JP2004061389A - Transmissivity measuring method - Google Patents

Transmissivity measuring method Download PDF

Info

Publication number
JP2004061389A
JP2004061389A JP2002222465A JP2002222465A JP2004061389A JP 2004061389 A JP2004061389 A JP 2004061389A JP 2002222465 A JP2002222465 A JP 2002222465A JP 2002222465 A JP2002222465 A JP 2002222465A JP 2004061389 A JP2004061389 A JP 2004061389A
Authority
JP
Japan
Prior art keywords
light
thin tube
receiving surface
light beam
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002222465A
Other languages
Japanese (ja)
Other versions
JP3470269B1 (en
Inventor
Choichi Suga
須賀 長市
Tetsuya Kimura
木村 哲也
Hideo Kita
喜多 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suga Test Instruments Co Ltd
Original Assignee
Suga Test Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suga Test Instruments Co Ltd filed Critical Suga Test Instruments Co Ltd
Priority to JP2002222465A priority Critical patent/JP3470269B1/en
Application granted granted Critical
Publication of JP3470269B1 publication Critical patent/JP3470269B1/en
Publication of JP2004061389A publication Critical patent/JP2004061389A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for determining transmissivity by directly measuring a measuring object itself by measuring transmissivity of a cylindrical capillary of a cell and a filter having light transmissivity without substituting it with transmissivity of a plate-like filter. <P>SOLUTION: This transmissivity measuring method makes the light from a light source incident in the capillary as a parallel light flux 9 by placing the light source outside the capillary and a light receiving surface inside the capillary, and receives an emitting light flux 10 emitted by passing through a tube wall by the light receiving surface, and sets the area of the light receiving surface equal to the cross-sectional area of the parallel light flux, and puts the light receiving surface in a capillary central position 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光透過性を有する光学セルや、耐候光性試験装置に用いられる人工光源の発光部を取り巻くフィルタ等の透過率を測定する方法に関する。より詳細には、セルや、フィルタの形状が円筒状である細管の透過率測定方法に関するものである。
【0002】
【従来の技術】
光透過性を有し、透過率の測定を必要とするものには、分光老化試験装置や、分光光度計などに用いられる光学セルがあり、測定対象を入れる容器として、セル自体の光透過性は測定の前提条件となる。
【0003】
また、耐候光性試験装置について言えば、人工光源を取り巻くフィルタがある。人工光源がカーボンアーク灯式の場合は、放電発光する上下対のカーボンを包囲するための、ガラス製のグローブであったり、ランプハウスを形成するプレート状のガラスフィルタであったりする。一方、人工光源がロングアークタイプのキセノンランプである場合は、キセノンガスが封入された発光管を冷却するための内筒と、外筒を組み合わせた円筒状フィルタである。メタルハライドランプも略同様のフィルタを用いる。これらのグローブや、ガラスフィルタ又は円筒状フィルタを透過した光が試料に照射される。上述したランプからの光は、試験対象に応じた立ち上がり波長の分光分布であることが要請されており、また、ランプ及びフィルタの経時変化もあるため、フィルタの透過性は重要な試験要素である。
【0004】
このフィルタなどの透過性を確認するため、測定器による透過率測定がなされる。従来、図6に示したように、光源からの光を平行光束にしてプレート状の測定対象試料にあて、透過した光を光源と一直線上にある受光器(積分球)で受光し、測定する。これに対し、曲面を有する試料の分光透過率測定の例として、特開平11−142241号公報に、試料である被検レンズの直後に積分球を載置した構成が示されているが、本発明の測定対象のように、曲面を有する試料が、円筒形状で小半径の細管である場合、同様な構成は不可能である。
【0005】
すなわち、前記キセノンランプのインナーフィルタは、外形14mmや外径18mmという細い円筒状フィルタが実用されており、細管内は狭く、円筒の管壁を挟んで一方の側に光源、他方の側に受光器を一直線に載置することは困難で正確な受光はできない。さらに、細管の一方の側面に光源、他方の側面に受光器を置いて測定したとしても、光源からの光は、フィルタを二枚、すなわち管壁を二度透過した状態の光となり、受光器に至る光路途中の光の拡散も多く、正確な透過光の測定ができないという問題点があった。
【0006】
一般に、光源からの平行光は、管壁から入射屈折し、試料を透過して出射する時に再度屈折し、拡散光となる。また、光源を円筒内側に入れて、凹面から入射した光を凸面から出射させた場合も拡散光となる。特開平7−92020号公報には、放射強度測定に関し、発光体から発せられた光が発光管を透過した光の軌跡が平行光束ではないことから、測定位置を補正する補正手段を構ずる複雑な測定方法が示されている。細管の透過率測定においても、入射した平行光束を透過平行光束として受光することは困難であると考えられていた。
【0007】
そこで、従来は、細管と同じ材質、同じ厚みのプレート状フィルタの透過率を測定し、測定された値を細管の透過率とみなしてきた。すなわち細管自体を測定することは行われてこなかった。
【0008】
また、耐候光試験途中におけるフィルタの透過率の変化は、フィルタ自体を測定しなければならず、無論、プレート状フィルタで代替することも不可能である。
【0009】
【発明が解決しようとする課題】
本発明は、かかる問題点に鑑みてなされたものであり、したがって、本発明の目的は、光透過性を有するセルや、フィルタの、円筒形状で、細管の透過率の測定を、プレート状フィルタの透過率で代替することなく、測定対象自体を直接測定して、透過率を求める方法の提供をすることにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明者らは、試行錯誤のうえ、測定細管に対する入射光束と、細管内に出射した出射光束とに対する光学的考察から得られた新たな知見をもとに、本発明の透過率測定方法を、以下のように構成した。
すなわち、細管の外側に光源を載置し、細管内に受光面を載置して、光源からの平行光束を細管に入射させ、細管内へ出射した光を細管内の受光面で受光する透過率測定方法であって、前記受光面の面積が平行光束の断面積に等しいことを特徴とする透過率測定方法である。
【0011】
そして、前記受光面が細管内の中心にあることを特徴とする。
【0012】
また、入射光束が出射する細管内壁と前記受光面との間に反射手段を置いて、細管外壁から反射手段までの距離、及び反射手段から受光面までの距離の和が細管の外半径に等しいことを特徴とする。
【0013】
本発明によれば、細管に入射する平行光束を、細管での屈折、空気層での屈折に対する何ら補正手段を講ずることなく、細管の透過率を測定できる測定方法である。
【0014】
さらに、細管内の反射手段と受光面の位置を特定できることによって、細管の測定箇所を選ばず透過率測定ができる方法である。
【0015】
【実施例】
以下、本発明の実施例について、図面を参照して詳細に説明する。
本発明の透過率測定方法は、細管の外側に光源を、細管の内側に受光面を載置して、光源からの光は平行光束にして細管内に入射させ、管壁を通り出射した光を前記受光面で受光するようにする。そして、受光面の面積が平行光束の断面積に等しく、更に、前記受光面が細管の中心にあることを特徴とする。また、細管と前記受光面との間に反射手段を置いて、反射手段から細管外壁までの距離、及び反射手段から受光面までの距離の和が細管の外半径に等しいことが好ましいとするものである。さらに詳述する。
【0016】
図1は、本発明による透過率測定方法を示す実施例1の構成図である。
図1において、細管(1)の外側に載置した図示しない光源の光は、平行光束(9)とし、細管(1)に入射させ、管壁(6)を透過した光は細管内へ出射する。出射した光束(10)は、細管内の中央位置(12)に置いた図示しない受光器で受光される。
【0017】
ここで、細管(1)へ入射する平行光束(9)を(A)、細管内への出射する出射光束(10)を(B)、細管中央位置(12)の出射光束(11)を(C)とする。
【0018】
図1に示されたように、出射直後の出射光束(B)は拡散光(13)である。平行光束(A)は、管壁(6)で屈折し、収束するように進み、細管内壁で再度屈折し出射され、拡散光となる。これを具体的に図2に示す。
【0019】
図2は、外径30mmの細管において、管壁の肉厚(t)が1.0mm、2.0mm、及び5.0mmの場合に、出射光束(B)がどのように進むかを軌跡によって示した図である。ここから、細管の透過率測定に関して、拡散光を安定して測定するための新たな知見を得て、本発明に至ったものである。なお、図中、平行光束(A)の細管の中心を通る光軸(8)をx軸、このx軸に垂直に細管中心で交わる直線をy軸としてある。
【0020】
即ち、細管内に出射する光束(B)は、出射時に屈折し、光軸(8)に平行する平行光束(A)を延長した軌跡(破線で示す)に対し、平行ではないことが、図に示されている。しかし、出射光束(B)は更に進んで平行光束(A)を延長した軌跡(破線)と交差することがわかる。そして、この交差している点がy軸上にプロットされることが見出される。
【0021】
そこで、平行光束(A)の直径を5、10、15、20mmとしたとき、出射光束(B)と出射光束(C)の各直径を計算し、更に出射光束(B)及び出射光束(C)に対する平行光束(A)の比を計算してみた。表1に、その結果を示す。なお、数字は小数点以下4桁目を四捨五入してある。
【0022】
【表1】

Figure 2004061389
【0023】
即ち、本発明者らの得た新たな知見は、表1に示した細管の中央の位置での出射光束(C)に対する平行光束(A)の比である。表に見る通り、細管の中央の位置での出射光束(C)に対する平行光束(A)の比は1を超えないものである。したがって、細管の中央の位置における出射光束(C)の単位面積当たりの光強度は、入射する平行光束(A)の単位面積当たりの光の強度に等しいか、又は0.1%以内の誤差であることが判明した。特に入射する平行光束が直径5mmを超えない場合、細管中央位置での出射光束(C)と、平行光束(A)の断面積は等しくなっているため、正確な透過率測定が可能であることが判る。
【0024】
前述した従来の積分球による測定例からは、管壁(6)を透過した光を受光する場合、細管凹面へ出射した直後の光を受光することが想定されるが、表1に示すように、出射直後の出射光束(B)に対する平行光束(A)の比は1より大である。従って、管壁に近接する位置で受光すると、単位面積当たりの光の強度(密度)は、入射する平行光束よりもかえって高い値が出る結果となっている。このことから、平行光束(A)に対し、受光面を細管中央位置(12)に置くことが好適であると考えられる。
【0025】
そこで、表1の計算データを得るに至った光学的考察を、図3を用いて説明する。なお、図3の(a)において、細管の中心を通る平行光束の光軸をx軸、細管の中心を通り前記光軸に垂直な軸をy軸とし、x軸と、y軸の交点を点Oとする。そして、細管へ平行光束が入射する点を点lとし、点lの座標を(x、y)とする。そして、管壁を透過し、細管内側へ出射する点を点mとし、点mの座標を(x、y)とする。図3の(b)は(a)の一部拡大図である。
【0026】
図3に示されたように、平行光束(A)は、点lで管壁に入射し、屈折して進み、点mで再屈折して、細管内に出射する軌跡をたどる。そこで、点lにおける入射角と、屈折角を求める。入射角をi、屈折角をi1’とし、細管中心すなわち点Oと、点lのなす角をα、点Oと点mのなす角をαとすると、入射角iは点Oと点lのなす角αに等しいから、入射角iは数1によって与えられる。
【0027】
【数1】
Figure 2004061389
【0028】
点lにおける屈折角i1’は数2によって与えられる。
【0029】
【数2】
Figure 2004061389
【0030】
次に、点lの座標(x,y)は、数3及び数4のように表される。
【0031】
【数3】
Figure 2004061389
【0032】
【数4】
Figure 2004061389
【0033】
点lから屈折して点mへ向かう軌跡、即ち点lと点mを結ぶ直線を、y=ax+bとすると、図3の(b)から、傾きは、a=tan(i−i1’)、切片は、b=y−axとなる。
【0034】
点mは細管の内半径(P/2−t)(但しtは管壁の肉厚)の円と、前記y=ax+bとの交点であるから、点mの座標を(x、y)とすると、点mを通る円x+y=(P/2−t)と、点mを通る直線y=ax+bを連立させてこれを解くと、数5、数6、数7が得られる。
【0035】
【数5】
Figure 2004061389
【0036】
【数6】
Figure 2004061389
【0037】
【数7】
Figure 2004061389
ここで、中心点Oと点mのなす角α
【0038】
【数8】
Figure 2004061389
【0039】
であるから、点mにおける入射角をi、屈折角をi2’とすると、数9及び数10のようになる。
【0040】
【数9】
Figure 2004061389
【0041】
【数10】
Figure 2004061389
【0042】
ここで、出射光束(B)は拡散光であるから、y軸上に受光面を置いたとすると、出射光束(B)の軌跡がy軸と交わる点を求めることができる。この点mとy軸を結ぶ直線をy=cx+dとすると、図3の(b)から、傾きcは数11
【0043】
【数11】
Figure 2004061389
【0044】
であり、y軸との交点の座標は(0、d)と表せ、したがって交点dは数12、
【0045】
【数12】
Figure 2004061389
【0046】
によって求めることができる。この点dが、表1における出射光束(C)の受光半径を示すものである。
【0047】
上記に示したような計算によって、前記表1は、外径30mmの細管について得られた結果であるが、図5は、さらに外径60mm、及び100mmについて、算出して得られた計算データテーブルである。これによっても、細管の中央の位置での出射光束(C)に対する平行光束(A)の比は1.000となっており、細管の中央位置に受光面をおくことによって、平行光束と同じ断面積で受光することができることが了解される。また、前記した外径14mmや、外径18mmという円筒状インナーフィルタの透過率の測定も可能である。
【0048】
次に、本発明の実施例2として、図4に管壁(6)を透過し、細管内へ出射された光の受光面の位置関係を示す。受光面(4)は前述したように細管中央位置(12)に載置されるが、実施上、受光器は、狭い細管内に載置するには最小化に限度がある。そのため、光路途上に反射手段(3)を載置することによって、受光面(4)が虚像となる対象位置に第2の受光面(15)を載置することができる。
【0049】
図4に見るように、細管内壁と受光面との間に反射手段を置いた時に、反射手段(3)中心と受光面(4)の距離をa、同じく反射手段(3)の中心と管壁(6)外側の距離をbとすると、aとbの和は、円筒空間の外半径に等しく、この関係は第2の受光面(15)位置においても同様である。細管の外半径をrとすると、受光面の位置は、数13で表わされる。
【0050】
【数13】
Figure 2004061389
【0051】
即ち、第2の受光面においても、入射する平行光束と同一の断面積において受光できることを示している。この結果、この細管中央部に受光面を載置することによって、細管の外径、肉厚の異なる細管でも測定が可能である。
【0052】
【発明の効果】
本発明の方法は、上述した構成からなるので、正確な細管の透過率測定ができる効果を奏する。
【0053】
すなわち、本発明の透過率測定方法によって、従来行えなかった測定困難な細管である円筒状フィルタの透過率測定を直接に測定できるという大きな効果が得られた。
【0054】
本発明によれば、曲面を有する細管の透過率測定をフラットなフィルタの透過率測定値で代替することなく、細管内部に受光機能を入れて直接測定が可能となったことは、より正確な細管の透過率測定ができるという顕著な効果を有する。
【0055】
さらに、本発明によれば、細管に入射する平行光束を、細管中心に受光面を置くことによって、細管での屈折、空気層での屈折に対する何ら補正手段を講ずることなく、容易に細管の透過率を測定できる効果を有する測定方法である。
【0056】
また、本発明によれば、耐候光試験の途中におけるフィルタの経時変化を透過率の変化で確認する場合に、円筒状のフィルタ自体の測定をすることは不可能であったが、これを可能にした効果は非常に大きい。
【図面の簡単な説明】
【図1】本発明による実施例1における光束の位置関係を示す構成図である。
【図2】管壁を出射した光束が進む軌跡を示した図である。
【図3】入射平行光束の軌跡による光学的説明図である。
【図4】本発明の受光器の位置関係を示す図である。
【図5】外径60mm、及び外径100mmについて各光束を算出した計算データテーブルである。
【図6】従来の透過率測定装置の構成図である。
【符号の説明】
1 細管
2 光源
3 反射手段
4 受光面
5 試料
6 管壁
7 受光器
8 光軸
9 平行光束(A)
10 出射光束(B)
11 出射光束(C)
12 細管中央位置
13 拡散光
14 透過率測定装置
15 第2の受光面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring the transmittance of a light-transmitting optical cell, a filter surrounding a light-emitting portion of an artificial light source used in a weather resistance test device, and the like. More specifically, the present invention relates to a method for measuring the transmittance of a thin tube having a cylindrical shape of a cell or a filter.
[0002]
[Prior art]
Optical cells that have light transmittance and require transmittance measurement include optical cells used in spectral aging test devices and spectrophotometers. Is a prerequisite for measurement.
[0003]
As for the weather resistance tester, there is a filter surrounding the artificial light source. When the artificial light source is of a carbon arc lamp type, it may be a glass glove or a plate-like glass filter forming a lamp house for surrounding a pair of upper and lower carbons which emit and emit light by discharge. On the other hand, when the artificial light source is a long arc type xenon lamp, it is a cylindrical filter combining an inner tube for cooling an arc tube filled with xenon gas and an outer tube. A substantially similar filter is used for a metal halide lamp. The sample is irradiated with light transmitted through these gloves, glass filters, or cylindrical filters. The light from the lamp described above is required to have a spectral distribution of a rising wavelength according to the test object, and since there is also a change with time of the lamp and the filter, the transmittance of the filter is an important test factor. .
[0004]
In order to confirm the transmittance of the filter and the like, the transmittance is measured by a measuring device. Conventionally, as shown in FIG. 6, light from a light source is converted into a parallel light beam and applied to a plate-shaped sample to be measured, and transmitted light is received by a light receiver (integrating sphere) which is aligned with the light source and measured. . On the other hand, as an example of measuring the spectral transmittance of a sample having a curved surface, Japanese Patent Application Laid-Open No. H11-142241 discloses a configuration in which an integrating sphere is placed immediately after a test lens which is a sample. When the sample having a curved surface is a small tube with a small radius having a cylindrical shape as in the measurement object of the invention, the same configuration is impossible.
[0005]
That is, as the inner filter of the xenon lamp, a thin cylindrical filter having an outer diameter of 14 mm and an outer diameter of 18 mm has been practically used. The inside of the narrow tube is narrow, and a light source is provided on one side and a light receiving device is provided on the other side across the cylindrical tube wall. It is difficult to place the device in a straight line, and accurate light reception is not possible. Furthermore, even if a light source is placed on one side of the thin tube and a light receiver is placed on the other side, the light from the light source will be light that has been transmitted twice through the filter, i.e., twice through the tube wall. However, there is also a problem that light in the middle of the optical path is diffused so that it is impossible to accurately measure transmitted light.
[0006]
In general, parallel light from a light source is incident and refracted from a tube wall, refracted again when transmitted through a sample and emitted, and becomes diffused light. Also, when the light source is placed inside the cylinder and the light incident from the concave surface is emitted from the convex surface, the light is also diffused light. Japanese Patent Application Laid-Open No. 7-92020 discloses a radiation intensity measurement, in which a trajectory of light emitted from a luminous body and transmitted through an arc tube is not a parallel light beam. Various measurement methods are shown. Also in the measurement of the transmittance of a thin tube, it has been considered that it is difficult to receive an incident parallel light beam as a transmitted parallel light beam.
[0007]
Therefore, conventionally, the transmittance of a plate-shaped filter having the same material and the same thickness as the thin tube has been measured, and the measured value has been regarded as the transmittance of the thin tube. That is, the measurement of the thin tube itself has not been performed.
[0008]
Further, the change in the transmittance of the filter during the weathering light test must be measured on the filter itself, and it is of course impossible to substitute a plate filter.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of such a problem, and accordingly, an object of the present invention is to measure the transmittance of a thin tube in a cylindrical shape of a light-transmitting cell or filter by using a plate-shaped filter. It is an object of the present invention to provide a method of directly measuring the measurement object itself and obtaining the transmittance without substituting the transmittance with the transmittance.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors, based on trial and error, based on new knowledge obtained from optical considerations for the incident light beam to the measurement thin tube and the outgoing light beam emitted into the thin tube, The transmittance measurement method of the present invention was configured as follows.
That is, a light source is placed outside the thin tube, a light receiving surface is placed inside the thin tube, a parallel light beam from the light source is incident on the thin tube, and light emitted into the thin tube is received by the light receiving surface inside the thin tube. A transmittance measuring method, wherein an area of the light receiving surface is equal to a cross-sectional area of a parallel light beam.
[0011]
The light receiving surface is located at the center of the thin tube.
[0012]
Further, a reflecting means is provided between the inner wall of the thin tube from which the incident light beam is emitted and the light receiving surface, and the sum of the distance from the outer wall of the thin tube to the reflecting means and the distance from the reflecting means to the light receiving surface is equal to the outer radius of the thin tube. It is characterized by the following.
[0013]
According to the present invention, there is provided a measuring method capable of measuring the transmittance of a parallel light beam incident on the thin tube without taking any means for correcting refraction in the thin tube and refraction in the air layer.
[0014]
Further, since the positions of the reflection means and the light receiving surface in the thin tube can be specified, the transmittance can be measured regardless of the measurement site of the thin tube.
[0015]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the transmittance measurement method of the present invention, a light source is placed outside the thin tube, a light receiving surface is placed inside the thin tube, and light from the light source is made to enter the thin tube as a parallel light flux, and light emitted through the tube wall. Is received by the light receiving surface. The area of the light receiving surface is equal to the cross-sectional area of the parallel light beam, and the light receiving surface is located at the center of the thin tube. Further, it is preferable that a reflecting means is placed between the thin tube and the light receiving surface, and that the sum of the distance from the reflecting means to the outer wall of the thin tube and the distance from the reflecting means to the light receiving surface is equal to the outer radius of the thin tube. It is. Further details will be described.
[0016]
FIG. 1 is a configuration diagram of Example 1 showing a transmittance measuring method according to the present invention.
In FIG. 1, light from a light source (not shown) placed outside the thin tube (1) is converted into a parallel light flux (9), which is incident on the thin tube (1), and light transmitted through the tube wall (6) is emitted into the thin tube. I do. The emitted light beam (10) is received by a light receiver (not shown) placed at a central position (12) in the thin tube.
[0017]
Here, the parallel light beam (9) incident on the thin tube (1) is (A), the outgoing light beam (10) out of the thin tube is (B), and the outgoing light beam (11) at the narrow tube center position (12) is ( C).
[0018]
As shown in FIG. 1, the emitted light beam (B) immediately after the emission is the diffused light (13). The parallel luminous flux (A) is refracted by the tube wall (6), advances so as to be converged, refracted and emitted again by the inner wall of the thin tube, and becomes diffused light. This is specifically shown in FIG.
[0019]
FIG. 2 shows how the emitted light beam (B) travels when the wall thickness (t) of the thin tube of 30 mm is 1.0 mm, 2.0 mm, and 5.0 mm by a trajectory. FIG. From this, regarding the measurement of the transmittance of the thin tube, new knowledge for stably measuring the diffused light has been obtained, and the present invention has been achieved. In the drawing, the optical axis (8) passing through the center of the thin tube of the parallel light beam (A) is defined as an x-axis, and a straight line perpendicular to the x-axis at the center of the thin tube is defined as the y-axis.
[0020]
That is, the light beam (B) emitted into the thin tube is refracted at the time of emission and is not parallel to the trajectory (shown by a broken line) extending the parallel light beam (A) parallel to the optical axis (8). Is shown in However, it can be seen that the emitted light beam (B) further advances and intersects a trajectory (broken line) extending the parallel light beam (A). Then, it is found that this intersecting point is plotted on the y-axis.
[0021]
When the diameter of the parallel light beam (A) is 5, 10, 15, and 20 mm, the diameters of the outgoing light beam (B) and the outgoing light beam (C) are calculated, and the outgoing light beam (B) and the outgoing light beam (C) are further calculated. ) Was calculated. Table 1 shows the results. The numbers are rounded to the fourth decimal place.
[0022]
[Table 1]
Figure 2004061389
[0023]
That is, a new finding obtained by the present inventors is the ratio of the parallel light beam (A) to the output light beam (C) at the center position of the thin tube shown in Table 1. As can be seen from the table, the ratio of the parallel light beam (A) to the outgoing light beam (C) at the center position of the thin tube does not exceed 1. Therefore, the light intensity per unit area of the outgoing light flux (C) at the center position of the thin tube is equal to the light intensity per unit area of the incident parallel light flux (A), or with an error within 0.1%. It turned out to be. In particular, when the incident parallel light beam does not exceed a diameter of 5 mm, since the cross-sectional area of the output light beam (C) at the center of the thin tube and the parallel light beam (A) are equal, accurate transmittance measurement can be performed. I understand.
[0024]
From the measurement example using the conventional integrating sphere described above, when light transmitted through the tube wall (6) is received, it is assumed that light immediately after exiting to the concave surface of the thin tube is received. The ratio of the parallel light beam (A) to the emitted light beam (B) immediately after the emission is greater than 1. Therefore, when light is received at a position close to the tube wall, the intensity (density) of light per unit area is higher than that of the incident parallel light beam. From this, it is considered that it is preferable to set the light receiving surface at the narrow tube center position (12) for the parallel light beam (A).
[0025]
The optical considerations that led to the calculation data in Table 1 will now be described with reference to FIG. In FIG. 3A, the optical axis of the parallel light beam passing through the center of the thin tube is the x-axis, the axis passing through the center of the thin tube and perpendicular to the optical axis is the y-axis, and the intersection of the x-axis and the y-axis is Point O. The point at which the parallel light beam enters the thin tube is point l, and the coordinates of the point l are (x 1 , y 1 ). A point that transmits through the tube wall and exits to the inside of the thin tube is defined as a point m, and the coordinates of the point m are defined as (x 2 , y 2 ). FIG. 3B is a partially enlarged view of FIG.
[0026]
As shown in FIG. 3, the parallel light beam (A) enters the tube wall at the point l, refracts and proceeds, re-refracts at the point m, and follows the trajectory exiting into the thin tube. Therefore, the incident angle and the refraction angle at the point 1 are obtained. Assuming that the incident angle is i 1 , the refraction angle is i 1 ′ , the angle between the center of the thin tube, that is, the point O, and the point l is α 1 , and the angle between the point O and the point m is α 2 , the incident angle i 1 is a point equal to the angle alpha 1 of O and point l, the incidence angle i 1 is given by the number 1.
[0027]
(Equation 1)
Figure 2004061389
[0028]
The refraction angle i 1 ′ at the point l is given by Equation 2.
[0029]
(Equation 2)
Figure 2004061389
[0030]
Next, the coordinates (x 1 , y 1 ) of the point 1 are expressed as in Equations 3 and 4.
[0031]
[Equation 3]
Figure 2004061389
[0032]
(Equation 4)
Figure 2004061389
[0033]
Assuming that a locus refracted from the point l and travels toward the point m, that is, a straight line connecting the point l and the point m is y = ax + b, the slope is a = tan (i 1 −i 1 ′ ) from FIG. ), The intercept is b = y 1 −ax 1 .
[0034]
Since the point m is the intersection of the circle of the inner radius (P / 2-t) (where t is the wall thickness of the tube) of the thin tube and the above-mentioned y = ax + b, the coordinates of the point m are represented by (x 2 , y 2 ), A circle x 2 + y 2 = (P / 2−t) 2 passing through the point m and a straight line y = ax + b passing through the point m are solved simultaneously. can get.
[0035]
(Equation 5)
Figure 2004061389
[0036]
(Equation 6)
Figure 2004061389
[0037]
(Equation 7)
Figure 2004061389
Here, the angle α 2 between the center point O and the point m is
(Equation 8)
Figure 2004061389
[0039]
Therefore, assuming that the incident angle at the point m is i 2 and the refraction angle is i 2 ′ , Equations 9 and 10 are obtained.
[0040]
(Equation 9)
Figure 2004061389
[0041]
(Equation 10)
Figure 2004061389
[0042]
Here, since the outgoing light beam (B) is diffuse light, assuming that the light receiving surface is placed on the y-axis, a point where the locus of the outgoing light beam (B) intersects the y-axis can be obtained. Assuming that a straight line connecting the point m and the y axis is y = cx + d, the slope c is given by the following equation (11) from FIG.
[0043]
[Equation 11]
Figure 2004061389
[0044]
And the coordinates of the intersection with the y-axis can be expressed as (0, d).
[0045]
(Equation 12)
Figure 2004061389
[0046]
Can be determined by: This point d indicates the light receiving radius of the emitted light beam (C) in Table 1.
[0047]
Table 1 shows the results obtained for the thin tube having an outer diameter of 30 mm by the calculation as described above. FIG. 5 shows the calculated data table obtained by further calculating the outer diameters of 60 mm and 100 mm. It is. Also in this case, the ratio of the parallel light beam (A) to the emitted light beam (C) at the center position of the thin tube is 1.000, and by placing the light receiving surface at the center position of the thin tube, the same break as the parallel light beam is obtained. It is understood that light can be received in an area. It is also possible to measure the transmittance of the cylindrical inner filter having an outer diameter of 14 mm or an outer diameter of 18 mm.
[0048]
Next, as Embodiment 2 of the present invention, FIG. 4 shows a positional relationship of a light receiving surface of light transmitted through the tube wall (6) and emitted into the thin tube. The light receiving surface (4) is placed at the center of the thin tube (12) as described above. However, in practice, the light receiver is limited to a minimum in order to be mounted in a narrow narrow tube. Therefore, by placing the reflection means (3) on the optical path, the second light receiving surface (15) can be placed at the target position where the light receiving surface (4) becomes a virtual image.
[0049]
As shown in FIG. 4, when the reflecting means is placed between the inner wall of the thin tube and the light receiving surface, the distance between the center of the reflecting means (3) and the light receiving surface (4) is a, and the center of the reflecting means (3) is also connected to the tube. Assuming that the distance outside the wall (6) is b, the sum of a and b is equal to the outer radius of the cylindrical space, and this relationship is the same at the position of the second light receiving surface (15). Assuming that the outer radius of the thin tube is r, the position of the light receiving surface is represented by Expression 13.
[0050]
(Equation 13)
Figure 2004061389
[0051]
That is, it is shown that the second light receiving surface can also receive light with the same cross-sectional area as the incident parallel light beam. As a result, by placing the light receiving surface at the center of the thin tube, it is possible to measure even thin tubes having different outer diameters and wall thicknesses.
[0052]
【The invention's effect】
Since the method of the present invention has the above-described configuration, it has an effect that the transmittance of a thin tube can be accurately measured.
[0053]
That is, according to the transmittance measuring method of the present invention, a great effect was obtained in that the transmittance measurement of a cylindrical filter, which is a thin tube difficult to measure conventionally, could be directly measured.
[0054]
According to the present invention, the direct measurement is possible by inserting a light receiving function inside the thin tube without replacing the transmittance measurement of the thin tube having the curved surface with the transmittance measurement value of the flat filter. This has a remarkable effect that the transmittance of a thin tube can be measured.
[0055]
Further, according to the present invention, the parallel light beam incident on the thin tube can be easily transmitted through the thin tube without any correction means for refraction in the thin tube and refraction in the air layer by placing the light receiving surface at the center of the thin tube. This is a measuring method having the effect of measuring the rate.
[0056]
Further, according to the present invention, it is impossible to measure the cylindrical filter itself when checking the temporal change of the filter in the course of the weathering light test by the change in transmittance. The effect is very large.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a positional relationship between light beams according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a trajectory of a light beam emitted from a tube wall;
FIG. 3 is an optical explanatory diagram based on a trajectory of an incident parallel light beam.
FIG. 4 is a diagram showing a positional relationship of a photodetector of the present invention.
FIG. 5 is a calculation data table in which each light flux is calculated for an outer diameter of 60 mm and an outer diameter of 100 mm.
FIG. 6 is a configuration diagram of a conventional transmittance measuring device.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 thin tube 2 light source 3 reflecting means 4 light receiving surface 5 sample 6 tube wall 7 light receiver 8 optical axis 9 parallel light flux (A)
10 Outgoing light flux (B)
11 Emission light flux (C)
12 center position of thin tube 13 diffused light 14 transmittance measuring device 15 second light receiving surface

【0005】
すなわち、前記キセノンランプのインナーフィルタは、外形14mmや外径18mmという細い円筒状フィルタが実用されており細管の一方の側面に光源、他方の側面に受光器を置いて測定したとしても、光源からの光は、フィルタを二枚、すなわち管壁を二度透過した状態の光となり、受光器に至る光路途中の光の拡散も多く、正確な透過光の測定ができないという問題点があった。
[0005]
In other words, the inner filter of the xenon lamp is a thin cylindrical filter that outer 14mm and an outer diameter 18mm is practically, a light source on one side of the capillary, even if measured at a light receiver on the other side, the light source From the filter, that is, light that has been transmitted twice through the tube wall, that is, there is a large amount of diffusion of light along the optical path to the light receiver, and there is a problem that accurate measurement of transmitted light cannot be performed. .

【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明者らは、試行錯誤のうえ、測定細管に対する入射光束と、細管内に出射した出射光束とに対する光学的考察から得られた新たな知見をもとに、本発明の透過率測定方法を、以下のように構成した。
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors, based on trial and error, based on new knowledge obtained from optical considerations for the incident light beam to the measurement thin tube and the outgoing light beam emitted into the thin tube, The transmittance measurement method of the present invention was configured as follows.

【0011】
すなわち、細管の外側に光源を載置し、細管内に受光面を載置して、光源からの平行光束を細管に入射させ、細管内へ出射した光を細管内の受光面で受光する透過率測定方法であって、前記平行光束を延長した軌跡と、前記出射光束が交差する位置において、前記平行光束の断面積に等しい断面積の前記出射光束を測定することを特徴とする。
[0011]
That is, a light source is placed outside the thin tube, a light receiving surface is placed inside the thin tube, a parallel light beam from the light source is incident on the thin tube, and light emitted into the thin tube is received by the light receiving surface inside the thin tube. In a rate measuring method, the emitted light beam having a cross-sectional area equal to the cross-sectional area of the parallel light beam is measured at a position where the trajectory extending the parallel light beam and the emitted light beam intersect .

【0012】
また、入射光束が出射する細管内壁と前記細管の中心位置との間に反射手段を置いて前記出射光束を反射させ、前記細管外壁から反射手段までの距離、及び該反射手段から受光面までの距離の和が細管の外半径に等しい位置に受光面を置いたことを特徴とする。
[0012]
Also, place the reflecting means between the capillary inner wall that incident light beam is emitted and the center position of the thin tube by reflecting the emitted light beam, the distance from the thin tube outer wall to said reflecting means, and from the reflecting means to the light-receiving surface The light receiving surface is placed at a position where the sum of the distances is equal to the outer radius of the thin tube.

【0015】
【実施例】
以下、本発明の実施例について、図面を参照して詳細に説明する。
本発明の透過率測定方法は、細管の外側に光源を、細管の内側に受光面を載置して、光源からの光は平行光束にして細管内に入射させ、管壁を通り出射した光を前記受光面で受光するようにする。そして前記細管内壁と前記細管中心との間に反射手段を置いて出射光束を反射させ、反射手段から細管外壁までの距離、及び反射手段から受光面までの距離の和が細管の外半径に等しい位置に受光面を置いて、前記平行光束の断面積に等しい断面積の前記出射光束を測定することが好ましいとするものである。さらに詳述する。
[0015]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the transmittance measurement method of the present invention, a light source is placed outside the thin tube, a light receiving surface is placed inside the thin tube, and light from the light source is made to enter the thin tube as a parallel light flux, and light emitted through the tube wall. Is received by the light receiving surface. Then , a reflecting means is placed between the inner wall of the thin tube and the center of the thin tube to reflect the emitted light beam , and the sum of the distance from the reflecting means to the outer wall of the thin tube and the distance from the reflecting means to the light receiving surface is equal to the outer radius of the thin tube. It is preferable that the light receiving surface is placed at an equal position, and the emitted light having a cross-sectional area equal to the cross-sectional area of the parallel light is measured . Further details will be described.

【0016】
図1は、本発明による透過率測定方法を示す実施例1の構成図である。
図1において、細管(1)の外側に載置した図示しない光源の光は、平行光束(9)とし、細管(1)に入射させ、管壁(6)を透過した光は細管内へ出射する。出射した光束(10)は、細管内置いた図示しない受光器で受光される。
[0016]
FIG. 1 is a configuration diagram of Example 1 showing a transmittance measuring method according to the present invention.
In FIG. 1, light from a light source (not shown) placed outside the thin tube (1) is converted into a parallel light flux (9), which is incident on the thin tube (1), and light transmitted through the tube wall (6) is emitted into the thin tube. I do. The emitted light beam (10) is received by the photodetector (not shown) placed in the capillary.

【0024】
前述した従来の積分球による測定例からは、管壁(6)を透過した光を受光する場合、細管凹面へ出射した直後の光を受光することが想定されるが、表1に示すように、出射直後の出射光束(B)に対する平行光束(A)の比は1より大である。従って、管壁に近接する位置で受光すると、単位面積当たりの光の強度(密度)は、入射する平行光束よりもかえって高い値が出る結果となっている。このことから、出射光束(C)に対する平行光束(A)の比が1を越えない位置に受光面をくことが好適であると考えられる。
[0024]
From the measurement example using the conventional integrating sphere described above, when light transmitted through the tube wall (6) is received, it is assumed that light immediately after exiting to the concave surface of the thin tube is received. The ratio of the parallel light beam (A) to the emitted light beam (B) immediately after the emission is greater than 1. Therefore, when light is received at a position close to the tube wall, the intensity (density) of light per unit area is higher than that of the incident parallel light beam. Therefore, the light receiving surface location Kukoto considered suitable to a position where the ratio of the parallel beam with respect to the emitted light beam (C) (A) does not exceed 1.

【0048】
次に、本発明の実施例として、図4に管壁(6)を透過し、細管内へ出射された光の受光面の位置関係を示す。図4の受光面(4)は、前述したように、光学的考察におけるy軸上の細管中央位置(12)にあるが、実施上、受光器は、光路途上に反射手段(3)を載置することによって、受光面(4)が虚像となる対象位置に光面(15)を載置することができる。
[0048]
Next, as an embodiment of the present invention, FIG. 4 shows a positional relationship of a light receiving surface of light transmitted through the tube wall (6) and emitted into the thin tube. As described above, the light receiving surface (4) in FIG. 4 is located at the central position (12) of the thin tube on the y-axis in optical considerations. However, in practice, the light receiver mounts the reflecting means (3) on the optical path. by location, it can be placed light receiving surface (15) to the target position to which the light receiving surface (4) is a virtual image.

【0049】
図4に見るように、細管内壁と細管中心との間に反射手段を置いた時に、反射手段(3)中心と細管中心との距離をa、同じく反射手段(3)の中心と管壁(6)外側の距離をbとすると、aとbの和は、円筒空間の外半径に等しく、この関係は光面(15)位置においても同様である。細管の外半径をrとすると、受光面(15)の位置は、数13で表わされる。
[0049]
As shown in FIG. 4, when the reflecting means is placed between the inner wall of the thin tube and the center of the thin tube, the distance between the center of the reflecting means (3) and the center of the thin tube is a, and the center of the reflecting means (3) and the tube wall ( 6) When the outside of the distance and b, the sum of a and b is equal to the outer radius of the cylinder space, this relationship is the same in the light receiving surface (15) position. Assuming that the outer radius of the thin tube is r, the position of the light receiving surface (15) is expressed by Expression 13.

【0051】
即ち、光面(15)において入射する平行光束と同一の断面積の出射光束を受光できることを示している。また前記平行光束を延長した軌跡と、前記出射光束が交差する位置に受光面を載置することによって、細管の外径、肉厚の異なる細管でも測定が可能である。
[0051]
That is, in the light receiving surface (15) show that it is possible to receive the emitted light beam of the same cross-sectional area parallel light beam incident. Further, by placing the light receiving surface at a position where the emitted light beam intersects with the trajectory of the extended parallel light beam , it is possible to measure even thin tubes having different outer diameters and wall thicknesses.

【0055】
さらに、本発明によれば、該平行光束を延長した軌跡と、前記出射光束が交差する位置に受光面を置くことによって、細管に入射する平行光束を、細管での屈折、空気層での屈折に対する何ら補正手段を講ずることなく、断面積が等しい出射光束として測定し、容易に細管の透過率を測定できる効果を有する測定方法である。
[0055]
Furthermore, according to the present invention, by arranging the light receiving surface at a position where the trajectory of the parallel light beam and the emitted light beam intersect , the parallel light beam incident on the thin tube is refracted by the thin tube and refracted by the air layer. This is a measuring method which has an effect of measuring as a luminous flux having the same cross-sectional area without taking any correction means , and easily measuring the transmittance of the thin tube.

【図面の簡単な説明】
【図1】本発明による実施例1における光束の位置関係を示す構成図である。
【図2】管壁を出射した光束が進む軌跡を示した図である。
【図3】入射平行光束の軌跡による光学的説明図である。
【図4】本発明の受光器の位置関係を示す図である。
【図5】外径60mm、及び外径100mmについて各光束を算出した計算データテーブルである。
【図6】従来の透過率測定装置の構成図である。
【符号の説明】
1 細管
2 光源
3 反射手段
4 受光面
5 試料
6 管壁
7 受光器
8 光軸
9 平行光束(A)
10 出射光束(B)
11 出射光束(C)
12 細管中央位置
13 拡散光
14 透過率測定装置
15 光面
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a positional relationship between light beams according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a trajectory of a light beam emitted from a tube wall;
FIG. 3 is an optical explanatory diagram based on a trajectory of an incident parallel light beam.
FIG. 4 is a diagram showing a positional relationship of a photodetector of the present invention.
FIG. 5 is a calculation data table in which each light flux is calculated for an outer diameter of 60 mm and an outer diameter of 100 mm.
FIG. 6 is a configuration diagram of a conventional transmittance measuring device.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 thin tube 2 light source 3 reflecting means 4 light receiving surface 5 sample 6 tube wall 7 light receiver 8 optical axis 9 parallel light flux (A)
10 Outgoing light flux (B)
11 Emission light flux (C)
12 tubular center 13 diffuse light 14 transmittance measuring device 15 receiving light surface

【0011】
すなわち、細管の外側に光源を載置し、細管内に受光面を載置して、光源からの平行光束を細管に入射させ、細管内へ出射した光を細管内の受光面で受光する透過率測定方法であって、前記平行光束を延長した軌跡と、前記出射光束が交差する位置において、前記平行光束の断面積と前記出射光束の断面積がほぼ等しく、その位置が細管の中心にあるという新たな知見である
[0011]
That is, a light source is placed outside the thin tube, a light receiving surface is placed inside the thin tube, a parallel light beam from the light source is incident on the thin tube, and light emitted into the thin tube is received by the light receiving surface inside the thin tube. In the rate measuring method, a cross-section area of the parallel light beam and a cross-sectional area of the output light beam are substantially equal at a position where the trajectory of the parallel light beam and the output light beam intersect , and the position is at the center of the thin tube. This is a new finding .

【0012】
そこで、本発明の手段は、入射光束が出射する細管内壁と前記細管の中心位置との間に反射手段を置いて前記出射光束を反射させ、前記細管外壁から該反射手段までの距離、及び該反射手段から受光面までの距離の和が細管の外半径に等しい位置に受光面を置いたことを特徴とする。
[0012]
In view of this, the means of the present invention reflects the emitted light beam by placing a reflecting means between the inner wall of the thin tube from which the incident light beam is emitted and the center position of the thin tube, and the distance from the outer wall of the thin tube to the reflecting means; The light receiving surface is placed at a position where the sum of the distances from the reflecting means to the light receiving surface is equal to the outer radius of the thin tube.

【0015】
【実施例】
以下、本発明の実施例について、図面を参照して詳細に説明する。
本発明の透過率測定方法は、細管の外側に光源を、細管の内側に受光面を載置して、光源からの光は平行光束にして細管内に入射させ、管壁を通り出射した光を前記受光面で受光するようにする。すなわち、前記細管内壁と前記細管中心との間に反射手段を置いて出射光束を反射させ、反射手段から細管外壁までの距離、及び反射手段から受光面までの距離の和が細管の外半径に等しい位置に受光面を置いて、前記平行光束の断面積にほぼ等しい断面積の前記出射光束を測定することが好ましいとするものである。さらに詳述する。
[0015]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the transmittance measurement method of the present invention, a light source is placed outside the thin tube, a light receiving surface is placed inside the thin tube, and light from the light source is made to enter the thin tube as a parallel light flux, and light emitted through the tube wall. Is received by the light receiving surface. That is , a reflecting means is placed between the inner wall of the thin tube and the center of the thin tube to reflect the emitted light beam, and the sum of the distance from the reflecting means to the outer wall of the thin tube and the distance from the reflecting means to the light receiving surface is equal to the outer radius of the thin tube. It is preferable that the light receiving surface is placed at an equal position and the emitted light flux having a cross-sectional area substantially equal to the cross-sectional area of the parallel light flux is measured. Further details will be described.

【0047】
上記に示したような計算によって、前記表1は、外径30mmの細管について得られた結果であるが、図5は、さらに外径60mm、及び100mmについて、算出して得られた計算データテーブルである。これによっても、細管の中央の位置での出射光束(C)に対する平行光束(A)の比は1.000となっており、細管の中央位置に受光面をおくことによって、平行光束とほぼ同じ断面積で受光することができることが了解される。また、前記した外径14mmや、外径18mmという円筒状インナーフィルタの透過率の測定も可能である。
[0047]
Table 1 shows the results obtained for the thin tube having an outer diameter of 30 mm by the calculation as described above. FIG. 5 shows the calculated data table obtained by further calculating the outer diameters of 60 mm and 100 mm. It is. Also in this case, the ratio of the parallel luminous flux (A) to the outgoing luminous flux (C) at the center position of the thin tube is 1.000. By placing the light receiving surface at the central position of the thin tube, it is almost the same as the parallel light beam. It is understood that light can be received in a cross-sectional area. It is also possible to measure the transmittance of the cylindrical inner filter having an outer diameter of 14 mm or an outer diameter of 18 mm.

【0051】
即ち、受光面(15)において、入射する平行光束と同一の断面積の出射光束を受光できることを示しているよって、細管の外径、肉厚の異なる細管でも測定が可能である。
[0051]
That is, it is shown that the outgoing light beam having the same cross-sectional area as the incident parallel light beam can be received on the light receiving surface (15) . Therefore, it is possible to measure even small tubes having different outer diameters and wall thicknesses.

【0055】
さらに、本発明によれば細管に入射する平行光束を、細管での屈折、空気層での屈折に対する何ら補正手段を講ずることなく、断面積が等しいか、ほぼ等しい出射光束として測定し、容易に細管の透過率を測定できる効果を有する測定方法である。
[0055]
Furthermore, according to the present invention, the parallel light beam incident on the capillary, refraction at the capillary, without taking any correction means for refraction at the air layer, equality sectional area, measured as approximately equal emitted light beam, easily This is a measuring method having an effect that the transmittance of a thin tube can be measured.

Claims (3)

円筒状細管の光学セル、及び/又は光学フィルタの透過率測定に関するもので、細管の外側に光源を載置し、細管内に受光面を載置して、光源からの平行光束を細管に入射させ、細管内へ出射した光を受光面で受光する透過率測定方法であって、前記受光面の面積が平行光束の断面積に等しいことを特徴とする透過率測定方法。It relates to the measurement of the transmittance of an optical cell and / or an optical filter of a cylindrical thin tube. A light source is placed outside the thin tube, a light receiving surface is placed inside the thin tube, and a parallel light beam from the light source is incident on the thin tube. A light transmittance measuring method for receiving light emitted into a thin tube on a light receiving surface, wherein the area of the light receiving surface is equal to a cross-sectional area of a parallel light beam. 前記受光面が細管の中心にあることを特徴とする請求項1記載の透過率測定方法。2. The transmittance measuring method according to claim 1, wherein the light receiving surface is located at the center of the thin tube. 前記細管内壁と前記受光面との間に反射手段を置いて、細管外壁から反射手段までの距離、及び反射手段から受光面までの距離の和が細管の外半径に等しいことを特徴とする請求項1記載の透過率測定方法。A reflecting means is provided between the inner wall of the thin tube and the light receiving surface, and the sum of the distance from the outer wall of the thin tube to the reflecting means and the distance from the reflecting means to the light receiving surface is equal to the outer radius of the thin tube. Item 4. The transmittance measurement method according to Item 1.
JP2002222465A 2002-07-31 2002-07-31 Transmittance measurement method Expired - Fee Related JP3470269B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222465A JP3470269B1 (en) 2002-07-31 2002-07-31 Transmittance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222465A JP3470269B1 (en) 2002-07-31 2002-07-31 Transmittance measurement method

Publications (2)

Publication Number Publication Date
JP3470269B1 JP3470269B1 (en) 2003-11-25
JP2004061389A true JP2004061389A (en) 2004-02-26

Family

ID=29707276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222465A Expired - Fee Related JP3470269B1 (en) 2002-07-31 2002-07-31 Transmittance measurement method

Country Status (1)

Country Link
JP (1) JP3470269B1 (en)

Also Published As

Publication number Publication date
JP3470269B1 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
KR100967859B1 (en) Optical measuring device
JP4771545B2 (en) Fluorescence measuring instrument
JP4767706B2 (en) Integrating sphere adapter and photodetecting device having the same
US20070147763A1 (en) Compact Light Collection System and Method
US7663744B2 (en) Integrating photometer for measuring total flux of light generated from light source to be measured, and method for measuring total flux of light through use of the same
US8305576B2 (en) Apparatus and method for measuring total luminous flux
KR101091791B1 (en) Integrating sphere photometer and measureing method of the same
JP4570680B1 (en) Light irradiation device and inspection device
US5745234A (en) Variable angle reflectometer employing an integrating sphere and a light concentrator
KR20100025496A (en) Systems and methods for determining the shape of glass sheets
JP6154153B2 (en) Standard light source and measurement method
US20180266638A1 (en) Light source device, lighting apparatus, and vehicle lamp device
JP4226466B2 (en) Reflective optical system, reflection optical system of diffused light source measuring apparatus, diffused light source measuring apparatus and measuring method thereof
JPH02110356A (en) Defect detecting apparatus using linear light source
US7420665B2 (en) Optical detection device with reduced light throughput oscillations
JP2004061389A (en) Transmissivity measuring method
JPH0835926A (en) Sample cell
JP2005127970A (en) Optical system for measuring light of wide dispersion light source, instrument for measuring light of wide dispersion light source, and light measuring method therefor
US20110109908A1 (en) Detection apparatus
CN116359230B (en) Permanent magnet surface concave-convex defect detection system and method
JP4380311B2 (en) Defect inspection equipment
JP3203901B2 (en) Measurement position correction arithmetic processing device and radiation intensity measurement device
JP3590799B2 (en) Method and apparatus for manufacturing high pressure discharge lamp unit
JP4117349B2 (en) Observation system
Lewin et al. Advanced techniques in lamp characterization

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030804

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees