JP2004066070A - Method of producing denitrification catalyst, denitrification catalyst, and denitrification system - Google Patents

Method of producing denitrification catalyst, denitrification catalyst, and denitrification system Download PDF

Info

Publication number
JP2004066070A
JP2004066070A JP2002227010A JP2002227010A JP2004066070A JP 2004066070 A JP2004066070 A JP 2004066070A JP 2002227010 A JP2002227010 A JP 2002227010A JP 2002227010 A JP2002227010 A JP 2002227010A JP 2004066070 A JP2004066070 A JP 2004066070A
Authority
JP
Japan
Prior art keywords
denitration
exhaust gas
catalyst
gas
denitration catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002227010A
Other languages
Japanese (ja)
Other versions
JP4087659B2 (en
Inventor
Kazutoshi Murata
村田 和俊
Koichi Eguchi
江口 浩一
Yuji Ogawa
小川 裕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd, Mitsui Engineering and Shipbuilding Co Ltd filed Critical Meidensha Corp
Priority to JP2002227010A priority Critical patent/JP4087659B2/en
Publication of JP2004066070A publication Critical patent/JP2004066070A/en
Application granted granted Critical
Publication of JP4087659B2 publication Critical patent/JP4087659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily denitrify exhaust gas at a low cost even at a low temperature. <P>SOLUTION: A denitrification catalyst comprising cobalt oxide and zirconium oxide is used. By the use of the denitrification catalyst, a denitrification system having the first and second denitrification reaction chambers 11 and 12 is constituted. The exhaust gas is introduced alternately into the first and second denitrification reaction chambers 11 and 12, and the occlusion process and release process of NOx in the exhaust gas are repeated in the chambers 11 and 12. In this way, NOx in the exhaust gas is occluded in ether one of denitrification reaction chambers, and a reducing gas is introduced into the other chamber to release the occluded gas. The released NOx, after being burned by a burner 16, is discharged. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自動車やボイラー等に用いられる内燃機関やガスタービンなどの熱機関に適用される脱硝触媒,脱硝触媒の製造方法,および脱硝システムに関するものである。
【0002】
【従来の技術】
自動車やボイラー等に用いられる内燃機関やガスタービンなどの熱機関に起因する大気汚染について、種々の対策が検討されているが依然として厳しい状況にある。自動車の内燃機関から排出される排ガス中においては、燃焼生成物である水,二酸化炭素と共に、一酸化窒素(NO),二酸化窒素(NO)等の窒素酸化物(NO)が含まれている。このNOは人体に対して影響を及ぼし、呼吸器疾患等の病気の発生率を増加させるだけでなく、地球環境保全の点で問題視されている酸性雨の原因の一つとなっている。
【0003】
このようなことから、前記のような熱機関による排ガスについては種々の規制が行われ、その規制は年々強化されている。例えば自動車の排ガス規制値は、大気汚染防止法に基づき自動車排出ガス量の許容限度として環境庁長官により定められ、この規制値を確保できるように運輸大臣が道路運送車両の保安基準を定めている。しかし、NOによる問題は、ディーゼルエンジンを搭載した自動車の増加等により依然深刻な状況が続いており、今後さらなる対策の強化が行われると推測されている。
【0004】
排ガス中のNOを効率良く除去するための脱硝技術は種々開発されており、アンモニアや尿素水を還元剤として用い、例えばチタン系(TiO)等の触媒を介して排ガス中のNOを無害な窒素(N)や水(HO)に還元する選択接触還元法が知られている。還元剤としてアンモニアを用いる場合、排ガス中にアンモニアガスを噴霧し排ガスの下流方向(排出方向)に位置する触媒に接触させることにより、排ガス中のNOをNとHOとに分解して脱硝する。また、還元剤として尿素水を用いた場合は、尿素水を所定温度雰囲気下(尿素が加水分解され得る温度)にて加水分解することによりアンモニアガスを発生させ、そのアンモニアガスを排ガスに添加して脱硝を行う。
【0005】
一般的に、前記の選択接触還元法や分離脱硝方法は、約320〜550℃程度の温度にて排ガスを脱硝するのに適用されている。
【0006】
【発明が解決しようとする課題】
しかし、前記のような選択接触還元法では、還元剤によるランニングコストが高くなってしまう問題がある。また、前記の各方法により、約320℃以下の温度にて排ガスを脱硝処理する場合、その排ガス中のNOとアンモニアとが反応して硝酸アンモニウムが生じたり、排ガス中のSOとアンモニアとが反応して硫安が生じたりする。前記の硝酸アンモニウムや硫安は粉末状となり触媒に付着し、その脱硝反応の時間経過と共に触媒の活性が低減される。すなわち、触媒に付着する硝酸アンモニウムや硫安の量に応じて、その触媒を定期的に取り出して清浄または交換する手間がかかり、ランニングコストが高くなってしまう。
【0007】
本発明は上記に鑑みてなされたものであって、アンモニア等の還元剤を用いることなく低温下(例えば、320℃以下)でも排ガス中のNOを効率良く脱硝できる脱硝触媒および脱硝触媒の製造方法を提供する共に、その脱硝触媒を用いた脱硝システムを提供することにある。
【0008】
【課題を解決するための手段】
本発明は上記目的を達成するために、請求項1記載の発明は、排ガス中のNOを吸蔵する脱硝触媒の製造方法において、硝酸コバルトとオキシ硝酸ジルコニウムとをモル比率で硝酸コバルト:オキシ硝酸ジルコニウム=1:1の割合で用いて水溶液を作製(例えば、硝酸コバルトとオキシ硝酸ジルコニウムとを蒸留水に溶かして作製)し、その水溶液の水分を蒸発除去(例えば、温度80℃で撹拌して蒸発除去)して得た残渣を還元ガス中にて焼成(例えば、Hガス中にて温度450℃で焼成)したことを特徴とする。
【0009】
請求項2記載の発明は、前記水溶液に活性アルミナを加えたことを特徴とする請求項1記載の脱硝触媒の製造方法。
【0010】
請求項3記載の発明は、前記水溶液に対してハニカム状の活性アルミナ(例えば、30〜100セル)を浸漬(例えば、室温下にて0.5〜6時間浸漬)した後、その活性アルミナを乾燥し還元ガス中にて焼成したことを特徴とする。
【0011】
請求項4記載の発明は、脱硝触媒において、請求項1乃至3の発明の何れかによって製造したことを特徴とする。
【0012】
請求項5記載の発明は、脱硝システムにおいて、請求項1乃至3の発明の何れかによって製造した脱硝触媒を備えた2基の脱硝反応室に対し排ガスを交互に導入し、前記の各脱硝反応室にて、排ガス中のNOを吸蔵する工程と、吸蔵したNOを放出する工程と、を繰り返し行うことにより、何れか一方の脱硝反応室にて前記の排ガス中のNOを吸蔵すると共に、他方の脱硝反応室に還元ガスを導入して吸蔵されたNOを放出し、前記の放出されたNOは燃焼処理することを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態における脱硝触媒,脱硝触媒の製造方法,および脱硝システムを図面に基づいて詳細に説明する。
【0014】
排ガス中のNOは、320℃以下の低温化においても、下記式に示すようにZrO等の吸蔵物質にて吸蔵できることが解った。
【0015】
NO → ZrO・(NO …… (1)
また、排ガス中のNOにおいては、マンガンやコバルト等の酸化触媒を用いることにより、320℃以下の低温化においても下記式に示すようにNOに酸化されてからZrO等の吸蔵物質にて吸蔵できることが解った。
【0016】
NO→ NO → ZrO・(NO …… (2)
さらに、前記のように吸蔵したZrO・(NOは、ブタン,プロパンガスやH(水素ガス)などの還元ガスで還元することにより、下記式に示すようにNOを放出することが解った。
【0017】
ZrO・(NO → ZrO+NO …… (3)
そこで、本実施の形態では酸化触媒として硝酸コバルトを用い、吸蔵物質としてオキシ硝酸ジルコニウムを用い、それら硝酸コバルトとオキシ硝酸ジルコニウムとを酸化して脱硝触媒を作製(第1〜第3実施例)することにより、排ガス中のNOを効率良く吸蔵および放出して脱硝処理することを検討した。また、2基の脱硝反応室から成る脱硝システムを構成し、NOを含んだ試料ガスを前記の各脱硝反応室にて吸蔵すると共に、その吸蔵したNOを放出して燃焼処理することにより、熱機関から大気中(熱機関の系外)に排出されるNOの低減を検討した。
【0018】
(第1実施例)
第1実施例では、まず、硝酸コバルトとオキシ硝酸ジルコニウムとをモル比率で1:1の割合にて用い、それら硝酸コバルト,オキシ硝酸ジルコニウムを蒸留水に加え約80℃の温度で撹拌混合して水溶液を得た。次に、前記の水溶液の水分を蒸発除去し、その残渣を還元ガス(第1〜第3実施例では水素ガス)中にて約450℃の温度で約2〜6時間焼成し硝酸コバルトとオキシ硝酸ジルコニウムとを酸化することにより、酸化コバルトと酸化ジルコニウムとから成る非晶質体(粉末状)の脱硝触媒を作製した。
【0019】
前記の脱硝触媒に対して排ガスを通過させることにより、320℃以下の低温化においても、排ガス中のNOは、前記の(1)式に示すように脱硝触媒中の酸化ジルコニウムにて吸蔵(ZrOからZrO・(NOに変換)できる。また、排ガス中のNOについては、前記の(2)式に示すように脱硝触媒中の酸化コバルトにてNOに酸化してから、脱硝触媒中の酸化ジルコニウムにて吸蔵できる。
【0020】
このように排ガス中のNOを脱硝処理する際、その脱硝触媒はNO吸蔵量の増加と共に活性が低下するが、そのNOは濃縮して吸蔵されていると共に、ブタンガス,プロパンガスやHなどの還元ガスにより前記の(3)式に示すように還元して放出できるため、脱硝触媒の活性を短時間で容易に取り戻すことができる。
【0021】
(第2実施例)
第2実施例では、第1実施例と同様に硝酸コバルト,オキシ硝酸ジルコニウムを蒸留水に加えてから(モル比率で、硝酸コバルト:オキシ硝酸ジルコニウム=1:1)、更に蒸留水に対し脱硝触媒の担体として活性アルミナ(γ−Al)を加えた後、約80℃の温度で撹拌混合して水溶液を得た。そして、第1実施例と同様に、前記の水溶液の水分を蒸発除去して残渣を得、還元ガス中にて約450℃の温度で約2〜6時間焼成し硝酸コバルトとオキシ硝酸ジルコニウムとを酸化することにより、酸化コバルトと酸化ジルコニウムとから成る非晶質体(粉末状)の脱硝触媒を作製した。
【0022】
この第2実施例のように、酸化コバルトと酸化ジルコニウムとを担体に担持させて脱硝触媒を作製することにより、その脱硝触媒の活性を維持しながら吸蔵できるNO量(以下、吸蔵許容量と称する)は、第1実施例よりも大きくすることができる。
【0023】
(第3実施例)
第3実施例では、まず脱硝触媒の担体として、活性アルミナとバインダー(例えば、有機バインダー)とを蒸留水に加えて混合・混練し、得られた混練物を押し出し成形した。その後、前記の押し出し成形物を調湿乾燥してから約800℃の温度で焼成することにより、柱状構造のハニカム状担体(例えば、65mm×65mm×130mmの柱状構造で30〜100セル)を得た。また、硝酸コバルトとオキシ硝酸ジルコニウムとをそれぞれ約100〜200グラム(好ましくは、約125〜150グラム)用い、それら硝酸コバルト,オキシ硝酸ジルコニウムを約0.9リットルの蒸留水に加え混合して水溶液を得た。
【0024】
次に、前記の水溶液中に前記ハニカム状担体を浸漬し、室温下にて約0.5〜6.0時間(好ましくは、約1〜2時間)放置した。その後、前記のハニカム状担体を水溶液中から取り出して乾燥し、約450℃の温度で約4時間焼成し硝酸コバルトとオキシ硝酸ジルコニウムとを酸化することにより、酸化コバルトと酸化ジルコニウムとから成るハニカム状の脱硝触媒(以下、ハニカム触媒と称する)を作製した。
【0025】
この第3実施例のように、酸化コバルトと酸化ジルコニウムとをハニカム状担体に担持させてハニカム触媒を作製することにより、そのハニカム触媒の吸蔵許容量は、第2実施例よりも大きくすることができる。
【0026】
(脱硝試験)
次に、第3実施例に基づいてハニカム触媒(30セルハニカムで担持率10.5%のもの)を作製し、これを粉砕したもの20gをサンプルとして、脱硝触媒の特性を確認する試験を行った。
【0027】
試験装置としては、ヒータが取り付けられた処理容器(ステンレス管)に、ガスを導入するガス導入管およびガスを排出するガス排出管を連結し、ガス排出管の後段にNO濃度分析計(掘場製作所製;ポータブルガス分析計PG−250)を設置した構成であって、サンプル作製した前記の脱硝触媒20gをステンレス製のメッシュケースに収納した上で、このメッシュケースを処理容器の内部に挿入・設置したものを用いた。
【0028】
試験は、NO(1500ppm)と13%Oとを混合しNガスで調整して得た試料ガスを用い、試料ガスを脱硝処理すると共に、脱硝処理後のNO濃度を測定してNOの除去率を確認することで行った。このとき、脱硝触媒の動作温度は300℃とし、脱硝触媒のW/Fは2g・s・cm−3とした。この測定結果を図1の時間変化に対するNO除去率の特性図に示す。
【0029】
図1に示すように、試験開始から約30分間にわたってNOが約100%除去されていることが確認できた。
【0030】
そして、30分を経過するとNO除去率は徐々に低下し、約20%で水平に推移した。この現象を確認したところ、試料ガスが試験装置を通過する際にNOの一部がNOに変化しており、NO濃度分析計の測定対象がNOのみであることから、NOに変化した分(約20%)がNO濃度分析計で測定されていないことによるものと判った。
【0031】
以上の結果から、この条件で行った試験では、約30分間はNOが脱硝触媒により還元し吸蔵されることにより100%除去することができ、その後脱硝触媒の活性が徐々に失われて除去率は低下し、1時間を経過すると全くNOが除去されないことが確認できた。
【0032】
なお、脱硝触媒の活性が失われた状態で、試験装置に還元ガスとしてC(5000ppm)をNガス調整したものを導入したところ、脱硝触媒に吸蔵されていたNO(高濃度のNO)がNOに還元されて脱硝触媒から放出され、脱硝触媒が活性を取り戻すことが確認できた。このとき、脱硝触媒が完全に活性を取り戻すために要する時間は、吸蔵を行うことのできた約30分より若干短い時間であった。
【0033】
そこで、次に前述の試験装置を用い、NO(1500ppm)と13%Oとを混合しNガスで調整したものを試料ガスとして約30分間脱硝(NOの吸蔵)を行い、その後試験装置に供給するガスを切り替えてC(5000ppm)をNガス調整したものを還元ガスとして約30分間NOの放出を行うことを繰り返す、NOの吸蔵放出の繰り返し実験を行った。この実験の結果を、図2の吸蔵放出の切り替え回数とNO量/molとの特性図に示す。
【0034】
図2に示すように、吸蔵放出を繰り返しても、吸蔵時には約1.2×10−3molのNOが安定して吸蔵され、放出時には約9.5×10−3molのNOが安定して放出されていることが確認でき、試料ガス中に含まれる約100%のNOを吸蔵し、前述のNO濃度分析計で測定されないNOの20%を考慮すれば、吸蔵したNOの100%が放出されていることが解る。
【0035】
(脱硝システム)
次に、第1〜第3実施例の脱硝触媒を用いて排ガス中のNOを連続して除去する脱硝システムについて説明する。
【0036】
図3は、第1〜第3実施例の脱硝触媒を用いた脱硝システムの概略説明図を示すものである。図3において、符号11,12はそれぞれ内部に脱硝触媒(図示省略)が充填された第1,第2脱硝反応装置を示すものであり、符号13は熱機関(図示省略)から排出される排ガスを前記の第1,第2脱硝反応室11,12のうち何れか一方に導入するための三方弁である。この三方弁13を制御することにより、熱機関の排ガスを前記の第1,第2脱硝反応室11,12に対して交互に導入することができる。
【0037】
前記の第1,第2脱硝反応室11,12を通過した排ガスは、それぞれ三方弁14を介して熱機関の系外に排出、または開閉弁15a,15bを介してバーナ(高濃度のNOを燃焼する脱硝用バーナ)16にそれぞれ導入される。なお、図示するように第1,第2脱硝反応室11,12には、それぞれ開閉弁17a,17bを介して還元ガスが導入できるものとする。
【0038】
次に、図3に示した脱硝システムの動作実施例を説明する。まず、三方弁13を制御して、熱機関から排出された排ガスを第1脱硝反応室11に導入し、その排ガス中のNOを第1脱硝反応室11内の脱硝触媒にて還元し吸蔵させることにより、前記の排ガス中のNOを除去する。そのNOを除去した排ガスは、三方弁14を介して熱機関の系外に排出する。
【0039】
前記第1脱硝反応室11における脱硝触媒の活性が脱硝反応の時間経過と共に低下し始めた後、三方弁13を制御して、熱機関からの排ガスを第2脱硝反応室12に導入し、その脱硝触媒にて前記の第1脱硝反応室11と同様に排ガス中のNOを還元してから吸蔵させ、そのNOを除去した排ガスは三方弁14を介して熱機関の系外に排出する。
【0040】
また、前記の排ガスが第2脱硝反応室12に導入されている期間内にて、開閉弁17aを介して前記の第1脱硝反応室11内に対し還元ガスを導入し、その第1脱硝反応室11内の脱硝触媒に吸蔵されたNO(高濃度のNO)をNOに還元して放出し、第1脱硝反応室11内の低下した脱硝触媒の活性を取り戻す。前記の放出されたNOは、バーナ16に導入して燃料および燃焼用空気と共に燃焼処理することにより、還元または分解して熱機関の系外に排出する。
【0041】
そして、前記第2脱硝反応室12における脱硝触媒の活性が脱硝反応の時間経過と共に低下し始めた後、三方弁13を制御して、熱機関からの排ガスを再び第1脱硝反応室11に導入し、活性が取り戻された脱硝触媒により排ガス中のNOを還元してから吸蔵し、そのNOを除去した排ガスを三方弁14を介して熱機関の系外に排出する。
【0042】
また、前記の排ガスが第1脱硝反応室11に導入されている期間内にて、開閉弁17bを介して前記の第2脱硝反応室12内に対し還元ガスを導入することにより、前記の第1脱硝反応室11と同様に、第2脱硝反応室12内の低下した脱硝触媒の活性を取り戻すと共に、放出されるNOをバーナ16により燃焼処理し還元または分解してから熱機関の系外に排出する。
【0043】
以上示したように脱硝システムを構成し、第1,第2脱硝反応室に対して熱機関の排ガスを交互に導入し、それら第1,第2脱硝反応室にてそれぞれ吸蔵工程と放出工程とを繰り返し行うことにより、熱機関の排ガスを連続して脱硝処理すると共に、脱硝システム内における脱硝触媒の活性を維持することができる。また、この脱硝システムによれば、脱硝触媒を取り出して清浄したり交換する必要が無く、ランニングコストを低減することができる。
【0044】
なお、図3に示した脱硝システムでは、放出されるNOをバーナにより燃焼処理して還元または分解する構成であるが、例えば前記の放出されるNOを燃焼用空気と共に熱機関に再循環させて燃焼処理したり、熱機関と脱硝システムとの間に再燃焼式ボイラやダクトバーナなどの燃焼手段を設け、その燃焼手段にて前記の放出されるNOを燃焼用空気と共に燃焼処理しても良い。
【0045】
また、排出され得るNO量、脱硝触媒の吸蔵許容量、第1,第2脱硝反応室11,12での反応速度などを考慮して、三方弁13,14、開閉弁15a,15b,17a,17bを制御することにより、脱硝システムの自動化を図ることができると共に、使用する還元ガス量や脱硝触媒(および各脱硝反応室)を必要最小限にして、脱硝システムの小型化を図ることができる。さらに、熱機関の規模や排ガス量等に応じて、脱硝システム内の脱硝反応室を増やしても良い。
【0046】
さらにまた、第1〜第3実施例に示した脱硝触媒によれば、脱硝反応室の動作温度が100〜320℃であっても排ガス中のNOおよびNOを吸蔵できる(NOは室温下でも吸蔵できる)。その動作温度が100℃以下の場合には、酸化コバルトの酸化力低下によりNOを吸蔵できなくなるため、NOを酸化するためのコンバータ等を備えると良い。
【0047】
以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲内で多様な変形及び修正が可能であることは、当業者にとって明白なことであり、このような変形及び修正が特許請求の範囲に属することは当然のことである。
【0048】
例えば、本実施の形態に示した脱硝システムの各脱硝反応室と熱機関との間に脱硫装置を備えることにより、NOだけでなく高濃度のSOも排出するA重油やC重油を用いた熱機関に適用することができる。
【0049】
【発明の効果】
以上詳細に説明したように本発明によれば、酸化コバルトと酸化ジルコニウムとから成る脱硝触媒により320℃以下の低温下においても排ガス中のNOを吸蔵できる。また、前記の脱硝触媒により、排ガス中のNOは濃縮して吸蔵されるため、還元ガスを用いて短時間で容易にNOを放出して脱硝触媒の活性を取り戻すことができる。さらに、前記の脱硝触媒を用いて2基の脱硝システムにより、排ガスのNOを吸蔵すると共に、その吸蔵したNOを放出して燃焼できるため、前記排ガスを連続して脱硝処理でき、脱硝システム内における脱硝触媒の活性を維持することができる。
【0050】
ゆえに、低温下においても排ガスの脱硝処理を低コストで容易に行うことができる。
【図面の簡単な説明】
【図1】時間変化に対するNO除去率特性図。
【図2】吸蔵放出の切り替え回数とNO量との特性図。
【図3】本実施の形態における脱硝システムの概略説明図。
【符号の説明】
11…第1脱硝反応室
12…第2脱硝反応室
13,14…三方弁
15a,15b,17a,17b…開閉弁
16…バーナ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a denitration catalyst, a method for producing a denitration catalyst, and a denitration system applied to a heat engine such as an internal combustion engine or a gas turbine used in automobiles, boilers, and the like.
[0002]
[Prior art]
Various measures have been studied for air pollution caused by heat engines such as internal combustion engines and gas turbines used in automobiles and boilers, but the situation is still severe. In exhaust gas discharged from an internal combustion engine of an automobile, nitrogen oxides (NO X ) such as nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) are contained together with water and carbon dioxide as combustion products. Yes. This NO X affects the human body and not only increases the incidence of diseases such as respiratory diseases, but is also one of the causes of acid rain that has been regarded as a problem in terms of global environmental conservation.
[0003]
For this reason, various regulations are performed on the exhaust gas from the heat engine as described above, and the regulations are strengthened year by year. For example, the emission limit value for automobiles is set by the Director-General of the Environment Agency as an allowable limit for the amount of automobile exhaust gas based on the Air Pollution Control Law, and the Minister of Transport sets safety standards for road transport vehicles so that this limit value can be secured. . However, problems due to NO X, which continues to remain a serious situation due to an increase in automobile equipped with a diesel engine, has been speculated that the further strengthening of measures future is made.
[0004]
Various denitration techniques for efficiently removing NO X in exhaust gas have been developed, and ammonia or urea water is used as a reducing agent, for example, NO X in exhaust gas is passed through a catalyst such as titanium (TiO 2 ). A selective catalytic reduction method for reducing to harmless nitrogen (N 2 ) or water (H 2 O) is known. When ammonia is used as the reducing agent, by contacting the catalyst by spraying the ammonia gas in the exhaust gas is located downstream direction (discharging direction) of the exhaust gas to decompose NO X in the exhaust gas to N 2 and H 2 O To denitrate. Also, when urea water is used as the reducing agent, ammonia gas is generated by hydrolyzing the urea water in a predetermined temperature atmosphere (a temperature at which urea can be hydrolyzed), and the ammonia gas is added to the exhaust gas. To denitrate.
[0005]
In general, the selective catalytic reduction method and the separation denitration method are applied to denitrate exhaust gas at a temperature of about 320 to 550 ° C.
[0006]
[Problems to be solved by the invention]
However, the selective catalytic reduction method as described above has a problem that the running cost due to the reducing agent increases. In addition, when the exhaust gas is denitrated at a temperature of about 320 ° C. or less by the above methods, NO X and ammonia in the exhaust gas react to produce ammonium nitrate, or SO X and ammonia in the exhaust gas are Reaction may cause ammonium sulfate. The ammonium nitrate and ammonium sulfate are powdered and adhere to the catalyst, and the activity of the catalyst is reduced with the lapse of time of the denitration reaction. That is, depending on the amount of ammonium nitrate or ammonium sulfate adhering to the catalyst, it takes time and effort to periodically remove and clean or replace the catalyst, resulting in high running costs.
[0007]
The present invention has been made in view of the above, and a denitration catalyst and a denitration catalyst that can efficiently denitrate NO x in exhaust gas even at low temperatures (eg, 320 ° C. or less) without using a reducing agent such as ammonia. The present invention provides a method and a denitration system using the denitration catalyst.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for producing a denitration catalyst for storing NO x in exhaust gas, wherein cobalt nitrate and zirconium oxynitrate are mixed in a molar ratio of cobalt nitrate: oxyoxynitrate. Zirconium is used at a ratio of 1: 1 to prepare an aqueous solution (for example, prepared by dissolving cobalt nitrate and zirconium oxynitrate in distilled water), and water in the aqueous solution is removed by evaporation (for example, stirring at a temperature of 80 ° C. The residue obtained by evaporation is calcined in a reducing gas (for example, calcined in H 2 gas at a temperature of 450 ° C.).
[0009]
The invention according to claim 2 is the method for producing a denitration catalyst according to claim 1, wherein activated alumina is added to the aqueous solution.
[0010]
The invention according to claim 3, after immersing honeycomb activated alumina (for example, 30 to 100 cells) in the aqueous solution (for example, immersing at room temperature for 0.5 to 6 hours), It is characterized by being dried and fired in a reducing gas.
[0011]
A fourth aspect of the invention is a denitration catalyst manufactured by any one of the first to third aspects of the invention.
[0012]
According to a fifth aspect of the present invention, in the denitration system, exhaust gas is alternately introduced into two denitration reaction chambers equipped with the denitration catalyst produced according to any of the first to third aspects of the present invention, and at room, absorbing a step of storing the NO X in the exhaust gas, a step of releasing the occluded NO X, by repeatedly performing the NO X in the exhaust gas either at one of the denitration reaction chamber At the same time, reducing gas is introduced into the other denitration reaction chamber to release the stored NO X, and the released NO X is burned.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a denitration catalyst, a method for producing a denitration catalyst, and a denitration system in an embodiment of the present invention will be described in detail with reference to the drawings.
[0014]
It was found that NO 2 in the exhaust gas can be occluded by an occlusion substance such as ZrO X as shown in the following formula even at a low temperature of 320 ° C. or lower.
[0015]
NO 2 → ZrO · (NO 3 ) 2 (1)
In addition, in NO in exhaust gas, by using an oxidation catalyst such as manganese or cobalt, even at a low temperature of 320 ° C. or lower, it is oxidized to NO 2 as shown in the following formula and then stored in a storage material such as ZrO X I knew that I could occlude.
[0016]
NO → NO 2 → ZrO. (NO 3 ) 2 (2)
Further, the ZrO. (NO 3 ) 2 occluded as described above releases NO X as shown in the following formula by reducing with a reducing gas such as butane, propane gas or H 2 (hydrogen gas). I understand.
[0017]
ZrO. (NO 3 ) 2 → ZrO X + NO X (3)
Therefore, in this embodiment, cobalt nitrate is used as the oxidation catalyst, zirconium oxynitrate is used as the occlusion material, and the cobalt nitrate and zirconium oxynitrate are oxidized to produce a denitration catalyst (first to third examples). Thus, it was studied to efficiently store and release NO X in the exhaust gas for denitration treatment. Further, constitute a denitration system comprising a denitration reaction chamber 2 group, the sample gas containing NO X with occluded in each denitration reaction chamber of the, by burning process releases its occluded NO X examined the reduction of the NO X discharged from the heat engine to the atmosphere (outside the system of the heat engine).
[0018]
(First embodiment)
In the first embodiment, first, cobalt nitrate and zirconium oxynitrate are used in a molar ratio of 1: 1, and these cobalt nitrate and zirconium oxynitrate are added to distilled water and stirred at a temperature of about 80 ° C. An aqueous solution was obtained. Next, the water in the aqueous solution is removed by evaporation, and the residue is calcined in a reducing gas (hydrogen gas in the first to third embodiments) at a temperature of about 450 ° C. for about 2 to 6 hours. By oxidizing zirconium nitrate, an amorphous (powdered) denitration catalyst composed of cobalt oxide and zirconium oxide was produced.
[0019]
By passing the exhaust gas through the denitration catalyst, NO 2 in the exhaust gas is occluded by zirconium oxide in the denitration catalyst as shown in the above formula (1) even at a low temperature of 320 ° C. or less. ZrO can be converted to ZrO. (NO 3 ) 2 . Further, NO in the exhaust gas can be occluded by zirconium oxide in the denitration catalyst after being oxidized to NO 2 with cobalt oxide in the denitration catalyst as shown in the above formula (2).
[0020]
When denitrification processes NO X in the exhaust gas in this manner, but the denitration catalyst activity decreases with increasing of the NO X storage amount, together with the NO X is absorbed and concentrated, butane gas, propane gas and H Since it can be reduced and released by a reducing gas such as 2 as shown in the above formula (3), the activity of the denitration catalyst can be easily recovered in a short time.
[0021]
(Second embodiment)
In the second embodiment, as in the first embodiment, cobalt nitrate and zirconium oxynitrate are added to distilled water (molar ratio: cobalt nitrate: zirconium oxynitrate = 1: 1), and then a denitration catalyst with respect to distilled water. Activated alumina (γ-Al 2 O 3 ) was added as a carrier for the above, followed by stirring and mixing at a temperature of about 80 ° C. to obtain an aqueous solution. Then, as in the first embodiment, the water in the aqueous solution is removed by evaporation to obtain a residue, which is then calcined in a reducing gas at a temperature of about 450 ° C. for about 2 to 6 hours to obtain cobalt nitrate and zirconium oxynitrate. Oxidation produced an amorphous (powdered) denitration catalyst composed of cobalt oxide and zirconium oxide.
[0022]
As in the second embodiment, by preparing a denitration catalyst by supporting cobalt oxide and zirconium oxide on a carrier, the amount of NO that can be occluded while maintaining the activity of the denitration catalyst (hereinafter referred to as the occlusion allowable amount). ) Can be made larger than in the first embodiment.
[0023]
(Third embodiment)
In the third example, first, activated alumina and a binder (for example, an organic binder) were added to distilled water and mixed and kneaded as a denitration catalyst carrier, and the resulting kneaded product was extruded. Thereafter, the extrudate is dried by conditioning and then fired at a temperature of about 800 ° C. to obtain a honeycomb-shaped carrier having a columnar structure (for example, 30 to 100 cells having a columnar structure of 65 mm × 65 mm × 130 mm). It was. Further, about 100 to 200 grams (preferably about 125 to 150 grams) of cobalt nitrate and zirconium oxynitrate are used, and these cobalt nitrate and zirconium oxynitrate are added to about 0.9 liter of distilled water and mixed to form an aqueous solution. Got.
[0024]
Next, the honeycomb-shaped carrier was immersed in the aqueous solution and allowed to stand at room temperature for about 0.5 to 6.0 hours (preferably about 1 to 2 hours). Thereafter, the honeycomb-shaped carrier is taken out from the aqueous solution, dried, and calcined at a temperature of about 450 ° C. for about 4 hours to oxidize cobalt nitrate and zirconium oxynitrate, thereby forming a honeycomb shape composed of cobalt oxide and zirconium oxide. A denitration catalyst (hereinafter referred to as a honeycomb catalyst) was prepared.
[0025]
As in the third embodiment, when the honeycomb catalyst is produced by supporting cobalt oxide and zirconium oxide on the honeycomb-shaped carrier, the allowable storage amount of the honeycomb catalyst can be made larger than that in the second embodiment. it can.
[0026]
(Denitration test)
Next, a honeycomb catalyst (a 30-cell honeycomb having a supporting rate of 10.5%) was prepared based on the third embodiment, and a test for confirming the characteristics of the denitration catalyst was performed using 20 g of the pulverized sample as a sample. It was.
[0027]
The test device, the processing vessel heater is attached (stainless steel), a gas inlet tube for introducing the gas and connecting the gas discharge pipe for discharging the gas, NO X concentration analyzer (drilling downstream of the gas discharge pipe This is a configuration in which a portable gas analyzer PG-250) is installed, and the sampled denitration catalyst 20g is housed in a stainless steel mesh case, which is then inserted into the processing vessel. -The installed one was used.
[0028]
In the test, a sample gas obtained by mixing NO (1500 ppm) and 13% O 2 and adjusting with N 2 gas was used to denitrate the sample gas and measure the NO X concentration after the denitration treatment to determine NO. This was done by confirming the removal rate of X. At this time, the operating temperature of the denitration catalyst was 300 ° C., and the W / F of the denitration catalyst was 2 g · s · cm −3 . The measurement results are shown in the characteristic diagram of the NO X removal rate with respect to time change of FIG.
[0029]
As shown in FIG. 1, it was confirmed that about 100% of NO x was removed over about 30 minutes from the start of the test.
[0030]
Then, NO X removal rate After 30 minutes gradually decreased, it remained horizontally at about 20%. When checking this phenomenon, a portion of NO in the sample gas passes through the test apparatus are changed to NO 2, since the measurement target of the NO X concentration analyzer is only NO, it changes to NO 2 the amount (about 20%) was found to be due to not measured at nO X concentration analyzer.
[0031]
From the above results, in the test conducted under these conditions, NO X can be removed for about 30 minutes by reduction and occlusion by the denitration catalyst, and then the activity of the denitration catalyst is gradually lost and removed. The rate decreased, and it was confirmed that NO X was not removed at all after 1 hour.
[0032]
In the state where the activity of the denitration catalyst was lost, when N 2 gas adjusted with C 3 H 8 (5000 ppm) as a reducing gas was introduced into the test apparatus, NO (high concentration) stored in the denitration catalyst was introduced. NO) was reduced to NO X and released from the denitration catalyst, and it was confirmed that the denitration catalyst regained its activity. At this time, the time required for the denitration catalyst to completely recover the activity was slightly shorter than about 30 minutes during which occlusion was possible.
[0033]
Therefore, using the above-mentioned test apparatus, NO (1500 ppm) and 13% O 2 were mixed and adjusted with N 2 gas to perform denitration (NO X occlusion) for about 30 minutes and then test It repeated carrying out the release of about 30 minutes NO X those switching the gas supplying device to the C 3 H 8 to (5000 ppm) was N 2 gas conditioning as a reducing gas and subjected to repeated experiments occlusion and release of the NO X . The results of this experiment are shown in the characteristic diagram of the switching times and the amount of NO X / mol of occluding and releasing FIG.
[0034]
As shown in FIG. 2, even when repeated occlusion and release, about 1.2 × 10 −3 mol of NO X is stably occluded during occlusion, and about 9.5 × 10 −3 mol of NO X is released during occlusion. It can be confirmed that the gas is stably released, and about 100% of NO X contained in the sample gas is occluded. If 20% of NO not measured by the above-mentioned NO x concentration analyzer is taken into consideration, the occluded NO X It can be seen that 100% of X is released.
[0035]
(Denitration system)
Next, a denitration system that continuously removes NO X in the exhaust gas using the denitration catalysts of the first to third embodiments will be described.
[0036]
FIG. 3 is a schematic explanatory diagram of a denitration system using the denitration catalyst of the first to third embodiments. In FIG. 3, reference numerals 11 and 12 denote first and second denitration reactors each filled with a denitration catalyst (not shown), and reference numeral 13 denotes exhaust gas discharged from a heat engine (not shown). Is a three-way valve for introducing either one of the first and second denitration reaction chambers 11 and 12. By controlling the three-way valve 13, the exhaust gas from the heat engine can be alternately introduced into the first and second denitration reaction chambers 11 and 12.
[0037]
The exhaust gas that has passed through the first and second denitration reaction chambers 11 and 12 is discharged to the outside of the heat engine through the three-way valve 14 or burner (high concentration NO x through the on-off valves 15a and 15b, respectively. Are introduced into a denitration burner 16 for burning the gas. As shown in the figure, it is assumed that a reducing gas can be introduced into the first and second denitration reaction chambers 11 and 12 via the on-off valves 17a and 17b, respectively.
[0038]
Next, an operation example of the denitration system shown in FIG. 3 will be described. First, the three-way valve 13 is controlled to introduce exhaust gas discharged from the heat engine into the first denitration reaction chamber 11, and NO X in the exhaust gas is reduced by the denitration catalyst in the first denitration reaction chamber 11 and occluded. As a result, NO X in the exhaust gas is removed. Its NO X exhaust gas has been removed is discharged from the system of the heat engine via the three-way valve 14.
[0039]
After the activity of the denitration catalyst in the first denitration reaction chamber 11 begins to decrease with the passage of time of the denitration reaction, the three-way valve 13 is controlled to introduce exhaust gas from the heat engine into the second denitration reaction chamber 12, similar to the first denitration reaction chamber 11 of the at denitration catalyst is occluded after reducing the NO X in the exhaust gas, the NO X exhaust gas removed is discharged from the system of the heat engine via the three-way valve 14 .
[0040]
Further, during the period in which the exhaust gas is introduced into the second denitration reaction chamber 12, a reducing gas is introduced into the first denitration reaction chamber 11 via the on-off valve 17a, and the first denitration reaction is performed. NO (high concentration NO) occluded in the denitration catalyst in the chamber 11 is reduced to NO X and released, and the reduced denitration catalyst activity in the first denitration reaction chamber 11 is recovered. The released NO X is introduced into the burner 16 and combusted together with fuel and combustion air, so that it is reduced or decomposed and discharged out of the system of the heat engine.
[0041]
Then, after the activity of the denitration catalyst in the second denitration reaction chamber 12 starts to decrease with the passage of time of the denitration reaction, the three-way valve 13 is controlled to introduce the exhaust gas from the heat engine into the first denitration reaction chamber 11 again. and, the activity was recovered denitration catalyst occludes after reducing the NO X in the exhaust gas, and discharges the exhaust gas to remove the NO X to the outside of the heat engine via the three-way valve 14.
[0042]
Further, by introducing the reducing gas into the second denitration reaction chamber 12 through the on-off valve 17b during the period in which the exhaust gas is introduced into the first denitration reaction chamber 11, the first denitration reaction chamber 12 is introduced. As in the case of the first denitration reaction chamber 11, the reduced denitration catalyst activity in the second denitration reaction chamber 12 is recovered, and the released NO x is combusted by the burner 16, reduced or decomposed, and then removed from the heat engine system. To discharge.
[0043]
As described above, a denitration system is configured, and exhaust gas from the heat engine is alternately introduced into the first and second denitration reaction chambers, and in each of the first and second denitration reaction chambers, an occlusion process and a discharge process are performed. By repeating the above, it is possible to continuously denitrate the exhaust gas from the heat engine and maintain the activity of the denitration catalyst in the denitration system. Further, according to this denitration system, it is not necessary to take out the denitration catalyst for cleaning or replacement, and the running cost can be reduced.
[0044]
In the denitration system shown in FIG. 3, but the emitted NO X is reduced or decomposed configured combusted by the burner, for example, recirculated to the heat engine with combustion air emitted NO X of the Or a combustion means such as a recombustion boiler or duct burner is provided between the heat engine and the denitration system, and the released NO X is combusted together with the combustion air in the combustion means. Also good.
[0045]
The three-way valves 13 and 14 and the on-off valves 15a, 15b, and 17a are also considered in consideration of the NO X amount that can be discharged, the storage capacity of the denitration catalyst, the reaction rates in the first and second denitration reaction chambers 11 and 12, and the like. , 17b can be used to automate the denitration system, and the size of the denitration system can be reduced by minimizing the amount of reducing gas to be used and the denitration catalyst (and each denitration reaction chamber). it can. Furthermore, the denitration reaction chamber in the denitration system may be increased according to the scale of the heat engine, the amount of exhaust gas, and the like.
[0046]
Furthermore, according to the denitration catalyst shown in the first to third embodiments, the operating temperature of the denitration reaction chamber capable of absorbing NO and NO 2 in the exhaust gas even one hundred to three hundred and twenty ° C. (NO 2 at room temperature under But it can be occluded). When the operating temperature is 100 ° C. or lower, NO cannot be occluded due to a decrease in the oxidizing power of cobalt oxide, and therefore a converter or the like for oxidizing NO may be provided.
[0047]
Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications can be made within the scope of the technical idea of the present invention. Of course, such variations and modifications fall within the scope of the appended claims.
[0048]
For example, by using a desulfurization device between each denitration reaction chamber and heat engine of the denitration system shown in the present embodiment, A heavy oil or C heavy oil that discharges not only NO X but also high concentration SO X is used. Can be applied to the heat engine that was.
[0049]
【The invention's effect】
As described above in detail, according to the present invention, NO x in exhaust gas can be occluded even at a low temperature of 320 ° C. or less by a denitration catalyst comprising cobalt oxide and zirconium oxide. Further, by the denitration catalyst, NO X in the exhaust gas can be recovered and concentrated to a to be occluded, the activity of the denitration catalyst is easily releases NO X in a short time with a reducing gas. Further, the denitration system 2 group using the denitration catalyst, as well as absorbing the NO X in the exhaust gas, it is possible to burn and releases the occluded NO X, can denitration successively the exhaust gas denitration system The activity of the denitration catalyst in the inside can be maintained.
[0050]
Therefore, denitration treatment of exhaust gas can be easily performed at low cost even at low temperatures.
[Brief description of the drawings]
[1] Time NO X removal rate characteristic diagram for change.
[Figure 2] characteristic diagram of the switching frequency and the amount of NO X occluded release.
FIG. 3 is a schematic explanatory diagram of a denitration system in the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... 1st denitration reaction chamber 12 ... 2nd denitration reaction chamber 13, 14 ... Three-way valve 15a, 15b, 17a, 17b ... On-off valve 16 ... Burner

Claims (5)

排ガス中のNOを吸蔵する脱硝触媒の製造方法において、
硝酸コバルトとオキシ硝酸ジルコニウムとをモル比率で硝酸コバルト:オキシ硝酸ジルコニウム=1:1の割合で用いて水溶液を作製し、その水溶液の水分を蒸発除去して得た残渣を還元ガス中にて焼成したことを特徴とする脱硝触媒の製造方法。
In a method for producing a denitration catalyst that stores NO X in exhaust gas,
An aqueous solution is prepared using cobalt nitrate and zirconium oxynitrate in a molar ratio of cobalt nitrate: zirconium oxynitrate = 1: 1, and the residue obtained by evaporating and removing the water in the aqueous solution is calcined in a reducing gas. A method for producing a denitration catalyst.
前記水溶液に活性アルミナを加えたことを特徴とする請求項1記載の脱硝触媒の製造方法。2. The method for producing a denitration catalyst according to claim 1, wherein activated alumina is added to the aqueous solution. 前記水溶液に対してハニカム状の活性アルミナを浸漬した後、その活性アルミナを乾燥し還元ガス中にて焼成したことを特徴とする請求項1記載の脱硝触媒の製造方法。2. The method for producing a denitration catalyst according to claim 1, wherein the activated alumina is dipped in the aqueous solution, and then the activated alumina is dried and calcined in a reducing gas. 請求項1乃至3の何れかの製造方法によって製造したことを特徴とする脱硝触媒。A denitration catalyst produced by the production method according to claim 1. 請求項1乃至3の何れかの製造方法によって製造した脱硝触媒を備えた2基の脱硝反応室に対し排ガスを交互に導入し、
前記の各脱硝反応室にて、排ガス中のNOを吸蔵する工程と、吸蔵したNOを放出する工程と、を繰り返し行うことにより、
何れか一方の脱硝反応室にて前記の排ガス中のNOを吸蔵すると共に、他方の脱硝反応室に還元ガスを導入して吸蔵されたNOを放出し、
前記の放出されたNOは燃焼処理することを特徴とする脱硝システム。
The exhaust gas is alternately introduced into the two denitration reaction chambers equipped with the denitration catalyst produced by the production method according to claim 1,
In each of the denitration reaction chambers, by repeatedly storing the NO X in the exhaust gas and releasing the stored NO X ,
Either at one of the denitration reaction chamber while storing the NO X in the exhaust gas, by introducing a reducing gas into the other of the denitration reaction chamber to release occluded NO X,
A NOx removal system characterized in that the released NO X is subjected to a combustion treatment.
JP2002227010A 2002-08-05 2002-08-05 Method of manufacturing denitration catalyst, denitration catalyst, and denitration system Expired - Fee Related JP4087659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002227010A JP4087659B2 (en) 2002-08-05 2002-08-05 Method of manufacturing denitration catalyst, denitration catalyst, and denitration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002227010A JP4087659B2 (en) 2002-08-05 2002-08-05 Method of manufacturing denitration catalyst, denitration catalyst, and denitration system

Publications (2)

Publication Number Publication Date
JP2004066070A true JP2004066070A (en) 2004-03-04
JP4087659B2 JP4087659B2 (en) 2008-05-21

Family

ID=32014160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002227010A Expired - Fee Related JP4087659B2 (en) 2002-08-05 2002-08-05 Method of manufacturing denitration catalyst, denitration catalyst, and denitration system

Country Status (1)

Country Link
JP (1) JP4087659B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2279785A3 (en) * 2005-03-29 2011-09-21 Yanmar Co. Ltd. Exhaust gas purifier
JP2014043819A (en) * 2012-08-28 2014-03-13 Ihi Corp Denitrification apparatus, and denitrification method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2279785A3 (en) * 2005-03-29 2011-09-21 Yanmar Co. Ltd. Exhaust gas purifier
JP2014043819A (en) * 2012-08-28 2014-03-13 Ihi Corp Denitrification apparatus, and denitrification method

Also Published As

Publication number Publication date
JP4087659B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP6363554B2 (en) Small pore molecular sieve supported copper catalyst for the reduction of nitrogen oxides with durability against lean / rich aging
KR101659788B1 (en) Denox of diesel engine exhaust gases using a temperature-controlled precatalyst for providing no2 in accordance with the requirements
JP2019048295A (en) V/TiW CATALYST ACTIVATED BY ZEOLITE
US20110120093A1 (en) Process and apparatus for purifying exhaust gases from an internal combustion engine
WO2006013998A1 (en) Process for catalytic reduction of nitrogen oxides
JP2006289211A (en) Ammonia oxidation catalyst
WO2007032564A1 (en) Exhaust gas clean-up system for internal combustion engine
US20120134916A1 (en) High-temperature scr catalyst
KR20140027062A (en) Selective reduction catalyst, and exhaust gas purification device and exhaust gas purification method using same
JP2005177570A (en) Scr catalyst excellent in characteristic at high temperature
JPWO2018025827A1 (en) Cold start compatible urea SCR system
US20080041045A1 (en) Apparatus and method for assisting selective catalytic reduction
JP2005081189A (en) Catalyst for denitrifying high temperature waste gas
JP2003236343A (en) Method for decontaminating exhaust gas and apparatus for denitration at low temperature
JP4087659B2 (en) Method of manufacturing denitration catalyst, denitration catalyst, and denitration system
JP2007016635A (en) Exhaust emission control device for internal combustion engine
JP2004138022A (en) Method of and device for treating diesel exhaust gas
Kim et al. Development of ultra-stable Cu-SCR aftertreatment system for advanced lean NOx control
JP2000262852A (en) Method for low temperature denitration
EP3815787A1 (en) Low temperature regeneration method of sulfate-deactivated scr catalysts using no2 injection
EP3615183B1 (en) Method and system for the removal of noxious compounds from flue-gas using fabric filter bags with an scr catalyst
JP2005226458A (en) Method and device for treating diesel exhaust gas
JP3560147B2 (en) Exhaust gas purification system
KR101298667B1 (en) Apparatus for purifying exhaust gas
JP5285459B2 (en) Exhaust gas purification catalyst and exhaust gas purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4087659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees