JP2004064018A - Film forming method - Google Patents

Film forming method Download PDF

Info

Publication number
JP2004064018A
JP2004064018A JP2002223858A JP2002223858A JP2004064018A JP 2004064018 A JP2004064018 A JP 2004064018A JP 2002223858 A JP2002223858 A JP 2002223858A JP 2002223858 A JP2002223858 A JP 2002223858A JP 2004064018 A JP2004064018 A JP 2004064018A
Authority
JP
Japan
Prior art keywords
film
insulating film
precoat
gas
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002223858A
Other languages
Japanese (ja)
Other versions
JP3725100B2 (en
Inventor
Tsutomu Shimayama
島山 努
Yoichi Suzuki
鈴木 洋一
Hiroshi Hamana
濱名 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to JP2002223858A priority Critical patent/JP3725100B2/en
Publication of JP2004064018A publication Critical patent/JP2004064018A/en
Application granted granted Critical
Publication of JP3725100B2 publication Critical patent/JP3725100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film forming method that improves throughput for processing a substrate and to improve an in-plane uniformity in film thickness of an insulating film. <P>SOLUTION: The film forming method includes an arrangement process for arranging a wafer W in a reactive vessel, and a film forming process in which the gas for forming an insulating film is guided-in with plasma generated in the reactive vessel, for forming an insulating film on the wafer W. A process for forming a precoat film in the reactive vessel is processed before the arrangement process so that the precoat film formed on the wafer W comes to be a compressive film while its stress is lower than that of the insulating film if it is assumed that a substrate to be processed is housed in the reactive vessel, after the gas for forming the precoat film is guided-in with plasma generated in the reactive vessel. By this film forming method, the in-plane uniformity in film thickness of the insulating film is improved even if the precoat film is thin. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、反応容器内に収容される被処理基板の表面に絶縁膜を形成する成膜方法に係り、より詳細にはプラズマCVD(Chemical Vapor Deposition)法を用いた成膜方法に関する。
【0002】
【従来の技術】
プラズマCVD法は、半導体製造工程において、反応容器内に収容される半導体ウェハなどの被処理基板上に絶縁膜を形成するのによく用いられている。プラズマCVD法を用いる場合、被処理基板を載置するサセプタと、反応容器を構成するフェースプレートとの間にRF電力を印加し、反応容器内にプラズマを生成させた状態にして絶縁膜形成用ガスを導入し、これにより被処理基板の表面上に絶縁膜が形成される。このとき、絶縁膜は、膜剥がれが起こりにくいコンプレッシブストレス膜であることが望ましい。この場合、プラズマを低いRF電力(500W以下)で生成し、絶縁膜を低い成膜速度(500nm/min以下)で形成することが必要な場合がある。
【0003】
ところが、上記成膜を行う場合、反応容器内の反応が不安定になる場合がある。このため、反応容器内の反応を安定させるために、成膜前に、実際に被処理基板上に成膜を行うのと同じ条件で反応容器内にプリコート膜を形成するという手法が一般に使われる。プリコート膜は一般的に、(1)チャンバのクリーニング後における残留フッ素の影響を小さくする、(2)チャンバ内にパーティクルが発生した際、それがウェハ上に載るのを抑える、(3)ウェハ上に形成される絶縁膜に近い組成とすることによりチャンバ内の雰囲気を整える、という利点を有している。
【0004】
【発明が解決しようとする課題】
しかしながら、前述した従来の成膜方法においては、得られる絶縁膜において膜厚の面内均一性が悪くなるという問題があった。この問題は、全てのチャンバで起こるというものではないが、頻繁に発生しており、改善が求められていた。
【0005】
一方、プリコート膜の膜厚を大きくすれば、絶縁膜における膜厚の面内均一性が向上するが、この場合は、被処理基板のスループットが低下するという問題があった。
【0006】
本発明は、上記事情に鑑みてなされたものであり、被処理基板のスループットを向上させ且つ絶縁膜における膜厚の面内均一性を向上させることができる成膜方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した。そして、プリコート膜の形成条件(プリコート膜形成用ガスの流量、RF電力、サセプタとフェースプレートとの間の間隔、チャンバの圧力)を変更することにより膜厚の面内均一性が改善されるのではないかとの考えをもとに鋭意研究を重ねた。その結果、プリコート膜の種類が、その後の成膜における均一性に影響を与えることを確認し、最終的には、プリコート膜として、コンプレッシブ膜であり且つそのストレスが絶縁膜のストレスよりも小さい膜を用いることにより、被処理基板上に形成される絶縁膜において膜厚の面内均一性が大幅に改善されることを見出し、本発明を完成するに至った。なお、膜厚の面内均一性を改善するためには、成膜条件を変更することも考えられるが、この場合、従来得ていたのと同じ品質の膜を得ることが不可能となる。
【0008】
そこで、本発明は、被処理基板を反応容器内に配置する配置工程と、前記反応容器内にプラズマを生成させた状態で絶縁膜形成用ガスを導入し、前記被処理基板上に絶縁膜を形成する成膜工程とを含む成膜方法において、前記配置工程の前に、前記反応容器内にプラズマを生成させた状態でプリコート膜形成用ガスを導入し、前記反応容器内に被処理基板が収容されると仮定した場合に前記被処理基板上に形成されるプリコート膜がコンプレッシブ膜となるように且つそのストレスが前記絶縁膜のストレスよりも小さくなるように、前記反応容器内にプリコート膜を形成するプリコート膜形成工程を含むことを特徴とする。
【0009】
この成膜方法によれば、プリコート膜の膜厚が小さくても、絶縁膜における膜厚の面内均一性を向上させることができる。
【0010】
上記プリコート膜形成工程において、上記被処理基板上に形成されるプリコート膜のストレスが−200MPa以下となるように前記反応容器内にプリコート膜を形成することが好ましい。プリコート膜の圧縮ストレスが−200MPaを超えると、被処理基板上に絶縁膜を形成する際、絶縁膜の膜厚の面内均一性が悪くなる(プリコート膜が無い場合と比較して絶縁膜の膜厚の面内均一性が改善されなくなる)ことがある。
【0011】
上記プリコート膜及び絶縁膜は、ケイ素原子と窒素原子とを含む化合物から構成されていることが好ましい。このようなプリコート膜及び絶縁膜を形成した場合に特に、絶縁膜における膜厚の面内均一性を向上させることができる。
【0012】
上記成膜工程においては、前記反応容器内にプラズマを生成させるための電力を500W以下にすることにより、絶縁膜をコンプレッシブ膜にすることが可能となる。
【0013】
また上記成膜工程においては、前記被処理基板上への成膜速度を500nm/min以下にすることにより、絶縁膜をコンプレッシブ膜にすることが可能となる。
【0014】
【発明の実施の形態】
以下、本発明の実施形態について詳細に説明する。
【0015】
図1は、本発明に係る成膜方法を実施するための平行平板型プラズマCVD装置を示す断面図である。図1に示すように、プラズマCVD装置1は反応容器本体2を備えている。反応容器本体2は上部に開口を有しており、反応容器本体2の上部には、この開口を塞ぐように蓋体3が設けられている。
【0016】
蓋体3には開口3aが形成され、この開口3aには、フェースプレート9が、セラミック等からなる環状の絶縁体10を介して、蓋体3に嵌め込まれている。
【0017】
フェースプレート9は、チャンバ4内にガスを供給するためのものである。従って、フェースプレート9は、多数のガス流通孔9aを有している。またフェースプレート9には、中央にガス導入口11aを有するガスボックス11が嵌め込まれ、ガスボックス11には、フェースプレート9との間にブロッカープレート12が設けられている。ブロッカープレート12は、ガス導入口11aを経て導入されるガスを分散させるためのものである。
【0018】
なお、上記反応容器本体2、蓋体3、フェースプレート9、絶縁体10およびガスボックス12により反応容器が構成されている。
【0019】
更にガス導入口11aには、主配管13を介してSiH源14が接続され、主配管13には弁15が設置されている。従って、弁15を開くことにより、チャンバ4内にSiHガスを供給することが可能となっている。
【0020】
また主配管13には分岐配管16が接続され、分岐配管16には、第1分岐配管17を介してNガス源18が接続され、第2分岐配管19を介してNHガス源20が接続され、第3分岐配管21を介してHeガス源22が接続されている。第1分岐配管17には第1弁23が設置され、第2分岐配管19には第2弁24が設置され、第3分岐配管21には第3弁25が設置されている。従って、第1〜第3弁23,24,25を開くことにより、チャンバ4内にNガス、Heガス、NHガスを供給することが可能となっている。
【0021】
なお、上記SiHガス、Nガス、NHガスは、ウェハ(被処理基板)W上に絶縁膜を形成するための絶縁膜形成用ガスであり、また反応容器内にプリコート膜を形成するためのプリコート膜形成用ガスでもある。
【0022】
またチャンバ4には、フェースプレート9に対向する位置に、ウェハWを支持する支持面26aを持ったサセプタ26が設けられ、サセプタ26は、ヒータ(図示せず)を内蔵している。またサセプタ26は、反応容器本体2に対して移動可能に設けられ、サセプタ26は、昇降機構(図示せず)によって昇降自在に移動されるようになっている。従って、フェースプレート9とサセプタ26との間の間隔(以下、「ヒータスペーシング」という)を任意に調整可能となっている。
【0023】
ところで、上記サセプタ26およびフェースプレート9は平行平板型電極を構成する。このため、サセプタ26及びフェースプレート9はいずれも金属で構成されている。このような金属としては通常、アルミニウムが用いられる。ここで、サセプタ26は接地され、フェースプレート9には、RF(高周波)電源27が電気的に接続されている。RF電源27より出力される電力の周波数は通常、13.56MHzである。従って、フェースプレート9とサセプタ26との間にRF電力を印加し、チャンバ4内にプラズマを生成させることが可能となっている。
【0024】
更に反応容器本体2には、ガス通路5と連通する配管6が接続され、配管6には真空ポンプ7が接続されている。また配管6には弁8が設置され、この弁8と真空ポンプ7により、チャンバ4の圧力が任意に調整可能となっている。
【0025】
次に、上記プラズマCVD装置1を用いた成膜方法について説明する。
【0026】
先ずウェハW上への成膜を行う前に、反応容器内にプリコート膜を形成する(プリコート膜形成工程)。この工程では、サセプタ26の支持面26a上にウェハWを載置した場合にウェハW上に形成されるプリコート膜がコンプレッシブ膜となるように且つそのストレスが後述する絶縁膜のストレスよりも小さくなるようにプリコート膜を形成する。
【0027】
ここで、膜のストレスは、下記式:
【0028】
【数1】

Figure 2004064018
(上記式中、σは膜のストレス(Pa)、Kは定数、hはウェハWの厚さ(m)、tは膜の厚さ(m)、Rは膜形成前のウェハWの曲率半径(m)、Rは膜形成後のウェハWの曲率半径(m)を表す)
に基づいて算出される。算出されるストレスの値が負で表されるときは、その膜がコンプレッシブ膜であることを意味し、正で表されるときは、その膜がテンサイル膜であることを意味する。
【0029】
このストレスは、K、h、t、R、Rを上記式に代入することにより求めることもできるが、ストレス測定装置(KLA−Tencor社製FLX5400)及びエリプソメトリ(KLA−Tencor社製UV1280SE)を用いて求めることもできる。
【0030】
上記のようなプリコート膜の存在により、プリコート膜の膜厚が小さくても、ウェハW上に形成される絶縁膜において膜厚の面内均一性を向上させることができる。
【0031】
このとき、プリコート膜のストレスは好ましくは−200MPa以下であり、より好ましくは−250MPa以下である。プリコート膜のストレスが−200MPaを超えると、絶縁膜において膜厚の均一性が低くなる傾向がある。また、プリコート膜のストレスは、好ましくは−5000MPa以上であり、より好ましくは−3000MPa以上である。ストレスが−5000MPa未満では、チャンバ4内で壁面に付着したプリコート膜に剥がれが生じるおそれがある。
【0032】
上記のようなプリコート膜は、具体的には以下のようにして形成することができる。
【0033】
即ち、先ず弁8を開くと共に真空ポンプ7を作動し、チャンバ4内のガスをガス通路5、配管6を経て排出することにより、チャンバ4を減圧する。こうしてチャンバ4の圧力を130〜2600Paに設定する。
【0034】
次に、昇降機構によりサセプタ26を移動させ、ヒータスペーシングを調節する。このときのヒータスペーシングは例えば2.5〜25mm(100〜1000mils)である。このとき、サセプタ26に内蔵されているヒータを作動し、サセプタ26の温度を100〜600℃程度に設定する。
【0035】
次に、RF電源27を作動する。これにより、フェースプレート9とサセプタ16との間にRF電力が印加され、チャンバ4内にプラズマが生成する。このときのRF電力は、ウェハWの径に応じて調節する。即ちウェハWの径が大きくなれば、チャンバ4も大きくなるので、RF電力の値も大きくなる。例えばウェハWの径が200mm(8インチ)の場合は、RF電力は、50〜3000Wにする。これは、RF電力が50W未満では、プラズマが発生しないおそれがあるからであり、RF電力が3000Wを超過すると、アーク放電を生じるおそれがあるからである。
【0036】
こうしてチャンバ4内にプラズマを生成させた状態で、弁15を開くと共に、第1弁23、第2弁24を開く。すると、SiH源からSiHガスが主配管13に流入し、N源からNガスが第1分岐配管17、分岐配管16を経て主配管13に流入し、NH源からNHガスが第2分岐配管20、分岐配管16を経て主配管13に流入する。そして、SiHガス、Nガス及びNHガスの混合ガスが主配管13からガス導入口11a、ブロッカープレート11、フェースプレート9のガス流通孔9aを経てチャンバ4内に導入される。これにより、チャンバ4の内壁に、SiNからなるプリコート膜が形成される。
【0037】
このとき、SiHガスに対するNガスの流量比は、好ましくは5〜30である。更にSiHガスに対するNHガスの流量比は、好ましくは0〜0.5である。
【0038】
更に混合ガスをチャンバ4に導入する時間(以下、「シーズニング時間」という)は、好ましくは5〜20秒である。シーズニング時間が5秒未満では、後述する絶縁膜における膜厚の均一性が低下する傾向があり、20秒を超えると、プリコート膜形成工程に時間がかかるため、ウェハWの高スループットを達成できなくなる傾向がある。
【0039】
次にRF電源27を停止し、弁15、第1弁23、第2弁24を閉じる。すると、チャンバ4内のプラズマが消滅し、チャンバ4へのSiHガス、Nガス及びNHガスの導入が停止される。
【0040】
こうしてチャンバ4内にプリコート膜を形成した後、反応容器本体2に形成された導入口(図示せず)を通して、ウェハWをチャンバ4内に配置する(配置工程)。
【0041】
その後、RF電源27を作動して、チャンバ4内にプラズマを生成させ、弁15、第1弁23及び第2弁24を開き、チャンバ4内にSiHガス、Nガス及びNHガスの混合ガスを導入する。これにより、ウェハW上にSiNからなる絶縁膜が形成される(成膜工程)。
【0042】
こうして形成される絶縁膜においては、プリコート膜が薄くても、即ちシーズニング時間が短くても、膜厚の面内均一性を確実に向上させることができ、ウェハWの高スループットを達成することができる。更に本実施形態の成膜方法においては、成膜条件が変更されるのではなく、プリコート膜形成条件が変更される。このため、絶縁膜について、従来得ていたのと同様の膜質を維持することができる。
【0043】
上記のようなプリコート膜により上記のような効果を達成できる理由は定かではないが、以下の通りではないかと推察される。
【0044】
即ちフェースプレート9においては通常、その表面に粗さがあったり、フェースプレート9を構成する金属が不均一に酸化されたりしているものと考えられる。この場合に低RF電力でフェースプレート9の表面にプリコート膜を形成すると、フェースプレート9の表面粗さや表面の不均一酸化に起因してプリコート膜の膜質が不均一となると考えられ、これにより絶縁膜の膜厚が不均一になるものと考えられる。これに対し、本発明の成膜方法では、フェースプレート9の表面に粗さがあったり、表面が不均一に酸化されていたりしても、フェースプレート9の表面に、コンプレッシブ膜が形成される。従って、絶縁膜は、フェースプレート9の表面状態に影響を受けなくなり、プリコート膜の膜厚が小さくても、膜厚の均一性が向上するものと考えられる。
【0045】
この成膜工程においては、チャンバ4内にプラズマを生成させるための電力を500W以下にする。これにより、絶縁膜をコンプレッシブ膜にすることが可能となる。
【0046】
また成膜工程においては、ウェハW上への成膜速度を500nm/min以下にする。これにより、絶縁膜をコンプレッシブ膜にすることが可能となる。
【0047】
更にSiHガスに対するNガスの流量比は、好ましくは5〜30である。またSiHガスに対するNHガスの流量比は、好ましくは0〜0.5である。
【0048】
また混合ガスをチャンバ4に導入する時間(以下、「成膜時間」という)は、好ましくは1秒以上である。成膜時間が1秒未満では、プラズマが安定しないため、絶縁膜における膜厚の均一性が低下する傾向がある。
【0049】
上記成膜工程は、この時点で終了してもよいが、引き続いて別のウェハWに対して行ってもよい。
【0050】
本発明は、前述した実施形態に限定されるものではない。例えば上記実施形態では、ウェハWにSiNからなるプリコート膜および絶縁膜が形成されているが、本発明は、ケイ素原子と窒素原子を含む化合物からなるプリコート膜および絶縁膜を形成する場合に有効である。このようなプリコート膜及び絶縁膜を形成した場合に特に、絶縁膜における膜厚の面内均一性を向上させることができるからである。従って、SiONからなるプリコート膜および絶縁膜が形成されてもよい。この場合、プリコート膜形成工程及び成膜工程においては、SiHガス及びNガスのほか、NOガスを導入する必要がある。
【0051】
また、上記実施形態では、NHガスをチャンバ4に導入しているが、NHガスは必ずしもチャンバ4に導入する必要はない。
【0052】
更に、上記実施形態では、単一のチャンバを有するプラズマCVD装置が用いられているが、本発明は、2つのチャンバを有するプラズマCVD装置(ツインチャンバプラズマCVD装置)に適用する場合にも有効である。
【0053】
即ちツインチャンバプラズマCVD装置においては、一方のチャンバにあるフェースプレートの表面状態が良好でなく、他方のチャンバにあるフェースプレートの表面状態は良好であるというような場合が起こり得る。この場合、従来の成膜方法をツインチャンバプラズマCVD装置に適用すると、成膜時の条件と同じ条件でチャンバ内にプリコート膜が形成されるため、一方のチャンバで得られる絶縁膜は膜厚均一性が悪くなり、他方のチャンバで得られる絶縁膜は膜厚均一性が良好となる事態が起こり得る。これに対し、本発明の成膜方法をツインチャンバプラズマCVD装置に適用すると、いずれのチャンバで得られる絶縁膜も、膜厚の均一性が良好となる。即ち本発明の成膜方法によれば、フェースプレートの表面状態によらずに膜厚の均一性を確実に向上させることができる。
【0054】
次に、本発明の内容を、実施例及び比較例を用いてより具体的に説明する。
【0055】
【実施例】
(実施例1)
図1に示すプラズマCVD装置1において、チャンバ4のサセプタ26上にシリコン基板(直径200mm、厚さ0.725mm)を載置した。そして、下記条件により、シリコン基板上に厚さ70nmのSiNからなるプリコート膜を形成した。
【0056】
[プリコート膜形成条件]
チャンバ4の圧力:746.6Pa(5.6Torr)
ヒータ温度:400℃
ヒータスペーシング:11mm(440mils)
RF電力:1200W
SiHガスの流量:3.17×10−6/s(190sccm)
NHガスの流量:1.33×10−6/s(80sccm)
ガスの流量:4.17×10−5/s(2500sccm)
シーズニング時間:20秒
こうしてシリコン基板上に形成されたプリコート膜について、ストレス測定装置(KLA−Tencor社製FLX5400)及びエリプソメトリ(KLA−Tencor社製UV1280SE)を用いてストレスを測定した。その結果、プリコート膜のストレスは−350MPaであった。
【0057】
次に、チャンバ4のサセプタ26上にシリコン基板を載置し、下記条件により、シリコン基板上に成膜を行った。
【0058】
[成膜条件]
チャンバ4の圧力:560.0Pa(4.2Torr)
ヒータ温度:400℃
ヒータスペーシング:13.75mm(550mils)
RF電力:460W
SiHガスの流量:3.67×10−6/s(220sccm)
NHガスの流量:1.25×10−6/s(75sccm)
ガスの流量:8.33×10−5/s(5000sccm)
成膜時間:95秒
こうしてシリコン基板上にSiNからなる絶縁膜を形成した。そして、この絶縁膜について上記と同様にしてストレスを測定した。その結果、絶縁膜のストレスは−100MPaであり、プリコート膜のストレスよりも小さいことが分かった。
【0059】
次に、上記シリコン基板上の絶縁膜について膜厚の面内均一性を以下のようにして測定した。即ち絶縁膜上の領域のうち縁部3mmの領域を除いた領域の49箇所について、上記エリプソメトリを用いて膜厚を測定した。そして、下記式:膜厚の面内均一性(%)=(膜厚の最も厚い点での測定値−
膜厚の最も薄い点での測定値)/(膜厚の平均値)/2×100
に基づき、膜厚の面内均一性を算出した。その結果、絶縁膜における膜厚の面内均一性は、2.80%であった。
【0060】
(比較例1)
シリコン基板上に、下記条件で、SiNからなる厚さ1600Åのプリコート膜を形成した以外は実施例1と同様にして、シリコン基板上にSiNからなる絶縁膜を形成した。
【0061】
[プリコート膜形成条件]
チャンバ4の圧力:560Pa(4.2Torr)
ヒータ温度:400℃
ヒータスペーシング:13.75mm(550mils)
RF電力:460W
SiHガスの流量:3.67×10−6/s(220sccm)
NHガスの流量:1.25×10−6/s(75sccm)
ガスの流量:8.33×10−5/s(5000sccm)
シーズニング時間:30秒
こうしてシリコン基板上に形成されたプリコート膜について実施例1と同様にしてストレスを測定した。その結果、プリコート膜のストレスは−100MPaであった。また、シリコン基板上に形成された絶縁膜についても実施例1と同様にしてストレスを測定した。その結果、絶縁膜のストレスは−100MPaであり、プリコート膜のストレスと同じ値であった。
【0062】
次に、実施例1と同様にして、上記シリコン基板上の絶縁膜について膜厚の面内均一性を測定した。その結果、絶縁膜における膜厚の面内均一性は、6.94%であった。
【0063】
(比較例2)
シリコン基板上に、下記条件で、SiOからなる厚さ1750Åのプリコート膜を形成し、下記条件で絶縁膜の成膜を行った以外は実施例1と同様にして、シリコン基板上にSiOからなる絶縁膜を形成した。
【0064】
[プリコート膜形成条件]
チャンバ4の圧力:360Pa(2.7Torr)
ヒータ温度:400℃
ヒータスペーシング:12.75mm(510mils)
RF電力:300W
SiHガスの流量:4.34×10−6/s(260sccm)
Oガスの流量:6.50×10−5/s(3900sccm)
シーズニング時間:10秒
【0065】
[成膜条件]
チャンバ4の圧力:560Pa(4.2Torr)
ヒータ温度:400℃
ヒータスペーシング:13.75mm(550mils)
SiHガスの流量:3.67×10−6/s(220sccm)
NHガスの流量:1.25×10−6/s(75sccm)
ガスの流量:8.33×10−5/s(5000sccm)
【0066】
こうしてシリコン基板上に形成されたプリコート膜について実施例1と同様にしてストレスを測定した。その結果、プリコート膜のストレスは−100MPaであった。また、シリコン基板上に形成された絶縁膜についても実施例1と同様にしてストレスを測定した。その結果、絶縁膜のストレスは−100MPaであり、プリコート膜と同じ値であった。
【0067】
次に、実施例1と同様にして、上記シリコン基板上の絶縁膜について膜厚の面内均一性を測定した。その結果、絶縁膜における膜厚の面内均一性は、7.24%であった。
【0068】
上記実施例1、比較例1及び比較例2の結果から、本発明の成膜方法により絶縁膜の膜厚均一性が十分に向上することが確認できた。
【0069】
(絶縁膜における膜厚均一性のシーズニング時間依存性)
シーズニング時間を0、5、10、20、30、40、50、60、120秒とした以外は実施例1と同様にして絶縁膜を形成し、絶縁膜における膜厚の均一性を調べた。一方、シーズニング時間を0、5、10、20、30、40、50、60、120秒とした以外は比較例1と同様にして絶縁膜を形成し、絶縁膜における膜厚の均一性を調べた。結果を図2に示す。なお、図2中、「○」は、シーズニング時間以外は実施例1と同様にして成膜を実施して得た膜厚均一性のデータを示している。シーズニング時間が0秒の場合のデータは、参考のために設けたものである。また、図2中、「●」は、シーズニング時間以外は比較例1と同様にして成膜を実施して得た膜厚均一性のデータを示している。
【0070】
図2に示すように、プリコート膜のストレスの絶対値を絶縁膜よりも大きくした場合は、絶縁膜の膜厚均一性が3%以下になるまでに5〜10秒しかかからなかったのに対し、プリコート膜のストレスの絶対値を絶縁膜と同じくした場合は、絶縁膜の膜厚均一性が3%以下となるまでに60秒以上かかることが分かった。
【0071】
このことから、本発明の成膜方法によれば、シーズニング時間が短くても、絶縁膜の面内均一性を向上させることができ、被処理基板の高スループットを達成することができることが分かった。
【0072】
【発明の効果】
以上説明したように本発明の成膜方法によれば、プリコート膜のストレスを絶縁膜のストレスよりも小さくすることにより、被処理基板のスループットを向上させることができ、且つ絶縁膜における膜厚の面内均一性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の成膜方法を実施するためのプラズマCVD装置の一例を示す断面図である。
【図2】絶縁膜の膜厚均一性のシーズニング時間依存性を示すグラフである。
【符号の説明】
W…被処理基板、2…反応容器本体(反応容器)、3…蓋体(反応容器)、9…フェースプレート(反応容器)、10…絶縁体(反応容器)、12…ガスボックス(反応容器)。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a film forming method for forming an insulating film on a surface of a substrate to be processed accommodated in a reaction vessel, and more particularly, to a film forming method using a plasma CVD (Chemical Vapor Deposition) method.
[0002]
[Prior art]
The plasma CVD method is often used in a semiconductor manufacturing process to form an insulating film on a substrate to be processed such as a semiconductor wafer housed in a reaction vessel. When the plasma CVD method is used, an RF power is applied between a susceptor on which a substrate to be processed is placed and a face plate constituting a reaction vessel, and plasma is generated in the reaction vessel to form an insulating film. Gas is introduced, whereby an insulating film is formed on the surface of the substrate to be processed. At this time, it is desirable that the insulating film is a compressive stress film in which film peeling does not easily occur. In this case, it may be necessary to generate plasma with low RF power (500 W or less) and form the insulating film at a low deposition rate (500 nm / min or less).
[0003]
However, when the above film formation is performed, the reaction in the reaction vessel may become unstable. For this reason, in order to stabilize the reaction in the reaction vessel, a method of forming a pre-coated film in the reaction vessel under the same conditions as those for actually forming a film on the substrate to be processed before film formation is generally used. . The precoat film generally (1) reduces the effect of residual fluorine after cleaning the chamber, (2) suppresses the generation of particles in the chamber when they are generated, and (3) the surface of the wafer. There is an advantage that the atmosphere in the chamber is adjusted by making the composition close to that of the insulating film formed on the substrate.
[0004]
[Problems to be solved by the invention]
However, the conventional film forming method described above has a problem that the in-plane uniformity of the film thickness of the obtained insulating film is deteriorated. This problem does not occur in all chambers, but occurs frequently and needs improvement.
[0005]
On the other hand, if the thickness of the precoat film is increased, the in-plane uniformity of the thickness of the insulating film is improved, but in this case, there is a problem that the throughput of the substrate to be processed is reduced.
[0006]
The present invention has been made in view of the above circumstances, and has as its object to provide a film forming method capable of improving the throughput of a substrate to be processed and improving the in-plane uniformity of the film thickness of an insulating film. I do.
[0007]
[Means for Solving the Problems]
The present inventors have intensively studied to solve the above problems. The in-plane uniformity of the film thickness can be improved by changing the conditions for forming the precoat film (flow rate of the gas for forming the precoat film, RF power, distance between the susceptor and the face plate, pressure in the chamber). Based on the idea that this might be the case, we conducted intensive research. As a result, it was confirmed that the type of the precoat film affected the uniformity in the subsequent film formation. Finally, the precoat film was a compressive film and its stress was smaller than the stress of the insulating film. It has been found that the use of the film significantly improves the in-plane uniformity of the film thickness of the insulating film formed on the substrate to be processed, and has completed the present invention. In order to improve the in-plane uniformity of the film thickness, it is conceivable to change the film forming conditions. However, in this case, it is impossible to obtain a film having the same quality as that obtained conventionally.
[0008]
Therefore, the present invention provides an arrangement step of disposing a substrate to be processed in a reaction vessel, and introducing an insulating film forming gas in a state where plasma is generated in the reaction vessel, and forming an insulating film on the substrate to be processed. In the film forming method including a film forming step of forming, before the arranging step, a gas for forming a precoat film is introduced in a state where plasma is generated in the reaction vessel, and a substrate to be processed is introduced into the reaction vessel. The pre-coat film is formed in the reaction container so that the pre-coat film formed on the substrate to be processed is a compressive film when the housing is assumed to be accommodated and the stress is smaller than the stress of the insulating film. And forming a precoat film forming step.
[0009]
According to this film forming method, even if the thickness of the precoat film is small, the in-plane uniformity of the film thickness of the insulating film can be improved.
[0010]
In the pre-coat film forming step, it is preferable that a pre-coat film is formed in the reaction vessel so that a stress of the pre-coat film formed on the substrate to be processed is -200 MPa or less. If the compressive stress of the precoat film exceeds -200 MPa, the in-plane uniformity of the thickness of the insulating film is deteriorated when forming the insulating film on the substrate to be processed (compared to the case without the precoat film, The in-plane uniformity of the film thickness may not be improved).
[0011]
The precoat film and the insulating film are preferably made of a compound containing a silicon atom and a nitrogen atom. In particular, when such a precoat film and an insulating film are formed, in-plane uniformity of the film thickness of the insulating film can be improved.
[0012]
In the above-described film forming step, the power for generating plasma in the reaction vessel is set to 500 W or less, whereby the insulating film can be made a compressive film.
[0013]
In the above-described film forming step, the insulating film can be made a compressive film by setting the film forming rate on the substrate to be processed to 500 nm / min or less.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0015]
FIG. 1 is a cross-sectional view showing a parallel plate type plasma CVD apparatus for performing a film forming method according to the present invention. As shown in FIG. 1, the plasma CVD apparatus 1 includes a reaction vessel main body 2. The reaction vessel main body 2 has an opening at the top, and a lid 3 is provided at the top of the reaction vessel main body 2 so as to close the opening.
[0016]
An opening 3a is formed in the lid 3, and a face plate 9 is fitted into the opening 3a via an annular insulator 10 made of ceramic or the like.
[0017]
The face plate 9 is for supplying a gas into the chamber 4. Therefore, the face plate 9 has many gas flow holes 9a. A gas box 11 having a gas inlet 11 a in the center is fitted into the face plate 9, and a blocker plate 12 is provided between the gas box 11 and the face plate 9. The blocker plate 12 is for dispersing the gas introduced through the gas inlet 11a.
[0018]
The reaction vessel is composed of the reaction vessel body 2, the lid 3, the face plate 9, the insulator 10, and the gas box 12.
[0019]
Further, SiH is supplied to the gas inlet 11a through the main pipe 13. 4 A source 14 is connected and a valve 15 is installed in the main pipe 13. Therefore, by opening the valve 15, the SiH 4 It is possible to supply gas.
[0020]
A branch pipe 16 is connected to the main pipe 13, and is connected to the branch pipe 16 via a first branch pipe 17. 2 A gas source 18 is connected, and NH is connected through a second branch pipe 19. 3 A gas source 20 is connected, and a He gas source 22 is connected via a third branch pipe 21. A first valve 23 is installed in the first branch pipe 17, a second valve 24 is installed in the second branch pipe 19, and a third valve 25 is installed in the third branch pipe 21. Therefore, by opening the first to third valves 23, 24, 25, N 2 Gas, He gas, NH 3 It is possible to supply gas.
[0021]
The above SiH 4 Gas, N 2 Gas, NH 3 The gas is an insulating film forming gas for forming an insulating film on a wafer (substrate to be processed) W, and is also a precoat film forming gas for forming a precoat film in a reaction vessel.
[0022]
In the chamber 4, a susceptor 26 having a support surface 26a for supporting the wafer W is provided at a position facing the face plate 9, and the susceptor 26 has a built-in heater (not shown). The susceptor 26 is provided so as to be movable with respect to the reaction container main body 2, and the susceptor 26 is configured to be movable up and down by a lifting mechanism (not shown). Therefore, the distance between the face plate 9 and the susceptor 26 (hereinafter, referred to as “heater spacing”) can be arbitrarily adjusted.
[0023]
By the way, the susceptor 26 and the face plate 9 constitute a parallel plate type electrode. Therefore, the susceptor 26 and the face plate 9 are both made of metal. Usually, aluminum is used as such a metal. Here, the susceptor 26 is grounded, and an RF (high frequency) power supply 27 is electrically connected to the face plate 9. The frequency of the power output from the RF power supply 27 is usually 13.56 MHz. Therefore, it is possible to generate a plasma in the chamber 4 by applying RF power between the face plate 9 and the susceptor 26.
[0024]
Further, a pipe 6 communicating with the gas passage 5 is connected to the reaction vessel main body 2, and a vacuum pump 7 is connected to the pipe 6. A valve 8 is provided in the pipe 6, and the pressure of the chamber 4 can be arbitrarily adjusted by the valve 8 and the vacuum pump 7.
[0025]
Next, a film forming method using the plasma CVD apparatus 1 will be described.
[0026]
First, before forming a film on the wafer W, a precoat film is formed in a reaction vessel (precoat film forming step). In this step, when the wafer W is mounted on the support surface 26a of the susceptor 26, the pre-coat film formed on the wafer W becomes a compressive film and the stress is smaller than the stress of the insulating film described later. A pre-coat film is formed as follows.
[0027]
Here, the stress of the film is expressed by the following equation:
[0028]
(Equation 1)
Figure 2004064018
(Where σ is the film stress (Pa), K is a constant, h is the thickness of the wafer W (m), t is the thickness of the film (m), R 1 Is the radius of curvature (m) of the wafer W before film formation, R 2 Represents the radius of curvature (m) of the wafer W after film formation)
It is calculated based on When the calculated stress value is represented by a negative value, it means that the film is a compressive film, and when it is represented by a positive value, it means that the film is a tensile film.
[0029]
This stress is K, h, t, R 1 , R 2 Can be obtained by substituting into the above equation, but can also be obtained using a stress measurement device (FLX5400 manufactured by KLA-Tencor) and ellipsometry (UV1280SE manufactured by KLA-Tencor).
[0030]
Due to the presence of the precoat film as described above, the in-plane uniformity of the thickness of the insulating film formed on the wafer W can be improved even if the thickness of the precoat film is small.
[0031]
At this time, the stress of the precoat film is preferably -200 MPa or less, more preferably -250 MPa or less. If the stress of the precoat film exceeds -200 MPa, the thickness uniformity of the insulating film tends to be low. Further, the stress of the precoat film is preferably at least -5000 MPa, more preferably at least -3000 MPa. If the stress is less than -5000 MPa, the precoat film attached to the wall surface in the chamber 4 may be peeled off.
[0032]
The precoat film as described above can be formed specifically as follows.
[0033]
That is, first, the valve 8 is opened, the vacuum pump 7 is operated, and the gas in the chamber 4 is exhausted through the gas passage 5 and the pipe 6, so that the pressure in the chamber 4 is reduced. Thus, the pressure of the chamber 4 is set to 130 to 2600 Pa.
[0034]
Next, the susceptor 26 is moved by the elevating mechanism to adjust the heater spacing. The heater spacing at this time is, for example, 2.5 to 25 mm (100 to 1000 mils). At this time, the heater incorporated in the susceptor 26 is operated to set the temperature of the susceptor 26 to about 100 to 600 ° C.
[0035]
Next, the RF power supply 27 is operated. As a result, RF power is applied between the face plate 9 and the susceptor 16, and plasma is generated in the chamber 4. The RF power at this time is adjusted according to the diameter of the wafer W. That is, as the diameter of the wafer W increases, the chamber 4 also increases, and the value of the RF power also increases. For example, when the diameter of the wafer W is 200 mm (8 inches), the RF power is set to 50 to 3000 W. This is because if the RF power is less than 50 W, plasma may not be generated, and if the RF power exceeds 3000 W, arc discharge may occur.
[0036]
With the plasma generated in the chamber 4 in this manner, the valve 15 is opened, and the first valve 23 and the second valve 24 are opened. Then, SiH 4 SiH from source 4 Gas flows into the main pipe 13 and N 2 N from source 2 The gas flows into the main pipe 13 via the first branch pipe 17 and the branch pipe 16, and 3 NH from source 3 The gas flows into the main pipe 13 via the second branch pipe 20 and the branch pipe 16. And SiH 4 Gas, N 2 Gas and NH 3 A gas mixture is introduced into the chamber 4 from the main pipe 13 through the gas inlet 11 a, the blocker plate 11, and the gas flow holes 9 a of the face plate 9. Thus, a precoat film made of SiN is formed on the inner wall of the chamber 4.
[0037]
At this time, SiH 4 N for gas 2 The gas flow ratio is preferably 5-30. Further SiH 4 NH for gas 3 The gas flow ratio is preferably from 0 to 0.5.
[0038]
Further, the time for introducing the mixed gas into the chamber 4 (hereinafter, referred to as “seasoning time”) is preferably 5 to 20 seconds. If the seasoning time is less than 5 seconds, the uniformity of the film thickness of the insulating film described later tends to decrease. Tend.
[0039]
Next, the RF power supply 27 is stopped, and the valve 15, the first valve 23, and the second valve 24 are closed. Then, the plasma in the chamber 4 is extinguished, and the SiH 4 Gas, N 2 Gas and NH 3 The introduction of gas is stopped.
[0040]
After the precoat film is formed in the chamber 4 in this manner, the wafer W is placed in the chamber 4 through an inlet (not shown) formed in the reaction vessel main body 2 (placement step).
[0041]
Thereafter, the RF power supply 27 is operated to generate plasma in the chamber 4, the valve 15, the first valve 23, and the second valve 24 are opened, and the SiH 4 Gas, N 2 Gas and NH 3 A gas mixture is introduced. As a result, an insulating film made of SiN is formed on the wafer W (film forming step).
[0042]
In the insulating film formed in this manner, even if the precoat film is thin, that is, even if the seasoning time is short, in-plane uniformity of the film thickness can be reliably improved, and high throughput of the wafer W can be achieved. it can. Further, in the film forming method of the present embodiment, the conditions for forming the precoat film are changed instead of changing the film forming conditions. For this reason, the insulating film can maintain the same film quality as that obtained conventionally.
[0043]
The reason why the above-mentioned effects can be achieved by the above-mentioned pre-coat film is not clear, but it is presumed to be as follows.
[0044]
That is, it is generally considered that the surface of the face plate 9 is rough or that the metal constituting the face plate 9 is oxidized unevenly. In this case, if the pre-coat film is formed on the surface of the face plate 9 with low RF power, it is considered that the film quality of the pre-coat film becomes non-uniform due to the surface roughness of the face plate 9 and the non-uniform oxidation of the surface. It is considered that the film thickness becomes uneven. On the other hand, in the film forming method of the present invention, even if the surface of the face plate 9 is rough or the surface is oxidized unevenly, a compressive film is formed on the surface of the face plate 9. You. Therefore, it is considered that the insulating film is not affected by the surface condition of the face plate 9 and the uniformity of the film thickness is improved even if the film thickness of the precoat film is small.
[0045]
In this film forming step, the electric power for generating plasma in the chamber 4 is set to 500 W or less. As a result, the insulating film can be made a compressive film.
[0046]
In the film forming process, the film forming speed on the wafer W is set to 500 nm / min or less. As a result, the insulating film can be made a compressive film.
[0047]
Further SiH 4 N for gas 2 The gas flow ratio is preferably 5-30. Also, SiH 4 NH for gas 3 The gas flow ratio is preferably from 0 to 0.5.
[0048]
The time for introducing the mixed gas into the chamber 4 (hereinafter, referred to as “film formation time”) is preferably 1 second or more. If the film formation time is less than 1 second, the plasma is not stable, and the uniformity of the film thickness of the insulating film tends to be reduced.
[0049]
The film formation step may be completed at this point, but may be performed on another wafer W subsequently.
[0050]
The present invention is not limited to the embodiments described above. For example, in the above embodiment, the precoat film and the insulating film made of SiN are formed on the wafer W. However, the present invention is effective when forming the precoat film and the insulating film made of a compound containing silicon atoms and nitrogen atoms. is there. This is because in-plane uniformity of the thickness of the insulating film can be particularly improved when such a precoat film and the insulating film are formed. Therefore, a precoat film and an insulating film made of SiON may be formed. In this case, in the precoat film forming step and the film forming step, SiH 4 Gas and N 2 In addition to gas, N 2 It is necessary to introduce O gas.
[0051]
In the above embodiment, NH 3 Gas is introduced into the chamber 4, but NH 3 Gas need not necessarily be introduced into the chamber 4.
[0052]
Further, in the above embodiment, a plasma CVD apparatus having a single chamber is used, but the present invention is also effective when applied to a plasma CVD apparatus having two chambers (twin chamber plasma CVD apparatus). is there.
[0053]
That is, in the twin-chamber plasma CVD apparatus, there may be a case where the surface condition of the face plate in one chamber is not good and the surface condition of the face plate in the other chamber is good. In this case, when the conventional film forming method is applied to a twin-chamber plasma CVD apparatus, a precoat film is formed in the chamber under the same conditions as the film forming conditions. In this case, the insulating film obtained in the other chamber may have good uniformity in film thickness. In contrast, when the film forming method of the present invention is applied to a twin-chamber plasma CVD apparatus, the uniformity of the thickness of the insulating film obtained in any of the chambers is improved. That is, according to the film forming method of the present invention, the uniformity of the film thickness can be reliably improved regardless of the surface state of the face plate.
[0054]
Next, the contents of the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0055]
【Example】
(Example 1)
In the plasma CVD apparatus 1 shown in FIG. 1, a silicon substrate (diameter 200 mm, thickness 0.725 mm) was placed on the susceptor 26 of the chamber 4. Then, a precoat film made of SiN having a thickness of 70 nm was formed on the silicon substrate under the following conditions.
[0056]
[Precoat film formation conditions]
Chamber 4 pressure: 746.6 Pa (5.6 Torr)
Heater temperature: 400 ° C
Heater spacing: 11mm (440mils)
RF power: 1200W
SiH 4 Gas flow rate: 3.17 × 10 -6 m 3 / S (190sccm)
NH 3 Gas flow rate: 1.33 × 10 -6 m 3 / S (80sccm)
N 2 Gas flow rate: 4.17 × 10 -5 m 3 / S (2500 sccm)
Seasoning time: 20 seconds
The stress of the precoat film thus formed on the silicon substrate was measured using a stress measurement device (FLX5400 manufactured by KLA-Tencor) and ellipsometry (UV1280SE manufactured by KLA-Tencor). As a result, the stress of the precoat film was -350 MPa.
[0057]
Next, a silicon substrate was placed on the susceptor 26 of the chamber 4 and a film was formed on the silicon substrate under the following conditions.
[0058]
[Deposition conditions]
Chamber 4 pressure: 560.0 Pa (4.2 Torr)
Heater temperature: 400 ° C
Heater spacing: 13.75 mm (550 mils)
RF power: 460W
SiH 4 Gas flow rate: 3.67 × 10 -6 m 3 / S (220sccm)
NH 3 Gas flow rate: 1.25 × 10 -6 m 3 / S (75 sccm)
N 2 Gas flow rate: 8.33 × 10 -5 m 3 / S (5000 sccm)
Film formation time: 95 seconds
Thus, an insulating film made of SiN was formed on the silicon substrate. Then, stress was measured for the insulating film in the same manner as described above. As a result, it was found that the stress of the insulating film was -100 MPa, which was smaller than the stress of the precoat film.
[0059]
Next, the in-plane uniformity of the film thickness of the insulating film on the silicon substrate was measured as follows. That is, the film thickness was measured by using the above-mentioned ellipsometry for 49 places in the region on the insulating film except for the region with a 3 mm edge. Then, the following formula: in-plane uniformity of film thickness (%) = (measured value at thickest point of film thickness−
(Measured value at thinnest point of film thickness) / (Average value of film thickness) / 2 × 100
, The in-plane uniformity of the film thickness was calculated. As a result, the in-plane uniformity of the film thickness of the insulating film was 2.80%.
[0060]
(Comparative Example 1)
An insulating film made of SiN was formed on a silicon substrate in the same manner as in Example 1 except that a 1600 ° thick pre-coated film made of SiN was formed on a silicon substrate under the following conditions.
[0061]
[Precoat film formation conditions]
Chamber 4 pressure: 560 Pa (4.2 Torr)
Heater temperature: 400 ° C
Heater spacing: 13.75 mm (550 mils)
RF power: 460W
SiH 4 Gas flow rate: 3.67 × 10 -6 m 3 / S (220sccm)
NH 3 Gas flow rate: 1.25 × 10 -6 m 3 / S (75 sccm)
N 2 Gas flow rate: 8.33 × 10 -5 m 3 / S (5000 sccm)
Seasoning time: 30 seconds
The stress was measured for the precoat film formed on the silicon substrate in the same manner as in Example 1. As a result, the stress of the precoat film was -100 MPa. The stress was measured on the insulating film formed on the silicon substrate in the same manner as in Example 1. As a result, the stress of the insulating film was -100 MPa, which was the same value as the stress of the precoat film.
[0062]
Next, in-plane uniformity of the film thickness of the insulating film on the silicon substrate was measured in the same manner as in Example 1. As a result, the in-plane uniformity of the film thickness of the insulating film was 6.94%.
[0063]
(Comparative Example 2)
On the silicon substrate, a 1750 ° thick pre-coated film made of SiO was formed under the following conditions, and an insulating film was formed under the following conditions. An insulating film was formed.
[0064]
[Precoat film formation conditions]
Chamber 4 pressure: 360 Pa (2.7 Torr)
Heater temperature: 400 ° C
Heater spacing: 12.75 mm (510 mils)
RF power: 300W
SiH 4 Gas flow rate: 4.34 × 10 -6 m 3 / S (260sccm)
N 2 O gas flow rate: 6.50 × 10 -5 m 3 / S (3900sccm)
Seasoning time: 10 seconds
[0065]
[Deposition conditions]
Chamber 4 pressure: 560 Pa (4.2 Torr)
Heater temperature: 400 ° C
Heater spacing: 13.75 mm (550 mils)
SiH 4 Gas flow rate: 3.67 × 10 -6 m 3 / S (220sccm)
NH 3 Gas flow rate: 1.25 × 10 -6 m 3 / S (75 sccm)
H 2 Gas flow rate: 8.33 × 10 -5 m 3 / S (5000 sccm)
[0066]
The stress was measured on the pre-coated film formed on the silicon substrate in the same manner as in Example 1. As a result, the stress of the precoat film was -100 MPa. The stress was measured on the insulating film formed on the silicon substrate in the same manner as in Example 1. As a result, the stress of the insulating film was -100 MPa, which was the same value as that of the precoat film.
[0067]
Next, in-plane uniformity of the film thickness of the insulating film on the silicon substrate was measured in the same manner as in Example 1. As a result, the in-plane uniformity of the film thickness of the insulating film was 7.24%.
[0068]
From the results of Example 1, Comparative Example 1, and Comparative Example 2, it was confirmed that the film thickness of the insulating film was sufficiently improved by the film forming method of the present invention.
[0069]
(Seasoning time dependency of film thickness uniformity in insulating film)
An insulating film was formed in the same manner as in Example 1 except that the seasoning time was set to 0, 5, 10, 20, 30, 40, 50, 60, and 120 seconds, and the uniformity of the film thickness of the insulating film was examined. On the other hand, an insulating film was formed in the same manner as in Comparative Example 1 except that the seasoning time was set to 0, 5, 10, 20, 30, 40, 50, 60, and 120 seconds, and the uniformity of the thickness of the insulating film was examined. Was. FIG. 2 shows the results. In FIG. 2, “て い る” indicates data on film thickness uniformity obtained by performing film formation in the same manner as in Example 1 except for the seasoning time. The data when the seasoning time is 0 seconds is provided for reference. In FIG. 2, “●” indicates data on film thickness uniformity obtained by performing film formation in the same manner as in Comparative Example 1 except for the seasoning time.
[0070]
As shown in FIG. 2, when the absolute value of the stress of the precoat film was made larger than that of the insulating film, it took only 5 to 10 seconds until the film thickness uniformity of the insulating film became 3% or less. On the other hand, it was found that when the absolute value of the stress of the precoat film was the same as that of the insulating film, it took 60 seconds or more until the film thickness uniformity of the insulating film became 3% or less.
[0071]
From this, it was found that according to the film forming method of the present invention, even if the seasoning time is short, the in-plane uniformity of the insulating film can be improved, and high throughput of the substrate to be processed can be achieved. .
[0072]
【The invention's effect】
As described above, according to the film forming method of the present invention, the stress of the precoat film is made smaller than the stress of the insulating film, whereby the throughput of the substrate to be processed can be improved, and the thickness of the insulating film can be reduced. In-plane uniformity can be improved.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of a plasma CVD apparatus for performing a film forming method of the present invention.
FIG. 2 is a graph showing the seasoning time dependency of the film thickness uniformity of an insulating film.
[Explanation of symbols]
W: substrate to be processed, 2: reaction vessel body (reaction vessel), 3: lid (reaction vessel), 9: face plate (reaction vessel), 10: insulator (reaction vessel), 12: gas box (reaction vessel) ).

Claims (5)

被処理基板を反応容器内に配置する配置工程と、
前記反応容器内にプラズマを生成させた状態で絶縁膜形成用ガスを導入し、前記被処理基板上に絶縁膜を形成する成膜工程と、
を含む成膜方法において、
前記配置工程の前に、前記反応容器内にプラズマを生成させた状態でプリコート膜形成用ガスを導入し、前記反応容器内に被処理基板が収容されると仮定した場合に前記被処理基板上に形成されるプリコート膜がコンプレッシブ膜となるように且つそのストレスが前記絶縁膜よりも小さくなるように、前記反応容器内にプリコート膜を形成するプリコート膜形成工程を含むことを特徴とする成膜方法。
An arrangement step of arranging the substrate to be processed in the reaction vessel
A film forming step of introducing an insulating film forming gas in a state where plasma is generated in the reaction vessel, and forming an insulating film on the substrate to be processed,
In the film forming method including
Before the arranging step, a gas for forming a precoat film is introduced in a state where plasma is generated in the reaction container, and when it is assumed that the substrate to be processed is accommodated in the reaction container, A precoat film forming step of forming a precoat film in the reaction vessel so that the precoat film formed in the reaction container becomes a compressive film and the stress thereof is smaller than that of the insulating film. Membrane method.
前記被処理基板上に形成される前記プリコート膜のストレスが−200MPa以下であることを特徴とする請求項1に記載の成膜方法。2. The film forming method according to claim 1, wherein a stress of the precoat film formed on the substrate to be processed is -200 MPa or less. 前記プリコート膜及び前記絶縁膜が、ケイ素原子と窒素原子とを含む化合物から構成されていることを特徴とする請求項1又は2に記載の成膜方法。The film forming method according to claim 1, wherein the precoat film and the insulating film are made of a compound containing a silicon atom and a nitrogen atom. 前記成膜工程において、前記反応容器内にプラズマを生成させるための電力を500W以下にすることを特徴とする請求項1〜3のいずれか一項に記載の成膜方法。The film forming method according to any one of claims 1 to 3, wherein in the film forming step, electric power for generating plasma in the reaction vessel is set to 500 W or less. 前記成膜工程において、前記被処理基板上への成膜速度を500nm/min以下にすることを特徴とする請求項1〜4のいずれか一項に記載の成膜方法。5. The film forming method according to claim 1, wherein, in the film forming step, a film forming rate on the substrate to be processed is set to 500 nm / min or less. 6.
JP2002223858A 2002-07-31 2002-07-31 Deposition method Expired - Fee Related JP3725100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223858A JP3725100B2 (en) 2002-07-31 2002-07-31 Deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223858A JP3725100B2 (en) 2002-07-31 2002-07-31 Deposition method

Publications (2)

Publication Number Publication Date
JP2004064018A true JP2004064018A (en) 2004-02-26
JP3725100B2 JP3725100B2 (en) 2005-12-07

Family

ID=31943508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223858A Expired - Fee Related JP3725100B2 (en) 2002-07-31 2002-07-31 Deposition method

Country Status (1)

Country Link
JP (1) JP3725100B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010008021A1 (en) * 2008-07-15 2010-01-21 キヤノンアネルバ株式会社 Plasma treatment method and plasma treatment device
US7972946B2 (en) 2006-08-11 2011-07-05 Mitsubishi Heavy Industries, Ltd. Plasma treatment method and plasma treatment device
JP2011526966A (en) * 2008-07-03 2011-10-20 アプライド マテリアルズ インコーポレイテッド Atomic layer deposition equipment
JP2012021234A (en) * 2011-10-21 2012-02-02 Mitsubishi Heavy Ind Ltd Vacuum processing apparatus, and operation method of the same
US8529704B2 (en) 2008-06-27 2013-09-10 Mitsubishi Heavy Industries, Ltd. Vacuum processing apparatus and operating method for vacuum processing apparatus
RU2657899C1 (en) * 2017-02-07 2018-06-18 Закрытое акционерное общество "Руднев-Шиляев" Method for processing polyimide film in the flame of nonequilibrium heterogeneous low-temperature microwave plasma under atmospheric pressure
WO2022180793A1 (en) * 2021-02-26 2022-09-01 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing device, and program

Families Citing this family (207)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
CN111316417B (en) 2017-11-27 2023-12-22 阿斯莫Ip控股公司 Storage device for storing wafer cassettes for use with batch ovens
WO2019103610A1 (en) 2017-11-27 2019-05-31 Asm Ip Holding B.V. Apparatus including a clean mini environment
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TW202325889A (en) 2018-01-19 2023-07-01 荷蘭商Asm 智慧財產控股公司 Deposition method
WO2019142055A2 (en) 2018-01-19 2019-07-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
EP3737779A1 (en) 2018-02-14 2020-11-18 ASM IP Holding B.V. A method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
TWI811348B (en) 2018-05-08 2023-08-11 荷蘭商Asm 智慧財產控股公司 Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
TW202349473A (en) 2018-05-11 2023-12-16 荷蘭商Asm Ip私人控股有限公司 Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
JP2021529254A (en) 2018-06-27 2021-10-28 エーエスエム・アイピー・ホールディング・ベー・フェー Periodic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
KR20200002519A (en) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (en) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming device structure using selective deposition of gallium nitride, and system for the same
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
TW202104632A (en) 2019-02-20 2021-02-01 荷蘭商Asm Ip私人控股有限公司 Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
JP2020136678A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Method for filing concave part formed inside front surface of base material, and device
TW202100794A (en) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
JP2020167398A (en) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Method of using a gas-phase reactor system including analyzing exhausted gas
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP2021015791A (en) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. Plasma device and substrate processing method using coaxial waveguide
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
JP2021019198A (en) 2019-07-19 2021-02-15 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming topology-controlled amorphous carbon polymer film
CN112309843A (en) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 Selective deposition method for achieving high dopant doping
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (en) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. Liquid level sensor for a chemical source vessel
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TW202129060A (en) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 Substrate processing device, and substrate processing method
TW202115273A (en) 2019-10-10 2021-04-16 荷蘭商Asm Ip私人控股有限公司 Method of forming a photoresist underlayer and structure including same
KR20210045930A (en) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. Method of Topology-Selective Film Formation of Silicon Oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
KR20210065848A (en) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
KR20210095050A (en) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
KR20210100010A (en) 2020-02-04 2021-08-13 에이에스엠 아이피 홀딩 비.브이. Method and apparatus for transmittance measurements of large articles
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210132605A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Vertical batch furnace assembly comprising a cooling gas supply
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
KR20220010438A (en) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
KR20220027026A (en) 2020-08-26 2022-03-07 에이에스엠 아이피 홀딩 비.브이. Method and system for forming metal silicon oxide and metal silicon oxynitride
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
KR20220053482A (en) 2020-10-22 2022-04-29 에이에스엠 아이피 홀딩 비.브이. Method of depositing vanadium metal, structure, device and a deposition assembly
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7972946B2 (en) 2006-08-11 2011-07-05 Mitsubishi Heavy Industries, Ltd. Plasma treatment method and plasma treatment device
US8529704B2 (en) 2008-06-27 2013-09-10 Mitsubishi Heavy Industries, Ltd. Vacuum processing apparatus and operating method for vacuum processing apparatus
JP2011526966A (en) * 2008-07-03 2011-10-20 アプライド マテリアルズ インコーポレイテッド Atomic layer deposition equipment
US8747556B2 (en) 2008-07-03 2014-06-10 Applied Materials, Inc. Apparatuses and methods for atomic layer deposition
US9017776B2 (en) 2008-07-03 2015-04-28 Applied Materials, Inc. Apparatuses and methods for atomic layer deposition
WO2010008021A1 (en) * 2008-07-15 2010-01-21 キヤノンアネルバ株式会社 Plasma treatment method and plasma treatment device
JPWO2010008021A1 (en) * 2008-07-15 2012-01-05 キヤノンアネルバ株式会社 Plasma processing method and plasma processing apparatus
US8298627B2 (en) 2008-07-15 2012-10-30 Canon Anelva Corporation Method and apparatus of plasma treatment
JP2012021234A (en) * 2011-10-21 2012-02-02 Mitsubishi Heavy Ind Ltd Vacuum processing apparatus, and operation method of the same
RU2657899C1 (en) * 2017-02-07 2018-06-18 Закрытое акционерное общество "Руднев-Шиляев" Method for processing polyimide film in the flame of nonequilibrium heterogeneous low-temperature microwave plasma under atmospheric pressure
WO2022180793A1 (en) * 2021-02-26 2022-09-01 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing device, and program

Also Published As

Publication number Publication date
JP3725100B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
JP3725100B2 (en) Deposition method
TWI413179B (en) Method for trench and via profile modification
US20180286663A1 (en) Method of reforming insulating film deposited on substrate with recess pattern
JP3404536B2 (en) Method for forming integrated circuit by low-temperature plasma enhancement
US7484513B2 (en) Method of forming titanium film by CVD
KR100980528B1 (en) Metal film decarbonizing method, film forming method and semiconductor device manufacturing method
KR101991574B1 (en) Film forming apparatus and gas injection member user therefor
JP3712421B2 (en) Low temperature plasma enhanced chemical vapor deposition of TiN film on titanium for use in via level applications
US9508546B2 (en) Method of manufacturing semiconductor device
US7820557B2 (en) Method for nitriding substrate and method for forming insulating film
US20140272184A1 (en) Methods for maintaining clean etch rate and reducing particulate contamination with pecvd of amorphous silicon filims
JP2005533181A (en) Pulsed nucleation deposition of tungsten layers
JPH083749A (en) Method of building-up silicon oxynitride film by plasma-excited cvd
US20090071404A1 (en) Method of forming titanium film by CVD
US20060222771A1 (en) Methods for the reduction and elimination of particulate contamination with cvd of amorphous carbon
JP2004285469A (en) Installation table, treatment apparatus, and treatment method
JP4545107B2 (en) Method of forming low dielectric constant film with stable film quality
KR20110110261A (en) Film formation method, and plasma film formation apparatus
US20100317199A1 (en) Substrate processing apparatus and manufacturing method of semiconductor device
JP2010016136A (en) Thin film forming method and apparatus
TWI812827B (en) Method for depositing nitride film
JP6308584B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, substrate processing system, and program
US11615957B2 (en) Method for forming boron-based film, formation apparatus
WO2009123049A1 (en) Method for depositing high stress thin film and method for fabricating semiconductor integrated circuit device
JP4059792B2 (en) Semiconductor manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050920

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080930

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees