JP2004066365A - Device for measuring apparent outer diameter of cutter - Google Patents

Device for measuring apparent outer diameter of cutter Download PDF

Info

Publication number
JP2004066365A
JP2004066365A JP2002226771A JP2002226771A JP2004066365A JP 2004066365 A JP2004066365 A JP 2004066365A JP 2002226771 A JP2002226771 A JP 2002226771A JP 2002226771 A JP2002226771 A JP 2002226771A JP 2004066365 A JP2004066365 A JP 2004066365A
Authority
JP
Japan
Prior art keywords
blade
high speed
measuring
image data
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002226771A
Other languages
Japanese (ja)
Inventor
Takamasa Hattori
服部 貴應
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NST Co Ltd
Original Assignee
NST Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NST Co Ltd filed Critical NST Co Ltd
Priority to JP2002226771A priority Critical patent/JP2004066365A/en
Publication of JP2004066365A publication Critical patent/JP2004066365A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To implement high-precision machining by inputting CCD camera data into NC equipment. <P>SOLUTION: Utilizing CCD cameras capable of obtaining high-density picture elements, which have become easily available, shapes and sizes of chips are photographed, with photographs incorporated in computer data. Thus, by measuring the tip portion of a cutter in operation (revolving), through much use of image processing technology, it becomes possible to determine the size of the cutter, including errors on attachment, at the precision inherent in the cutter. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
回転体の真の直径に回転体の取りつけの誤差や取りつけた装置の精度誤差を加えた総合的な回転部直径を計測する装置に関する。
【0002】
【従来の技術】
回転する刃物(バイト)のチップ(先端部)の形状及び材質は仕様で決まっており、加工機に取り付けられた状態で弛みが無ければ良しとして、加工されたワークの加工後の状態を計測して微調整を行ない結果を判断していた。
【0003】
マシニングセンターにおいては工具の交換が自動で行なわれ、スタート時点で最初に加工されたワークでの精度が確認され、引き続き連続的な加工が実施される。しかし加工時間の経過と共に加工精度は変化するので、各部の加工寸法がワーク上でチェックされる。
【0004】
【発明が解決しようとする課題】
近年極めて高精度の加工が要求されるようになって、この確認の作業が頻繁に行なわなければならなくなってきた。それはμmの精度で加工を要求される製品の割合が従前に比べ非常に多いために刃物の取りつけの精度、チップの磨耗状態によって精度が保たれないことが多くなったことが原因といえる。
一方、刃物の取りつけ誤差まで含めた実効的な切削寸法の計測器は実在していないので、加工されたワークを適当な時間間隔で確認の計測をするしか方法が無い。
【0005】
【発明が解決するための手段】
高密度の画素数が得られるCCDカメラの入手が容易になり、チップの形状、寸法を写してコンピュータに取りこみ、画像処理の技術を駆使して刃物の先端部を動作中(回転中)に計測すると、刃物の持っている固有の精度に取りつけ時の誤差を含めた寸法を掴むことが可能になる。従って刃物の実効的な寸法を計測してNC装置に入力した上で加工することによって、逐一ワークの寸法計測を行なう頻度が少なくなり、場合により必要がなくなる。同時に高い精度の加工が可能になる。
【0006】
【発明の実施の形態】
マシニングセンターを例として説明すると、従来人手によって入力されていた工具径及び工具長を、工具交換時に本発明の工具計測装置によって計測し、補正値データをNC装置に転送することによって代替できる。図1のように構成されたシステムによって実施され、工具取りつけ時の夾雑物の影響、工具自体の振  れ、工具先端のチップ最大径等の合計回転径と公称値(工具径)に対する差分を含めた値が補正値データとなる。
【0007】
補正値データにはこのような工具の公称値ではない値が入れられ、実際に加工されるワークの加工部分に正確に反映される。特に1/1000mm台の誤差指定部分では微妙に効いてくる。本発明の工具計測では工具の動作状態でのチップの最大値即ち切削最大径をデータとすることに特徴があり、工具側に存在する誤差分を補正することによって、工具取替え時に都度計測することによって誤差の発生は減り、実際の加工精度を向上する利点がある。
【0008】
本発明の動作手順は図2に示すようにNC装置側と計測装置側のデータの転送利用が行なわれる。最初NC装置のツール変更に従って計測装置側で主軸での刃物の形状・サイズの認識をし、刃物径最大値を静止に近い状態で測定するための移動量・回転スピード等を指示する。指示された最適位置に移動して設定を完了する。
【0009】
計測制御装置から静的最大値測定用となる動作開始指示によって、主軸を低速回転し、最大径を測定して画像データを取り刃物の最大径を示す位置(角度)を主軸のエンコーダから角度データを取り込み記憶する。さらに刃物の取りつけ長さの最大値も同時に測定し画像データとして取り込む。NC装置側へこれらの演算結果を転送して加工の準備が完了する。
【0010】
動的最大値を測定する動作の指示に従って、主軸を実用速度(高速)で回転して計測を開始する。この時高速の画像をそのままCCDカメラで全周データを取りこむことは追従できず必要も無い。低速回転時設定したエンコーダの指定最大径位置を示す角度の前後をスイープして画像受光器のシャッターを動作するか光源のフラッシュ動作によって、真の最大値データを得るよう演算する。高速度で回転した刃物の回転径の最大値を捕らえることが可能となる。
このようにして工具交換時必ず計測することによって刃物の最大削り代をNC装置側にデータ伝送し誤差の少ない加工を行なうことが合理的にできる。
【0011】
図3は刃物と計測装置のカメラ及び光源の位置関係を示した。同時に画像処理での刃物先端部即ちチップの位置を図示したもので、データとしてはXM、Y  M、ZMをパラメータとして計測装置からNC装置側へ転送する。
【0012】
図4及び図5は測定対象の刃物と測定の際のモニター図とを例示したもので、図4はドリルの錐を示し座標情報は数1に示す。
図5ではフライスのチップ部の拡大図を示しており座標情報は数2に示す。
【0013】
【数1】X軸=XM−&frac12;D, Y軸=YM−&frac12;D,
【0014】
【数2】X軸=XM−(D+D1)/2, Y軸=YM−(D+D1)/2,
Z軸=ZM−Toffset   
−L
【0015】
【発明の効果】
近年μmの精度で加工を要求される製品の割合が従前に比べ非常に多くなり、       刃物の取りつけの精度、チップの磨耗状態を常に監視して加工精度を保持する必要がある。また高密度の画素数が得られるCCDカメラの入手が容易になり、チップの形状、寸法を写してコンピュータに取りこみ、画像処理の技術を駆使して刃物の先端部を動作中(回転中)に計測すると、刃物の持っている固有の精度に取りつけ時の誤差を含めた実効的な寸法を計測して、NC装置に入力した上で加工することによって高い精度の加工が可能になる。
【0014】
【図面の簡単な説明】
【図1】本発明の計測器が実施されるシステムの概要
【図2】本発明のシステム動作手順
【図3】機械の原点と計測システム位置関係
【図4】刃物移動位置とモニター画面の例1
【図5】刃物移動位置とモニター画面の例2
【符号の説明】
1 刃物
2 主軸
3 CCDカメラ
4 光源(ランプ又はレーザ+光学系)
5 テレセントリック レンズ等の光学レンズ
6 プログレッシブ スキャン カメラ
7 画像処理コントロール
ボード
8 パーソナル コンピュータ
9 モニター
10 光源用インバータ電源
11 AC100Vライン
12 通信ライン(対NCコントローラ)
13 刃物センターライン
14 カメラ・画像センターライン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for measuring a total diameter of a rotating part, which is obtained by adding an error in mounting a rotating body and an accuracy error of a mounted apparatus to a true diameter of the rotating body.
[0002]
[Prior art]
The shape and material of the tip (tip) of the rotating cutting tool (bite) are determined by the specifications, and it is good if there is no slack in the state where it is attached to the processing machine, and measure the state of the processed work after processing. Fine-tuning to determine the result.
[0003]
In the machining center, the tool is automatically changed, the accuracy of the work machined first at the start time is confirmed, and continuous machining is continuously performed. However, since the processing accuracy changes as the processing time elapses, the processing dimensions of each part are checked on the work.
[0004]
[Problems to be solved by the invention]
In recent years, extremely high-precision machining has been demanded, and this confirmation work has to be performed frequently. This is because the ratio of products that require processing with an accuracy of μm is much larger than before, and the accuracy of the mounting of the blades and the fact that the accuracy cannot be maintained due to the wear state of the chip often increase.
On the other hand, since there is no actual measuring instrument of the effective cutting dimension including the mounting error of the blade, there is no other way but to measure and confirm the processed workpiece at appropriate time intervals.
[0005]
Means for Solving the Invention
It is easy to obtain a CCD camera that can obtain high-density pixels, capture the shape and dimensions of the chip, capture it into a computer, and measure the tip of the blade during operation (rotation) using image processing technology. Then, it becomes possible to grasp a dimension including an error at the time of attachment to the inherent accuracy of the blade. Therefore, by measuring the effective dimension of the blade and inputting it to the NC device for machining, the frequency of performing the dimension measurement of the work one by one becomes less, and in some cases, it becomes unnecessary. At the same time, high precision processing becomes possible.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Taking a machining center as an example, the tool diameter and the tool length, which have been manually input in the past, can be replaced by measuring the tool diameter and the tool length by the tool measuring device of the present invention at the time of tool change, and transferring the correction value data to the NC device. It is implemented by the system configured as shown in Fig. 1 and includes the difference from the nominal value (tool diameter) and the total rotation diameter such as the influence of foreign substances when mounting the tool, the vibration of the tool itself, the maximum tip diameter of the tool tip, etc. The value obtained is the correction value data.
[0007]
The correction value data contains a value other than the nominal value of such a tool, and is accurately reflected on a machined portion of a work to be actually machined. In particular, it is slightly effective in an error designation portion on the order of 1/1000 mm. The tool measurement of the present invention is characterized in that the maximum value of the tip in the operation state of the tool, that is, the maximum cutting diameter, is used as data, and by measuring the error existing on the tool side, the measurement is performed each time the tool is replaced. This has the advantage of reducing the occurrence of errors and improving the actual machining accuracy.
[0008]
In the operation procedure of the present invention, as shown in FIG. 2, data is transferred and used between the NC device and the measuring device. First, the measuring device recognizes the shape and size of the blade on the spindle according to the tool change of the NC device, and instructs a moving amount, a rotation speed, and the like for measuring the maximum value of the blade diameter in a nearly stationary state. Move to the designated optimum position to complete the setting.
[0009]
In response to an operation start instruction for measuring the static maximum value from the measurement control device, the main spindle is rotated at low speed, the maximum diameter is measured, image data is taken, and the position (angle) indicating the maximum diameter of the blade is converted into angle data from the encoder of the main spindle. And store it. Further, the maximum value of the mounting length of the blade is also measured at the same time and is taken in as image data. The calculation results are transferred to the NC device, and the preparation for machining is completed.
[0010]
According to the instruction of the operation for measuring the dynamic maximum value, the spindle is rotated at a practical speed (high speed) to start the measurement. At this time, it is not necessary to capture the entire circumference data of the high-speed image as it is with the CCD camera, and it is unnecessary. An operation is performed so as to obtain the true maximum value data by sweeping before and after the angle indicating the designated maximum diameter position of the encoder set at the time of low-speed rotation to operate the shutter of the image light receiver or the flash operation of the light source. It is possible to capture the maximum value of the rotation diameter of the blade rotated at a high speed.
In this way, by always performing measurement at the time of tool change, it is possible to rationalize data transmission of the maximum cutting allowance of the blade to the NC device side and perform processing with less error.
[0011]
FIG. 3 shows the positional relationship between the blade, the camera of the measuring device, and the light source. At the same time, the position of the tip of the blade, that is, the position of the tip in the image processing is illustrated, and as data, XM, YM, and ZM are transferred as parameters from the measuring device to the NC device.
[0012]
FIGS. 4 and 5 exemplify a blade to be measured and a monitor diagram at the time of measurement. FIG. 4 shows a drill cone and coordinate information is shown in Equation 1.
FIG. 5 is an enlarged view of the chip portion of the milling machine, and the coordinate information is shown in Expression 2.
[0013]
X axis = XM− &frac12; D, Y axis = YM− &frac12; D,
[0014]
X axis = XM− (D + D1) / 2, Y axis = YM− (D + D1) / 2,
Z axis = ZM-T offset
-L
[0015]
【The invention's effect】
In recent years, the proportion of products that require processing with an accuracy of μm has become much greater than before, and it is necessary to maintain the processing accuracy by constantly monitoring the accuracy of blade installation and chip wear. In addition, it becomes easy to obtain a CCD camera that can obtain high-density pixels, capture the shape and dimensions of the chip, import it into a computer, and use the image processing technology to move the tip of the blade (while rotating). When the measurement is performed, a high-precision machining can be performed by measuring an effective dimension including an error at the time of attachment to the inherent accuracy of the blade, and inputting the measured value to the NC device.
[0014]
[Brief description of the drawings]
FIG. 1 is an outline of a system in which a measuring instrument of the present invention is implemented. FIG. 2 is a system operation procedure of the present invention. FIG. 3 is a positional relationship between a machine origin and a measuring system. FIG. 4 is an example of a blade moving position and a monitor screen. 1
FIG. 5 is an example 2 of a tool moving position and a monitor screen.
[Explanation of symbols]
1 knife 2 spindle 3 CCD camera 4 light source (lamp or laser + optical system)
Reference Signs List 5 Optical lens such as telecentric lens 6 Progressive scan camera 7 Image processing control board 8 Personal computer 9 Monitor 10 Inverter power supply for light source 11 AC100V line 12 Communication line (to NC controller)
13 Tool center line 14 Camera / image center line

Claims (6)

高速で回転を続ける物体の最大回転径を非接触で計測する測定器において、回転の振れを含む測定値を画像データとして処理し計測することを特徴とする刃物等見かけ外径測定装置。An apparent outside diameter measuring device for a blade or the like, wherein a measuring device that measures the maximum rotation diameter of an object that continues to rotate at a high speed in a non-contact manner processes and measures a measurement value including a rotation fluctuation as image data. 高速で回転を続ける物体は工作機械の切削刃・研削砥石であることを特徴とする請求項1に記載の刃物等見かけ外径測定装置。The apparent outside diameter measuring device according to claim 1, wherein the object that continues rotating at a high speed is a cutting blade or a grinding wheel of a machine tool. 高速で回転を続ける物体に平行光線を投射し、連続した回転投影像を受光器によって受け、デジタル信号に変換して画像データとすることを特徴とする請求項1に記載の刃物等見かけ外径測定装置。The apparent outer diameter of a blade or the like according to claim 1, wherein parallel light rays are projected onto an object that continues to rotate at a high speed, a continuous rotation projection image is received by a light receiver, and converted into a digital signal to obtain image data. measuring device. 高速で回転を続ける物体に平行光線を投射し、連続した回転投影像を受光器によって受け、演算装置に取り込む画像データの中、必要な刃物の指定の回転角度はエンコーダの出力信号を利用して設定することを特徴とする請求項1に記載の刃物等見かけ外径測定装置。A parallel light beam is projected onto an object that continues to rotate at high speed, a continuous rotation projection image is received by a photodetector, and the necessary rotation angle of the blade is determined using the output signal of the encoder in the image data captured by the arithmetic unit. The apparatus for measuring the apparent outer diameter of a blade or the like according to claim 1, wherein the apparatus is set. 高速で回転を続ける物体に平行光線を投射し、連続した回転投影像を受光器によって受け、演算装置に取り込む画像データの中、必要な刃物の指定の回転角度はエンコーダの出力信号に同期する別途作成したトリガ回路信号によって、画像受光器のシャッター又は光源のフラッシュ動作することを特徴とする請求項1に記載の刃物等見かけ外径測定装置。A parallel light beam is projected on an object that rotates at high speed, a continuous rotation projection image is received by a light receiver, and the required rotation angle of the necessary blade is synchronized with the output signal of the encoder in the image data captured by the arithmetic unit. 2. The apparatus for measuring an apparent outside diameter of a knife or the like according to claim 1, wherein the shutter of the image light receiver or the flash operation of the light source is operated by the generated trigger circuit signal. 高速で回転を続ける物体に平行光線を投射し、連続した回転投影像を受光器によって受け、演算装置に取り込む画像データの中、必要な刃物の指定の回転角度近傍における回転径の真の最大値を検出するために、エンコーダの指定出力信号の前後をスイープして探索し、最大値位置を示すシャッター信号を作成することを特徴とする請求項5に記載の刃物等見かけ外径測定装置。The true maximum value of the rotation diameter near the specified rotation angle of the necessary blade in the image data that the parallel light beam is projected on the object that rotates at high speed, the continuous rotation projection image is received by the light receiver, and captured by the arithmetic unit 6. The apparatus for measuring an apparent outer diameter of a blade or the like according to claim 5, wherein a sweep signal before and after the designated output signal of the encoder is searched for to detect a shutter signal indicating a maximum value position.
JP2002226771A 2002-08-02 2002-08-02 Device for measuring apparent outer diameter of cutter Withdrawn JP2004066365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226771A JP2004066365A (en) 2002-08-02 2002-08-02 Device for measuring apparent outer diameter of cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226771A JP2004066365A (en) 2002-08-02 2002-08-02 Device for measuring apparent outer diameter of cutter

Publications (1)

Publication Number Publication Date
JP2004066365A true JP2004066365A (en) 2004-03-04

Family

ID=32013994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226771A Withdrawn JP2004066365A (en) 2002-08-02 2002-08-02 Device for measuring apparent outer diameter of cutter

Country Status (1)

Country Link
JP (1) JP2004066365A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036803A (en) * 2006-08-09 2008-02-21 Nakamura Tome Precision Ind Co Ltd In-machine lighting system of lathe
CN104354076A (en) * 2014-10-30 2015-02-18 成都爱斯顿测控技术有限公司 Machine tool
CN113524039A (en) * 2021-07-28 2021-10-22 大连理工大学 Grinding wheel profile in-situ measuring device and method for numerically controlled grinder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036803A (en) * 2006-08-09 2008-02-21 Nakamura Tome Precision Ind Co Ltd In-machine lighting system of lathe
CN104354076A (en) * 2014-10-30 2015-02-18 成都爱斯顿测控技术有限公司 Machine tool
CN113524039A (en) * 2021-07-28 2021-10-22 大连理工大学 Grinding wheel profile in-situ measuring device and method for numerically controlled grinder

Similar Documents

Publication Publication Date Title
US7423734B1 (en) Combined video camera and toolholder with triangulation sensing
CN105345599A (en) In-situ detecting equipment for abrasion on rear face of turning tool
CN102528561A (en) On-line automatic detection device for detecting wear condition of rotary cutter in the whole processing cycle
JP2006255826A (en) Measuring head and machine tool
JP7132349B2 (en) Tool shape measuring device and tool shape measuring method
JP2010064203A (en) Processing device and method of correcting distance between processing tool and workpiece
JP2010234451A (en) Workpiece machining method and machining center
JP2019153037A (en) Processing support device, processing support method
JP2010179373A (en) Tool for machine tool, tool inspection method, and tool inspection device
JP2019130635A (en) Turning tool and turning method
JP2008275623A (en) Measurement device for measuring parameter of blade rotor and measurement process for measuring with the device
JPH09253979A (en) Tool edge position measuring device
JP6710243B2 (en) Tool shape measuring device
JP2004066365A (en) Device for measuring apparent outer diameter of cutter
JP5328025B2 (en) Edge detection apparatus, machine tool using the same, and edge detection method
JP2006242606A (en) Method for measuring runout of rotating tool and its measuring apparatus
RU189989U1 (en) OPTICAL DEVICE FOR 3D SCANNING, MEASUREMENT AND MONITORING OF AXIAL CUTTING TOOL FOR MACHINING
JP6901612B1 (en) Image processing equipment and machine tools
JP2022176067A (en) Tool shape detecting device and tool shape detecting method
TW201010820A (en) Image positioning system of computer numerical control processing machine
JPS6288555A (en) Method of measuring dimension of tool
JP2021109298A (en) Image processing device, machine tool and image processing method
JP3252248B2 (en) Non-contact diameter measuring device using speckle
JP2000055628A (en) Tool size measuring method
JPS63163205A (en) Automatic tool measuring instrument for numerically controlled machine tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004