JP2004063030A - コード化方法、光ディスクおよび光ディスク装置 - Google Patents

コード化方法、光ディスクおよび光ディスク装置 Download PDF

Info

Publication number
JP2004063030A
JP2004063030A JP2002222074A JP2002222074A JP2004063030A JP 2004063030 A JP2004063030 A JP 2004063030A JP 2002222074 A JP2002222074 A JP 2002222074A JP 2002222074 A JP2002222074 A JP 2002222074A JP 2004063030 A JP2004063030 A JP 2004063030A
Authority
JP
Japan
Prior art keywords
data
optical disk
optical disc
bar
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002222074A
Other languages
English (en)
Other versions
JP3888256B2 (ja
Inventor
Morihito Morishima
森島 守人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2002222074A priority Critical patent/JP3888256B2/ja
Publication of JP2004063030A publication Critical patent/JP2004063030A/ja
Application granted granted Critical
Publication of JP3888256B2 publication Critical patent/JP3888256B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00736Auxiliary data, e.g. lead-in, lead-out, Power Calibration Area [PCA], Burst Cutting Area [BCA], control information

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

【課題】光ディスク装置がバーコードを読み取る際にフォーカスサーボ制御を阻害しないようにする。
【解決手段】バーコード30は、光ディスクの面のうち、光ピックアップの可動範囲内、すなわち、光ディスク装置によってレーザ照射が可能な範囲に設けられる。さらに、バーコード30として記録されるデータのコード化として、バーが連続配置されるのが禁止されるようなコード化が用いられる。
【選択図】    図2

Description

【0001】
【発明の属する技術分野】
本発明は、バーコードとして記録されるデータのコード化方法、CD−ROM(Compact Disc−ROM)やCD−R(CD−Recordable)、CD−RW(CD−ReWritble)などの光ディスク、および、光ディスクに記録されたデータを再生する光ディスク再生装置や、光ディスクに対してデータを記録する光ディスク記録装置などの光ディスク装置に関する。
【0002】
【従来の技術】
従来から、データの記録媒体として、CD−ROMやCD−Rなどの光ディスクが広く用いられている。このような光ディスクの製造メーカは、品質管理のために、製品番号などの製品情報をバーコードとして光ディスクに表示している。光ディスクにバーコードを表示する技術は、例えば特開平9−115187号公報、特開2000−9998号公報、および、特開昭61−66243号公報に示されている。特開平9−115187号公報には、光ディスクの記録面(データが記録される面)のうち、実際にデータが記録される領域、いわゆる、プログラム領域よりも外周側に設けられたミラー領域(高光反射領域)にバーコードを表示するための技術が示されている。一方、特開2000−9998号公報および特開昭61−66243号公報には、光ディスクのレーベル面(記録面と反対の面)にバーコードを表示するための技術が示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、例えばCDドライブやCD−Rドライブなどの光ディスク装置が備える光ピックアップの可動範囲は、プログラム領域を移動可能な範囲であるため、特開平9−115187号公報に示されるように、プログラム領域の外側または内側に表示されたバーコードを光ディスク記録装置が読み取ることができない。従って、このような領域に表示されたバーコードに記録された情報をユーザなどが活用する場合には、バーコードリーダーなどの装置を別途、用意する必要があった。
【0004】
一方、特開2000−9998号公報および特開昭61−66243号公報にあっては、光ピックアップの可動範囲内にバーコードが表示されるようになっているものの、光ディスク装置がバーコードに対してレーザ光を照射した際に、フォーカスサーボ制御が機能しなくなり、バーコードを正常に読み取れない場合があった。具体的には、一般的な光ディスク装置は、光ディスクの面上においてレーザスポットが略一定となるように光ピックアップに対してフォーカスサーボ制御を行っている。このフォーカスサーボ制御では、光ディスクからの反射光のスポット形状に従って制御信号が生成されている。ところで、バーコードにおいてバーが形成された箇所の反射率は、低くなっているため、レーザ光がバーに照射された場合に、反射光量が非常に小さくなる。従って、バーのサイズに依っては、反射光が検出されない期間が長くなり、光ディスク装置は、長い期間にわたり制御信号が生成できなくなる。このため、フォーカスサーボ制御が機能しなくなり、光ディスク装置は、バーコードを正常に読み取れなくなる。
【0005】
本発明は、上述した事情を鑑みてなされたものであり、光ディスク装置が読み取る際にフォーカスサーボ制御を阻害しないバーコードを規定するためのコード化方法、フォーカスサーボ制御を阻害しないバーコードが設けられた光ディスク、および、光ディスクに設けられたバーコードに対してレーザ光を照射することにより、バーコードとして記録されたデータを得る光ディスク装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は、光ディスクの面内のうち、光ディスクを再生する光ディスク装置によってレーザ光が照射され得る領域に、光ディスクの中心からの一定距離を半径とする円の円周に沿って設けられ、当該円の円周方向の長さが略同一である複数のバーおよびスペースからなるバーコードの生成に用いられるコード化方法において、前記バーコードとして記録されるデータを構成するm(m≧1)個のデータビットの各々に対して、2値のビット値によりバーおよびスペースを示す符合ビットをn(n≧2)個ずつ順番に割り当て、当該n個の符合ビットの各々のビット値を、対応するデータビットのビット値に応じて決定する際に、前記m個のデータビットの並びに対応して配列したm×n個の符合ビットのビット列において、バーを示すビット値の前後のビット値がスペースを示すビット値となるように、各符合ビットを決定するコード化方法を提供する。
【0007】
このコード化方法によれば、バーコードとして記録されるデータの各データビットに対して割り当てられた符合ビットのビット列において、バーを示すビット値の前後は、スペースを示すビット値となる。従って、このビット列に従って、バーおよびスペースが配置されたバーコードにあっては、2以上のバーが連続するのが防止されることになる。また、バーが連続して配置されるのが防止されているため、光ディスク装置がバーコードにレーザ光を照射した際に、反射光が検出されない時間が長くなるのが抑えられため、フォーカスサーボ制御が阻害されるのが防止される。
なお、前記バーコードは、誤り符号検出のためのデータを含むことが好ましく、また、前記バーコードが前記円の円周上に複数設けられている構成も好ましい。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態について説明する。
<光ディスク>
先ず、本発明に係る光ディスク20について説明する。ここで、バーコードは、光ディスク20のレーベル面に設けられるものとする。図1は、本実施形態に係る光ディスク20を光ディスク装置の光ピックアップと対向させたときに、この光ピックアップの側からレーベル面を見た図である。なお、この図には、一般的に販売などされている直径120mmの光ディスク20が例示されている。この図において、ピックアップ可動領域22は、光ディスク装置によってレーザ光が照射され得る領域、すなわち、光ディスク装置が備える光ピックアップの移動可能範囲に相当する領域である。このピックアップ可動領域22には、長方形(棒状)のバーとスペース(スペース)とを多数配列してなるバーコード30が設けられている。具体的には、バーコード30は、スクリーン印刷などにより、バーに対応する箇所に低反射性のインクを塗るなどして設けられており、各バーにおけるレーザ光の反射率は、約1%以下となっている。
【0009】
図2は、バーコード30の空間的構成をデータフォーマットと共に模式的に示す図である。なお、同図には、バーコード30の各バーが直線上に配置されているが、実際には、各バーは、光ディスク20の中心からみて放射状に配列されている。さて、この図に示すように、バーコード30は、3つのゾーンの配列として空間的に構成されている。すなわち、Syncゾーン30aと、データゾーン30bと、CRCゾーン30cである。Syncゾーン30aは、バーコード30の開始端30S(図1参照)に設けられ、このSyncゾーン30aには、Syncデータが記録される。Syncデータは、Syncゾーン30aの最終端からデータゾーン30bが開始する旨を示すためのものであり、光ディスク装置は、Syncデータによりデータゾーン30bの開始点を認識する。
【0010】
データゾーン30bは、バーコード30の使用目的に応じて各種データが記録されるゾーンである。本実施形態では、データゾーンに30bには、メディアデータが記録されている。このメディアデータは、メディアタイプデータと、マニュファクチャデータと、リザーブデータとからなり、従来の光ディスク20にあっては、ATIP(Absolute Time In Pregroove)情報やADIP(Address InPregroove)情報などに含まれるデータとして記録面に記録されているものである。より具体的には、メディアタイプデータは、光ディスク20の記録面に使用されている有機色素の種類といった材質を示すデータであり、また、マニュファクチャデータは、この光ディスク20を製造したメーカ名を示すデータである。リザーブデータは、このメディアデータに将来的に付加されるデータ用に記録領域を確保するために設けられるデータである。
【0011】
CRCゾーン30cは、データゾーン30bの後端からバーコード30の終了端30E(図1参照)にかけて設けられ、このCRCゾーン30cには、光ディスク装置がデータゾーン30bにバーコード30として記録されたデータ(本実施形態では、メディアデータ)を読み取ったときに、この読み取り結果からデコードされたデータ(ビット列)に誤りがあるかを検査するための検査用データ(検査ビット)が記録される。本実施形態では、この検査方式に、CRC(CyclicRedundancy Check:巡回冗長検査)方式が用いられており、CRCゾーン30cには、検査用データとして、メディアデータのビット列を生成多項式P(X)(例えば、P(X)=X14+X12+X10+X+X+X+1)で割った余りが用いられる。なお、CRCゾーン30cに記録されるデータは、これに限らず、例えば、パリティ検査方式などの他の検査方式に従ったデータが記録されても良い。このようなバーコード30のデータフォーマットは、CD−RやCD−RW、DVD−RWなどの光ディスクに予め記録されているATIP情報やADIP情報と同様なデータフォーマットとなっており、光ディスク装置がバーコード30を読み取ってデコードする際には、従来のデコード回路を利用できるようになっている。
【0012】
また、図1に示すように、バーコード30は、光ディスク20の中心と同心の円周に沿って設けらており、この円周上において、バーコード30が設けられた以外の領域を、本実施形態では、クワイエットゾーン30dと称する。一般的なバーコード30の読み取りにおいては、クワイエットゾーン30dは必ず設けられるものである。なお、光ディスク20は、再生時にあっては、規格上、光ディスク装置によりレーベル面から見て反時計回りに回転駆動されるから、光ピックアップからのレーザ光がバーコード30の開始端30Sから終了端30Eにかけて照射される。従って、バーコード30として記録されたデータ(以下、「記録データ」という)は、バーコード30の開始端30Sから終了端30Eにかけて順次読み取られることになる。すなわち、バーコード30は、Syncデータ、メディアデータ、CRCデータの順で読み取られる。
【0013】
また、図2に示すように、本実施形態にあっては、バーコード30を構成する各バーの寸法は、互いに等しくなっており、バーの横幅(すなわち、バーが配置される円の円周に沿った方向の幅)については、次のように決定されている。詳述すると、レーザ光がバーを横断するに要する横断時間が長くなると、光ディスク装置は、長期間にわたり反射光が検出できなくなるため、フォーカスサーボ制御のための制御信号が生成できなくなり、このフォーカスサーボ制御が機能しなくなる。そこで、横断時間は、フォーカスサーボ制御を阻害することのない範囲に限定されることになる。一方、横断時間は、光ディスク20の回転時の線速度に依存し、バーの横幅が同じであれば、線速度が大きい方が横断時間は短くなる。従って、バーの横幅は、レーザ光照射時の線速度と、フォーカスサーボ制御を阻害しない時間とから決定される。このように決定された横幅のバーを用いれば、少なくとも、1つのバーにレーザ光が照射されている間に、フォーカスサーボ制御が機能しなくなるのが防止される。
【0014】
このように各バーの寸法は、略同一となっており、本実施形態では、バーコード30は、互いに隣接するバー間隔(すなわち、位相)によって記録データを表現している。一般的に、バー間隔によってデータを表現する最も簡単な方法としては、記録すべきデータのビット列(以下、「記録ビット列」という)Mのビット値が「1」である場合に、バーを配置する一方、ビット値が「0」である場合には、バーを配置せずスペース(空白)にするというように、記録ビット列Mのビット値が所定値(例えば「1」)のときだけバーが配置される方法である。しかしながら、この方法では、例えば記録ビット列MがM(011100)であると、図10に示すように、3つのバーが連続して配置されることになる。このように、幾つかのバーが連続して配置されると、反射光が検出されない時間が、フォーカスサーボ制御を阻害しない程度の時間を超えてしまい、フォーカスサーボ機構が機能しなくなってしまう。
【0015】
そこで、本実施形態では、記録ビット列Mに対してバーが連続して配置されないようなコード化、すなわち、バーの両端は、必ずスペースとなるコード化が行われている。以下、このコード化について詳述する。本実施形態では、図3(a)乃至図3(d)に示すように、2つの隣接する領域R1、R2の各々におけるバーとスペースとによって表現される4通りの状態S0、S1、S2、S3によって記録ビット列Mのコード化が行われる。ここで、状態Sを次のように表記すると、
状態S=S(領域R1、領域R2)
但し、バーが配置される場合には「1」、スペースとなる場合には「0」
4つの状態Sは、S0(10)、S1(00)、S2(01)、S3(11)である。ここで、状態S3(11)にあっては、2つの領域R1、R2の各々にバーが配置されることになるため、この状態S3(11)は、禁止されなければならない。換言すると、状態S3(11)を除く3つの状態S0(10)、S1(00)、S2(01)によって記録ビット列Mがコード化されれば、状態S3となることがないから、領域R1、R2の各々にバーが連続して配置されるのが防止されることになる。
【0016】
図4は、記録ビット列Mを3つの状態S0(10)、S1(00)、S2(01)にて表した遷移図である。なお、同図において、記録ビット列Mのビット値「1」を「H」で示し、また、ビット値「0」を「L」で示す。この図に示すように、状態S2(01)から状態S0(10)への遷移は、バーを「1」としスペースを「0」とした表現では、(0110)となり、バーが連続して配置されることを意味する。そこで、バーの連続配置を防止するために、状態S2(01)から状態S0(10)への遷移は、禁止されている。
【0017】
また、状態S1(00)から状態S1(00)への遷移は、光ピックアップからのレーザ光がクワイエットゾーン30dに照射されている旨を示すのに割り当てられている。この理由は、バーコード30が印刷されていない領域に対して、光ディスク装置の光ピックアップからのレーザ光が照射されている間は、状態S1(00)から状態S1(00)への遷移が連続するためである。
【0018】
一方、状態S0(10)から状態S0(10)への遷移は、読み取られたバーがSyncゾーン30aに属することを示すのに割り当てられている。従って、状態S1(00)から状態S0(10)への遷移は、Syncゾーン30aの読取が開始されたことを意味し、さらに、状態S0(10)から他の状態への遷移は、データゾーン30bのバーの読取が開始されたことを意味する。そこで、光ディスク装置は、状態S0(10)から他の状態への遷移を識別することにより、データゾーン30bの読取が開始されたことを判別する。また、このように状態S0(10)から他の状態への遷移がデータゾーン30bに記録されるデータ(本実施形態ではメディアデータ)の先頭ビットに相当するから、記録ビット列Mのコード化にあっては、状態S0(10)がコード化の開始状態となり、図4に示す状態遷移に従って記録ビット列Mのビット値が順次コード化される。例えば、図2に示すように、記録ビット列MがM(1000・・・)である場合には、状態S0を開始状態とすると、S1(00)、S0(10)、S2(01)、S1(00)の順に状態が遷移することとなり、この状態遷移によって得られる符号化コードCは、C(00100100・・・)となる。
【0019】
このようなコード化は、実際には、図4に示す状態遷移図に従って記録データの記録ビット列Mから符号化コードCを生成するエンコーダ(符号化)回路や、このエンコーダ回路と同等の機能を実現するためのプログラムを実行するコンピュータシステムなどによって行われる。具体的には、例えばエンコーダ回路は、記録ビット列Mの各ビットごとに、2値の符号ビットCb1、Cb2を割り当てる。2つの符合ビットCb1、Cb2のうち、符合ビットCb1は、上述した領域R1に対応し、また、符合ビットCb2は、領域R2に対応するものである。例えば、領域R1にバーが配置され、領域R2がスペースとなる状態S0(10)は、符合ビットCb1のビット値を「1」とし、また、符合ビットCb2のビット値を「0」として示される。このように、2つの符合ビットCb1、Cb2の各ビット値により、上述の状態S0〜S3が表現されることになる。そして、エンコーダ回路は、図4に示す状態遷移図に従って、記録ビット列Mの各ビットごとに割り当てられた各符合ビットCb1、Cb2のビット値を決定する。そして、このようにして決定された符合ビット列により符号化コードCが示されることとなる。この符号化コードCは、光ディスク20のレーベル面に対してスクリーン印刷などを施す印刷装置に供給され、印刷装置が符号化コードCに従ってバーを印刷することにより、レーベル面に図1に示すようなバーコード30が印刷される。
【0020】
ところで、本実施形態にあっては、領域Rの横幅が1mmとなっており、この領域Rを2分した領域R1、R2の各々の横幅は、0.5mm(=1/2mm)となる。従って、領域R1、R2に配置されるバーの横幅は、0.5mmとなっている。一方、バーの長尺方向(光ディスク20の径方向)の長さは、2mmとなっている。これらの寸法は、次のようにして決定されている。具体的には、光ディスク装置において、光ディスク20の径方向に対する光ピックアップの移動、所謂、フィード送りの精度は、約0.1mmであり、また、光ディスク20の回転駆動によって、約1mmの偏心が生じる。そこで、10回分のフィード送りを考慮して、バーの長さが、2(=0.1×10+1)mm程度あれば、バーコード30に対してレーザ光が外れることなく照射できる。一方、バーの横幅は、上述したように、フォーカスサーボ制御を阻害しない時間幅と、バーコード30の読み取り時の線速度とによって決定された値以下であれば良いが、本実施形態では、さらに、バーの印刷精度および光ディスク20の回転駆動時におけるワウフラッタによって生じるズレ量とから、0.5mmとしている。
【0021】
また、一般的に光ディスク20のレーベル面には、ユーザなどによってラベルが貼られたり、インクペンなどで書き込みが行われたりする。そこで、ユーザなどが使用可能なスペースを十分に確保するために、バーコード30が印刷される位置は、ピックアップ可動領域22のうち、最内周側または最外周側に設けられるのが望ましい。本実施形態では、バーコード30は、ピックアップ可動領域22の最内周側に設けられている。具体的には、図1に示すように、ピックアップ可動領域22の最内周が光ディスク20の中心と同心の直径約48mmの円によって規定されるのに対して、バーコード30は、光ディスク20の中心と同心の直径50mmの円内に納まるように設けられており、ユーザなどに十分なスペースが提供されるようになっている。
【0022】
このように、本実施形態に係る光ディスク20によれば、この光ディスク20の面上に設けられるバーコード30は、光ピックアップの可動範囲内、すなわち、光ディスク装置によってレーザ照射が可能な範囲に設けられている。さらに、バーコード30として記録されるデータのコード化には、バーが連続配置されるのが禁止されるようなコード化が用いられている。従って、光ディスク装置がバーコードを読み取る際に、光ディスク20の面からの反射光が一定時間以上検出されないことによりフォーカスサーボが機能しなくなるといったことが防止される。
【0023】
<コード化のその他の態様>
上述したコード化は、あくまでも例示であり、バーの連続配置が禁止されるようなコード化、すなわち、バーの両側には、必ずスペースが設けられるコード化であれば、任意のものが用いられる。このようなコード化について以下に説明する。
【0024】
(態様1)
上述した実施形態にあっては、2つの連続する領域R1、R2にバーが配置されるときの状態S0〜S4を用いて記録ビット列Mがコード化されたが、3つの連続する領域R1〜R3にバーが配置されるときの状態が用いられても良い。詳述すると、3つの領域R1〜R3が用いられる場合の取り得る状態Sは、S0(000)、S1(100)、S2(010)、S3(001)、S4(110)、S5(011)、S6(101)、S7(111)の8通りの状態である。ここで、上述の理由から、バーの連続配置を防止すべく、S4(110)、S5(011)、S7(111)の各状態を禁止状態とすると共に、状態S3(001)から状態S1(100)または状態S6(101)への遷移と、状態S6(101)から状態S1(100)への遷移とは禁止されることになる。また、バーが配置されないことを示す状態S0(000)は、クワイエットゾーン30dに割り当てることとし、コード化において、この状態S0(000)も禁止される。従って、コード化に用いられる状態は、S1(100)、S2(010)、S3(001)、S6(101)の4つの状態となる。
【0025】
図5は、この4つの状態Sを用いて記録ビット列Mがコード化された場合のバーコード30の一例を示す図であり、また、図6は、これら4つの状態Sを用いたコード化の一例を示す状態遷移図である。なお、図5では、記録ビット列MとしてM(010100110100)のコード化が例示されている。図6に示すように、このコード化にあっては、3つの領域R1〜R3のうち、連続する領域がスペースとなり、かつ、残りの1つの領域にバーが配置される場合を「H」(ビット値「1」)とする一方、3つの領域R1〜R3のうち、2つの領域(但し、連続していない)にバーが配置されるか、この2つの領域がスペースとなっている場合を「L」(ビット値「0」)としている。すなわち、状態S1(100)、状態S3(001)の2つの状態が「H」となり、また、状態S2(010)、状態S6(101)の2つの状態が「L」となる。
【0026】
ここで、Syncデータとしては、上述した実施例と同様に、状態S(10)が用いられている。従って、記録ビット列Mのコード化にあっては、状態S(10)を開始状態となり、記録ビット列Mの先頭ビットが「0」である場合には、状態S(10)から状態S6(101)へと遷移させ、また、先頭ビットが「1」である場合には、状態S(10)から状態S1(100)へと遷移させると言ったように、図6に示す状態遷移図に従って、記録ビット列Mの各ビット値に応じて状態Sを順次遷移させてコード化が行われる。例えば、図5に示すように、記録ビットMがM(010100・・・)であった場合には、S6(101)、S3(001)、S2(010)、S1(100)、S2(101)・・・の順に状態が遷移するから、符号化コードCは、C(101001010100101・・・)となる。このように、このコード化にあっても、連続してバーが配置されるのが防止されることとなる。なお、同様にして、記録ビット列Mの各ビットごとに4つ以上の領域(符合ビット)を用いてコード化が行われても良いことは勿論である。但し、記録ビット列Mのビット長がm(m≧1)ビットである場合に、各ビットごとにn(n≧2)個の符合ビットが割り当てられると、符合化コードCのビット長は、m×nビットとなるため、記録ビット列Mの各ビットに割り当てる符合ビット数を多くすると、符号化コードCが長くなる。従って、この符号化コードCに従ってバーとスペースとを配置した際に、バーコード30の横幅(開始端30Sから終了端30Eまでの距離)が長くなってしまう。そこで、コード化した際に、バーコード30の横幅が所望の長さに収まる状態数が用いられるのが望ましい。
【0027】
(態様2)
上述の実施形態および(態様1)では、記録ビット列Mのコード化に、2または3の連続する領域におけるバーの配置状態の状態遷移が用いられる場合について例示した。具体的には、実施形態では、記録ビット列Mを2重のマルコフ情報源とみなし、記録ビット列Mの先頭から後端までのビット値の変化を、2つの連続する領域におけるバーの配置状態の状態遷移により表現すると共に、バーの連続配置になる状態およびバーの連続配置となってしまう状態遷移を禁止するようなコード化が行われている。また、(態様1)では、記録ビット列Mを3重のマルコフ情報源とみなし、この記録ビット列Mを3つの連続する領域におけるバーの配置状態の状態遷移を用いて、実施形態と同様なコード化が行われている。この(態様2)では、状態遷移を用いることなく、コード化が行われる場合について例示する。
【0028】
図7は、本態様に係るコード化の一例を示す図である。この図に示すように、本態様に係るコード化にあっては、3つの連続する領域R1〜R3において、真中に位置する領域R2にバーが配置された場合、すなわち、3つの符合ビットCb1、Cb2、Cb3のビット列が(010)の場合を「L」(ビット値「0」)とし、また、右端に位置する領域R3にバーが配置された場合、すなわち、3つの符合ビットCb1、Cb2、Cb3のビット列が(001)の場合を「H」(ビット値「1」)としている。このように、本態様にあっては、「H」および「L」に対して一義的にバーの配置、すなわち、3つの符合ビットCb1、Cb2、Cb3の各ビット値が割り当てられている。さらに、この割り当てにおいて、記録ビット列Mのビット値に応じてバーが配置された場合に、バーの連続配置が禁止されるようになっている。なお、本態様において、領域R3にバーが配置された場合を「H」としたが、左端に位置する領域R1にバーが配置された場合を「H」としても良いことは勿論である。すなわち、領域R1または領域R3のいずれにバーが配置されるかは、Syncゾーン30aの最終領域にバーが配置されるか否かによって、Syncゾーン30aとデータゾーン30bとの繋ぎ目において、バーが連続配置されないように決定されれば良い。
【0029】
また、「H」および「L」に対しての一義的なバーの割り当て方には、次のようなものも有り得る。図8は、本態様に係るその他のコード化の一例を示す図である。この図に示すコード化にあっては、2つの領域R1、R2のうち、領域R1にバーが配置された場合、すなわち、2つの符合ビットCb1、Cb2が示すビット列が(10)の場合を「H」とし、また、領域R1、R2のいずれもスペースとなる場合、すなわち、2つの符合ビットCb1、Cb2が示すビット列が(00)の場合を「L」としている。このコード化にあっても、バーの連続配置が防止される。なお、領域2にバーが配置された場合を「H」としても良いことは勿論である。
【0030】
<バーコード配置のその他の態様>
上述した実施形態にあっては、レーベル面にバーコード30が1つだけ設けられる構成について例示したが、これに限らず、例えば、図9に示すように、同一円の円周に沿って互いに同一の2つのバーコード30が設けられる構成であっても良い。この構成にあっては、光ディスク装置は、2つのバーコード30の各々のデータを読み取り、CRCデータに従ってデータゾーン30bから読み取ったビット列に対して誤り符号検出を行い、誤りが検出されなかった方のバーコード30に記録されたデータを用いるようにする。従って、この構成によれば、例えばレーベル面にキズや埃がつくなどして、仮に一方のバーコード30の読み取れなくなったとしても、もう一方のバーコード30によりデータの読み取りが可能となる。なお、同一円の円周に沿って設けられるバーコード30の数は、3以上あっても良い。また、各バーの形状は、円の円周方向の長さが同じものであれば、上述した棒状に限らず、例えば、扇形などの任意の形状を用いることができる。
【0031】
<光ディスク記録装置>
次いで、本実施形態に係る光ディスク記録装置10について説明する。この光ディスク記録装置10は、上述の光ディスク20のレーベル面に印刷されたバーコード30を読み取り、このバーコード30によって示されるメディアデータを用いてレーベル面に画像(ユーザが視認できる画像)を形成するものである。先ず、レーベル面に画像が形成される光ディスク20の構成について説明する。なお、光ディスク20がCD−Rである場合について例示する。
【0032】
図11は、レーベル面に画像が形成される光ディスク20の構成を示す断面図である。この図に示すように、光ディスク20は、記録面からレーベル面にかけて、保護層201と、記録層202と、反射層203と、保護層204と、感熱層205と、保護層206とが上記の順序で積層された構造となっており、感熱層205が設けられている以外は、従来のCD−Rとほぼ同様の構成となっている。
【0033】
記録層202は、例えばシアン系やアゾ系などの有機色素を含む層であり、その面上に螺旋状のプリグルーブ(案内溝)202aが形成されている。記録面へのデータ記録時にあっては、記録面の方向からプリグルーブ202aに沿って一定パワー以上のレーザ光が照射される。また、感熱層205は、レーザ光が照射された場合に、熱変色を生じる層であり、光ディスク記録装置10は、この感熱層205に向けてレーベル面から一定パワー以上のレーザ光を照射して感熱層205を熱変色させてドット(変色点)を形成し、そして、このドットを多数形成することにより、図19に示すような画像を形成する。なお、図11は、光ディスク20の構造を模式的に示すものであり、各層の寸法比等はこの図に示される通りではない。また、感熱層205は、光ディスク記録装置10による光ディスク20のレーベル面への画像形成のために設けられた層であり、レーベル面への画像形成が行われないのであれば、感熱層205が設けられる必要はない。
【0034】
図12は、光ディスク記録装置10の機能的構成を示すブロック図である。同図において、制御部112は、CPU(Central Processing Unit)、ROM(Read Only Memory)およびRAM(Random Access Memory)等から構成されている。ROMには、レーベル面に付されたバーコード30の読取処理や、このレーベル面への画像形成処理、記録面へのデータ記録処理などの各種処理のためのプログラムが格納されており、制御部112は、このプログラムに従って光ディスク記録装置10の各部を制御する。
【0035】
スピンドルモータ100は、光ディスク20を回転駆動するものである。周波数発生器102は、スピンドルモータ100のモータドライバから得られる逆起電流を利用してスピンドル回転速度(単位時間当たりの回転数)に応じた周波数のFGパルス信号をサーボ回路108に出力する。サーボ回路108は、FGパルス信号により示されるスピンドル回転速度が制御部112からの指示信号によって示される回転速度と略等しくなるようにスピンドルモータ100をフィードバック制御する。さらに、サーボ回路108は、スピンドルモータ100の制御の他、光ピックアップ104に対するトラッキング制御およびフォーカス制御を実行する。これらトラッキング制御およびフォーカス制御については後述する。なお、本実施形態では、角速度一定となるように光ディスク20を回転駆動するCAV(Constant Angular Velocity)方式が用いられている。
【0036】
光ピックアップ104は、光ディスク20に対してレーザ光を照射するユニットであり、その概略構成を図13に示す。この図に示すように、光ピックアップ104は、大別すると、発光部1040と、受光部1042と、光学系1044と、光学系駆動部1046とを備えている。発光部1040は、レーザ光生成手段としてLD(Laser Diode)を備え、光学系1044に向けてレーザ光を出射する。光学系1044は、発光部1040からのレーザ光を光ディスク20の面上に導くものであり、多数の光学素子を有している。すなわち、回折格子1044a、偏光ビームスプリッタ1044b、コリメータレンズ1044c、1/4波長板1044d、対物レンズ1044eである。発光部1040から出射したレーザ光は、各光学素子1044a〜1044eをこれらの順に経て、光ディスク20の面上に集光される。レーベル面への画像形成時には、感熱層205が熱変色し得る発熱が集光スポットにて生じる程度のパワーに調整されたレーザ光がレーベル面側から照射され、これにより、レーザ光の集光スポットにドットが形成される。また、バーコード30の読取時には、レーザパワーが抑制され、感熱層205に熱変色が生じないようになっている。記録面へのデータ記録時には、記録層202に形成されたプリグルーブ202aに沿って一定パワー以上のレーザ光が記録面側から照射され、ピットが形成される。
【0037】
また、図13に示すように、光学系1044は、偏光ビームスプリッタ1044bによる反射光を受光部1042の受光面上に集光するシリンドリカルレンズ1044fを更に備えており、光ディスク20の面上にて反射されたレーザ光(戻り光)は、対物レンズ1044e、1/4波長板1044d、コリメータレンズ1044c、偏光ビームスプリッタ1044b、シリンドリカルレンズ1044fをこの順に経て受光部1042に導かれる。受光部1042は、受光光量に応じた受光信号を図12に示すRF(Radio Frequency)アンプ106に出力する。
【0038】
RFアンプ106は、光ピックアップ104からの受光信号を増幅してサーボ回路108および制御部112の各々にRF信号として出力する。光ディスク20の記録面に記録されたデータの再生時にあっては、RF信号は、EFM(Eight to Fourteen Modulation)変調された信号となっており、制御部112は、受け取ったRF信号をEFM復調して再生データを生成する。これにより、光ディスク20の記録面に記録された情報が再生される。
【0039】
サーボ回路108は、トラッキングサーボ制御およびフォーカスサーボ制御をすべく、RF信号からトラッキング信号とフォーカス信号とを生成し、光ピックアップ104の光学系駆動部1046に出力する。ここで、トラッキング信号は、光ディスク20の記録面に形成されたプリグルーブ202aに沿ってレーザ光が照射されるように、対物レンズ1044eの光ディスク20の径方向への移動距離を指示する信号である。また、フォーカス信号は、光ピックアップ104の対物レンズ1044eから光ディスク20の面上までの距離を制御すべく、対物レンズ1044eの光軸方向への移動距離を指示する信号である。
【0040】
光学系駆動部1046(図13参照)は、サーボ回路108からの信号に従って対物レンズ1044eを移動させるものであり、対物レンズ1044eを保持する2つのアクチュエータを備えている。すなわち、トラッキングアクチュエータ1046bとフォーカスアクチュエータ1046aである。トラッキングアクチュエータ1046bは、トラッキング信号に従って対物レンズ1044eを光ディスク20の径方向に移動させるものであり、フォーカスアクチュエータ1046aは、サーボ回路108からのフォーカス信号に従って対物レンズ1044eを光軸方向に移動させるものである。このように、光学系駆動1046がトラッキング信号とフォーカス信号に従って対物レンズ1044eを移動させることにより、トラッキングサーボ制御とフォーカスサーボ制御とが行われる。
【0041】
ここで、フォーカスサーボ制御について、より具体的に説明する。受光部1042の受光面は、図14に示すように、4つの検出エリアa、b、c、dに分割されている。一方、戻り光(反射光)の受光面上の結像は、シリンドリカルレンズ1044fによって、対物レンズ1044eが光ディスク20に接近した状態から遠ざかる状態になるにつれて、縦楕円Aから横楕円Bになる。また、結像が円Cになったときが、フォーカスが合った状態となる。そこで、4つの検出エリアでの受光光量において、(a+c)−(b+c)を演算することにより、対物レンズ1044eから光ディスク20の面までの距離が適正であるかが識別される。具体的には、距離が適正である場合(フォーカスが合った状態)、演算値は、ゼロとなり、また、対物レンズ1044eが光ディスク20に近接した状態では、演算値の極性がマイナスとなる一方、遠ざかった状態では、演算値の極性がプラスとなる。そこで、サーボ回路108は、フォーカスサーボ制御にあっては、フォーカスを光ディスク20の面上に合わせるべく、演算値がゼロとなるように制御信号としてフォーカス信号を生成し、フォーカスアクチュエータ1046aを駆動する。このように、フォーカスサーボ制御にあっては、反射光に従ってフォーカス信号を生成する、いわゆるフィードバック制御が行われるため、一定時間以上、反射光が検出されない場合には、フォーカスサーボ制御が機能しなくなる。
【0042】
さて、光ピックアップ104には、上述した構成要素の他にも、図示しないフロントモニタダイオードが設けられている。フロントモニタダイオードは、発光部1040がレーザ光を出射している間、出射光量に応じた大きさの電流を生成するものであり、この電流が光ピックアップ104から図7に示すレーザパワー制御回路(LPC)124に供給される。レーザパワー制御回路124は、フロントモニタダイオードからの電流値と、制御部112からの指示信号とから、光ピックアップ104から出射されるレーザ光のパワーを規定するパワー指示信号を生成しレーザドライバ120に出力する。より具体的には、レーザパワー制御回路124は、フロントモニタダイオードからの電流値によって示されるレーザパワーが制御部112からの指示信号によって示されるレーザパワーと略一致するようにレーザドライバ120を制御するためのパワー指示信号を生成する。
【0043】
バッファメモリ114は、光ディスク記録装置10が信号ケーブルにて接続されたパーソナルコンピュータ(以下、「ホストPC」と称する)90からの各種データを一時的に蓄積するメモリである。蓄積されるデータには、記録面に形成すべき画像を示す画像データや、記録すべき情報を示す記録データなどがある。ホストPC90には、光ディスク20の画像データや記録データなどを光ディスク記録装置10に送信する一方で、この光ディスク記録装置10に対して光ディスク20への画像形成や情報記録などを指示するためのアプリケーションプログラムがインストールされている。ユーザは、ホストPC90にアプリケーションプログラムを実行させることで、この光ディスク記録装置10に画像形成をさせたり、データ記録をさせるようになっている。
【0044】
バッファメモリ114は、蓄積された画像データおよび記録データのうち、画像データを制御部112に出力し、また、記録データをエンコーダ116に出力する。エンコーダ116は、受け取った記録データをEFM変調し、ストラテジ回路118に出力する。ストラテジ回路118は、受け取ったEFM信号に対して時間軸補正処理をして、レーザドライバ120に出力する。レーザドライバ120は、ストラテジ回路118からの信号と、後述する駆動パルス生成部122およびレーザパワー制御回路(LPC)124からの信号とに応じたレーザ駆動信号を生成し、光ピックアップ104の発光部1040に出力する。発光部1040がレーザ駆動信号にて規定されるレーザ光を光ディスク20の記録面に照射することによりデータが記録される。
【0045】
FIFO(First In First Out)メモリ125には、バッファメモリ114に蓄積された画像データが制御部112を介して供給され順次蓄積される。この画像データは、円盤状の光ディスク20に描画すべきドットPの濃淡を規定する階調度データの集合であり、各ドットPについては、図15に示されるように、光ディスク20の同心円と中心からの放射線との各交点に対応して夫々配列している。ここで、各同心円に対して内周側から外周側に向かって順番に1行、2行、・・・、m行(最終行)と規定し、ある一の放射線を基準線としたときに、他の放射線を、時計回りに順番に1列、2列、・・・、n列(最終列)と便宜的に規定することにする。なお、図15は、各座標の位置関係を明瞭に示すために模式的に示す図であり、実際の各座標は図示したものよりも密に配置されることになる。
【0046】
また、光ディスク20のレーベル面に画像が形成される際に、FIFOメモリ125には、PLL(Phase Locked Loop)回路127から画像形成用のクロック信号が供給されるようになっている。FIFOメモリ125は、この画像形成用のクロック信号のクロックパルスが供給される毎に、最も先に蓄積された一つの座標の階調度を示す画像データを駆動パルス生成部122に出力するようになっている。
【0047】
PLL回路127は、周波数発生器102から供給されるFGパルス信号を逓倍し、上述した画像形成用のクロック信号を出力する。このようにFGパルス信号を逓倍したクロック信号がPLL回路127からFIFOメモリ125に出力され、このクロック信号に1周期毎、つまり、ある一定角度分だけ光ディスク20が回転する毎に1つのドットの階調度を示すデータがFIFOメモリ125から駆動パルス生成部122に出力されることになる。なお、このようにPLL回路127を用いてFGパルスを逓倍したクロック信号を生成するようにしてもよいが、スピンドルモータ100として、回転駆動能力が十分に安定しているモータを用いた場合には、PLL回路127に代えて水晶発振器を設け、FGパルスを逓倍したクロック信号、すなわち光ディスク20の回転速度に応じた周波数のクロック信号を生成するようにしてもよい。
【0048】
駆動パルス生成部122は、光ピックアップ104から照射するレーザ光の照射タイミング等を制御する駆動パルスを生成する。ここで、駆動パルス生成部122は、FIFOメモリ125から供給されるドットごとの階調度を示す画像データに応じたパルス幅の駆動パルスを生成する。例えば、あるドットの階調度が比較的大きい場合(濃度が濃い場合)には、図16上段に示すようにライトレベルのパルス幅を大きくした駆動パルスを生成し、一方階調度が比較的小さい座標については図16下段に示すようにライトレベルのパルス幅を小さくした駆動パルスを生成する。ここで、ライトレベルとは、そのレベルのレーザパワーを光ディスク20のレーベル面に対して照射した際に感熱層205が明らかに熱変色するパワーレベルであり、このような駆動パルスがレーザドライバ120に供給された場合、そのパルス幅に応じた時間だけライトレベルのレーザ光が光ピックアップ104から照射される。なお、図16に示すサーボレベルとは、そのレベルのレーザパワーを光ディスク20のレーベル面に照射した際に、感熱層205が殆んど熱変色しないパワーレベルであり、ドットが形成されない領域に対しては、サーボレベルのレーザ光が照射される。
【0049】
ステッピングモータ126は、光ピックアップ104を光ディスク20の径方向に移動させるためのモータである。モータドライバ128は、モータコントローラ130から供給されるパルス信号に応じた量だけステッピングモータ126を回転駆動し、光ディスク20の径方向に移動させる。モータコントローラ130は、制御部112から指示される光ピックアップ104の径方向への移動方向および移動量を含む移動開始指示に従って、移動量や移動方向に応じたパルス信号を生成し、モータドライバ128に出力する。このように、ステッピングモータ126が光ピックアップ104を光ディスク20の径方向に移動させること(いわゆる、フィード送り)、および、光ディスク20をスピンドルモータ100が光ディスク20を回転させることにより、光ピックアップ104のレーザ光照射位置を光ディスク20の様々な位置に移動させることができるようになっている。
【0050】
また、制御部112には、光ディスク20のレーベル面に設けられたバーコード30をデコードするためのデコード回路112aが設けられている。このデコード回路112aは、バーコード30の読み取り時に、バーコード30として記録されたデータを構成する記録ビット列MをRF信号から生成する。ここで、上述のように、バーコード30のデータフォーマットデは、ATIP情報またはADIP情報と同様となっているため、記録ビット列Mからメディアデータを生成するために、新たなデコーダなどを用いることなく、従来の回路構成により、このメディアデータを生成することが可能となっている。
【0051】
さらに、制御部112のROMには、複数種類のディスク毎に、ライトレベルとして設定すべき目標値が記憶されている。レーベル面への画像形成時には、制御部112は、光ディスク20のレーベル面に設けられたバーコード30を読み取ることにより取得されたメディアデータ(より具体的には、メディアデータに含まれるメディアタイプまたはマニュファクチャデータ)に対応するライトレベルの目標値を読み出し、これらの目標値をレーザパワー制御回路124に指示する。このようにメディアデータに応じてパワーの目標値を設定するのは以下のような理由による。すなわち、光ディスク20の種類によって感熱層205として用いられる感熱フィルム等の特性が異なることが考えられ、特性が異なる場合、どの程度のパワーのレーザ光を照射すれば熱変色するといった特性も当然変化することになる。このため、ある光ディスク20の感熱層205に対しては、あるライトレベルのレーザ光を照射することにより、その照射領域を十分に熱変色させることができた場合にも、他の光ディスク20の感熱層205に対して同じライトレベルのレーザ光を照射させた場合に、その照射領域を熱変色させることができるとは限らない。従って、本実施形態では、種々のメディアデータ毎に対応する光ディスク毎に、予め正確な画像形成が行えるようなライトレベルおよびサーボレベルの目標値を実験により求めておく。そして、求めた目標値を各々のメディアデータに対応付けてROMに格納しておくことにより、種々の光ディスク20の感熱層205の特性に応じて、最適なパワー制御を行うことができるようになる。
【0052】
次いで、本実施形態に係る光ディスク記録装置10の動作について説明する。この光ディスク記録装置10は、一般的に行われている記録面へのデータ記録に加え、さらに、レーベル面への画像形成を可能とするものであり、特に、レーベル面に設けられたバーコード30を読み取ることでメディアデータを取得し、このメディアデータに従ってライトレベルの目標値を設定した後に、画像を形成することに主に特徴を有している。そこで、以下では、レーベル面への画像形成について詳述することにする。
【0053】
図17は、光ディスク記録装置10の制御部112によって実行される処理手順を示すフローチャートである。この図に示すように、先ず、光ディスク記録装置10の制御部112は、光ピックアップ104に対向配置された光ディスク20の面がレーベル面であるか否かを判別する(ステップS1)。より具体的には、制御部112は、光ディスク20にレーザ光を照射して、光ディスク20の光ピックアップ104と対向する面にATIP情報が記録されているか否かを検出する。ATIP情報は、CD−Rの記録面のプリグルーブ202aに予め記録された情報であり、このようにATIP情報が記録されている場合には、光ディスク20の記録面が光ピックアップ104と対向するようにセットされていることがわかる。一方、ATIP情報が記録されていない場合には、光ディスク20のレーベル面が光ピックアップ104と対向するように光ディスク20がセットされていることがわかる。すなわち、制御部112は、上記のようにATIP情報の有無を検出することにより、光ディスク20がどちら側の面を光ピックアップ104側に向けてセットされたかを検出している。
【0054】
ここで、制御部112は、光ディスク20からATIP情報が検出された場合には、記録面が光ピックアップ104と対向するように光ディスク20がセットされていると判断し、記録面に対してホストPC90から供給される記録データを記録するための制御を行う(ステップS2)。このデータ記録制御は、従来の光ディスク記録装置(CD−Rドライブ装置)と同様であるため、その説明を省略する。
【0055】
一方、制御部112は、セットされた光ディスク20からATIP情報が検出されない場合には、レーベル面が光ピックアップ104と対向するように光ディスク20がセットされていると判断し、光ディスク20に設けられたバーコード30にレーザ光が照射されるように光ピックアップ104を制御し(ステップS3)、バーコード30として記録されたデータの記録ビット列Mを特定すべく、デコード回路112aにデコードを行わせる(ステップS4)。より具体的には、制御部112は、モータコントローラ130に指示信号を出力して光ピックアップ104をバーコード30が設けられた位置まで光ディスク20の径方向に移動させる。次いで、制御部112は、バーコード30に対してレーザ光が照射されるように光ピックアップ104を制御し、これにより、図18に示されるようなRF信号が得られる。なお、この図には、図2に示されるバーコード30に対してレーザ光が照射された場合のRF信号が例示されており、また、バーコード30の読み取り時にあっては、レーザ光が照射されている箇所における光ディスク20の線速度は、一定であるものとする。
【0056】
上述したように、バーが形成された箇所の光反射率は、約1%である。従って、図18のように、バーが形成された箇所にレーザ光が照射されている期間において受光光量が減少し、図示のようなRF信号が得られる。一方、PLL回路127からは、レーザ光が1つのバー、すなわち、領域R1を横断するに要する時間を周期とする同期信号が制御部112のデコード回路112aに出力されており、デコード回路112aは、このクロック信号に同期して、RF信号を受け取ることにより、バーの配列を特定する。さらに詳述すると、デコード回路112aは、Syncゾーン30aへのレーザ光照射が開始された時、すなわち、RF信号がHighレベルからLowレベルに遷移したのを検出すると、この遷移タイミングt0から、次に、RF信号がLowレベルからHighレベルに遷移したタイミングt1までの時間間隔を特定し、この時間間隔を周期とするクロック信号をPLL回路127に出力させる。そして、デコード回路112aは、RF信号が次にLowレベルへ遷移する遷移タイミングt2を検出し、この遷移タイミングt2と、PLL回路127から出力されるクロック信号とが同期するように、PLL回路127を制御する。これにより、PLL回路127からの同期信号のクロックの立ち上りと立ち下りとが、レーザ光がバーを横断し始めるタイミングと、横断を終了するタイミングとに同期することになる。デコード回路112aは、この同期信号に同期してRF信号を順次受け取り、その信号レベルがHighレベルか否かを判別することで、バーの有無に応じたビット値の再生符合ビットを順次生成し、これらの再生符合ビットを配列してなる符号化コードCを生成する。そして、デコード回路112aは、図4に示す状態遷移図に従って符号化コードCをデコードして記録ビット列Mを生成する。
【0057】
この符号化コードCのデコードについて、より具体的に説明する。なお、符号化コードCを特定する際には、デコード回路112aは、RF信号がHighレベルの場合にビット値「0」の再生符合ビットを生成し、また、Lowレベルの場合にビット値「1」の再生符合ビットを生成するものとする。
デコード回路112aは、記録ビット列Mの各ビットに対して、コード化時に割り当てられているビット(すなわち、上述の符合ビット)数m(本実施形態では、m=2)と同じ数の再生符合ビットを生成するごとに、これらの再生符合ビットを再生符合ビット列としてラッチするなどして記憶する。次いで、デコード回路112aは、新たに再生符合ビット列を生成すると、記憶している再生符合ビット列の各ビット値が示す状態から、新たに生成した再生符合ビット列の各ビット値が示す状態への遷移に対応するビット値を図4に示す状態遷移図に従って決定する。図2を例にして説明すると、Syncゾーン30aにレーザ光が照射された時は、デコード回路112aは、最初に再生符合ビット列として(10)を記憶する。そして、デコーダ回路112aは、(10)となる再生符合ビット列を次に生成すると、図4に示す状態遷移図に従って、状態S0(10)から状態(10)への状態遷移に対応するビット値として「SD」(すなわち、Syncデータ)を決定する。また、Syncゾーン30aからデータゾーン30bにかけてレーザ光が照射される時には、デコード回路112aは、再生符合ビット列として(10)を記憶した後に、再生符合ビット列(00)を生成する。従って、デコーダ回路112aは、状態S0(10)から状態S2(00)への遷移に対応するビット値として「L」(すなわち、「0」)を決定する。以降、同様にして、記録ビット列Mの各ビット値が順次決定され、これにより、符合化コードCがデコードされて記録ビット列Mが生成される。
なお、状態遷移を用いずに、例えば、図7および図8に示すように、記録ビット列Mの各ビットのビット値と、m個の符合ビットの各ビット値の状態とを一義的に割り当てるといったコード化が用いられている場合には、デコード回路112aは、m個の再生符合ビットを生成するごとに、これらの再生符合ビットの各ビット値の状態と一義的に対応付けられたビット値を決定すれば良い。
【0058】
次いで、制御部112は、この記録ビット列Mのうち、CRCデータに相当するビット列を用いて、誤り符合検出処理を行い(ステップS5)、記録ビット列Mに誤りがあるか否かを判別する(ステップS6)。この判別結果がYESであれば、制御部112は、ホストPC90に対してエラーを通知するなどのエラー通知処理を行い(ステップS7)、処理を終了する。なお、例えば図9に示すように、光ディスク20のレーベル面に、互いに同一の複数のバーコード30が同一円周に沿って設けられている場合には、制御部112は、各バーコード30から生成した記録ビット列Mの全てに誤りが検出された場合にだけ、エラー通知処理を行う。
【0059】
さて、ステップS6における判別結果がNOである場合、制御部112は、メディアデータをデコードする(ステップS8)。このメディアデータに対応するライトレベルおよびサーボレベルの目標値をROMから読み出す(ステップS9)。そして、制御部112は、読み出したライトレベルおよびサーボレベルのレーザ光が光ピックアップ104から照射されるよう、各々のレベルの目標値をレーザパワー制御回路124に指示する(ステップS10)。
【0060】
次いで、制御部112は、光ディスク20のレーベル面に画像を形成するための制御処理を行う(ステップS11)。具体的には、制御部112は、ホストPC90からバッファメモリ114を介して供給された画像データをFIFOメモリ125に転送する。次いで、制御部112は、周波数発生器102から供給されるFGパルス信号から、スピンドルモータ100によって回転させられている光ディスク20の基準位置、すなわち、図15に示す座標Pm1が光ピックアップ104のレーザ光照射位置を通過するタイミングを検出する。次いで、制御部112は、基準位置通過タイミングを検出すると、この基準位置通過タイミングに合わせて、1行分のドットを形成するための処理を行う。具体的には、制御部112は、基準位置通過タイミングが到来した時に、PLL回路127から出力されるクロック信号に同期してFIFOメモリ125から画像データを順次出力するよう各部を制御する。この制御により、FIFOメモリ125は、PLL回路127からクロックパルスが供給される毎に、1つの座標の階調度を示す情報を駆動パルス生成部122に出力し、駆動パルス生成部122は、この情報に示される階調度にしたがったパルス幅の駆動パルスを生成してレーザドライバ120に出力する。この結果、光ピックアップ104は、各座標の階調度に応じた時間だけライトレベルでレーザ光を光ディスク20のレーベル面に照射し、その照射領域が熱変色することになる。以後、制御部112は、基準位置通過タイミングが到来するごとに、光ピックアップ104を1行分だけ径方向に移動させ、同様な処理を最終行に至るまで行うことにより、図19に示すような画像が形成される。
【0061】
このように、本実施形態に係る光ディスク記録装置10によれば、光ディスク20のレーベル面に設けられたバーコード30からメディアデータを取得することにより、光ディスク20の感熱層205の材質に応じたパワーにて画像を形成するため、光ディスク20によっては、画像の発色が悪くなるといったことが防止される。
【0062】
<光ディスク記録装置の変形例>
上述した実施形態にあっては、光ディスク20の回転駆動方式をCAV方式としたが、回転速度が線速度一定となるように光ディスク20を回転駆動する方式、すなわち、CLV(Constant Linear Velocity)方式としても良い。回転駆動方式をCLV方式とした場合には、スピンドルモータ100の回転速度制御のために、制御部112は、線速度を示す指示信号をサーボ回路108に出力する。なお、情報記録時(ピット形成時)と画像形成時(ドット形成時)とで、光ディスク20の回転駆動方式を異ならせても良い。また、情報記録時および画像形成時において、CLV方式とCAV方式とを、例えばレーザ光を照射すべき光ディスク20の径方向の位置に応じて切り換えるようにしても良い。
【0063】
また、上述した実施形態において、光ディスク20がCD−Rである場合について例示したが、これに限らず、例えば、CD−RWやDVD−R(Digital Versatile Disc−Recordable)、DVD−RW(Digital Versatile Disc− ReWritble)などであっても良い。要するに、レーザ光照射により情報が記録される記録媒体であって、レーザ光照射箇所に変色が生じる記録媒体であれば良い。
【0064】
【発明の効果】
以上説明したように、本発明によれば、光ディスク装置が読み取る際にフォーカスサーボ制御を阻害しないバーコードを規定するためのコード化方法、フォーカスサーボ制御を阻害しないバーコードが設けられた光ディスク、および、光ディスクに設けられたバーコードに対してレーザ光を照射することにより、バーコードとして記録されたデータを得る光ディスク装置が提供される。
【図面の簡単な説明】
【図1】本発明の実施形態に係る光ディスクをレーベル面から見た図である。
【図2】同バーコードの空間的構成をデータフォーマットと共に示す図である。
【図3】同コード化について説明するための図である。
【図4】同コード化に係る状態遷移図である。
【図5】同コード化の他の態様を説明するための図である。
【図6】同コード化の他の態様に係る状態遷移図である。
【図7】同コード化のその他の態様を説明するための図である。
【図8】同コード化のその他の態様を説明するための図である。
【図9】同バーコードの設け方の他の態様を示す図である。
【図10】同コード化について説明するための図である。
【図11】同光ディスクの構成を示す断面図である。
【図12】同光ディスク記録装置の機能的構成を示すブロック図である。
【図13】同光ピックアップの構成を示す概略図である。
【図14】同フォーカスサーボ制御を説明するための図である。
【図15】同レーベル面への画像形成を説明するための図である。
【図16】同駆動パルス生成回路の動作を説明するための図である。
【図17】同制御部によって実行される処理手順を示すフローチャートである。
【図18】同制御部による符号化コードのデコードを説明するための図である。
【図19】同光ディスクのレーベル面に画像が形成された際の一例を示す図である。
【符号の説明】
C・・・符号化コード、Cb1、Cb2・・・符合ビット、M・・・記録ビット列、10・・・光ディスク記録装置、20・・・光ディスク、22・・・ピックアップ可動領域、30・・・バーコード、104・・・光ピックアップ、108・・・サーボ回路、112・・・制御部、205・・・感熱層、1042・・・受光部、1046a・・・フォーカスアクチュエータ。

Claims (3)

  1. 光ディスクの面内のうち、光ディスクを再生する光ディスク装置によってレーザ光が照射され得る領域に、光ディスクの中心と同心の円の円周上に設けられ、当該円周方向の長さが略同一である複数のバーおよびスペースからなるバーコードの生成に用いられるコード化方法において、
    前記バーコードとして記録されるデータを構成するm(m≧1)個のデータビットの各々に対して、2値のビット値によりバーおよびスペースを示す符合ビットをn(n≧2)個ずつ順番に割り当て、
    前記m個のデータビットの並びに対応して配列したm×n個の符合ビットのビット列において、バーを示すビット値の前後のビット値がスペースを示すビット値となるように、データビットの各ビット値に応じて各符号ビットのビット値を決定する
    ことを特徴とするコード化方法。
  2. 面内にバーコードが設けられた光ディスクにおいて、
    前記バーコードは、光ディスクを再生する光ディスク装置によってレーザ光が照射され得る領域内に、光ディスクの中心と同心の円の円周上に設けられ、
    当該円周方向の長さが略同一である複数のバーとスペースとからなり、当該バーの前記円周方向の配置間隔によってデータを表現するものであり、1つのバーの前記円周方向両側には、スペースが設けられている
    ことを特徴とする光ディスク。
  3. 光ディスクの面にレーザ光を照射する光照射手段を備えた光ディスク装置において、
    前記光照射手段を前記光ディスクの径方向に移動させる移動手段と、
    光ディスクの中心と同心の円の円周上に設けられ、当該円周方向の長さが略同一である複数のバーとスペースとからなるバーコードであり、当該バーの円周方向の配置間隔によってデータを表現し、1つのバーの前記円周方向両側には、スペースが設けられているバーコードに対して、レーザ光が照射されるように前記光照射手段を移動させるべく前記移動手段を制御する制御手段と、
    当該バーコードに対して照射されたレーザ光の反射光光量に応じた受光信号から前記バーコードとして記録されたデータをデコードする手段であり、1つのバーを読み取るに要する時間間隔ごとに前記受光信号を順次受け取り、受け取った受光信号のレベルに応じて2値の再生符合ビットを順次生成する一方、
    デコードすべきデータを構成するデータビットの各ビットに対して予め割り当てられているビット数と同じ数の再生符合ビットを生成する毎に、当該生成した再生符合ビットの各々のビット値に従って、対応するデータビットを生成するデコード手段と
    を具備することを特徴とする光ディスク装置。
JP2002222074A 2002-07-30 2002-07-30 コード化方法、光ディスクおよび光ディスク装置 Expired - Fee Related JP3888256B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222074A JP3888256B2 (ja) 2002-07-30 2002-07-30 コード化方法、光ディスクおよび光ディスク装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222074A JP3888256B2 (ja) 2002-07-30 2002-07-30 コード化方法、光ディスクおよび光ディスク装置

Publications (2)

Publication Number Publication Date
JP2004063030A true JP2004063030A (ja) 2004-02-26
JP3888256B2 JP3888256B2 (ja) 2007-02-28

Family

ID=31942215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222074A Expired - Fee Related JP3888256B2 (ja) 2002-07-30 2002-07-30 コード化方法、光ディスクおよび光ディスク装置

Country Status (1)

Country Link
JP (1) JP3888256B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062603A2 (en) * 2004-12-11 2006-06-15 Hewlett-Packard Development Company, L.P. Method and apparatus for acquiring an index mark
WO2006090892A1 (en) * 2005-02-22 2006-08-31 Kabushiki Kaisha Toshiba Storage medium, reproducing method, and recording method
US7446792B2 (en) 2005-06-30 2008-11-04 Yamaha Corporation Method and apparatus for forming visible image on optical disk
JP2008269688A (ja) * 2007-04-18 2008-11-06 Toshiba Samsung Storage Technology Corp 光ディスク及び光ディスク装置
WO2013051087A1 (ja) * 2011-10-03 2013-04-11 パイオニアデジタルデザインアンドマニュファクチャリング株式会社 描画基準角認識装置及び方法、コンピュータプログラム、並びにディスク装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107755893A (zh) * 2017-11-28 2018-03-06 广州真知码信息科技有限公司 一种激光高速绘制二维码方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062603A2 (en) * 2004-12-11 2006-06-15 Hewlett-Packard Development Company, L.P. Method and apparatus for acquiring an index mark
US7349297B2 (en) 2004-12-11 2008-03-25 Hanks Darwin M Method and apparatus for acquiring an index mark
WO2006062603A3 (en) * 2004-12-11 2009-02-19 Hewlett Packard Development Co Method and apparatus for acquiring an index mark
WO2006090892A1 (en) * 2005-02-22 2006-08-31 Kabushiki Kaisha Toshiba Storage medium, reproducing method, and recording method
US7352671B2 (en) 2005-02-22 2008-04-01 Kabushiki Kaisha Toshiba Storage medium, reproducing method, and recording method
US7352682B2 (en) 2005-02-22 2008-04-01 Kabushiki Kaisha Toshiba Storage medium including a burst cutting area (BCA)
US7366070B2 (en) 2005-02-22 2008-04-29 Kabushiki Kaisha Toshiba Storage medium including a burst cutting area (BCA)
US7408858B2 (en) 2005-02-22 2008-08-05 Kabushiki Kaisha Toshiba Information storage medium including a system lead-in area, a connection area, a data lead-in area and a data area
US7446792B2 (en) 2005-06-30 2008-11-04 Yamaha Corporation Method and apparatus for forming visible image on optical disk
JP2008269688A (ja) * 2007-04-18 2008-11-06 Toshiba Samsung Storage Technology Corp 光ディスク及び光ディスク装置
WO2013051087A1 (ja) * 2011-10-03 2013-04-11 パイオニアデジタルデザインアンドマニュファクチャリング株式会社 描画基準角認識装置及び方法、コンピュータプログラム、並びにディスク装置

Also Published As

Publication number Publication date
JP3888256B2 (ja) 2007-02-28

Similar Documents

Publication Publication Date Title
JP3873784B2 (ja) 光ディスク装置
US6714509B2 (en) Disk recording medium and disk drive apparatus
EP1843346B1 (en) Method of forming an image on an optical disk by radially vibrating a laser beam under focus control in circumferential zones
US7466637B2 (en) Optical disc recording apparatus and method of forming an image on an optical disc
US7881179B2 (en) Systems and methods for recording optical information
US20070153646A1 (en) Optical Recording Apparatus With Drawing Capability of Visible Image on Disk Face
JP2003242669A (ja) 光ディスク装置、フォーカス制御方法およびプログラム
JP2004039019A (ja) 光ディスク記録装置
JP3858772B2 (ja) 光ディスク記録装置
EP1150291B1 (en) Optical disc drive, and recording/reproducing method
JP2004213852A (ja) 可視画像形成方法、プログラムおよび可視画像形成システム
JP4265021B2 (ja) 記録装置、レーザパワー設定方法
JP3888256B2 (ja) コード化方法、光ディスクおよび光ディスク装置
JP4012925B2 (ja) 光記録媒体、および、データ記録装置
JP4082298B2 (ja) 光ディスク装置
JP4230784B2 (ja) 光ディスク記録再生装置、及び光ディスク描画システム
US20050276212A1 (en) Information record medium, and information record apparatus and method
JP2008269688A (ja) 光ディスク及び光ディスク装置
JP2008004243A (ja) 光ディスク描画方法および光ディスク装置並びに光ディスク記録媒体
JP4356712B2 (ja) 光ディスクへの可視画像記録方法及び光ディスク記録装置
JP3747918B2 (ja) 光ディスク記録装置
EP1742219B1 (en) Method and apparatus for forming visible images on optical disk by laser beam
JP4020161B2 (ja) 光ディスク記録装置
EP1903562A2 (en) Optical disk recording/drawing method
JP4315171B2 (ja) 光ディスクへの可視画像記録方法及び光ディスク記録装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees