a substituent is preferably 1-30, and more preferably 1-12. Examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom. Heteroaryl groups include imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, indolyl, azepinyl, etc. Can be mentioned. A carbazolyl group, an indolyl group, and an azepinyl group are preferable, and a carbazolyl group is more preferable.
The number of carbon atoms of the alkoxy group as a substituent is preferably 1 to 30, more preferably 1 to 20, and particularly preferably 1 to 10. Examples of the alkoxy group include a methoxy group, an ethoxy group, and a tert-butoxy group. A methoxy group and a tert-butoxy group are preferable, and a methoxy group is more preferable.
 前記置換基は、更に置換基を有してもよく、該更なる置換基としては、前記のハロゲン原子、アルキル基、アリール基、ヘテロアリール基、アミノ基、アルコキシ基、シリル基、カルボキシル基、シアノ基が挙げられる。更なる置換基としては、アルキル基及びアリール基が好ましく、tert-ブチル基、フェニル基がより好ましい。 The substituent may further have a substituent. Examples of the further substituent include the halogen atom, alkyl group, aryl group, heteroaryl group, amino group, alkoxy group, silyl group, carboxyl group, A cyano group is mentioned. As the further substituent, an alkyl group and an aryl group are preferable, and a tert-butyl group and a phenyl group are more preferable.
 A1及びB1が有してもよい置換基としては、アリール基、ヘテロアリール基、アミノ基、シリル基、シアノ基が好ましく、アリール基、カルバゾリル基、インドリル基、ジアリールアミノ基、シリル基、シアノ基がより好ましく、フェニル基、カルバゾリル基、シアノ基が特に好ましい。
 A1とB1は、それぞれ独立に、複数有していてもよい。A1は1~3個の置換基を有していることが好ましく、1個の置換基を有していることがより好ましい。B1は1~3個の置換基を有していることが好ましく、1~2個の置換基を有していることがより好ましい。A1とB1はそれぞれ置換基を複数有する場合には、該複数の置換基同士は同一でも異なっていてもよい。
As the substituent that A1 and B1 may have, an aryl group, a heteroaryl group, an amino group, a silyl group, and a cyano group are preferable, and an aryl group, a carbazolyl group, an indolyl group, a diarylamino group, a silyl group, and a cyano group Are more preferable, and a phenyl group, a carbazolyl group, and a cyano group are particularly preferable.
You may have multiple A1 and B1 each independently. A1 preferably has 1 to 3 substituents, more preferably 1 substituent. B1 preferably has 1 to 3 substituents, and more preferably has 1 to 2 substituents. When A1 and B1 each have a plurality of substituents, the plurality of substituents may be the same or different.
 A1は、好ましくは置換基を有してもよいアリール基であり、より好ましくは、フェナントリル基又はカルバゾリル基を有するフェニル基であり、特に好ましくはカルバゾリル基を有するフェニル基である。
 B1は、好ましくは置換基を有してもよいアリール構造であり、より好ましくは、フェニル基、カルバゾリル基及び/又はシアノ基を有するフェニルであり、特に好ましくはカルバゾリル基を有するフェニルである。
A1 is preferably an aryl group which may have a substituent, more preferably a phenyl group having a phenanthryl group or a carbazolyl group, and particularly preferably a phenyl group having a carbazolyl group.
B1 is preferably an aryl structure which may have a substituent, more preferably phenyl having a phenyl group, a carbazolyl group and / or a cyano group, and particularly preferably phenyl having a carbazolyl group.
 前記一般式(1-1)で表される発光素子用材料及び前記一般式(1-2)で表される不純物は、それぞれ、下記一般式(2-1)で表されるクロスカップリング及び前記ホモカップリング体が下記一般式(2-2)で表されるホモカップリング体であることが好ましい。
  (2-1):(A2)n2-(B2)
  (2-2):(A2)-(A2)
(式中、n2は1~6の整数を表す。A2は、置換基を有してもよい、炭素数6~15のアリール基又は炭素数4~15のヘテロアリール基を表す。B2は、置換基を有していてもよいn2価の、炭素数6~15のアリール構造又は炭素数3~15のヘテロアリール構造を表す。ただし、A2とB2は同一ではない。前記置換基は、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アミノ基、シリル基、又はシアノ基であり、各基は更にこれらの置換基により置換されていてもよい。置換基が複数存在する場合に該置換基は同一でも異なっていてもよい。)
The light-emitting element material represented by the general formula (1-1) and the impurity represented by the general formula (1-2) are, respectively, a cross coupling represented by the following general formula (2-1) and The homo-coupled body is preferably a homo-coupled body represented by the following general formula (2-2).
(2-1): (A2) n2- (B2)
(2-2): (A2)-(A2)
(Wherein n2 represents an integer of 1 to 6. A2 represents an optionally substituted aryl group having 6 to 15 carbon atoms or a heteroaryl group having 4 to 15 carbon atoms. B2 represents Represents an n2-valent aryl structure having 6 to 15 carbon atoms or a heteroaryl structure having 3 to 15 carbon atoms which may have a substituent, provided that A2 and B2 are not the same. An atom, an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an amino group, a silyl group, or a cyano group, and each group may be further substituted with these substituents. And the substituents may be the same or different.)
 一般式(2-1)及び(2-2)について説明する。
 n2は1~6の整数を表す。n2は1~5がより好ましく、1~3が更に好ましく、1が特に好ましい。
 A2は、置換基を有していてもよい、炭素数6~15のアリール基又は炭素数4~15のヘテロアリール基を表す。
 B2は、置換基を有していてもよいn2価の、炭素数6~15のアリール構造又は炭素数3~15のヘテロアリール構造を表す。
 A2が表すアリール基及びヘテロアリール基、並びにB2が表すアリール構造及びヘテロアリール構造の具体例及び好ましい例は、それぞれ、一般式(1-1)及び(1-2)のA1が表すアリール基及びヘテロアリール基、並びにB1が表すアリール構造及びヘテロアリール構造と同じである。
 A2及びB2が有してもよい置換基は、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アミノ基、シリル基、又はシアノ基である。各基の具体例及び好ましい範囲は、一般式(1-1)及び(1-2)のA1及びB1が有してもよい置換基として挙げたものと同じである。また、A2及びB2が有してもよい置換基の好ましい例は、一般式(1-1)及び(1-2)のA1及びB1と同じである。
 A2とB2は同一ではない。
The general formulas (2-1) and (2-2) will be described.
n2 represents an integer of 1 to 6. n2 is more preferably 1 to 5, further preferably 1 to 3, and particularly preferably 1.
A2 represents an aryl group having 6 to 15 carbon atoms or a heteroaryl group having 4 to 15 carbon atoms, which may have a substituent.
B2 represents an n2-valent aryl structure having 6 to 15 carbon atoms or a heteroaryl structure having 3 to 15 carbon atoms, which may have a substituent.
Specific examples and preferred examples of the aryl group and heteroaryl group represented by A2 and the aryl structure and heteroaryl structure represented by B2 are the aryl group represented by A1 in the general formulas (1-1) and (1-2), and This is the same as the heteroaryl group and the aryl structure and heteroaryl structure represented by B1.
The substituents that A2 and B2 may have are a halogen atom, an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an amino group, a silyl group, or a cyano group. Specific examples and preferred ranges of the respective groups are the same as those listed as the substituents that A1 and B1 in the general formulas (1-1) and (1-2) may have. Preferred examples of the substituent that A2 and B2 may have are the same as A1 and B1 in the general formulas (1-1) and (1-2).
A2 and B2 are not the same.
 前記一般式(1-1)又は(1-2)で表されるクロスカップリング体及び前記一般式(1-2)又は(2-2)で表されるホモカップリング体は、それぞれ、下記一般式(3-1)で表されるクロスカップリング及び前記ホモカップリング体が下記一般式(3-2)で表されるホモカップリング体であることが好ましい。
  (3-1):(A3)n3-(B3)
  (3-2):(A3)-(A3)
(式中、n3は1~6の整数を表す。A3は、置換基を有してもよい、炭素数6~15のアリール基を表す。B3は、置換基を有していてもよいn3価の炭素数6~15のアリール構造を表す。ただし、A3とB3は同一ではない。前記置換基は、アルキル基、アルケニル基、アリール基、カルバゾリル基、インドリル基、ジアリールアミノ基、シリル基、又はシアノ基であり、各基は更にこれらの置換基により置換されていてもよい。置換基が複数存在する場合に該置換基は同一でも異なっていてもよい。)
The cross-coupled body represented by the general formula (1-1) or (1-2) and the homo-coupled body represented by the general formula (1-2) or (2-2) are respectively The cross coupling represented by the general formula (3-1) and the homo-coupled body are preferably a homo-coupled body represented by the following general formula (3-2).
(3-1): (A3) n3- (B3)
(3-2): (A3)-(A3)
(Wherein n3 represents an integer of 1 to 6. A3 represents an aryl group having 6 to 15 carbon atoms which may have a substituent. B3 represents n3 which may have a substituent. Represents a valent aryl structure having 6 to 15 carbon atoms, provided that A3 and B3 are not the same, and the substituent includes an alkyl group, an alkenyl group, an aryl group, a carbazolyl group, an indolyl group, a diarylamino group, a silyl group, Or a cyano group, and each group may be further substituted with these substituents. When a plurality of substituents are present, the substituents may be the same or different.)
 一般式(3-1)及び(3-2)について説明する。
 n3は1~6の整数を表す。n3は1~5がより好ましく、1~3が更に好ましく、1が特に好ましい。
 A3は、置換基を有していてもよい、炭素数6~15のアリール基又は炭素数4~15のヘテロアリール基を表す。
 B3は、置換基を有していてもよいn3価の、炭素数6~15のアリール構造又は炭素数3~15のヘテロアリール構造を表す。
 A3が表すアリール基及びヘテロアリール基、並びにB3が表すアリール構造及びヘテロアリール構造の具体例及び好ましい例は、それぞれ、一般式(1-1)及び(1-2)のA1が表すアリール基及びヘテロアリール基、並びにB1が表すアリール構造及びヘテロアリール構造と同じである。
 A3及びB3が有してもよい置換基は、アルキル基、アルケニル基、アリール基、カルバゾリル基、インドリル基、ジアリールアミノ基、シリル基、又はシアノ基である。アルキル基及びアリール基の具体例及び好ましい範囲は、一般式(1-1)及び(1-2)のA1及びB1が有してもよい置換基として挙げたアルキル基及びアリール基と同じである。A3及びB3が有してもよい置換基としては、フェニル基、カルバゾリル基、シアノ基がより好ましい。
 A3とB3は同一ではない。
General formulas (3-1) and (3-2) will be described.
n3 represents an integer of 1 to 6. n3 is more preferably 1 to 5, further preferably 1 to 3, and particularly preferably 1.
A3 represents an aryl group having 6 to 15 carbon atoms or a heteroaryl group having 4 to 15 carbon atoms, which may have a substituent.
B3 represents an n3-valent aryl structure having 6 to 15 carbon atoms or a heteroaryl structure having 3 to 15 carbon atoms, which may have a substituent.
Specific examples and preferred examples of the aryl group and heteroaryl group represented by A3, and the aryl structure and heteroaryl structure represented by B3 are the aryl group represented by A1 in the general formulas (1-1) and (1-2), and This is the same as the heteroaryl group and the aryl structure and heteroaryl structure represented by B1.
The substituents that A3 and B3 may have are an alkyl group, an alkenyl group, an aryl group, a carbazolyl group, an indolyl group, a diarylamino group, a silyl group, or a cyano group. Specific examples and preferred ranges of the alkyl group and aryl group are the same as the alkyl group and aryl group mentioned as the substituents that A1 and B1 of the general formulas (1-1) and (1-2) may have. . As the substituent that A3 and B3 may have, a phenyl group, a carbazolyl group, and a cyano group are more preferable.
A3 and B3 are not the same.
 前記一般式(1-1)~(3-1)で表されるクロスカップリング体及び前記一般式(1-2)~(3-2)で表されるホモカップリング体は、それぞれ、下記一般式(4-1)で表されるクロスカップリング及び前記ホモカップリング体が下記一般式(4-2)で表されるホモカップリング体であることが好ましい。 The cross-coupled bodies represented by the general formulas (1-1) to (3-1) and the homo-coupled bodies represented by the general formulas (1-2) to (3-2) are respectively The cross coupling represented by the general formula (4-1) and the homo-coupled body are preferably a homo-coupled body represented by the following general formula (4-2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、n4は1~5の整数を表す。R4a及びR4bは、それぞれ独立に、置換基を有してもよいアリール基、置換基を有してもよいカルバゾリル基、又はシアノ基を表す。前記置換基は、アルキル基、アルケニル基又はアリール基である。ただし、R4aとR4bは同一ではない。na及びnbはそれぞれ独立に1~5の整数を表す。R4a又はR4bが複数存在する場合、該複数のR4a又はR4bは同一でも異なっていてもよい。) (Wherein n4 represents an integer of 1 to 5. R 4a and R 4b each independently represents an aryl group which may have a substituent, a carbazolyl group which may have a substituent, or a cyano group. The substituent is an alkyl group, an alkenyl group, or an aryl group, provided that R 4a and R 4b are not the same, and na and nb each independently represents an integer of 1 to 5. R 4a or R When a plurality of 4b are present, the plurality of R 4a or R 4b may be the same or different.)
 一般式(4-1)及び(4-2)について説明する。
 n4は1~5の整数を表す。n4は1~3が更に好ましく、1が特に好ましい。
 R4a及びR4bは、それぞれ独立に、置換基を有してもよいアリール基、置換基を有してもよいカルバゾリル基、又はシアノ基を表す。前記置換基は、アルキル基、アルケニル基又はアリール基である。
 R4aは無置換のカルバゾリル基が好ましい。
 R4bは置換基を有するフェニル基、置換基を有してもよいカルバゾリル基、シアノ基が好ましく、置換基を有してもよいカルバゾリル基、シアノ基がより好ましい。
 前記置換基としては、tert-ブチル基、フェニル基が好ましい。
 na及びnbはそれぞれ独立に1~5の整数を表す。naは1~2が好ましく、1がより好ましい。nbは1~3個が好ましく、1~2個がより好ましい。
 n4=1の場合、R4aとR4bは同一ではない。R4a又はR4bが複数存在する場合、該複数のR4a又はR4bは同一でも異なっていてもよい。
The general formulas (4-1) and (4-2) will be described.
n4 represents an integer of 1 to 5. n4 is more preferably 1 to 3, and particularly preferably 1.
R 4a and R 4b each independently represent an aryl group that may have a substituent, a carbazolyl group that may have a substituent, or a cyano group. The substituent is an alkyl group, an alkenyl group, or an aryl group.
R 4a is preferably an unsubstituted carbazolyl group.
R 4b is preferably a phenyl group having a substituent, an optionally substituted carbazolyl group, or a cyano group, and more preferably an optionally substituted carbazolyl group or cyano group.
The substituent is preferably a tert-butyl group or a phenyl group.
na and nb each independently represents an integer of 1 to 5. na is preferably 1 to 2, and more preferably 1. nb is preferably 1 to 3, and more preferably 1 to 2.
When n4 = 1, R 4a and R 4b are not the same. If R 4a or R 4b there are a plurality, R 4a or R 4b the plurality of it may be the same or different.
 前記一般式(4-1)で表されるクロスカップリング体及び前記一般式(4-2)で表されるホモカップリング体は、それぞれ、下記一般式(5-1)で表されるクロスカップリング及び前記ホモカップリング体が下記一般式(5-2)で表されるホモカップリング体であることが好ましい。 The cross-coupled body represented by the general formula (4-1) and the homo-coupled body represented by the general formula (4-2) are respectively cross cloths represented by the following general formula (5-1). The coupling and the homocoupled body are preferably a homocoupled body represented by the following general formula (5-2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、R51は、置換基を有してもよいフェニル基又は置換基を有してもよいカルバゾリル基を表す。R52及びR53は、それぞれ独立に、水素原子、置換基を有してもよいフェニル基、置換基を有してもよいカルバゾリル基、又はシアノ基を表す。前記置換基は、アルキル基又はアリール基を表す。ただし、R52及びR53は同時に水素原子となることはない。R52及びR53のいずれか一方が水素原子の場合、他方はR51と同一ではない。) (In the formula, R 51 represents a phenyl group which may have a substituent or a carbazolyl group which may have a substituent. R 52 and R 53 each independently have a hydrogen atom or a substituent. A phenyl group which may be substituted, a carbazolyl group which may have a substituent, or a cyano group, wherein the substituent represents an alkyl group or an aryl group, provided that R 52 and R 53 are simultaneously hydrogen atoms. (If either R 52 or R 53 is a hydrogen atom, the other is not the same as R 51. )
 一般式(5-1)及び(5-2)について説明する。
 R51は、置換基を有してもよいフェニル基又は置換基を有してもよいカルバゾリル基を表す。好ましくは、無置換のカルバゾリル基である。
 R52及びR53は、それぞれ独立に、水素原子、置換基を有してもよいフェニル基、置換基を有してもよいカルバゾリル基、又はシアノ基を表す。水素原子、置換基を有するフェニル基、置換基を有してもよいカルバゾリル基又はシアノ基が好ましく、水素原子、置換基を有してもよいカルバゾリル基、シアノ基がより好ましい。
 前記置換基は、アルキル基又はアリール基を表し、tert-ブチル基、フェニル基が好ましい。
 R52及びR53は同時に水素原子となることはなく、R52及びR53のいずれか一方が水素原子の場合、他方はR51と同一ではない。
General formulas (5-1) and (5-2) will be described.
R 51 represents a phenyl group which may have a substituent or a carbazolyl group which may have a substituent. An unsubstituted carbazolyl group is preferable.
R 52 and R 53 each independently represent a hydrogen atom, a phenyl group which may have a substituent, a carbazolyl group which may have a substituent, or a cyano group. A hydrogen atom, a phenyl group having a substituent, an optionally substituted carbazolyl group or a cyano group is preferable, and a hydrogen atom, an optionally substituted carbazolyl group or a cyano group is more preferable.
The substituent represents an alkyl group or an aryl group, and is preferably a tert-butyl group or a phenyl group.
R 52 and R 53 are not simultaneously a hydrogen atom, and when one of R 52 and R 53 is a hydrogen atom, the other is not the same as R 51 .
 次に、前述の[I]~[III]の条件について説明する。
[I]本発明の発光素子用材料の一態様においては、該発光素子用材料に含有される、一般式(1-1)~(5-1)で表されるクロスカップリング体のイオン化ポテンシャルIp(1)と、一般式(1-2)~(5-2)で表されるホモカップリング体のイオン化ポテンシャルIp(2)とが、Ip(1)≦Ip(2)を満たす。
 あるイオン化ポテンシャル(Ip)の材料に、少量の比較的Ipの小さい材料が含まれると、該材料内を通過する正孔(ホール)の移動を妨げ、あるIpの材料のみを用いた場合に期待される発光特性を再現することが困難であるが、本態様では、前記Ip(1)≦Ip(2)を満足させることにより、期待される発光特性を得ることができる。更に、Ip(1)とIp(2)の違いが小さいほうが、正孔の移動に与える影響がより小さい理由から、Ip(2)-Ip(1)が0eV以上1.0eV以下であることが好ましく、0eV以上0.5eV以下であることがより好ましく、0eV以上0.2eV以下であることが更に好ましく、0eV以上0.1eV以下であることが特に好ましい。
 イオン化ポテンシャルの測定は、理研計器株式会社製の大気中光電子分光(PES)装置AC-2/AC-3を用いて、適当な基板上に蒸着法・塗布法などによって形成された薄膜や、粉末や結晶などの固体状態の材料で行うことができる。また、紫外線光電子分光分析(UPS)や光電子収量分析(PYS)などを用いても測定でき、サイクリックボルタンメトリー(CV)の酸化電位や、量子化学計算によるHOMO(最高被占有分子軌道)の準位で比較することもできる。
Next, the conditions [I] to [III] will be described.
[I] In one embodiment of the light emitting device material of the present invention, the ionization potential of the cross-coupled body represented by the general formulas (1-1) to (5-1) contained in the light emitting device material Ip (1) and the ionization potential Ip (2) of the homocoupled body represented by the general formulas (1-2) to (5-2) satisfy Ip (1) ≦ Ip (2).
If a material with a certain ionization potential (Ip) contains a small amount of a material with a relatively small Ip, the movement of holes passing through the material is prevented, which is expected when only a material with a certain Ip is used. Although it is difficult to reproduce the emitted light emission characteristics, in this embodiment, the expected light emission characteristics can be obtained by satisfying Ip (1) ≦ Ip (2). Furthermore, Ip (2) −Ip (1) may be 0 eV or more and 1.0 eV or less because the smaller the difference between Ip (1) and Ip (2), the smaller the effect on hole movement. It is preferably 0 eV or more and 0.5 eV or less, more preferably 0 eV or more and 0.2 eV or less, and particularly preferably 0 eV or more and 0.1 eV or less.
The ionization potential is measured by using an atmospheric photoelectron spectroscopy (PES) apparatus AC-2 / AC-3 manufactured by Riken Keiki Co., Ltd. It can be carried out with a solid state material such as a crystal or a crystal. It can also be measured using ultraviolet photoelectron spectroscopy (UPS), photoelectron yield analysis (PYS), etc., and the cyclic voltammetry (CV) oxidation potential and the HOMO (highest occupied molecular orbital) level by quantum chemical calculations. You can also compare.
[II]本発明の発光素子用材料の一態様においては、該発光素子用材料に含有される、一般式(1-1)~(5-1)で表されるクロスカップリング体の電子親和力Ea(1)と、一般式(1-2)~(5-2)で表されるホモカップリング体の電子親和力Ea(2)とが、Ea(1)≧Ea(2)を満たす。
 ある電子親和力(Ea)の材料に、少量の比較的Eaの大きな材料が含まれると、該材料内を通過する電子の移動を妨げ、あるEaの材料のみを用いた場合に期待される発光特性を再現することが困難であるが、本態様では、前記Ea(1)≧Ea(2)を満足させることにより、期待される発光特性を得ることができる。更に、Ea(1)とEa(2)の違いが小さいほうが、電子の移動に与える影響がより小さい理由から、Ea(1)-Ea(2)が0eV以上1.0eV以下であることが好ましく、0eV以上0.5eV以下であることがより好ましく、0eV以上0.2eV以下であることが更に好ましく、0eV以上0.1eV以下であることが特に好ましい。
 電子親和力は、材料の吸収スペクトルの短波長端に相当するエネルギー準位Egと、前述のIpから、Ea=Ip-Egの計算式で求められる。また、逆光電子分光(IPES)を用いても測定でき、サイクリックボルタンメトリー(CV)の還元電位や、量子化学計算によるLUMO(最低空軌道)の準位で比較することもできる。
[II] In one embodiment of the light emitting device material of the present invention, the electron affinity of the cross-coupled body represented by the general formulas (1-1) to (5-1) contained in the light emitting device material Ea (1) and the electron affinity Ea (2) of the homocoupled body represented by the general formulas (1-2) to (5-2) satisfy Ea (1) ≧ Ea (2).
When a material having a certain electron affinity (Ea) contains a small amount of a material having a relatively large Ea, the movement of electrons passing through the material is prevented, and the emission characteristics expected when only a material having a certain Ea is used. However, in this embodiment, the expected light emission characteristics can be obtained by satisfying Ea (1) ≧ Ea (2). Furthermore, it is preferable that Ea (1) -Ea (2) is 0 eV or more and 1.0 eV or less because the smaller the difference between Ea (1) and Ea (2), the smaller the influence on electron movement. It is more preferably 0 eV or more and 0.5 eV or less, further preferably 0 eV or more and 0.2 eV or less, and particularly preferably 0 eV or more and 0.1 eV or less.
The electron affinity is obtained from the energy level Eg corresponding to the short wavelength end of the absorption spectrum of the material and the above-mentioned Ip by the calculation formula of Ea = Ip−Eg. It can also be measured by using inverse photoelectron spectroscopy (IPES), and can be compared by the reduction potential of cyclic voltammetry (CV) or the LUMO (lowest empty orbit) level by quantum chemical calculation.
[III]本発明の発光素子用材料の一態様においては、該発光素子用材料に含有される、一般式(1-1)~(5-1)で表されるクロスカップリング体の励起エネルギーT1(1)と、一般式(1-2)~(5-2)で表されるホモカップリング体の励起エネルギーT1(2)とが、T1(1)≦T1(2)を満たす。
 ある三重項状態の励起エネルギーT1の材料に、少量の比較的T1の小さな材料が含まれると、電荷再結合により発光素子内で生成する励起子を失活して、あるT1の材料のみを用いた場合に期待される発光特性を再現することが困難であるが、本態様では、前記T1(1)≦T1(2)を満足させることにより、期待される発光特性を得ることができる。更に、T1(1)とT1(2)の違いが大きいほうが、励起子の失活に与える影響がより小さい理由から、T1(2)-T1(1)が0eV以上0.1eV以下であることが好ましく、0eV以上1.0eV以下であることがより好ましい。
 三重項状態の励起エネルギーは、材料の薄膜の燐光発光スペクトルを測定し、その短波長端から求めることができる。例えば、洗浄した石英ガラス基板上に、材料を真空蒸着法により約50nmの膜厚に成膜し、薄膜の燐光発光スペクトルを液体窒素温度下でF-7000日立分光蛍光光度計(日立ハイテクノロジーズ)を用いて測定する。得られた発光スペクトルの短波長側の立ち上がり波長をエネルギー単位に換算することによりTエネルギーを求めることができる。
[III] In one embodiment of the light emitting device material of the present invention, the excitation energy of the cross coupling body represented by the general formulas (1-1) to (5-1) contained in the light emitting device material T 1 (1) and the excitation energy T 1 (2) of the homocoupled body represented by the general formulas (1-2) to (5-2) are T 1 (1) ≦ T 1 (2) Meet.
When a material having a small triplet state excitation energy T 1 contains a small amount of a material having a relatively small T 1 , excitons generated in the light-emitting element are deactivated by charge recombination, and the material having a certain T 1 Although it is difficult to reproduce the expected light emission characteristics when using only this, in this embodiment, the expected light emission characteristics are obtained by satisfying T 1 (1) ≦ T 1 (2). be able to. In addition, T 1 (1) and T 1 (2) should the difference is large, and from the impact is less than the reason given to the inactivation of the exciton, T 1 (2) -T 1 (1) is more 0eV 0.1eV Or less, more preferably 0 eV or more and 1.0 eV or less.
The excitation energy of the triplet state can be obtained from the short wavelength end of the phosphorescence emission spectrum of the thin film of the material. For example, a material is deposited on a cleaned quartz glass substrate to a thickness of about 50 nm by vacuum deposition, and the phosphorescence emission spectrum of the thin film is measured at F-7000 Hitachi Spectrofluorimeter (Hitachi High Technologies) under liquid nitrogen temperature. Use to measure. The T 1 energy can be obtained by converting the rising wavelength on the short wavelength side of the obtained emission spectrum into energy units.
 上記[I]~[III]の条件を満足させるためには、副生するホモカップリング体のIp、Ea、T1が上記の条件を満たすように、クロスカップリング反応に用いる材料を選択する。特に、パラジウム触媒等を用いて有機ホウ素化合物とハロゲン化アリールとをクロスカップリングさせる鈴木カップリングの場合には、ホウ素を含む材料から副生するホモカップリング体が、上記の条件を満たすように、材料を選択する。 In order to satisfy the above conditions [I] to [III], a material used for the cross-coupling reaction is selected so that Ip, Ea, and T 1 of the by-product homo-coupled body satisfy the above conditions. . In particular, in the case of Suzuki coupling in which an organoboron compound and an aryl halide are cross-coupled using a palladium catalyst or the like, a homo-coupled product by-produced from a material containing boron satisfies the above conditions. Select the material.
 本発明の発光素子用材料において、一般式(1-1)~(5-1)で表されるクロスカップリング体に対して、一般式(1-2)~(5-2)で表されるホモカップリング体であって上記[I]~[III]のいずれか少なくとも1つを満足するホモカップリング体の含有量は0.5質量%より多く10質量%以下である。素子性能の変動を抑える観点から、該含有量は、5質量%以下が好ましく、1質量%以下がより好ましい。一方、材料精製を過度に実施すると製造コストが上昇するため、前記ホモカップリング体の含有量は0.5質量%以上が好ましく、0.7質量%以上がより好ましい。 In the light emitting device material of the present invention, the cross coupling bodies represented by the general formulas (1-1) to (5-1) are represented by the general formulas (1-2) to (5-2). The content of the homocoupled body satisfying at least one of the above [I] to [III] is more than 0.5% by mass and not more than 10% by mass. From the viewpoint of suppressing fluctuations in device performance, the content is preferably 5% by mass or less, and more preferably 1% by mass or less. On the other hand, if the material purification is carried out excessively, the production cost increases, so the content of the homocoupled body is preferably 0.5% by mass or more, and more preferably 0.7% by mass or more.
 材料精製のコスト削減の観点から、一般式(1-1)~(5-1)で表されるクロスカップリング体に対して、一般式(1-2)~(5-2)で表されるホモカップリング体であって上記[I]~[III]のいずれも満足しないホモカップリング体の含有量は、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、2質量%以上5質量%以下であることが特に好ましい。 From the viewpoint of cost reduction of material purification, the cross-coupled bodies represented by the general formulas (1-1) to (5-1) are represented by the general formulas (1-2) to (5-2). The content of the homocoupled body that is not satisfied with any of the above [I] to [III] is preferably 0.5% by mass or more, and preferably 1% by mass or more. More preferably, the content is 2% by mass or more and 5% by mass or less.
 以下に、一般式(1-1)で表されるクロスカップリング体と、それに対応する一般式(1-2)で表されるホモカップリング体を与える、クロスカップリングの反応例を示すが、本発明はこれらに限定されるものではない。式中、Ax,Ayはカップリング反応により結合が生成する場所を表し、反応前はハロゲン原子や置換スルホネートなどか、又は、金属原子を含む基を表す。 Examples of cross-coupling reactions that give a cross-coupled body represented by the general formula (1-1) and a corresponding homo-coupled body represented by the general formula (1-2) are shown below. However, the present invention is not limited to these. In the formula, Ax and Ay represent a place where a bond is generated by a coupling reaction, and represent a halogen atom, a substituted sulfonate, or a group containing a metal atom before the reaction.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[クロスカップリング反応]
 本発明に係る一般式(1-1)~(5-1)で表されるクロスカップリング体は、クロスカップリング反応により得ることができる。
 例えば、一般式(1-1)で表されるクロスカップリング体の場合、下記一般式(1-4)で表される化合物と下記一般式(1-5)で表される化合物とのクロスカップリング反応により得ることができる。
  (1-4):(A1)-(X1)
  (1-5):(B1)-(X2)
(式中、A1及びB1は、それぞれ一般式(1-1)のA1及びB1に相当する基を表す。X1及びX2は、ハロゲン原子や置換スルホネートなどか、あるいは、金属原子を含む基を表す。)
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を用いることができ、置換スルホネートとしては、メタンスルホネート(メシレート)、トリフルオトメタンスルホネート(トリフレート)、ノナフルオロブタンスルホネート(ノナフレート)、フェニルスルホネート、p-トルエンスルホネート(トシレート)などを用いることができる。
 金属原子を含む基をもつ化合物としては、Mgを含むグリニヤール試薬、Bを含む有機ホウ素化合物、Siを含む有機ケイ素化合物、Snを含む有機スズ化合物、Znを含む有機亜鉛化合物などを用いることができる。
[Cross coupling reaction]
The cross-coupled body represented by the general formulas (1-1) to (5-1) according to the present invention can be obtained by a cross-coupling reaction.
For example, in the case of a cross-coupled body represented by the general formula (1-1), a cross-linking between a compound represented by the following general formula (1-4) and a compound represented by the following general formula (1-5) It can be obtained by a coupling reaction.
(1-4): (A1)-(X1)
(1-5): (B1)-(X2)
(In the formula, A1 and B1 each represent a group corresponding to A1 and B1 in the general formula (1-1). X1 and X2 each represent a halogen atom, a substituted sulfonate, or a group containing a metal atom. .)
As the halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom can be used. As the substituted sulfonate, methanesulfonate (mesylate), trifluoromethanesulfonate (triflate), nonafluorobutanesulfonate (nonaflate), Phenyl sulfonate, p-toluene sulfonate (tosylate) and the like can be used.
As the compound having a group containing a metal atom, a Grignard reagent containing Mg, an organoboron compound containing B, an organosilicon compound containing Si, an organotin compound containing Sn, an organozinc compound containing Zn, or the like can be used. .
 カップリング反応の反応条件はChem.Rev.,1995,95,2457-2483.、あるいは、”Metal-Catalyzed Cross-Coupling Reactions, 2nd, Completely Revised AND Enlarged Edition”(A. Meijere (Editor), F. Diederich (Editor), Wiley-VCH、 2版,2004)等に記載の条件を用いることができる。反応の好ましい条件を以下に説明する。
 触媒としては、遷移金属を用いることができ、特に、パラジウム、ニッケル、鉄、ルテニウム、ロジウム、イリジウム、白金、金、銅などの金属を用いることができ、これらの金属の単体や無機塩、あるいは、適当な配位子を有する有機金属錯体の形で反応に供される。
 パラジウム触媒としては、2価のパラジウム塩若しくは、0価のパラジウム塩が用いられる。2価のパラジウムとしては、酢酸パラジウム、ジクロロビストルフェニルホスフィンパラジウム等、0価のパラジウムとしては、テトラキストリフェニルホスフィンパラジウム、ビス(ジベンジリデンアセトン)パラジウム等が挙げられる。好ましくは、酢酸パラジウム、テトラキス(トリフェニルホスフィン)パラジウムである。
 反応時の溶媒としては、特に限定されないが、水;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ジクロロエタン、クロロホルム等のハロゲン化炭化水素類;テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、ジエチルエーテル等のエーテル類;メタノール、エタノール、イソプロピルアルコール等のアルコール類;酢酸エチル、酢酸ブチル等のエステル類が挙げられる。このうち好ましくは、水、芳香族炭化水素類、エーテル類である。これらの溶媒は、2種類以上混合して使用しても構わない。
 反応温度は、反応の温度は特に限定されず、通常は、0℃~溶媒の沸点の間で行われるが、生成物の分解等が起こらない場合は、反応速度向上の為に、溶媒の沸点付近の温度で反応させることが好ましい。
 上記反応は、必要に応じて更に配位子を加えて反応を行っても良い。配位子としては、ホスフィン配位子、カルベン配位子等が挙げられる。その中でもホスフィン配位子が好ましい。
 上記配位子の使用量は、通常、使用するパラジウム触媒に対して、0.5~20モル倍量用いられ、好ましくは1~10モル倍量であり、更に好ましくは1~5モル倍量である。
 上記反応に使用する塩基としては特に限定されないが、具体的には、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属水酸化物、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属重炭酸塩、炭酸水素カルシウム、炭酸水素バリウム等のアルカリ土類金属重炭酸塩、炭酸ナトリウム、炭酸カルシウム等のアルカリ金属炭酸塩、炭酸カルシウム、炭酸バリウム等のアルカリ土類金属炭酸塩、リン酸ナトリウム、リン酸カリウム等のリン酸塩などが挙げられる。そのなかでも、アルカリ金属重炭酸塩、アルカリ金属炭酸塩、リン酸塩が好ましい。
 塩基の使用量としては、通常、化合物(1-4)に対して、0.1~50モル倍量用いられ、好ましくは、1~20モル倍量であり、更に好ましくは2~10モル倍量である。
The reaction conditions for the coupling reaction are described in Chem. Rev. 1995, 95, 2457-2483. Or “Metal-Catalyzed Cross-Coupling Reactions, 2nd, Completely Revised AND Enhanced Edition” (A. Meijere (Editor), F. Diedrich (Criteria), V. Can be used. Preferred conditions for the reaction are described below.
As the catalyst, transition metals can be used, and in particular, metals such as palladium, nickel, iron, ruthenium, rhodium, iridium, platinum, gold, and copper can be used. These metals alone or inorganic salts, or The reaction is conducted in the form of an organometallic complex having an appropriate ligand.
As the palladium catalyst, a divalent palladium salt or a zero-valent palladium salt is used. Examples of the divalent palladium include palladium acetate and dichlorobistoluphenylphosphine palladium, and examples of the zero-valent palladium include tetrakistriphenylphosphine palladium and bis (dibenzylideneacetone) palladium. Palladium acetate and tetrakis (triphenylphosphine) palladium are preferable.
The solvent for the reaction is not particularly limited, but water; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as dichloroethane and chloroform; tetrahydrofuran, 1,2-dimethoxyethane, 1,4 -Ethers such as dioxane and diethyl ether; alcohols such as methanol, ethanol and isopropyl alcohol; esters such as ethyl acetate and butyl acetate. Of these, water, aromatic hydrocarbons, and ethers are preferable. These solvents may be used as a mixture of two or more.
The reaction temperature is not particularly limited. Usually, the reaction is performed between 0 ° C. and the boiling point of the solvent. However, when the product does not decompose, the boiling point of the solvent is increased in order to improve the reaction rate. It is preferable to make it react at the temperature of vicinity.
The above reaction may be performed by further adding a ligand as necessary. Examples of the ligand include a phosphine ligand and a carbene ligand. Of these, phosphine ligands are preferred.
The ligand is usually used in an amount of 0.5 to 20 mol times, preferably 1 to 10 mol times, more preferably 1 to 5 mol times based on the palladium catalyst used. It is.
Although it does not specifically limit as a base used for the said reaction, Specifically, alkaline-earth metal, such as alkali metal hydroxides, such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, calcium hydroxide, barium hydroxide Alkali metal bicarbonates such as hydroxide, sodium bicarbonate and potassium bicarbonate, alkaline earth metal bicarbonates such as calcium bicarbonate and barium bicarbonate, alkali metal carbonates such as sodium carbonate and calcium carbonate, calcium carbonate And alkaline earth metal carbonates such as barium carbonate, and phosphates such as sodium phosphate and potassium phosphate. Among these, alkali metal bicarbonate, alkali metal carbonate, and phosphate are preferable.
The amount of the base to be used is generally 0.1 to 50 mol times, preferably 1 to 20 mol times, more preferably 2 to 10 mol times based on the compound (1-4). Amount.
 その他、WO2007/021107やTetrahedron Letters,Vol.33,Issue 20,May 12,1992,pages 2773-2776等に記載の方法で行うことができる。 In addition, WO2007 / 021107 and Tetrahedron Letters, Vol. 33, Issue 20, May 12, 1992, pages 2773-2776, and the like.
 クロスカップリング反応において、一般式(1-2)~(5-2)で表されるホモカップリング体を選択的に副生させるために、一般式(1-2)~(5-2)で表されるホモカップリング体を与える材料を、クロスカップリング反応において対となる材料に対して等量以上、好ましくは1.1~10倍当量、より好ましくは1.1~2倍当量、更に好ましくは1.1~1.2倍当量用いる。あるいは、一般式(1-2)~(5-2)で表されるホモカップリング体を与える材料として、有機ホウ素化合物などの金属原子を含む基を有する材料を選択することが好ましい。 In the cross-coupling reaction, in order to selectively produce a homo-coupled product represented by the general formulas (1-2) to (5-2) as a by-product, the general formulas (1-2) to (5-2) The material that gives a homo-coupled body represented by the formula (1) is equal to or more than the equivalent of the material to be paired in the cross-coupling reaction, preferably 1.1 to 10 times equivalent, more preferably 1.1 to 2 times equivalent, More preferably, 1.1 to 1.2 times equivalent is used. Alternatively, it is preferable to select a material having a group containing a metal atom, such as an organic boron compound, as the material that provides the homocoupled body represented by the general formulas (1-2) to (5-2).
 クロスカップリング反応後、カラムクロマトグラフィー、再結晶等による精製を行ってもよい。精製により発光素子の性能を変化させる不純物含有量を許容量以下に低減することができる。 After the cross-coupling reaction, purification by column chromatography, recrystallization or the like may be performed. The impurity content that changes the performance of the light-emitting element can be reduced to an allowable amount or less by purification.
[発光素子]
 本発明の発光素子は、少なくとも一層の有機層を有する発光素子であって、前記有機層の少なくとも一層に本発明の発光素子用材料を含む。
 有機層中の本発明の発光素子用材料の含有量は、90質量%以上100質量%以下であることが好ましく、95質量%以上100質量%以下であることがより好ましく、99質量%以上100質量%以下であることが更に好ましい。また、発光層として用いる場合には、発光材料と共に用いることができるが、発光材料以外の発光素子用材料の含有量は、90質量%以上100質量%以下であることが好ましく、95質量%以上100質量%以下であることがより好ましく、99質量%以上100質量%以下であることが更に好ましい。
[Light emitting element]
The light emitting device of the present invention is a light emitting device having at least one organic layer, and the light emitting device material of the present invention is included in at least one layer of the organic layer.
The content of the light emitting device material of the present invention in the organic layer is preferably 90% by mass or more and 100% by mass or less, more preferably 95% by mass or more and 100% by mass or less, and 99% by mass or more and 100% by mass. More preferably, it is at most mass%. In addition, when used as a light emitting layer, it can be used together with a light emitting material, but the content of a light emitting element material other than the light emitting material is preferably 90% by mass or more and 100% by mass or less, and 95% by mass or more. More preferably, it is 100 mass% or less, More preferably, it is 99 mass% or more and 100 mass% or less.
 本発明の発光素子の態様は限定されないが、有機電界発光素子、発光性有機電界効果トランジスタなどが挙げられる。
 好ましくは、一対の電極間に有機層が挟持され、該電極間に電圧を印加することにより発光する有機電界発光素子であることが好ましい。
Although the aspect of the light emitting element of this invention is not limited, An organic electroluminescent element, a luminescent organic field effect transistor, etc. are mentioned.
Preferably, the organic electroluminescent element emits light when an organic layer is sandwiched between a pair of electrodes and a voltage is applied between the electrodes.
[有機電界発光素子]
 有機電界発光素子においては、有機層の少なくとも一層は発光層であり、更に複数の有機層を有することができる。
 図1は、本発明に係る有機電界発光素子の構成の一例を示している。図1に示される本発明に係る有機電界発光素子10は、基板2上に、一対の電極(陽極3及び陰極9)を有し、該一対の電極間に発光層6を有する。具体的には、陽極3と陰極9との間に、正孔注入層4、正孔輸送層5、発光層6、正孔ブロック層7、及び電子輸送層8をこの順に有する。
 素子の性質上、陽極及び陰極のうち少なくとも一方の電極は、透明若しくは半透明であることが好ましい。
[Organic electroluminescence device]
In the organic electroluminescent element, at least one of the organic layers is a light emitting layer, and can further have a plurality of organic layers.
FIG. 1 shows an example of the configuration of an organic electroluminescent device according to the present invention. An organic electroluminescent element 10 according to the present invention shown in FIG. 1 has a pair of electrodes (anode 3 and cathode 9) on a substrate 2, and a light emitting layer 6 between the pair of electrodes. Specifically, a hole injection layer 4, a hole transport layer 5, a light emitting layer 6, a hole block layer 7, and an electron transport layer 8 are provided in this order between the anode 3 and the cathode 9.
In view of the properties of the element, at least one of the anode and the cathode is preferably transparent or translucent.
<有機層の構成>
 前記有機層の層構成としては、特に制限はなく、有機電界発光素子の用途、目的に応じて適宜選択することができる。前記陽極上又は陰極上に形成されるのが好ましい。この場合、有機層は、陽極又は陰極上の前面又は一面に形成される。
 有機層の形状、大きさ、及び厚み等については、特に制限はなく、目的に応じて適宜選択することができる。
<Structure of organic layer>
There is no restriction | limiting in particular as a layer structure of the said organic layer, According to the use and objective of an organic electroluminescent element, it can select suitably. It is preferably formed on the anode or the cathode. In this case, the organic layer is formed on the front surface or one surface on the anode or the cathode.
There is no restriction | limiting in particular about the shape of a organic layer, a magnitude | size, thickness, etc., According to the objective, it can select suitably.
 具体的な層構成として、下記が挙げられるが本発明はこれらの構成に限定されるものではない。
 ・陽極/正孔輸送層/発光層/電子輸送層/陰極、
 ・陽極/正孔輸送層/発光層/ブロック層/電子輸送層/陰極、
 ・陽極/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/陰極、
 ・陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/陰極、
 ・陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極、
 ・陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/陰極。
 有機電界発光素子の素子構成、基板、陰極及び陽極については、例えば、特開2008-270736号公報に詳述されており、該公報に記載の事項を本発明に適用することができる。
Specific examples of the layer configuration include the following, but the present invention is not limited to these configurations.
Anode / hole transport layer / light emitting layer / electron transport layer / cathode,
Anode / hole transport layer / light emitting layer / block layer / electron transport layer / cathode,
Anode / hole transport layer / light emitting layer / block layer / electron transport layer / electron injection layer / cathode,
Anode / hole injection layer / hole transport layer / light emitting layer / block layer / electron transport layer / cathode,
Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode,
Anode / hole injection layer / hole transport layer / light emitting layer / block layer / electron transport layer / electron injection layer / cathode.
The element configuration, the substrate, the cathode, and the anode of the organic electroluminescence element are described in detail in, for example, Japanese Patent Application Laid-Open No. 2008-270736, and the matters described in the publication can be applied to the present invention.
 有機電界発光素子において、本発明の発光素子用材料は有機層のいずれの層に含有されてもよい。好ましくは正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層のいずれかに用いる場合であり、より好ましくは正孔輸送層、発光層、電子輸送層に用いる場合であり、更に好ましくは発光層に用いる場合である。
 本発明の発光素子用材料を発光層中含有させる場合、本発明の発光素子用材料は発光層の全質量に対して10~99質量%含ませることが好ましく、40~95質量%含ませることがより好ましく、70~90質量%含ませることが更に好ましい。
 また、本発明の発光素子用材料を発光層以外の層に含有させる場合は、60~100質量%含ませることが好ましく、70~100質量%含ませることがより好ましく、85~100質量%含まれせることがより好ましい。
In the organic electroluminescence device, the light emitting device material of the present invention may be contained in any layer of the organic layer. Preferably, it is used for any of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, and more preferably for a hole transport layer, a light emitting layer, and an electron transport layer. More preferably, it is used for the light emitting layer.
When the light-emitting element material of the present invention is contained in the light-emitting layer, the light-emitting element material of the present invention is preferably included in an amount of 10 to 99% by mass, and preferably 40 to 95% by mass with respect to the total mass of the light-emitting layer. Is more preferable, and 70 to 90% by mass is even more preferable.
When the light emitting device material of the present invention is contained in a layer other than the light emitting layer, it is preferably contained in an amount of 60 to 100% by mass, more preferably 70 to 100% by mass, and more preferably 85 to 100% by mass. More preferably.
<基板>
 基板としては、有機層から発せられる光を散乱又は減衰させない基板であることが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
<陽極>
 陽極は、通常、有機層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
<陰極>
 陰極は、通常、有機層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
 基板、陽極、陰極については、特開2008-270736号公報の段落番号〔0070〕~〔0089〕に記載の事項を本発明に適用することができる。
<Board>
The substrate is preferably a substrate that does not scatter or attenuate light emitted from the organic layer. In the case of an organic material, it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, and workability.
<Anode>
The anode usually only needs to have a function as an electrode for supplying holes to the organic layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials. As described above, the anode is usually provided as a transparent anode.
<Cathode>
The cathode usually has a function as an electrode for injecting electrons into the organic layer, and there is no particular limitation on the shape, structure, size, etc., and it is known depending on the use and purpose of the light-emitting element. The electrode material can be selected as appropriate.
Regarding the substrate, anode, and cathode, the matters described in paragraph numbers [0070] to [0089] of JP-A-2008-270736 can be applied to the present invention.
<有機層>-有機層の形成-
 有機電界発光素子において、各有機層は、蒸着法やスパッタ法等の乾式製膜法、溶液塗布などの湿式製膜法、転写法、印刷法等いずれによっても好適に形成することができる。
<Organic layer>-Formation of organic layer-
In the organic electroluminescent element, each organic layer can be suitably formed by any of dry film forming methods such as vapor deposition and sputtering, wet film forming methods such as solution coating, transfer methods, and printing methods.
(発光層)
<発光材料>
 本発明の有機電界発光素子の発光層における発光材料は、燐光発光材料であることが好ましく、イリジウム錯体及び白金錯体であることが好ましい。
(Light emitting layer)
<Light emitting material>
The light emitting material in the light emitting layer of the organic electroluminescent element of the present invention is preferably a phosphorescent light emitting material, and preferably an iridium complex and a platinum complex.
 発光層中の発光材料は、発光層中に一般的に発光層を形成する全化合物の質量に対して、0.1質量%~50質量%含有されることが好ましく、耐久性、外部量子効率の観点から1質量%~50質量%含有されることがより好ましく、2質量%~40質量%含有されることが更に好ましい。
 発光層中の燐光発光材料は、発光層中に耐久性、発光色相の観点から1質量%~30質量%含有されることが好ましく、2質量%~20質量%含有されることがより好ましい。
The light emitting material in the light emitting layer is preferably contained in an amount of 0.1% by mass to 50% by mass with respect to the mass of all compounds generally forming the light emitting layer in the light emitting layer. In view of the above, the content is more preferably 1% by mass to 50% by mass, and further preferably 2% by mass to 40% by mass.
The phosphorescent light emitting material in the light emitting layer is preferably contained in the light emitting layer in an amount of 1% by mass to 30% by mass, and more preferably 2% by mass to 20% by mass from the viewpoint of durability and emission hue.
 発光層の厚さは、特に限定されるものではないが、通常、2nm~500nmであるのが好ましく、中でも、外部量子効率の観点で、3nm~200nmであるのがより好ましく、5nm~100nmであるのが更に好ましい。 The thickness of the light emitting layer is not particularly limited, but is usually preferably 2 nm to 500 nm, and more preferably 3 nm to 200 nm, and more preferably 5 nm to 100 nm from the viewpoint of external quantum efficiency. More preferably.
 発光層は、発光材料のみで構成されていてもよく、ホスト材料と発光材料の混合層とした構成でも良い。発光材料は蛍光発光材料でも燐光発光材料であっても良く、ドーパントは一種であっても二種以上であっても良い。
 ホスト材料は電荷輸送材料であることが好ましい。ホスト材料は一種であっても二種以上であっても良く、例えば、電子輸送性のホスト材料とホール輸送性のホスト材料を混合した構成が挙げられる。更に、発光層中に電荷輸送性を有さず、発光しない材料を含んでいても良い。
 また、発光層は、複数の層からなっていてもよく、発光層が複数の層からなる場合に、それぞれの発光色は同じでも異なっていてもよい。
The light emitting layer may be composed of only a light emitting material, or may be a mixed layer of a host material and a light emitting material. The light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, and the dopant may be one kind or two or more kinds.
The host material is preferably a charge transport material. The host material may be one kind or two or more kinds, and examples thereof include a configuration in which an electron transporting host material and a hole transporting host material are mixed. Furthermore, the light emitting layer may include a material that does not have charge transporting properties and does not emit light.
Further, the light emitting layer may be composed of a plurality of layers, and when the light emitting layer is composed of a plurality of layers, the respective emission colors may be the same or different.
<ホスト材料>
 本発明に用いられるホスト材料として、以下の化合物を含有していても良い。例えば、ピロール、インドール、カルバゾール(例えばCBP(4,4’-ジ(9-カルバゾイル)ビフェニル))、アザインドール、アザカルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、チオフェン、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ-ル、オキサゾ-ル、オキサジアゾ-ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、8-キノリノ-ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ-ルやベンゾチアゾ-ルを配位子とする金属錯体に代表される各種金属錯体及びそれらの誘導体(置換基や縮環を有していてもよい)等を挙げることができる。
<Host material>
The host material used in the present invention may contain the following compounds. For example, pyrrole, indole, carbazole (eg, CBP (4,4′-di (9-carbazoyl) biphenyl)), azaindole, azacarbazole, triazole, oxazole, oxadiazole, pyrazole, imidazole, thiophene, polyarylalkane, Pyrazoline, pyrazolone, phenylenediamine, arylamine, amino-substituted chalcone, styrylanthracene, fluorenone, hydrazone, stilbene, silazane, aromatic tertiary amine compound, styrylamine compound, porphyrin compound, polysilane compound, poly (N-vinyl) Carbazole), aniline copolymers, thiophene oligomers, conductive polymer oligomers such as polythiophene, organic silane, carbon film, pyridine, pyrimidine, triazine, imidazo , Pyrazole, triazole, oxazole, oxadiazol, fluorenone, anthraquinodimethane, anthrone, diphenylquinone, thiopyran dioxide, carbodiimide, fluorenylidenemethane, distyrylpyrazine, fluorine-substituted aromatic compounds , Metal complexes of heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, phthalocyanines, 8-quinolinol derivatives and metal complexes represented by metal phthalocyanines, benzoxazoles and benzothiazoles as metal ligands And derivatives thereof (which may have a substituent or a condensed ring).
 発光層において、ホスト材料の三重項最低励起エネルギー(Tエネルギー)が、燐光発光材料のTエネルギーより高いことが色純度、発光効率、駆動耐久性の点で好ましい。 In the light emitting layer, the triplet minimum excitation energy (T 1 energy) of the host material is preferably higher than the T 1 energy of the phosphorescent light emitting material in terms of color purity, light emission efficiency, and driving durability.
 ホスト化合物の含有量は、特に限定されるものではないが、発光効率、駆動電圧の観点から、発光層を形成する全化合物質量に対して15質量%以上95質量%以下であることが好ましい。 The content of the host compound is not particularly limited, but is preferably 15% by mass or more and 95% by mass or less with respect to the total compound mass forming the light emitting layer, from the viewpoint of luminous efficiency and driving voltage.
(蛍光発光材料)
 本発明に使用できる蛍光発光材料の例としては、例えば、ベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、シクロペンタジエン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリディン化合物、8-キノリノール誘導体の錯体やピロメテン誘導体の錯体に代表される各種錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体などの化合物等が挙げられる。
(Fluorescent material)
Examples of fluorescent materials that can be used in the present invention include, for example, benzoxazole derivatives, benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives. , Condensed aromatic compounds, perinone derivatives, oxadiazole derivatives, oxazine derivatives, aldazine derivatives, pyralidine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiadiazolopyridine derivatives, cyclopentadiene derivatives, styryl Complexes of amine derivatives, diketopyrrolopyrrole derivatives, aromatic dimethylidin compounds, 8-quinolinol derivatives and pyromethene derivatives Various complexes represented, polythiophene, polyphenylene, polyphenylene vinylene polymer compounds include compounds such as organic silane derivatives.
(燐光発光材料)
 本発明に使用できる燐光発光材料としては、例えば、US6303238B1、US6097147、WO00/57676、WO00/70655、WO01/08230、WO01/39234A2、WO01/41512A1、WO02/02714A2、WO02/15645A1、WO02/44189A1、WO05/19373A2、特開2001-247859、特開2002-302671、特開2002-117978、特開2003-133074、特開2002-235076、特開2003-123982、特開2002-170684、EP1211257、特開2002-226495、特開2002-234894、特開2001-247859、特開2001-298470、特開2002-173674、特開2002-203678、特開2002-203679、特開2004-357791、特開2006-256999、特開2007-19462、特開2007-84635、特開2007-96259等の特許文献に記載の燐光発光化合物などが挙げられ、中でも、更に好ましい発光性ドーパントとしては、Ir錯体、Pt錯体、Cu錯体、Re錯体、W錯体、Rh錯体、Ru錯体、Pd錯体、Os錯体、Eu錯体、Tb錯体、Gd錯体、Dy錯体、及びCe錯体が挙げられる。特に好ましくは、Ir錯体、Pt錯体、又はRe錯体であり、中でも金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含むIr錯体、Pt錯体、又はRe錯体が好ましい。更に、発光効率、駆動耐久性、色度等の観点で、3座以上の多座配位子を含むIr錯体、Pt錯体、又はRe錯体が特に好ましい。
(Phosphorescent material)
Examples of phosphorescent light-emitting materials that can be used in the present invention include US Pat. / 19373A2, JP-A No. 2001-247859, JP-A No. 2002-302671, JP-A No. 2002-117978, JP-A No. 2003-133074, JP-A No. 2002-1235076, JP-A No. 2003-123684, JP-A No. 2002-170684, EP No. 121157, JP-A No. 2002 -226495, JP 2002-234894, JP 2001-247859, JP 2001-298470, JP 2002-17367 , JP 2002-203678, JP 2002-203679, JP 2004-357799, JP 2006-256999, JP 2007-19462, JP 2007-84635, JP 2007-96259, and the like. Examples of such a luminescent dopant include Ir complex, Pt complex, Cu complex, Re complex, W complex, Rh complex, Ru complex, Pd complex, Os complex, Eu complex, Tb complex, among others. Gd complex, Dy complex, and Ce complex are mentioned. Particularly preferred is an Ir complex, a Pt complex, or a Re complex, among which an Ir complex or a Pt complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond. Or Re complexes are preferred. Furthermore, from the viewpoints of luminous efficiency, driving durability, chromaticity, etc., an Ir complex, a Pt complex, or a Re complex containing a tridentate or higher polydentate ligand is particularly preferable.
-正孔注入層、正孔輸送層-
 正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。
 本発明に関し、有機層として、電子受容性ドーパントを含有する正孔注入層又は正孔輸送層を含むことが好ましい。
-Hole injection layer, hole transport layer-
The hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side.
In the present invention, the organic layer preferably includes a hole injection layer or a hole transport layer containing an electron-accepting dopant.
-電子注入層、電子輸送層-
 電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。
-Electron injection layer, electron transport layer-
The electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
 正孔注入層、正孔輸送層、電子注入層、電子輸送層については、特開2008-270736号公報の段落番号〔0165〕~〔0167〕に記載の事項を本発明に適用することができる。 Regarding the hole injection layer, the hole transport layer, the electron injection layer, and the electron transport layer, the matters described in paragraph numbers [0165] to [0167] of JP-A-2008-270736 can be applied to the present invention. .
-正孔ブロック層-
 正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機層として、正孔ブロック層を設けることができる。
 正孔ブロック層を構成する有機化合物の例としては、アルミニウム(III)ビス(2-メチル-8-キノリナト)4-フェニルフェノレート(Aluminum(III)bis(2-methyl-8-quinolinato)4-phenylphenolate(BAlqと略記する))等のアルミニウム錯体、トリアゾール誘導体、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCPと略記する))等のフェナントロリン誘導体、等が挙げられる。
 正孔ブロック層の厚さとしては、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。
 正孔ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
-Hole blocking layer-
The hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side. In the present invention, a hole blocking layer can be provided as an organic layer adjacent to the light emitting layer on the cathode side.
Examples of organic compounds constituting the hole blocking layer include aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate (Aluminum (III) bis (2-methyl-8-quinolinato) 4- aluminum complexes such as phenylphenolate (abbreviated as BAlq), triazole derivatives, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (2,9-Dimethyl-4,7-diphenyl-1,10-) phenanthroline derivatives such as phenanthroline (abbreviated as BCP)) and the like.
The thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
The hole blocking layer may have a single layer structure made of one or more of the materials described above, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
-電子ブロック層-
 電子ブロック層は、陰極側から発光層に輸送された電子が、陽極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陽極側で隣接する有機層として、電子ブロック層を設けることができる。
 電子ブロック層を構成する有機化合物の例としては、例えば前述の正孔輸送材料として挙げたものが適用できる。
 電子ブロック層の厚さとしては、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。
 電子ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
-Electronic block layer-
The electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side. In the present invention, an electron blocking layer can be provided as an organic layer adjacent to the light emitting layer on the anode side.
As an example of the organic compound constituting the electron blocking layer, for example, those mentioned as the hole transport material described above can be applied.
The thickness of the electron blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
The electron blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
<保護層>
 有機発光素子全体は、保護層によって保護されていてもよい。
 保護層については、特開2008-270736号公報の段落番号〔0169〕~〔0170〕に記載の事項を本発明に適用することができる。
<Protective layer>
The entire organic light emitting device may be protected by a protective layer.
As for the protective layer, the matters described in JP-A-2008-270736, paragraphs [0169] to [0170] can be applied to the present invention.
<封止容器>
 本発明の素子は、封止容器を用いて素子全体を封止してもよい。
 封止容器については、特開2008-270736号公報の段落番号〔0171〕に記載の事項を本発明に適用することができる。
<Sealing container>
The element of this invention may seal the whole element using a sealing container.
Regarding the sealing container, the matters described in paragraph [0171] of JP-A-2008-270736 can be applied to the present invention.
(駆動)
 本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト~15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
 本発明の有機電界発光素子の駆動方法については、特開平2-148687号、同6-301355号、同5-29080号、同7-134558号、同8-234685号、同8-241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書等に記載の駆動方法を適用することができる。
(Drive)
The organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. Obtainable.
The driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-290080, JP-A-7-134558, JP-A-8-234585, and JP-A-8-2441047. The driving methods described in each publication, Japanese Patent No. 2784615, US Pat. Nos. 5,828,429 and 6,023,308 can be applied.
 本発明の有機電界発光素子は、種々の公知の工夫により、光取り出し効率を向上させることができる。例えば、基板表面形状を加工する(例えば微細な凹凸パターンを形成する)、基板・ITO層・有機層の屈折率を制御する、基板・ITO層・有機層の膜厚を制御すること等により、光の取り出し効率を向上させ、外部量子効率を向上させることが可能である。 The organic electroluminescence device of the present invention can improve the light extraction efficiency by various known devices. For example, by processing the substrate surface shape (for example, forming a fine concavo-convex pattern), controlling the refractive index of the substrate / ITO layer / organic layer, controlling the film thickness of the substrate / ITO layer / organic layer, etc. It is possible to improve light extraction efficiency and external quantum efficiency.
 本発明の有機電界発光素子は、陽極側から発光を取り出す、いわゆるトップエミッション方式であっても良い。 The organic electroluminescent element of the present invention may be a so-called top emission method in which light emission is extracted from the anode side.
 本発明における有機電界発光素子は、共振器構造を有しても良い。例えば、透明基板上に、屈折率の異なる複数の積層膜よりなる多層膜ミラー、透明又は半透明電極、発光層、及び金属電極を重ね合わせて有する。発光層で生じた光は多層膜ミラーと金属電極を反射板としてその間で反射を繰り返し共振する。
 別の好ましい態様では、透明基板上に、透明又は半透明電極と金属電極がそれぞれ反射板として機能して、発光層で生じた光はその間で反射を繰り返し共振する。
 共振構造を形成するためには、2つの反射板の有効屈折率、反射板間の各層の屈折率と厚みから決定される光路長を所望の共振波長の得るのに最適な値となるよう調整される。第一の態様の場合の計算式は特開平9-180883号明細書に記載されている。第2の態様の場合の計算式は特開2004-127795号明細書に記載されている。
The organic electroluminescent element in the present invention may have a resonator structure. For example, a multilayer mirror made of a plurality of laminated films having different refractive indexes, a transparent or translucent electrode, a light emitting layer, and a metal electrode are superimposed on a transparent substrate. The light generated in the light emitting layer resonates repeatedly with the multilayer mirror and the metal electrode as a reflection plate.
In another preferred embodiment, a transparent or translucent electrode and a metal electrode each function as a reflecting plate on a transparent substrate, and light generated in the light emitting layer repeats reflection and resonates between them.
In order to form a resonant structure, the optical path length determined from the effective refractive index of the two reflectors and the refractive index and thickness of each layer between the reflectors is adjusted to an optimum value to obtain the desired resonant wavelength. Is done. The calculation formula in the case of the first embodiment is described in JP-A-9-180883. The calculation formula in the case of the second embodiment is described in Japanese Patent Application Laid-Open No. 2004-127795.
 本発明の有機電界発光素子の外部量子効率としては、5%以上が好ましく、10%以上がより好ましく、17%以上が特に好ましい。外部量子効率の数値は20℃で素子を駆動したときの外部量子効率の最大値、若しくは、20℃で素子を駆動したときの100~300cd/m付近での外部量子効率の値を用いることができる。 The external quantum efficiency of the organic electroluminescent element of the present invention is preferably 5% or more, more preferably 10% or more, and particularly preferably 17% or more. The value of the external quantum efficiency should be the maximum value of the external quantum efficiency when the device is driven at 20 ° C., or the value of the external quantum efficiency near 100 to 300 cd / m 2 when the device is driven at 20 ° C. Can do.
 本発明の有機電界発光素子の内部量子効率は、30%以上であることが好ましく、50%以上が更に好ましく、70%以上が更に好ましい。素子の内部量子効率は、外部量子効率を光取り出し効率で除して算出される。通常の有機EL素子では光取り出し効率は約20%であるが、基板の形状、電極の形状、有機層の膜厚、無機層の膜厚、有機層の屈折率、無機層の屈折率等を工夫することにより、光取り出し効率を20%以上にすることが可能である。 The internal quantum efficiency of the organic electroluminescence device of the present invention is preferably 30% or more, more preferably 50% or more, and further preferably 70% or more. The internal quantum efficiency of the device is calculated by dividing the external quantum efficiency by the light extraction efficiency. In a normal organic EL element, the light extraction efficiency is about 20%. However, the shape of the substrate, the shape of the electrode, the thickness of the organic layer, the thickness of the inorganic layer, the refractive index of the organic layer, the refractive index of the inorganic layer, etc. By devising it, it is possible to increase the light extraction efficiency to 20% or more.
 本発明の有機電界発光素子は、350nm以上700nm以下に発光極大波長(発光スペクトルの最大強度波長)を有するものが好ましく、より好ましくは400nm以上650nm以下、更に青色発光素子として好ましくは400nm以上520nm以下、特に好ましくは400nm以上470nm以下であり、緑色発光素子として好ましくは470nm以上520nm以下、特に好ましくは490nm以上510nm以下であり、赤色発光素子として好ましくは550nm以上650nm以下、特に好ましくは590nm以上630nm以下である。 The organic electroluminescent element of the present invention preferably has an emission maximum wavelength (maximum intensity wavelength of emission spectrum) at 350 nm or more and 700 nm or less, more preferably 400 nm or more and 650 nm or less, and more preferably 400 nm or more and 520 nm or less as a blue light emitting element. In particular, it is 400 nm to 470 nm, preferably 470 nm to 520 nm, particularly preferably 490 nm to 510 nm as a green light emitting element, and preferably 550 nm to 650 nm, particularly preferably 590 nm to 630 nm as a red light emitting element. It is.
(本発明の有機電界発光素子の用途)
 本発明の有機電界発光素子は、発光装置、ピクセル、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、又は光通信等に好適に利用できる。特に、発光装置、照明装置、表示装置等の発光輝度が高い領域で駆動されるデバイスに好ましく用いられる。
(Use of the organic electroluminescence device of the present invention)
The organic electroluminescent element of the present invention is suitable for light emitting devices, pixels, display elements, displays, backlights, electrophotography, illumination light sources, recording light sources, exposure light sources, reading light sources, signs, signboards, interiors, optical communications, etc. Available. In particular, it is preferably used for a device that is driven in a region where light emission luminance is high, such as a light emitting device, a lighting device, and a display device.
 次に、図2を参照して本発明の発光装置について説明する。
 本発明の発光装置は、前記有機電界発光素子を用いてなる。
 図2は、本発明の発光装置の一例を概略的に示した断面図である。
 図2の発光装置20は、透明基板(支持基板)2、有機電界発光素子10、封止容器16等により構成されている。
Next, the light emitting device of the present invention will be described with reference to FIG.
The light emitting device of the present invention uses the organic electroluminescent element.
FIG. 2 is a cross-sectional view schematically showing an example of the light emitting device of the present invention.
The light emitting device 20 in FIG. 2 includes a transparent substrate (support substrate) 2, an organic electroluminescent element 10, a sealing container 16, and the like.
 有機電界発光素子10は、基板2上に、陽極(第一電極)3、有機層11、陰極(第二電極)9が順次積層されて構成されている。また、陰極9上には、保護層12が積層されており、更に、保護層12上には接着層14を介して封止容器16が設けられている。なお、各電極3、9の一部、隔壁、絶縁層等は省略されている。
 ここで、接着層14としては、エポキシ樹脂等の光硬化型接着剤や熱硬化型接着剤を用いることができ、例えば熱硬化性の接着シートを用いることもできる。
The organic electroluminescent device 10 is configured by sequentially laminating an anode (first electrode) 3, an organic layer 11, and a cathode (second electrode) 9 on a substrate 2. A protective layer 12 is laminated on the cathode 9, and a sealing container 16 is provided on the protective layer 12 with an adhesive layer 14 interposed therebetween. In addition, a part of each electrode 3 and 9, a partition, an insulating layer, etc. are abbreviate | omitted.
Here, as the adhesive layer 14, a photocurable adhesive such as an epoxy resin or a thermosetting adhesive can be used, and for example, a thermosetting adhesive sheet can also be used.
 本発明の発光装置の用途は特に制限されるものではなく、例えば、照明装置のほか、テレビ、パーソナルコンピュータ、携帯電話、電子ペーパ等の表示装置とすることができる。 The use of the light-emitting device of the present invention is not particularly limited, and for example, it can be a display device such as a television, a personal computer, a mobile phone, and electronic paper in addition to a lighting device.
(照明装置)
 次に、図3を参照して本発明の実施形態に係る照明装置について説明する。
 図3は、本発明の実施形態に係る照明装置の一例を概略的に示した断面図である。
 本発明の実施形態に係る照明装置40は、図3に示すように、前述した有機EL素子10と、光散乱部材30とを備えている。より具体的には、照明装置40は、有機EL素子10の基板2と光散乱部材30とが接触するように構成されている。
 光散乱部材30は、光を散乱できるものであれば特に制限されないが、図3においては、透明基板31に微粒子32が分散した部材とされている。透明基板31としては、例えば、ガラス基板を好適に挙げることができる。微粒子32としては、透明樹脂微粒子を好適に挙げることができる。ガラス基板及び透明樹脂微粒子としては、いずれも、公知のものを使用できる。このような照明装置40は、有機電界発光素子10からの発光が散乱部材30の光入射面30Aに入射されると、入射光を光散乱部材30により散乱させ、散乱光を光出射面30Bから照明光として出射するものである。
(Lighting device)
Next, an illumination device according to an embodiment of the present invention will be described with reference to FIG.
FIG. 3 is a cross-sectional view schematically showing an example of a lighting device according to an embodiment of the present invention.
As shown in FIG. 3, the illumination device 40 according to the embodiment of the present invention includes the organic EL element 10 and the light scattering member 30 described above. More specifically, the lighting device 40 is configured such that the substrate 2 of the organic EL element 10 and the light scattering member 30 are in contact with each other.
The light scattering member 30 is not particularly limited as long as it can scatter light. In FIG. 3, the light scattering member 30 is a member in which fine particles 32 are dispersed on a transparent substrate 31. As the transparent substrate 31, for example, a glass substrate can be preferably cited. As the fine particles 32, transparent resin fine particles can be preferably exemplified. As the glass substrate and the transparent resin fine particles, known ones can be used. In such an illuminating device 40, when light emitted from the organic electroluminescent element 10 is incident on the light incident surface 30A of the scattering member 30, the incident light is scattered by the light scattering member 30, and the scattered light is emitted from the light emitting surface 30B. It is emitted as illumination light.
 以下に実施例を挙げて本発明を更に具体的に説明するが、本発明の範囲は以下の実施例に制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the following examples.
<実施例1>
[合成例]
[クロスカップリング体4の合成]
 以下の合成ルート1~3により、中間体1、中間体2、中間体3、クロスカップリング体4を合成した。ここで、中間体1は、WO2006/062062の100頁に記載の方法で合成し、中間体2は、WO2006/062062の102頁に記載の方法で合成した。中間体3は、WO2006/070185の28頁に記載のtert-ブチルカルバゾールから、中間体1-1と同様の方法で合成した。
 中間体2(28.7g、0.1モル)、中間体3(37.8g、0.1モル)、酢酸パラジウム(0.22g、1ミリモル)、トリフェニルホスフィン(1.05g、4ミリモル)、炭酸ナトリウム(31.8g、0.3モル)、THF(テトラヒドロフラン)(200mL)、水(200mL)を窒素雰囲気下、4時間加熱還流し、室温に冷却後、水層を除去し、水と飽和食塩水で有機層を洗浄後、THFを留去して濃縮した溶液に、ヘキサンとアセトニトリルを加えたのち、析出物をろ過し、アセトニトリルで洗浄後、減圧下で乾燥して、クロスカップリング体4を得た。収量49.4g、収率91%。HPLC面積97.8%(クロスカップリング体4に対してホモカップリング体4-aの含有量は1.4質量%であった)。
<Example 1>
[Synthesis example]
[Synthesis of Cross Coupling Body 4]
Intermediate 1, Intermediate 2, Intermediate 3, and Cross Coupling 4 were synthesized by the following synthesis routes 1 to 3. Here, Intermediate 1 was synthesized by the method described on page 100 of WO2006 / 062062, and Intermediate 2 was synthesized by the method described on page 102 of WO2006 / 062062. Intermediate 3 was synthesized from tert-butylcarbazole described on page 28 of WO2006 / 070185 in the same manner as intermediate 1-1.
Intermediate 2 (28.7 g, 0.1 mol), Intermediate 3 (37.8 g, 0.1 mol), palladium acetate (0.22 g, 1 mmol), triphenylphosphine (1.05 g, 4 mmol) , Sodium carbonate (31.8 g, 0.3 mol), THF (tetrahydrofuran) (200 mL) and water (200 mL) were heated to reflux for 4 hours under a nitrogen atmosphere, cooled to room temperature, the aqueous layer was removed, After washing the organic layer with saturated saline, THF is distilled off and concentrated, and then hexane and acetonitrile are added. The precipitate is filtered, washed with acetonitrile, dried under reduced pressure, and cross-coupled. Body 4 was obtained. Yield 49.4 g, 91% yield. HPLC area 97.8% (content of homo-coupled 4-a was 1.4% by mass relative to cross-coupled 4).
 得られたクロスカップリング体4のNMRデータを以下に示す。δ(ppm、重DMSO中)8.30(s、1H)、8.24(d、3H)、8.06(d、2H)、7.96(t、2H)、7.79(dt、2H)、7.66(d、2H)、7.52-5.39(m、8H)、7.29(t、2H)、7.27(t、1H)、1.41(s、18H) NMR data of the obtained cross coupling body 4 are shown below. δ (ppm, in heavy DMSO) 8.30 (s, 1H), 8.24 (d, 3H), 8.06 (d, 2H), 7.96 (t, 2H), 7.79 (dt, 2H), 7.66 (d, 2H), 7.52-5.39 (m, 8H), 7.29 (t, 2H), 7.27 (t, 1H), 1.41 (s, 18H) )
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[ホモカップリング体4-aの合成]
 下記の反応でホモカップリング体4-aを合成した。中間体1と中間体2を用いることにより、上述のクロスカップリング体4の合成と同じ方法で、ホモカップリング体4-aを合成した。
[Synthesis of homo-coupled body 4-a]
Homocoupled 4-a was synthesized by the following reaction. By using Intermediate 1 and Intermediate 2, homo-coupled 4-a was synthesized in the same manner as the synthesis of cross-coupling 4 described above.
 得られたホモカップリング体4-aのNMRデータを以下に示す。δ(ppm、重DMSO中)8.26(d、4H)、8.07(s、2H)、7.97(d、2H)、7.80(t、2H)、7.67(d、2H)、7.49(d、4H)、7.44(t、4H)、7.30(t、4H) The NMR data of the obtained homocoupled body 4-a are shown below. δ (ppm, in heavy DMSO) 8.26 (d, 4H), 8.07 (s, 2H), 7.97 (d, 2H), 7.80 (t, 2H), 7.67 (d, 2H), 7.49 (d, 4H), 7.44 (t, 4H), 7.30 (t, 4H)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[ホモカップリング体4-bの合成]
 下記の反応でホモカップリング体4-bを合成した。中間体4は、中間体3から、中間体2と同様の方法で合成した。
 中間体3と中間体4を用いることにより、上述のクロスカップリング体4の合成と同じ方法で、ホモカップリング体4-bを合成した。
[Synthesis of homo-coupled body 4-b]
Homocoupled 4-b was synthesized by the following reaction. Intermediate 4 was synthesized from intermediate 3 in the same manner as intermediate 2.
By using Intermediate 3 and Intermediate 4, homo-coupled 4-b was synthesized by the same method as the synthesis of cross-coupling 4 described above.
 得られたホモカップリング体4-bのNMRデータを以下に示す。δ(ppm、重DMSO中)8.28(d、2H)、8.24(s、2H)、8.05(s、2H)、7.95(d、2H)、7.79(t、2H)、7.66(d、2H)、7.51(dd、2H)、7.48(d、2H)、7.42(d、2H)、7.41(t、2H)、7.27(t、2H)、1.41(s、18H) The NMR data of the obtained homocoupled body 4-b is shown below. δ (ppm, in heavy DMSO) 8.28 (d, 2H), 8.24 (s, 2H), 8.05 (s, 2H), 7.95 (d, 2H), 7.79 (t, 2H), 7.66 (d, 2H), 7.51 (dd, 2H), 7.48 (d, 2H), 7.42 (d, 2H), 7.41 (t, 2H), 7. 27 (t, 2H), 1.41 (s, 18H)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[クロスカップリング体6の合成]
 以下の合成ルート4によりクロスカップリング体6を合成した。ここで、中間体5は、J.Am.Chem.Soc.,1986,108(19),pp.5991-5997に記載の方法にしたがって、カルバゾールとブロモフルオロベンゾニトリルから合成した。
 中間体2と中間体5を用いることにより、上述のクロスカップリング体4の合成と同じ方法で、クロスカップリング体6を合成した。クロスカップリング体6に対してホモカップリング体6-aの含有量は1.5質量%であった
[Synthesis of Cross Coupling Body 6]
A cross coupling body 6 was synthesized by the following synthesis route 4. Here, the intermediate 5 is prepared according to J.I. Am. Chem. Soc. , 1986, 108 (19), pp. Synthesized from carbazole and bromofluorobenzonitrile according to the method described in 5991-5997.
By using the intermediate body 2 and the intermediate body 5, the cross coupling body 6 was synthesized by the same method as the synthesis of the cross coupling body 4 described above. The content of the homo-coupled body 6-a with respect to the cross-coupled body 6 was 1.5% by mass.
 得られたクロスカップリング体6のNMRデータを以下に示す。δ(ppm、重クロロホルム中)8.16(d、4H)、8.12(s、1H)、8.00(s、1H)、7.91(s、1H)、7.85(s、1H)、7.76(t、1H)、7.72(d、1H)、7.69(d、1H)、7.48-7.41(m、8H)、7.38-7.29(m、4H) NMR data of the obtained cross coupling body 6 are shown below. δ (ppm in deuterated chloroform) 8.16 (d, 4H), 8.12 (s, 1H), 8.00 (s, 1H), 7.91 (s, 1H), 7.85 (s, 1H), 7.76 (t, 1H), 7.72 (d, 1H), 7.69 (d, 1H), 7.48-7.41 (m, 8H), 7.38-7.29 (M, 4H)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[ホモカップリング体6-a及び6-bの合成]
 ホモカップリング体6-aは、ホモカップリング体4-aと同様に合成した。
 ホモカップリング体6-bは下記の方法で合成した。中間体6は、WO 2006/062062の100頁に記載の方法で中間体5から合成した。
 中間体5と中間体6を用いることにより、上述のクロスカップリング体4の合成と同じ方法で、ホモカップリング体6-bを合成することができる。
[Synthesis of homo-coupled bodies 6-a and 6-b]
Homocouple 6-a was synthesized in the same manner as homocouple 4-a.
Homocoupled body 6-b was synthesized by the following method. Intermediate 6 was synthesized from intermediate 5 by the method described on page 100 of WO 2006/062062.
By using the intermediate body 5 and the intermediate body 6, the homocoupled body 6-b can be synthesized by the same method as the synthesis of the cross coupling body 4 described above.
 得られたホモカップリング体6-bのNMRデータを以下に示す。δ(ppm、重DMSO中)8.62(s、2H)、8.61(s、2H)、8.26(s、2H)、8.26(d、4H)、7.54(d、4H)、7.46(d、4H)、7.33(d、4H) The NMR data of the obtained homocoupled body 6-b are shown below. δ (ppm, in heavy DMSO) 8.62 (s, 2H), 8.61 (s, 2H), 8.26 (s, 2H), 8.26 (d, 4H), 7.54 (d, 4H), 7.46 (d, 4H), 7.33 (d, 4H)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[クロスカップリング体10の合成]
 以下の合成ルート5によりクロスカップリング体10を、特開2007-266598号公報の段落[0080]に記載の方法で合成した。
[Synthesis of Cross Coupling Body 10]
The cross coupling body 10 was synthesized by the following synthesis route 5 by the method described in paragraph [0080] of JP-A No. 2007-266598.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 合成後のクロスカップリング体10に対するホモカップリング体10-aの含有量は2質量%であった。また、得られたクロスカップリング体10のNMRデータを以下に示す。
δ(ppm、重クロロホルム中)7.33(m、2H)、7.43-7.50(m、4H)、7.54-7.62(m、6H)、7.64-7.74(m、7H)、7.82-7.85(m、2H)
The content of the homo-coupled body 10-a with respect to the cross-coupled body 10 after synthesis was 2% by mass. Moreover, the NMR data of the obtained cross coupling body 10 are shown below.
δ (ppm, in deuterated chloroform) 7.33 (m, 2H), 7.43-7.50 (m, 4H), 7.54-7.62 (m, 6H), 7.64-7.74 (M, 7H), 7.82-7.85 (m, 2H)
[ホモカップリング体10-aの合成]
 ホモカップリング体10-aは、Chemical&Pharmaceutical Bulletin,1982,vol.30,#7,p.2369-2379に記載の方法により合成した。
[Synthesis of homo-coupled body 10-a]
Homocouple 10-a is described in Chemical & Pharmaceutical Bulletin, 1982, vol. 30, # 7, p. It was synthesized by the method described in 2369-2379.
[クロスカップリング体12の合成]
 クロスカップリング体12は、以下の合成ルート6~8により合成した。
[Synthesis of Cross Coupling Body 12]
The cross-coupled body 12 was synthesized by the following synthesis routes 6-8.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 合成ルート8において、合成後のクロスカップリング体12に対するホモカップリング体12-aの含有量は1質量%であった。得られたクロスカップリング体12のNMRデータを以下に示す。
δ(ppm、重DMSO中)9.17(s、1H)、9.08(d、1H)、8.92(s、1H)、8.90-8.81(m、3H)、8.31(s、1H)、8.17(s、1H)、8.13(s、1H)、8.00(d、1H)、7.93(d、2H)、7.97(t、2H)、7.81(d、2H)、7.79-7.75(m、7H)、7.70(t、1H)、7.66(t、1H)、7.50(t、2H)、7.40(t、1H)
In Synthesis Route 8, the content of homo-coupled body 12-a with respect to cross-coupled body 12 after synthesis was 1% by mass. The NMR data of the obtained cross coupling body 12 are shown below.
δ (ppm, in heavy DMSO) 9.17 (s, 1H), 9.08 (d, 1H), 8.92 (s, 1H), 8.90-8.81 (m, 3H), 8. 31 (s, 1H), 8.17 (s, 1H), 8.13 (s, 1H), 8.00 (d, 1H), 7.93 (d, 2H), 7.97 (t, 2H) ), 7.81 (d, 2H), 7.79-7.75 (m, 7H), 7.70 (t, 1H), 7.66 (t, 1H), 7.50 (t, 2H) 7.40 (t, 1H)
[ホモカップリング体12-aの合成]
 ホモカップリング体12-aは、中間体7とその前駆体の臭化物の鈴木カップリングにより合成した。ホモカップリング体12-aのNMRデータを以下に示す。
δ(ppm、重クロロホルム中)8.94(s、2H)、8.80-8.74(m、4H)、8.73-8.68(m、6H)、8.12(s、2H)、8.00(d、2H)、7.87(d、2H)、7.79(d、2H)、7.72-7.67(m、10H)
[Synthesis of homo-coupled body 12-a]
Homocouple 12-a was synthesized by Suzuki coupling of intermediate 7 and its precursor bromide. The NMR data of homo-coupled body 12-a is shown below.
δ (ppm, deuterated chloroform) 8.94 (s, 2H), 8.80-8.74 (m, 4H), 8.73-8.68 (m, 6H), 8.12 (s, 2H ), 8.00 (d, 2H), 7.87 (d, 2H), 7.79 (d, 2H), 7.72-7.67 (m, 10H)
[クロスカップリング体の精製]
 クロスカップリング体4は、以下の合成ルート9により合成した。
[Purification of cross-coupled body]
The cross coupling body 4 was synthesized by the following synthesis route 9.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 中間体1(12.0g、0.037モル)、中間体4(12.8g、0.037モル)、酢酸パラジウム(0.21g、0.9ミリモル)、トリフェニルホスフィン(0.98g、4ミリモル)、炭酸ナトリウム(19.8g、0.19モル)、DME(ジメチルエーテル)(370mL)、水(370mL)を窒素雰囲気下、4時間加熱還流し、室温に冷却後、水層を除去し、イソプロパノール200mLを加えて、析出した灰色粉末を濾別した。得られた粉末をトルエンに溶解し、シリカゲルのカラムで濾過した溶液を、約50mLまで濃縮後、イソプロパノールを加えて晶析し、析出した灰色粉末を濾別した。減圧下で乾燥して、クロスカップリング体4を得た。収量16.8g、収率84%。HPLC面積97.4%(クロスカップリング体4に対してホモカップリング体4-aの含有量は0.9質量%、ホモカップリング体4-bの含有量は1.3質量%であり、その他の不純物が全て、0.5質量%以下であった)。
 この合成粗体を、トルエンに溶解し、イソプロパノールで晶析する操作を更に2回繰り返し、最後に、0.54Paの減圧条件下、270℃で昇華精製を行った。得られた材料の各晶析後、及び昇華精製後の純度を以下の表1に示す。
Intermediate 1 (12.0 g, 0.037 mol), Intermediate 4 (12.8 g, 0.037 mol), palladium acetate (0.21 g, 0.9 mmol), triphenylphosphine (0.98 g, 4 Mmol), sodium carbonate (19.8 g, 0.19 mol), DME (dimethyl ether) (370 mL) and water (370 mL) were heated to reflux for 4 hours under a nitrogen atmosphere, cooled to room temperature, the aqueous layer was removed, 200 mL of isopropanol was added, and the precipitated gray powder was separated by filtration. A solution obtained by dissolving the obtained powder in toluene and filtering through a silica gel column was concentrated to about 50 mL, crystallized by adding isopropanol, and the precipitated gray powder was separated by filtration. It dried under reduced pressure and the cross coupling body 4 was obtained. Yield 16.8 g, 84% yield. HPLC area 97.4% (the content of homo-coupled body 4-a is 0.9% by mass and the content of homo-coupled body 4-b is 1.3% by mass relative to cross-coupled body 4) All other impurities were 0.5% by mass or less).
The operation of dissolving this synthetic crude product in toluene and crystallizing with isopropanol was further repeated twice. Finally, sublimation purification was performed at 270 ° C. under a reduced pressure of 0.54 Pa. The purity of the obtained material after each crystallization and after sublimation purification is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 以上のように、クロスカップリング体に含まれる不純物を0.5質量%未満にするには、晶析工程を繰り返さなくてはならず、過度の精製工程の追加は、材料の製造コストを上昇させる。 As described above, in order to reduce impurities contained in the cross-coupled body to less than 0.5% by mass, the crystallization process must be repeated, and the addition of an excessive purification process increases the manufacturing cost of the material. Let
 上記のように合成したクロスカップリング体4、6、10及び12と、ホモカップリング体4-a、4-b、6-a、6-b、10-a及び12-aとのイオン化ポテンシャル、電子親和力及び三重項状態の励起エネルギーを以下のように調べた。
 クロスカップリング体(例示化合物4、6、10及び12)については、ホモカップリング体の影響を排除するために、晶析、再結晶、カラムクロマトグラフィー、昇華精製を繰り返し、クロスカップリング体の含有量が99.9質量%以上の化合物を得た。
 得られた、クロスカップリング体、ホモカップリング体について、それぞれについて、石英基板上に真空蒸着法によって、膜厚50nmの薄膜にし、イオン化ポテンシャルIp、電子親和力Ea及び三重項状態の励起エネルギーTを測定した。
 イオン化ポテンシャルIpは、理研計器株式会社製の大気中光電子分光(PES)装置AC-2を用いて測定した。
 電子親和力Eaは、分光光度計U-3310(日立ハイテクノロジーズ)を用いて、石英基板上の薄膜の吸収スペクトルの短波長端に相当するエネルギー準位Egと、前述のIpから、Ea=Ip-Egの計算式で求めた。
 三重項状態の励起エネルギーTは、薄膜の燐光発光スペクトルを液体窒素温度下でF-7000日立分光蛍光光度計(日立ハイテクノロジーズ)を用いて測定し、得られた発光スペクトルの短波長側の立ち上がり波長をエネルギー単位に換算することによりTエネルギーを求めた。
 測定結果を以下の表2に示す。
Ionization potentials of the cross-coupled bodies 4, 6, 10 and 12 synthesized as described above and the homo-coupled bodies 4-a, 4-b, 6-a, 6-b, 10-a and 12-a The electron affinity and the excitation energy of the triplet state were examined as follows.
For cross-coupled bodies (Exemplified compounds 4, 6, 10 and 12), in order to eliminate the influence of homo-coupled bodies, crystallization, recrystallization, column chromatography, and sublimation purification were repeated, A compound having a content of 99.9% by mass or more was obtained.
The resulting cross-coupling member, the homo-coupled compounds, each, by vacuum evaporation on a quartz substrate, and a thin film having a thickness of 50 nm, ionization potential Ip, excitation energy T 1 of the electron affinity Ea and triplet states Was measured.
The ionization potential Ip was measured using an atmospheric photoelectron spectroscopy (PES) apparatus AC-2 manufactured by Riken Keiki Co., Ltd.
The electron affinity Ea is calculated from the energy level Eg corresponding to the short wavelength end of the absorption spectrum of the thin film on the quartz substrate using the spectrophotometer U-3310 (Hitachi High-Technologies) and Ea = Ip− It calculated | required with the calculation formula of Eg.
The excitation energy T 1 in the triplet state was measured using the F-7000 Hitachi spectrofluorometer (Hitachi High-Technologies) at a liquid nitrogen temperature, and the phosphorescence emission spectrum of the thin film was measured on the short wavelength side of the obtained emission spectrum. The T 1 energy was determined by converting the rising wavelength into energy units.
The measurement results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表2中、Ipの欄の(○)は、クロスカップリング体のイオン化ポテンシャルIp(1)に対してホモカップリング体のイオン化ポテンシャルIp(2)がIp(1)≦Ip(2)を満たしていることを表し、(×)はIp(1)≦Ip(2)を満たしていないことを表す。
 Eaの欄の(○)は、クロスカップリング体の電子親和力Ea(1)に対してホモカップリング体の電子親和力Ea(2)がEa(1)≧Ea(2)を満たしていることを表し、(×)はEa(1)≧Ea(2)を満たしていないことを表す。
 T1の欄の(○)は、クロスカップリング体の三重項状態の励起エネルギーT1(1)に対してホモカップリング体の三重項状態の励起エネルギーT1(2)がT1(1)≦T1(2)を満たしていることを表し、(×)はT1(1)≦T1(2)を満たしていないことを表す。
In Table 2, (O) in the column of Ip indicates that the ionization potential Ip (2) of the homo-coupling body satisfies Ip (1) ≦ Ip (2) with respect to the ionization potential Ip (1) of the cross-coupling body. (X) indicates that Ip (1) ≦ Ip (2) is not satisfied.
(O) in the column of Ea indicates that the electron affinity Ea (2) of the homo-coupled body satisfies Ea (1) ≧ Ea (2) with respect to the electron affinity Ea (1) of the cross-coupled body. (X) represents that Ea (1) ≧ Ea (2) is not satisfied.
T 1 of the column (○), the excitation energy T 1 of the triplet state of the homo-coupled compounds with respect to the excitation energy T 1 of the triplet state of the cross-coupling member (1) (2) T 1 (1 ) ≦ T 1 (2) is satisfied, and (×) indicates that T 1 (1) ≦ T 1 (2) is not satisfied.
<実施例2>
[素子の作製]
 厚み0.7mm、2.5cm角のITO膜を有するガラス基板(ジオマテック社製、表面抵抗10Ω/□)を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。この透明陽極(ITO膜)上に真空蒸着法にて以下の有機化合物層を順次蒸着した。
 第1層:NPD:膜厚40nm
 第2層:材料X及び発光材料(質量比90:10):膜厚30nm
 第3層:CBP:膜厚5nm
 第4層:BAlq:膜厚45nm
 この上に、フッ化リチウム1nm及び金属アルミニウム70nmをこの順に蒸着し陰極とした。
 このものを、大気に触れさせることなく、窒素ガスで置換したグローブボックス内に入れ、ガラス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止し、表3に記載の各有機電界発光素子を得た。
 これらの素子を発光させた結果、各素子とも発光材料に由来する発光が得られた。
 なお、ホモカップリング体の影響を調べるために、材料X中のホモカップリング体の含有量は、単品のホモカップリング体を添加することにより調製した。表3に、例示化合物に対するホモカップリング体の含有量(質量%)を示す。
<Example 2>
[Production of element]
A glass substrate having a ITO film with a thickness of 0.7 mm and a 2.5 cm square (manufactured by Geomat Co., Ltd., surface resistance 10Ω / □) is placed in a cleaning container, ultrasonically cleaned in 2-propanol, and then treated with UV-ozone for 30 minutes. Went. The following organic compound layers were sequentially deposited on the transparent anode (ITO film) by vacuum deposition.
First layer: NPD: film thickness 40 nm
Second layer: material X and luminescent material (mass ratio 90:10): film thickness 30 nm
Third layer: CBP: film thickness 5 nm
Fourth layer: BAlq: film thickness 45 nm
On this, 1 nm of lithium fluoride and 70 nm of metal aluminum were vapor-deposited in this order, and it was set as the cathode.
This is put in a glove box substituted with nitrogen gas without being exposed to the atmosphere, and sealed with a glass sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.). Thus, each organic electroluminescent element shown in Table 3 was obtained.
As a result of light emission of these elements, light emission derived from the light emitting material was obtained for each element.
In addition, in order to investigate the influence of a homo-coupled body, the content of the homo-coupled body in the material X was prepared by adding a single homo-coupled body. In Table 3, content (mass%) of the homo coupling body with respect to an exemplary compound is shown.
(有機電界発光素子の性能評価)
 得られた各素子に対し、駆動電圧、外部量子効率及び駆動耐久性を測定して素子の性能を評価した。なお、各種測定は以下のように行なった。結果を表3に示す。
(a)駆動電圧
 各素子を(株)島津製作所製の発光スペクトル測定システム(ELS1500)にセットし、これらの輝度が1000 cd/m時の印加電圧を測定した。比較例1の駆動電圧を基準値として以下の基準で評価した。
 ◎:基準値に対して駆動電圧が変らない。
 ○:基準値に対して駆動電圧が0%超5%以下高く変化した。
 △:基準値に対して駆動電圧が5%超15%以下高く変化した。
 ×:基準値に対して駆動電圧が15%超高く変化した。
(b)外部量子効率
 東陽テクニカ製ソースメジャーユニット2400を用いて、直流電圧を各素子に印加し発光させ、その輝度をトプコン社製輝度計BM-8を用いて測定した。発光スペクトルと発光波長は浜松ホトニクス製スペクトルアナライザーPMA-11を用いて測定した。これらを元に輝度が1000cd/m付近の外部量子効率を輝度換算法により算出した。比較例1の外部量子効率を基準値として以下の基準で評価した。
 ◎:基準値に対して外部量子効率が変らない。
 ○:基準値に対して外部量子効率が0%超5%以下低下した。
 △:基準値に対して外部量子効率が5%超15%以下低下した。
 ×:基準値に対して外部量子効率が15%超低下した。
(c)初期輝度減衰時間(駆動耐久性)
 各素子を輝度が5000cd/mになるように直流電圧を印加し、輝度が4000cd/mになるまでの時間を測定した。この輝度半減時間を駆動耐久性評価の指標とした。比較例1の減衰時間を基準値として以下の基準で評価した。
 ◎:基準値に対して減衰時間が変らない。
 ○:基準値に対して減衰時間が0%超5%以下短くなった。
 △:基準値に対して減衰時間が5%超15%以下短くなった。
 ×:基準値に対して減衰時間が15%超短くなった。
(Performance evaluation of organic electroluminescence device)
For each of the obtained devices, the driving voltage, external quantum efficiency and driving durability were measured to evaluate the performance of the device. Various measurements were performed as follows. The results are shown in Table 3.
(A) Driving voltage Each element was set in an emission spectrum measurement system (ELS1500) manufactured by Shimadzu Corporation, and an applied voltage at a luminance of 1000 cd / m 2 was measured. The drive voltage of Comparative Example 1 was used as a reference value and evaluated according to the following criteria.
A: The driving voltage does not change with respect to the reference value.
○: The drive voltage was changed higher than 0% and 5% or less higher than the reference value.
Δ: The driving voltage was changed more than 5% and 15% or less higher than the reference value.
X: The drive voltage changed by more than 15% with respect to the reference value.
(B) External quantum efficiency Using a source measure unit 2400 manufactured by Toyo Technica, a direct current voltage was applied to each element to emit light, and the luminance was measured using a luminance meter BM-8 manufactured by Topcon Corporation. The emission spectrum and emission wavelength were measured using a spectrum analyzer PMA-11 manufactured by Hamamatsu Photonics. Based on these, the external quantum efficiency at a luminance of around 1000 cd / m 2 was calculated by the luminance conversion method. The external quantum efficiency of Comparative Example 1 was evaluated using the following criteria as a reference value.
A: The external quantum efficiency does not change with respect to the reference value.
○: External quantum efficiency decreased by more than 0% and 5% or less with respect to the reference value.
(Triangle | delta): External quantum efficiency fell 15% or less over 5% with respect to a reference value.
X: External quantum efficiency fell more than 15% with respect to a reference value.
(C) Initial luminance decay time (drive durability)
Each element brightness applying a DC voltage to be 5000 cd / m 2, the time was measured until the brightness is 4000 cd / m 2. This luminance half time was used as an index for evaluating driving durability. Evaluation was made according to the following criteria using the decay time of Comparative Example 1 as a reference value.
A: The decay time does not change with respect to the reference value.
○: Decay time was shorter than 0% and 5% or shorter than the reference value.
(Triangle | delta): Decay time became short 15% or less over 5% with respect to the reference value.
X: Decay time was shortened by more than 15% with respect to the reference value.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表3より、特定のクロスカップリング体(例示化合物)に対して、イオン化ポテンシャル、電子親和力及び/又は三重項状態の励起エネルギーが特定の関係にあるホモカップリング体を0.5質量%より多く10質量%以下含む材料を用いた素子は、駆動電圧、外部量子効率及び駆動耐久性の変動量が小さくなっていることが分かる。この材料は、ホモカップリング体を精製する工程を過度に行わなくてすむため、精製コスト及び負荷を抑えることができる。 From Table 3, more than 0.5% by mass of the homo-coupled body in which the ionization potential, the electron affinity, and / or the excitation energy of the triplet state are in a specific relationship with respect to the specific cross-coupled body (exemplary compound) It can be seen that an element using a material containing 10% by mass or less has a small variation in driving voltage, external quantum efficiency, and driving durability. Since this material does not need to excessively purify the homo-coupled body, the purification cost and load can be suppressed.
<実施例3>
[素子の作製]
 実施例2の素子の作製において、材料Xを表4のものに変えた以外は、同様にして素子を作製し、比較例2及び3、及び参考例1を基準として駆動電圧、外部量子効率及び初期輝度減衰時間を評価した。評価結果を表4に示す。
<Example 3>
[Production of element]
In the fabrication of the device of Example 2, the device was fabricated in the same manner except that the material X was changed to that of Table 4, and the driving voltage, the external quantum efficiency and the comparative examples 2 and 3 and Reference Example 1 were used as a reference. The initial luminance decay time was evaluated. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表4より、特定のクロスカップリング体(例示化合物)に対して、イオン化ポテンシャル、電子親和力及び/又は三重項状態の励起エネルギーが特定の関係にあるホモカップリング体を0.5質量%より多く10質量%以下含む材料を用いた素子は、駆動電圧、外部量子効率及び駆動耐久性の変動量が小さくなっていることが分かる。この材料は、ホモカップリング体を精製する工程を過度に行わなくてすむため、精製コスト及び負荷を抑えることができる。 From Table 4, more than 0.5% by mass of the homo-coupled body in which the ionization potential, the electron affinity, and / or the excitation energy of the triplet state are in a specific relationship with respect to the specific cross-coupled body (exemplary compound) It can be seen that an element using a material containing 10% by mass or less has a small variation in driving voltage, external quantum efficiency, and driving durability. Since this material does not need to excessively purify the homo-coupled body, the purification cost and load can be suppressed.
<実施例4>
[素子の作製]
 厚み0.7mm、2.5cm角のITO膜を有するガラス基板(ジオマテック社製、表面抵抗10Ω/□)を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。この透明陽極(ITO膜)上に真空蒸着法にて以下の有機化合物層を順次蒸着した。
 第1層:NPD:膜厚40nm
 第2層:CBP及び発光材料(質量比90:10):膜厚30nm
 第3層:材料X:膜厚5nm
 第4層:BAlq:膜厚45nm
 この上に、フッ化リチウム1nm及び金属アルミニウム70nmをこの順に蒸着し陰極とした。
 このものを、大気に触れさせることなく、窒素ガスで置換したグローブボックス内に入れ、ガラス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止し、表5に記載の各有機電界発光素子を得た。
 これらの素子を発光させた結果、各素子とも発光材料に由来する発光が得られた。
 なお、ホモカップリング体の影響を調べるために、材料X中のホモカップリング体の含有量は、単品のホモカップリング体を添加することにより調製した。表5に、例示化合物に対するホモカップリング体の含有量(質量%)を示す。
 得られた各素子について、比較例4及び参考例2を基準として駆動電圧、外部量子効率及び初期輝度減衰時間を評価した。評価結果を表5に示す。
<Example 4>
[Production of element]
A glass substrate having a ITO film with a thickness of 0.7 mm and a 2.5 cm square (manufactured by Geomat Co., Ltd., surface resistance 10Ω / □) is placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. Went. The following organic compound layers were sequentially deposited on the transparent anode (ITO film) by vacuum deposition.
First layer: NPD: film thickness 40 nm
Second layer: CBP and luminescent material (mass ratio 90:10): film thickness 30 nm
Third layer: Material X: film thickness 5 nm
Fourth layer: BAlq: film thickness 45 nm
On this, 1 nm of lithium fluoride and 70 nm of metal aluminum were vapor-deposited in this order, and it was set as the cathode.
This is put in a glove box substituted with nitrogen gas without being exposed to the atmosphere, and sealed with a glass sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.). Thus, each organic electroluminescent element shown in Table 5 was obtained.
As a result of light emission of these elements, light emission derived from the light emitting material was obtained for each element.
In addition, in order to investigate the influence of a homo-coupled body, the content of the homo-coupled body in the material X was prepared by adding a single homo-coupled body. In Table 5, content (mass%) of the homo coupling body with respect to an exemplary compound is shown.
With respect to each of the obtained devices, the driving voltage, the external quantum efficiency, and the initial luminance decay time were evaluated based on Comparative Example 4 and Reference Example 2. The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表5より、特定のクロスカップリング体(例示化合物)に対して、イオン化ポテンシャル、電子親和力及び/又は三重項状態の励起エネルギーが特定の関係にあるホモカップリング体を0.5質量%より多く10質量%以下含む材料を用いた素子は、駆動電圧、外部量子効率及び駆動耐久性の変動量が小さくなっていることが分かる。この材料は、ホモカップリング体を精製する工程を過度に行わなくてすむため、精製コスト及び負荷を抑えることができる。 From Table 5, more than 0.5% by mass of the homo-coupled body in which the ionization potential, the electron affinity, and / or the excitation energy of the triplet state are in a specific relationship with respect to the specific cross-coupled body (exemplary compound) It can be seen that an element using a material containing 10% by mass or less has a small variation in driving voltage, external quantum efficiency, and driving durability. Since this material does not need to excessively purify the homo-coupled body, the purification cost and load can be suppressed.
<実施例5>
[素子の作製]
 厚み0.7mm、2.5cm角のITO膜を有するガラス基板(ジオマテック社製、表面抵抗10Ω/□)を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。この透明陽極(ITO膜)上に真空蒸着法にて以下の有機化合物層を順次蒸着した。
 第1層:材料X:膜厚40nm
 第2層:CBP及び発光材料(質量比90:10):膜厚30nm
 第3層:CBP:膜厚5nm
 第4層:BAlq:膜厚45nm
 この上に、フッ化リチウム1nm及び金属アルミニウム70nmをこの順に蒸着し陰極とした。
 このものを、大気に触れさせることなく、窒素ガスで置換したグローブボックス内に入れ、ガラス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止し、表6に記載の各有機電界発光素子を得た。
 これらの素子を発光させた結果、各素子とも発光材料に由来する発光が得られた。
 なお、ホモカップリング体の影響を調べるために、材料X中のホモカップリング体の含有量は、単品のホモカップリング体を添加することにより調製した。表6に、例示化合物に対するホモカップリング体の含有量(質量%)を示す。
 得られた各素子について、比較例5を基準として駆動電圧、外部量子効率及び初期輝度減衰時間を評価した。評価結果を表6に示す。
<Example 5>
[Production of element]
A glass substrate having a ITO film with a thickness of 0.7 mm and a 2.5 cm square (manufactured by Geomat Co., Ltd., surface resistance 10Ω / □) is placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. Went. The following organic compound layers were sequentially deposited on the transparent anode (ITO film) by vacuum deposition.
First layer: Material X: film thickness 40 nm
Second layer: CBP and luminescent material (mass ratio 90:10): film thickness 30 nm
Third layer: CBP: film thickness 5 nm
Fourth layer: BAlq: film thickness 45 nm
On this, 1 nm of lithium fluoride and 70 nm of metal aluminum were vapor-deposited in this order, and it was set as the cathode.
This is put in a glove box substituted with nitrogen gas without being exposed to the atmosphere, and sealed with a glass sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.). Thus, each organic electroluminescent element described in Table 6 was obtained.
As a result of light emission of these elements, light emission derived from the light emitting material was obtained for each element.
In addition, in order to investigate the influence of a homo-coupled body, the content of the homo-coupled body in the material X was prepared by adding a single homo-coupled body. In Table 6, content (mass%) of the homo coupling body with respect to an exemplary compound is shown.
About each obtained element, the drive voltage, the external quantum efficiency, and the initial luminance decay time were evaluated using Comparative Example 5 as a reference. The evaluation results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表6より、特定のクロスカップリング体(例示化合物)に対して、イオン化ポテンシャル、電子親和力及び/又は三重項状態の励起エネルギーが特定の関係にあるホモカップリング体を0.5質量%より多く10質量%以下含む材料を用いた素子は、駆動電圧、外部量子効率及び駆動耐久性の変動量が小さくなっていることが分かる。この材料は、ホモカップリング体を精製する工程を過度に行わなくてすむため、精製コスト及び負荷を抑えることができる。 From Table 6, more than 0.5% by mass of the homocoupled body in which the ionization potential, the electron affinity, and / or the excitation energy of the triplet state are in a specific relationship with respect to the specific cross-coupled body (exemplary compound) It can be seen that an element using a material containing 10% by mass or less has a small variation in driving voltage, external quantum efficiency, and driving durability. Since this material does not need to excessively purify the homo-coupled body, the purification cost and load can be suppressed.
<実施例6>
[素子の作製]
 0.7mm厚み、2.5cm角のITO膜を有するガラス基板(ジオマテック社製、表面抵抗10Ω/□)を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。これにポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS)を純水で70%に希釈した溶液をスピンコーターで塗布し、50nmの正孔輸送層を設けた。材料X及び発光材料(質量比95:5)を溶解したメチレンクロライド溶液をスピンコーターで塗布し、30nmの発光層を得た。この上に、BAlqを40nm蒸着した。この有機化合物層の上に、蒸着装置内で陰極バッファー層としてフッ化リチウム1nm及び陰極としてアルミニウム70nmを蒸着した。これを大気に触れさせること無く、アルゴンガスで置換したグローブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止し、表7に示す各有機電界発光素子を作製した。東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧を有機EL素子に印加して発光させた結果、発光材料に由来する発光が得られた。
 なお、ホモカップリング体の影響を調べるために、材料X中のホモカップリング体の含有量は、単品のホモカップリング体を添加することにより調製した。表7に、例示化合物に対するホモカップリング体の含有量(質量%)を示す。
 得られた各素子について、比較例6を基準として駆動電圧、外部量子効率及び初期輝度減衰時間を評価した。評価結果を表7に示す。
<Example 6>
[Production of element]
A glass substrate having a 0.7 mm thickness and a 2.5 cm square ITO film (manufactured by Geomatech Co., Ltd., surface resistance 10 Ω / □) is placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. Went. A solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS) to 70% with pure water was applied to this with a spin coater to provide a 50 nm hole transport layer. A methylene chloride solution in which the material X and the light emitting material (mass ratio 95: 5) were dissolved was applied with a spin coater to obtain a light emitting layer having a thickness of 30 nm. On this, BAlq was vapor-deposited 40 nm. On the organic compound layer, 1 nm of lithium fluoride as a cathode buffer layer and 70 nm of aluminum as a cathode were deposited in a deposition apparatus. Without exposing it to the atmosphere, put it in a glove box substituted with argon gas and seal it with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.) Each organic electroluminescent element shown in Table 7 was produced. As a result of applying a constant DC voltage to the organic EL element to emit light using a source measure unit 2400 type manufactured by Toyo Technica, light emission derived from the light emitting material was obtained.
In addition, in order to investigate the influence of a homo-coupled body, the content of the homo-coupled body in the material X was prepared by adding a single homo-coupled body. In Table 7, content (mass%) of the homo coupling body with respect to an exemplary compound is shown.
About each obtained element, the drive voltage, the external quantum efficiency, and the initial luminance decay time were evaluated using Comparative Example 6 as a reference. Table 7 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表7より、特定のクロスカップリング体(例示化合物)に対して、イオン化ポテンシャル、電子親和力及び/又は三重項状態の励起エネルギーが特定の関係にあるホモカップリング体を0.5質量%より多く10質量%以下含む材料を用いた素子は、駆動電圧、外部量子効率及び駆動耐久性の変動量が小さくなっていることが分かる。この材料は、ホモカップリング体を精製する工程を過度に行わなくてすむため、精製コスト及び負荷を抑えることができる。 From Table 7, more than 0.5% by mass of the homocoupled body in which the ionization potential, the electron affinity, and / or the excitation energy of the triplet state are in a specific relationship with respect to the specific cross-coupled body (exemplary compound) It can be seen that an element using a material containing 10% by mass or less has a small variation in driving voltage, external quantum efficiency, and driving durability. Since this material does not need to excessively purify the homo-coupled body, the purification cost and load can be suppressed.
 以下に、実施例で用いた化合物を示す。 The compounds used in the examples are shown below.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 本発明によれば、特定量の不純物が含まれるものの発光素子の性能に影響を与えない発光素子用材料を提供することができる。特に、クロスカップリング体に対してホモカップリング体が含まれるものの発光素子の性能に影響を与えない発光素子用材料を提供することができる。該発光素子用材料により、駆動電圧が低く、発光効率及び耐久性に優れる発光素子を提供することができる。本発明の発光素子に用いる材料は、精製工程のコストダウンが可能な材料である。 According to the present invention, it is possible to provide a material for a light emitting element that contains a specific amount of impurities but does not affect the performance of the light emitting element. In particular, a material for a light-emitting element that does not affect the performance of the light-emitting element although a homo-coupled body is included in the cross-coupled body can be provided. The light emitting element material can provide a light emitting element with low driving voltage and excellent light emission efficiency and durability. The material used for the light-emitting element of the present invention is a material that can reduce the cost of the purification process.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年6月30日出願の日本特許出願(特願2010-150589)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on June 30, 2010 (Japanese Patent Application No. 2010-150589), the contents of which are incorporated herein by reference.
2・・・基板
3・・・陽極
4・・・正孔注入層
5・・・正孔輸送層
6・・・発光層
7・・・正孔ブロック層
8・・・電子輸送層
9・・・陰極
10・・・有機電界発光素子(有機EL素子)
11・・・有機層
12・・・保護層
14・・・接着層
16・・・封止容器
20・・・発光装置
30・・・光散乱部材
30A・・・光入射面
30B・・・光出射面
32・・・微粒子
40・・・照明装置
DESCRIPTION OF SYMBOLS 2 ... Substrate 3 ... Anode 4 ... Hole injection layer 5 ... Hole transport layer 6 ... Light emitting layer 7 ... Hole block layer 8 ... Electron transport layer 9 ...・ Cathode 10: Organic electroluminescent device (organic EL device)
DESCRIPTION OF SYMBOLS 11 ... Organic layer 12 ... Protective layer 14 ... Adhesive layer 16 ... Sealing container 20 ... Light emitting device 30 ... Light scattering member 30A ... Light incident surface 30B ... Light Outgoing surface 32 ... fine particle 40 ... illumination device

Claims (10)

  1.  含有量が0.5質量%より多く10質量%以下の不純物を含む発光素子用材料であって、該不純物が下記の[I]~[III]のいずれか2つ以上の条件を満足する、発光素子用材料。
    [I]発光素子用材料のイオン化ポテンシャルIp(1)と、不純物のイオン化ポテンシャルIp(2)とが、Ip(1)≦Ip(2)である。
    [II]発光素子用材料の電子親和力Ea(1)と、不純物の電子親和力Ea(2)とが、Ea(1)≧Ea(2)である。
    [III]発光素子用材料の三重項状態の励起エネルギーT1(1)と、不純物の三重項状態の励起エネルギーT1(2)とが、T1(1)≦T1(2)である。
    A material for a light-emitting element containing an impurity having a content of more than 0.5% by mass and not more than 10% by mass, wherein the impurity satisfies any two or more of the following conditions [I] to [III]: Material for light emitting element.
    [I] The ionization potential Ip (1) of the light emitting element material and the ionization potential Ip (2) of the impurity satisfy Ip (1) ≦ Ip (2).
    [II] The electron affinity Ea (1) of the light emitting device material and the electron affinity Ea (2) of the impurity satisfy Ea (1) ≧ Ea (2).
    [III] an excited triplet state of the material for a light-emitting element energy T 1 (1), excitation energy T 1 of the triplet state of the impurities and (2), but at T 1 (1) ≦ T 1 (2) .
  2.  前記発光素子用材料が下記一般式(1-1)で表され、前記不純物が下記一般式(1-2)で表される、請求項1に記載の発光素子用材料。
      (1-1):(A1)n1-(B1)
      (1-2):(A1)-(A1)
    (式中、n1は、1~10の整数を表す。A1は、置換基を有していてもよい、炭素数6~30のアリール基又は炭素数2~30のヘテロアリール基を表す。B1は、置換基を有していてもよいn1価の、炭素数6~30のアリール構造又は炭素数2~30のヘテロアリール構造を表す。ただし、A1とB1は同一ではない。前記置換基は、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アミノ基、アルコキシ基、シリル基、カルボキシル基、又はシアノ基であり、各基は更にこれらの置換基により置換されていてもよい。置換基が複数存在する場合に該置換基は同一でも異なっていてもよい。)
    The light emitting device material according to claim 1, wherein the light emitting device material is represented by the following general formula (1-1), and the impurities are represented by the following general formula (1-2).
    (1-1): (A1) n1- (B1)
    (1-2): (A1)-(A1)
    (Wherein n1 represents an integer of 1 to 10. A1 represents an optionally substituted aryl group having 6 to 30 carbon atoms or heteroaryl group having 2 to 30 carbon atoms. B1 Represents an n1-valent aryl structure having 6 to 30 carbon atoms or a heteroaryl structure having 2 to 30 carbon atoms, which may have a substituent, provided that A1 and B1 are not the same. , A halogen atom, an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an amino group, an alkoxy group, a silyl group, a carboxyl group, or a cyano group, and each group may be further substituted with these substituents. When a plurality of substituents are present, the substituents may be the same or different.)
  3.  前記一般式(1-1)で表される発光素子用材料が下記一般式(2-1)で表されるクロスカップリング体であり、前記一般式(1-2)で表される不純物が下記一般式(2-2)で表されるホモカップリング体である請求項2に記載の発光素子用材料。
      (2-1):(A2)n2-(B2)
      (2-2):(A2)-(A2)
    (式中、n2は1~6の整数を表す。A2は、置換基を有してもよい、炭素数6~15のアリール基又は炭素数4~15のヘテロアリール基を表す。B2は、置換基を有していてもよいn2価の、炭素数6~15のアリール構造又は炭素数3~15のヘテロアリール構造を表す。ただし、A2とB2は同一ではない。前記置換基は、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アミノ基、シリル基、又はシアノ基であり、各基は更にこれらの置換基により置換されていてもよい。置換基が複数存在する場合に該置換基は同一でも異なっていてもよい。)
    The light emitting device material represented by the general formula (1-1) is a cross-coupled body represented by the following general formula (2-1), and the impurity represented by the general formula (1-2) is The light emitting device material according to claim 2, which is a homo-coupled body represented by the following general formula (2-2).
    (2-1): (A2) n2- (B2)
    (2-2): (A2)-(A2)
    (Wherein n2 represents an integer of 1 to 6. A2 represents an optionally substituted aryl group having 6 to 15 carbon atoms or a heteroaryl group having 4 to 15 carbon atoms. B2 represents Represents an n2-valent aryl structure having 6 to 15 carbon atoms or a heteroaryl structure having 3 to 15 carbon atoms which may have a substituent, provided that A2 and B2 are not the same. An atom, an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an amino group, a silyl group, or a cyano group, and each group may be further substituted with these substituents. And the substituents may be the same or different.)
  4.  前記クロスカップリング体が下記一般式(3-1)で表されるクロスカップリング体であり、前記ホモカップリング体が下記一般式(3-2)で表されるホモカップリング体である請求項3に記載の発光素子用材料。
      (3-1):(A3)n3-(B3)
      (3-2):(A3)-(A3)
    (式中、n3は1~6の整数を表す。A3は、置換基を有してもよい、炭素数6~15のアリール基を表す。B3は、置換基を有していてもよいn3価の炭素数6~15のアリール構造を表す。ただし、A3とB3は同一ではない。前記置換基は、アルキル基、アルケニル基、アリール基、カルバゾリル基、インドリル基、ジアリールアミノ基、シリル基、又はシアノ基であり、各基は更にこれらの置換基により置換されていてもよい。置換基が複数存在する場合に該置換基は同一でも異なっていてもよい。)
    The cross-coupling body is a cross-coupling body represented by the following general formula (3-1), and the homo-coupling body is a homo-coupling body represented by the following general formula (3-2). Item 4. The light emitting device material according to Item 3.
    (3-1): (A3) n3- (B3)
    (3-2): (A3)-(A3)
    (Wherein n3 represents an integer of 1 to 6. A3 represents an aryl group having 6 to 15 carbon atoms which may have a substituent. B3 represents n3 which may have a substituent. Represents a valent aryl structure having 6 to 15 carbon atoms, provided that A3 and B3 are not the same, and the substituent includes an alkyl group, an alkenyl group, an aryl group, a carbazolyl group, an indolyl group, a diarylamino group, a silyl group, Or a cyano group, and each group may be further substituted with these substituents. When a plurality of substituents are present, the substituents may be the same or different.)
  5.  前記クロスカップリング体が下記一般式(4-1)で表されるクロスカップリング体であり、前記ホモカップリング体が下記一般式(4-2)で表されるホモカップリング体である請求項3又は4に記載の発光素子用材料。
    Figure JPOXMLDOC01-appb-C000001

    (式中、n4は1~5の整数を表す。R4a及びR4bは、それぞれ独立に、置換基を有してもよいアリール基、置換基を有してもよいカルバゾリル基、又はシアノ基を表す。前記置換基は、アルキル基、アルケニル基、又はアリール基を表す。ただし、R4aとR4bは同一ではない。na及びnbはそれぞれ独立に1~5の整数を表す。R4a又はR4bが複数存在する場合、該複数のR4a又はR4bは同一でも異なっていてもよい。)
    The cross-coupling body is a cross-coupling body represented by the following general formula (4-1), and the homo-coupling body is a homo-coupling body represented by the following general formula (4-2). Item 5. The light emitting device material according to Item 3 or 4.
    Figure JPOXMLDOC01-appb-C000001

    (Wherein n4 represents an integer of 1 to 5. R 4a and R 4b each independently represents an aryl group which may have a substituent, a carbazolyl group which may have a substituent, or a cyano group. The substituent represents an alkyl group, an alkenyl group, or an aryl group, provided that R 4a and R 4b are not the same, and na and nb each independently represents an integer of 1 to 5. R 4a or When a plurality of R 4b are present, the plurality of R 4a or R 4b may be the same or different.)
  6.  少なくとも一層の有機層を有する発光素子であって、前記有機層の少なくとも一層に請求項1~5のいずれか一項記載の発光素子用材料を含む発光素子。 A light-emitting element having at least one organic layer, the light-emitting element including the light-emitting element material according to claim 1 in at least one of the organic layers.
  7.  前記有機層が、一対の電極間に挟持され、該電極間に電圧を印加することにより発光する有機電界発光素子である、請求項6に記載の発光素子。 The light emitting device according to claim 6, wherein the organic layer is an organic electroluminescent device that emits light by being sandwiched between a pair of electrodes and applying a voltage between the electrodes.
  8.  前記有機層が、塗布法により形成された層である、請求項6又は7に記載の発光素子。 The light emitting device according to claim 6 or 7, wherein the organic layer is a layer formed by a coating method.
  9.  請求項6~8のいずれか一項記載の発光素子を有する照明装置。 An illumination device comprising the light emitting element according to any one of claims 6 to 8.
  10.  請求項6~8のいずれか一項記載の発光素子を有する表示装置。 A display device comprising the light emitting element according to any one of claims 6 to 8.
PCT/JP2011/064275 2010-06-30 2011-06-22 Material for light emitting element, and light emitting element WO2012002221A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-150589 2010-06-30
JP2010150589 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012002221A1 true WO2012002221A1 (en) 2012-01-05

Family

ID=45401941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064275 WO2012002221A1 (en) 2010-06-30 2011-06-22 Material for light emitting element, and light emitting element

Country Status (2)

Country Link
JP (1) JP5951939B2 (en)
WO (1) WO2012002221A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015099774A (en) * 2013-11-18 2015-05-28 エバーディスプレイ オプトロニクス(シャンハイ) リミテッド Oled display panel and method for adjusting blue light spectrum for use in the oled display panel
CN105418486A (en) * 2015-12-25 2016-03-23 上海天马有机发光显示技术有限公司 Organic electroluminescent compound and organic photoelectric device thereof
CN107043346A (en) * 2015-09-14 2017-08-15 三星电子株式会社 Composition, film and the organic luminescent device including composition and film
KR20180010168A (en) * 2016-07-20 2018-01-30 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same
US10131632B2 (en) 2015-05-06 2018-11-20 Samsung Sdi Co., Ltd. Dopant for organic optoelectronic device, organic optoelectronic device and display device
CN109810045A (en) * 2017-11-22 2019-05-28 三星电子株式会社 Composition, the film including the composition and the organic luminescent device including the film
JP2019096876A (en) * 2017-11-22 2019-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. Composition, thin film including composition, and organic light-emitting device including thin film
CN113845468A (en) * 2015-09-14 2021-12-28 三星电子株式会社 Composition, thin film, and organic light emitting device including the same
US11482681B2 (en) 2018-07-27 2022-10-25 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
US11795185B2 (en) 2017-12-13 2023-10-24 Lg Display Co., Ltd. Compound for electron-transport material and organic light emitting diode including the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5685882B2 (en) * 2010-10-15 2015-03-18 三菱化学株式会社 Charge transport material, composition for charge transport film, organic electroluminescence device, organic electroluminescence device display device, and organic electroluminescence device illumination device
KR102463894B1 (en) 2015-08-20 2022-11-07 삼성전자주식회사 Condensed cyclic compound and organic light emitting device including the same
KR102601599B1 (en) * 2015-08-27 2023-11-14 삼성전자주식회사 Thin film and organic light emitting device including the same
US10240085B2 (en) 2015-08-27 2019-03-26 Samsung Electronics Co., Ltd. Thin film and organic light-emitting device including the same
KR102654859B1 (en) 2016-06-16 2024-04-05 삼성전자주식회사 Condensed cyclic compound and organic light emitting device including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373786A (en) * 2001-06-15 2002-12-26 Canon Inc Light-emitting device and display device
JP2004067595A (en) * 2002-08-07 2004-03-04 Ihara Chem Ind Co Ltd Method for producing ester derivative of trifluoromethylphenylbenzoic acid
JP2006278067A (en) * 2005-03-28 2006-10-12 Fuji Photo Film Co Ltd Method for manufacturing organic electroluminescent element and organic electroluminescent element
JP2007165605A (en) * 2005-12-14 2007-06-28 Showa Denko Kk Organic electroluminescence element, and method of manufacturing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100537621B1 (en) * 2004-02-02 2005-12-19 삼성에스디아이 주식회사 Iridium compound and organic electroluminescent display device using the same
JP4362461B2 (en) * 2004-11-05 2009-11-11 三星モバイルディスプレイ株式會社 Organic electroluminescence device
JP4850521B2 (en) * 2005-02-28 2012-01-11 富士フイルム株式会社 Organic electroluminescence device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373786A (en) * 2001-06-15 2002-12-26 Canon Inc Light-emitting device and display device
JP2004067595A (en) * 2002-08-07 2004-03-04 Ihara Chem Ind Co Ltd Method for producing ester derivative of trifluoromethylphenylbenzoic acid
JP2006278067A (en) * 2005-03-28 2006-10-12 Fuji Photo Film Co Ltd Method for manufacturing organic electroluminescent element and organic electroluminescent element
JP2007165605A (en) * 2005-12-14 2007-06-28 Showa Denko Kk Organic electroluminescence element, and method of manufacturing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015099774A (en) * 2013-11-18 2015-05-28 エバーディスプレイ オプトロニクス(シャンハイ) リミテッド Oled display panel and method for adjusting blue light spectrum for use in the oled display panel
US10131632B2 (en) 2015-05-06 2018-11-20 Samsung Sdi Co., Ltd. Dopant for organic optoelectronic device, organic optoelectronic device and display device
CN107043346B (en) * 2015-09-14 2021-09-21 三星电子株式会社 Composition, thin film, and organic light emitting device including the same
CN107043346A (en) * 2015-09-14 2017-08-15 三星电子株式会社 Composition, film and the organic luminescent device including composition and film
CN113845468A (en) * 2015-09-14 2021-12-28 三星电子株式会社 Composition, thin film, and organic light emitting device including the same
US10923664B2 (en) 2015-09-14 2021-02-16 Samsung Electronics Co., Ltd. Composition, thin film, and organic light emitting device including composition and thin film
CN105418486A (en) * 2015-12-25 2016-03-23 上海天马有机发光显示技术有限公司 Organic electroluminescent compound and organic photoelectric device thereof
US9899609B2 (en) 2015-12-25 2018-02-20 Shanghai Tianma AM-OLED Co., Ltd. Organic electroluminescent compound and organic photoelectric apparatus thereof
KR20180010168A (en) * 2016-07-20 2018-01-30 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same
KR101885900B1 (en) * 2016-07-20 2018-08-06 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same
JP2019096876A (en) * 2017-11-22 2019-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. Composition, thin film including composition, and organic light-emitting device including thin film
CN109810045A (en) * 2017-11-22 2019-05-28 三星电子株式会社 Composition, the film including the composition and the organic luminescent device including the film
CN109810045B (en) * 2017-11-22 2023-05-09 三星电子株式会社 Composition, thin film comprising the same, and organic light emitting device comprising the thin film
JP7325177B2 (en) 2017-11-22 2023-08-14 三星電子株式会社 Composition, thin film containing composition, and organic light-emitting device containing thin film
US11795185B2 (en) 2017-12-13 2023-10-24 Lg Display Co., Ltd. Compound for electron-transport material and organic light emitting diode including the same
US11482681B2 (en) 2018-07-27 2022-10-25 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device

Also Published As

Publication number Publication date
JP2012033892A (en) 2012-02-16
JP5951939B2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
JP5951939B2 (en) A material for a light emitting element, a light emitting element, a display device, a lighting device, and a method for manufacturing the light emitting element.
EP2757608B1 (en) Organic electroluminescent element
KR101698148B1 (en) Organic electroluminescent element and charge transport material
JP5399418B2 (en) Organic electroluminescence device
JP4751954B1 (en) Organic electroluminescence device
JP5973705B2 (en) Organic electroluminescent device, luminescent material for organic electroluminescent device, and light emitting device, display device and lighting device using the device
WO2012141197A1 (en) Organic electroluminescence element
JP6014304B2 (en) Organic electroluminescence device
KR101900979B1 (en) Charge transport material, organic electroluminescent element, and illumination device, display device, or light-emitting device characterized by using said element
WO2013077345A1 (en) Organic electroluminescent element, and light emitting device, display device and lighting device each using organic electroluminescent element
KR20150100890A (en) Material for organic electroluminescent elements and organic electroluminescent element using same
KR20150100860A (en) Material for organic electroluminescent elements and organic electroluminescent elements using same
JP5753658B2 (en) Charge transport material and organic electroluminescent device
WO2012133042A1 (en) Organic electroluminescent element and charge transport material
KR20160056942A (en) Material for organic electroluminescent elements, and organic electroluminescent element using same
JP6009816B2 (en) Charge transport material, organic electroluminescent element, light emitting device, display device and lighting device
JP2013093541A (en) Organic electroluminescent element and compound and material for organic electroluminescent element usable therefor, and luminescent device, display device and lighting device using the element
JP5979947B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, COMPOUND USED FOR THE ELEMENT, LIGHT EMITTING DEVICE, DISPLAY DEVICE AND LIGHTING DEVICE USING THE ELEMENT
JP5624518B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ELEMENT MATERIAL, AND LIGHT EMITTING DEVICE, DISPLAY DEVICE AND LIGHTING DEVICE USING THE ELEMENT
KR101517565B1 (en) Organic electroluminescent element and charge-transporting material
JP6006009B2 (en) COMPOUND, ORGANIC ELECTROLUMINESCENT ELEMENT, MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT, AND LIGHT EMITTING DEVICE, DISPLAY DEVICE AND LIGHTING DEVICE USING SAME
JP6006010B2 (en) COMPOUND, ORGANIC ELECTROLUMINESCENT ELEMENT, AND LIGHT EMITTING DEVICE, DISPLAY DEVICE AND LIGHTING DEVICE USING THE ORGANIC ELECTROLUMINESCENT ELEMENT
JP5495606B2 (en) Novel condensed polycyclic compound and organic light emitting device having the same
JP2013045811A (en) Organic electroluminescent element, chemical compound, and light-emitting device, display device and luminaire using the element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800686

Country of ref document: EP

Kind code of ref document: A1