JP2004060957A - Heat transfer device - Google Patents

Heat transfer device Download PDF

Info

Publication number
JP2004060957A
JP2004060957A JP2002218030A JP2002218030A JP2004060957A JP 2004060957 A JP2004060957 A JP 2004060957A JP 2002218030 A JP2002218030 A JP 2002218030A JP 2002218030 A JP2002218030 A JP 2002218030A JP 2004060957 A JP2004060957 A JP 2004060957A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
heat transfer
transfer device
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002218030A
Other languages
Japanese (ja)
Inventor
Koji Nagae
永江 公二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002218030A priority Critical patent/JP2004060957A/en
Publication of JP2004060957A publication Critical patent/JP2004060957A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer device capable of reducing a pressure loss of a refrigerant, smoothly performing refrigerant natural circulation, and preventing dew formation generated by an evaporator from scattering. <P>SOLUTION: In the heat transfer device which includes a condenser 5 and the evaporator 9, interconnects the condenser 5 to the evaporator 9 through a refrigerant liquid pipe 17 and a refrigerant gas pipe 19, and forms a natural circulation cycle, the evaporator 9 includes a liquid side header 23 in which refrigerant liquid flows, a gas side header 25 from which refrigerant gas flows out, and two or more straight pipes 27 connecting both these headers 23 and 25 and having two or more fins 29 along the periphery. A lee side filter 33 having permeability is situated on the lee of the evaporator 9. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒自然循環式の熱移動装置に関する。
【0002】
【従来の技術】
一般に、冷媒を自然循環サイクル内で気液相変化させることにより自然循環させるヒートパイプ方式を用いた熱移動装置は知られている。
【0003】
この熱移動装置は、凝縮器を備えると共に、この凝縮器よりも低位置に蒸発器を備え、これらの間が液相冷媒の流下する冷媒液管と気相冷媒の上昇する冷媒ガス管とによって連結されて自然循環サイクルが形成される。この自然循環サイクル内には冷媒が封入されている。上記蒸発器は、複数のフィンと、これらフィンを貫通する複数の直管と、これら直管同士をつなぐ複数のUベンドとを備えて構成される。蒸発器は室内機に収納され、この蒸発器の下方にはドレンパンが設置される。この室内機は室内を冷房する。
【0004】
【発明が解決しようとする課題】
しかし、上記蒸発器を使用した場合、Uベンドでの圧力損失が大きいため、液冷媒が溜まり、冷媒自然循環が円滑に行われなくなる恐れがある。
【0005】
また、この種の熱移動装置では、一般に、円滑な自然循環サイクルを達成するために、Uベンドを上下に位置させた、「上下ヘッダー形式の直管式蒸発器」が採用されるが、この形式の蒸発器では、複数のフィンが水平に延びるため、蒸発器に結露が生じた場合に、結露水がドレンパンに流れずに、周囲に飛散してしまう恐れがある、等の問題があった。
【0006】
そこで、本発明の目的は、上記課題を解消するために、冷媒の圧力損失を低減させることができ、冷媒自然循環を円滑に実施でき、蒸発器で生じた結露水の飛散を防止できる熱移動装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1記載の発明は、凝縮器、蒸発器を備え、これら凝縮器、蒸発器の間を冷媒液管、及び冷媒ガス管で接続し、自然循環サイクルを形成した熱移動装置において、前記蒸発器は筐体内に傾斜して配置され、この筐体内で下方に位置して冷媒液が流入する液側ヘッダと、当該筐体内で上方に位置して冷媒ガスが流出するガス側ヘッダと、これら両ヘッダを連結して斜めに延び、周囲に複数のフィンを有する複数の冷媒用直管とを備え、前記筐体内には蒸発器の上面から下面に向けて送風する送風機を備え、前記蒸発器の下面には、当該蒸発器の上面から下面に向けて送風される空気は通過させる一方、当該蒸発器で発生する水滴は捕集してこの水滴を蒸発器の下方のドレンパンに導く機能を備えた風下側フィルタを配置したことを特徴とする。
【0008】
請求項2記載の発明は、請求項1記載のものにおいて、前記筐体の前記風下側フィルタとの対向面にメンテナンス用の蓋体を備えたことを特徴とする。
【0009】
請求項3記載の発明は、請求項1又は2記載のものにおいて、前記風下側フィルタが網状部材で構成されていることを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の一実施の形態を図面に基づいて説明する。
【0011】
図1において、1は熱移動装置を示しており、この熱移動装置1は、水を冷却する冷凍機3と、凝縮器として機能する冷媒対水熱交換器5と、室内機(筐体)7とを有して構成される。この筐体7には蒸発器9、冷媒調整弁11及び室内へ送風する送風機13が収納されている。冷媒対水熱交換器5は、例えばビルの屋上などの高所に設置され、筐体7は、冷媒対水熱交換器5よりも低所であるビル室内の天井板8の天井裏10に設置される。この天井板8には吐出口12が設けられており、この吐出口12から室内に送風される。
【0012】
冷凍機3は例えば吸収式の冷凍機であり、この冷凍機3と冷媒対水熱交換器5とは水配管15によってループ状に接続される。
【0013】
この冷媒対水熱交換器5には冷媒液管17及び冷媒ガス管19によって室内機7が接続され、自然循環サイクルが形成されている。そして、この自然循環サイクルの内部には、冷媒が封入されている。
【0014】
冷媒調整弁11は冷媒液管17に接続される。また、冷媒を強制循環させるブースタポンプ21が冷媒液管17に接続される。
【0015】
上記蒸発器9は、筐体7内に傾斜して配置され、図2に示すように、この筐体7内で下方に位置して冷媒液が流入する液側ヘッダ23と、当該筐体7内で上方に位置して冷媒ガスが流出するガス側ヘッダ25と、これら両ヘッダ23,25を連結して斜めに延び、周囲に複数のフィン29を有する複数の冷媒用直管27とを備えて構成されている。液側ヘッダ23には冷媒液管17が接続され、ガス側ヘッダ25には冷媒ガス管19が接続されている。上記送風機13は筐体7内の蒸発器9の下方に配置され、蒸発器9の上面9Aから下面9Bに向けて送風する。上記蒸発器9は斜めに傾斜して配置され、蒸発器9の上面9A側にはプレフィルタ(風上側フィルタ)41が配置されている。また、蒸発器9の下方にはドレンパン31が配置されている。
【0016】
ところで、図2の構成では、複数のフィン29が横方向に延出するため、蒸発器9で発生したドレンの水切り性が悪くなる。
【0017】
そのため、蒸発器9の下面9Bに接近させて、蒸発器9の風下に通気性を有する風下側フィルタ33が配置されている。この風下側フィルタ33は、蒸発器9の上面9Aから下面9Bに向けて送風される空気は通過させる一方、蒸発器9で発生する水滴は捕集し、この水滴を蒸発器9の下方のドレンパン31に導く機能を備えて構成されている。この風下側フィルタ33は、例えば、ストッキング製の網状部材等で構成されている。
【0018】
この蒸発器9は、直管27が横になるように配置した場合、複数の直管27の下部に液冷媒が溜まり、熱伝達を阻害する可能性があるので、図2に示すように、直管27は縦に配置するのが好ましい。
【0019】
一方、風下側フィルタ33と対向する筐体7の壁面には、メンテナンス用の開口7Aが形成され、この開口7Aには、メンテナンス用の蓋体43が開閉自在に取り付けられている。このメンテナンス用の蓋体43をあけた場合、手の届く位置に、風下側フィルタ33が位置するばかりでなく、蓋体43よりも上位の筐体7の内面には、電装箱42が取り付けられていて、この電装箱42にもすぐ手が届く構成が採用されている。
【0020】
つぎに、この熱移動装置1の動作を説明する。
【0021】
冷凍機3が運転されて、冷媒対水熱交換器5には例えば5℃の冷水が与えられる。すると、冷媒対水熱交換器5では冷媒が凝縮し、比重の大きい液冷媒となって、冷媒液管17を通じて冷媒の自重により高所より低所に、すなわち冷媒調整弁11を経て、室内機7に流れる。
【0022】
冷媒調整弁11で冷媒量を適正に調整された冷媒は、蒸発器9の液側ヘッダ23に流入し、直管27では液冷媒が蒸発し、室内が冷房される。この過程では、液冷媒は比重の極めて小さなガス冷媒となり、このガス冷媒は自重の軽さゆえに、蒸発器9のガス側ヘッダ25から冷媒対水熱交換器5に冷媒ガス管19を通じて戻される。すなわちこのシステムでは、冷媒が熱移動サイクル内で気液相変化することにより、自然循環することになる。この蒸発器9の直管27は、冷媒の圧力損失が小さいので、Uベンドを使用したときのように液溜まりが生じて冷媒の流れが妨げられることがない。
【0023】
このような自然循環システムでは、液冷媒とガス冷媒との比重の差に従ってサイクル内における冷媒を自然循環させる。従って本来であれば循環用ポンプなどは不要である。しかし、この自然循環システムを施工するに当たり、冷媒対水熱交換器5と蒸発器9との間に落差をとりにくい場合に、一つの例として、上記ブースタポンプ21が用いられる。
【0024】
室内の空気は、天井板8に設けられた通風口35を通過し、室内機7の上部から吸い込まれる。この吸い込まれた空気は、上方から下方に蒸発器9を通過することにより冷却されて、送風機13により吐出口12から室内に送風されて、室内が冷房される。冷房時に、蒸発器9の結露水は直接ドレンパン31には滴下せず、風下に設置の風下側フィルタ33に吹き飛ばされる。この風下側フィルタ33に吹き飛ばされた結露水は、風下側フィルタ33を伝って蒸発器9の下方のドレンパン31に滴下される。
【0025】
本実施形態によれば、蒸発器9は、冷媒液が流入する液側ヘッダ23と、冷媒ガスが流出するガス側ヘッダ25と、両ヘッダ23,25を連結してこの周囲に複数のフィン29を有する複数の直管27とを備えたから、液側ヘッダ23に流入し直管27で蒸発したガス冷媒はUベンドを介さずにガス側ヘッダ25に送られるので、管路内抵抗が少なくなり、冷媒圧力損失を低減させることができ、冷媒自然循環を円滑に実施できる。
【0026】
また、蒸発器9を斜めに傾けて配置し、蒸発器9の下面近傍かつ風下に通気性のある風下側フィルタ33を設けたことから、蒸発器9で生じた結露水が風下側フィルタ33に吹き飛ばされ、風下側フィルタ33を伝って蒸発器9下方に設置のドレンパン31に滴下されるので、蒸発器9で生じた結露水の飛散を防止することができる。
【0027】
メンテナンス用の蓋体43をあけた場合、手の届く位置に、風下側フィルタ33、並びに電装箱42が位置するため、メンテナンス性を向上させることができる、等の効果が得られる。
【0028】
以上、一実施の形態に基づいて本発明を説明したが、本発明はこれに限定されるものではない。
【0029】
【発明の効果】
本発明では、冷媒の圧力損失を低減させることができ、冷媒自然循環を円滑に実施でき、蒸発器で生じた結露水の飛散を防止できる。
【図面の簡単な説明】
【図1】本発明に係る熱移動装置の一実施の形態を示す回路図である。
【図2】(a)は蒸発器の正面図、(b)は蒸発器の側面図である。
【符号の説明】
1 熱移動装置
5 冷媒対水熱交換器(凝縮器)
9 蒸発器
23 液側ヘッダ
25 ガス側ヘッダ
27 直管
29 フィン
31 ドレンパン
33 風下側フィルタ
41 プレフィルタ
42 電装箱
43 蓋体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat transfer device of a refrigerant natural circulation type.
[0002]
[Prior art]
2. Description of the Related Art In general, a heat transfer apparatus using a heat pipe system in which a refrigerant is naturally circulated by changing a gas-liquid phase in a natural circulation cycle is known.
[0003]
This heat transfer device includes a condenser and an evaporator at a lower position than the condenser, and a refrigerant liquid pipe between which a liquid-phase refrigerant flows and a refrigerant gas pipe where a gas-phase refrigerant rises. Connected to form a natural circulation cycle. A refrigerant is sealed in the natural circulation cycle. The evaporator includes a plurality of fins, a plurality of straight pipes penetrating the fins, and a plurality of U-bends connecting the straight pipes. The evaporator is housed in an indoor unit, and a drain pan is installed below the evaporator. This indoor unit cools the room.
[0004]
[Problems to be solved by the invention]
However, when the evaporator is used, since the pressure loss at the U-bend is large, the liquid refrigerant may be accumulated, and the natural circulation of the refrigerant may not be performed smoothly.
[0005]
In addition, in order to achieve a smooth natural circulation cycle, this type of heat transfer apparatus generally employs a “vertical header type evaporator of an upper and lower header type” in which U-bends are positioned up and down. In the evaporator of the type, since a plurality of fins extend horizontally, when dew condensation occurs on the evaporator, there is a problem that the dew condensation water may not flow into the drain pan but scatter around. .
[0006]
Therefore, an object of the present invention is to solve the above-mentioned problems, to reduce the pressure loss of the refrigerant, to smoothly carry out the natural circulation of the refrigerant, and to prevent the heat transfer which can prevent the dew condensation water generated in the evaporator from scattering. It is to provide a device.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is a heat transfer device comprising a condenser and an evaporator, wherein the condenser and the evaporator are connected by a refrigerant liquid pipe and a refrigerant gas pipe to form a natural circulation cycle. The container is disposed inclined in the housing, and a liquid-side header that is located below the housing and into which the refrigerant liquid flows, a gas-side header that is located above the housing and the refrigerant gas flows out, A plurality of refrigerant straight pipes extending diagonally by connecting the two headers, and having a plurality of fins around the periphery, and a blower for blowing air from an upper surface to a lower surface of the evaporator in the housing; On the lower surface of the evaporator, a function is provided to allow the air blown from the upper surface of the evaporator to the lower surface to pass, while collecting water droplets generated by the evaporator and guiding the water droplets to a drain pan below the evaporator. Characterized by the provision of a leeward filter .
[0008]
According to a second aspect of the present invention, in the first aspect, a maintenance lid is provided on a surface of the housing facing the leeward filter.
[0009]
According to a third aspect of the present invention, in the first or second aspect, the leeward filter is formed of a mesh member.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
[0011]
In FIG. 1, reference numeral 1 denotes a heat transfer device. The heat transfer device 1 includes a refrigerator 3 for cooling water, a refrigerant-to-water heat exchanger 5 functioning as a condenser, and an indoor unit (housing). 7 are provided. The housing 7 houses an evaporator 9, a refrigerant regulating valve 11, and a blower 13 for blowing air into the room. The refrigerant-to-water heat exchanger 5 is installed at a high place, for example, on the roof of a building, and the housing 7 is mounted on the ceiling floor 10 of a ceiling plate 8 in a building room that is lower than the refrigerant-to-water heat exchanger 5. Will be installed. A discharge port 12 is provided in the ceiling plate 8, and air is blown into the room from the discharge port 12.
[0012]
The refrigerator 3 is, for example, an absorption refrigerator, and the refrigerator 3 and the refrigerant-to-water heat exchanger 5 are connected in a loop by a water pipe 15.
[0013]
The indoor unit 7 is connected to the refrigerant-to-water heat exchanger 5 by a refrigerant liquid pipe 17 and a refrigerant gas pipe 19 to form a natural circulation cycle. A refrigerant is sealed inside the natural circulation cycle.
[0014]
The refrigerant regulating valve 11 is connected to the refrigerant liquid pipe 17. Further, a booster pump 21 for forcibly circulating the refrigerant is connected to the refrigerant liquid pipe 17.
[0015]
The evaporator 9 is disposed obliquely in the housing 7, as shown in FIG. 2, a liquid-side header 23 that is located below the housing 7 and into which the refrigerant liquid flows, and the housing 7. And a plurality of refrigerant straight pipes 27 which are diagonally extended by connecting the headers 23 and 25 and which have a plurality of fins 29 therearound. It is configured. A refrigerant liquid pipe 17 is connected to the liquid header 23, and a refrigerant gas pipe 19 is connected to the gas header 25. The blower 13 is disposed below the evaporator 9 in the housing 7 and blows air from the upper surface 9A of the evaporator 9 to the lower surface 9B. The evaporator 9 is disposed obliquely, and a pre-filter (windward filter) 41 is disposed on the upper surface 9A side of the evaporator 9. Further, a drain pan 31 is arranged below the evaporator 9.
[0016]
By the way, in the configuration of FIG. 2, since the plurality of fins 29 extend in the lateral direction, the drainage of the drain generated in the evaporator 9 deteriorates.
[0017]
For this reason, a leeward filter 33 having air permeability is arranged downstream of the evaporator 9 so as to approach the lower surface 9B of the evaporator 9. The leeward filter 33 allows the air blown from the upper surface 9A to the lower surface 9B of the evaporator 9 to pass therethrough, while collecting water droplets generated in the evaporator 9 and discharging the water droplets from the drain pan below the evaporator 9. 31 is provided. The leeward filter 33 is made of, for example, a stocking net-like member.
[0018]
When the evaporator 9 is arranged so that the straight pipes 27 are laid sideways, the liquid refrigerant may accumulate below the plurality of straight pipes 27 and hinder heat transfer. The straight pipe 27 is preferably arranged vertically.
[0019]
On the other hand, an opening 7A for maintenance is formed on the wall surface of the housing 7 facing the leeward filter 33, and a lid 43 for maintenance is attached to the opening 7A so as to be openable and closable. When the maintenance lid 43 is opened, not only the leeward filter 33 is located at a position where it can be reached, but also an electrical component box 42 is attached to the inner surface of the housing 7 higher than the lid 43. The electronic component box 42 is also configured to be easily accessible.
[0020]
Next, the operation of the heat transfer device 1 will be described.
[0021]
The refrigerator 3 is operated, and cold water of, for example, 5 ° C. is supplied to the refrigerant-to-water heat exchanger 5. Then, the refrigerant condenses in the refrigerant-to-water heat exchanger 5 to become a liquid refrigerant having a large specific gravity. Flow to 7.
[0022]
The refrigerant, the refrigerant amount of which has been appropriately adjusted by the refrigerant adjustment valve 11, flows into the liquid-side header 23 of the evaporator 9, and the liquid refrigerant evaporates in the straight pipe 27 to cool the room. In this process, the liquid refrigerant becomes a gas refrigerant having an extremely small specific gravity, and the gas refrigerant is returned from the gas side header 25 of the evaporator 9 to the refrigerant-to-water heat exchanger 5 through the refrigerant gas pipe 19 because of its light weight. That is, in this system, the refrigerant naturally circulates due to the gas-liquid phase change in the heat transfer cycle. Since the pressure loss of the refrigerant in the straight pipe 27 of the evaporator 9 is small, liquid pool does not occur and the flow of the refrigerant is not obstructed as in the case of using the U-bend.
[0023]
In such a natural circulation system, the refrigerant in the cycle is naturally circulated according to the difference in specific gravity between the liquid refrigerant and the gas refrigerant. Therefore, a circulating pump or the like is not necessary in the first place. However, the booster pump 21 is used as an example in the case where it is difficult to make a head drop between the refrigerant / water heat exchanger 5 and the evaporator 9 when constructing the natural circulation system.
[0024]
The indoor air passes through a ventilation port 35 provided in the ceiling plate 8 and is sucked in from above the indoor unit 7. The sucked air is cooled by passing through the evaporator 9 from above to below, and is blown into the room from the discharge port 12 by the blower 13 to cool the room. During cooling, the condensed water of the evaporator 9 does not drop directly onto the drain pan 31 but is blown off to a leeward filter 33 installed leeward. The dew water blown off by the leeward filter 33 is dropped on the drain pan 31 below the evaporator 9 through the leeward filter 33.
[0025]
According to the present embodiment, the evaporator 9 includes a liquid-side header 23 into which the refrigerant liquid flows, a gas-side header 25 from which the refrigerant gas flows out, and a plurality of fins 29 connected around the headers 23 and 25. Since the gas refrigerant flowing into the liquid header 23 and evaporated by the straight pipe 27 is sent to the gas header 25 without passing through the U-bend, the resistance in the pipeline is reduced. In addition, the refrigerant pressure loss can be reduced, and the natural circulation of the refrigerant can be smoothly performed.
[0026]
In addition, since the evaporator 9 is disposed obliquely and the leeward filter 33 having air permeability near the lower surface of the evaporator 9 and leeward is provided, the dew water generated in the evaporator 9 is applied to the leeward filter 33. Since the water is blown off and is dropped on the drain pan 31 installed below the evaporator 9 through the leeward filter 33, it is possible to prevent the dew condensation water generated in the evaporator 9 from scattering.
[0027]
When the lid 43 for maintenance is opened, the leeward filter 33 and the electrical box 42 are located at a position that can be easily reached, so that effects such as an improvement in maintainability can be obtained.
[0028]
As described above, the present invention has been described based on one embodiment, but the present invention is not limited to this.
[0029]
【The invention's effect】
ADVANTAGE OF THE INVENTION In this invention, the pressure loss of a refrigerant | coolant can be reduced, a refrigerant | coolant natural circulation can be implemented smoothly, and the scattering of the condensation water which generate | occur | produced in the evaporator can be prevented.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing one embodiment of a heat transfer device according to the present invention.
2A is a front view of an evaporator, and FIG. 2B is a side view of the evaporator.
[Explanation of symbols]
1 Heat transfer device 5 Refrigerant to water heat exchanger (condenser)
9 Evaporator 23 Liquid header 25 Gas header 27 Straight pipe 29 Fin 31 Drain pan 33 Downwind filter 41 Prefilter 42 Electrical box 43 Cover

Claims (3)

凝縮器、蒸発器を備え、これら凝縮器、蒸発器の間を冷媒液管、及び冷媒ガス管で接続し、自然循環サイクルを形成した熱移動装置において、前記蒸発器は筐体内に傾斜して配置され、この筐体内で下方に位置して冷媒液が流入する液側ヘッダと、当該筐体内で上方に位置して冷媒ガスが流出するガス側ヘッダと、これら両ヘッダを連結して斜めに延び、周囲に複数のフィンを有する複数の冷媒用直管とを備え、前記筐体内には蒸発器の上面から下面に向けて送風する送風機を備え、前記蒸発器の下面には、当該蒸発器の上面から下面に向けて送風される空気は通過させる一方、当該蒸発器で発生する水滴は捕集してこの水滴を蒸発器の下方のドレンパンに導く機能を備えた風下側フィルタを配置したことを特徴とする熱移動装置。A condenser and an evaporator are provided.The condenser and the evaporator are connected by a refrigerant liquid pipe and a refrigerant gas pipe, and in a heat transfer device that forms a natural circulation cycle, the evaporator is inclined in a housing. A liquid-side header that is disposed below the housing and into which the refrigerant liquid flows in, a gas-side header that is located above in the housing and the refrigerant gas flows out, and these headers are connected diagonally A plurality of straight tubes for refrigerant having a plurality of fins extending therearound, and a blower for blowing air from an upper surface of the evaporator to a lower surface of the evaporator in the housing. The air blown from the upper surface to the lower surface is allowed to pass therethrough, while water drops generated by the evaporator are collected and a leeward filter having a function of guiding the water droplets to a drain pan below the evaporator is arranged. A heat transfer device. 前記筐体の前記風下側フィルタとの対向面にメンテナンス用の蓋体を備えたことを特徴とする請求項1記載の熱移動装置。The heat transfer device according to claim 1, wherein a cover for maintenance is provided on a surface of the housing facing the leeward filter. 前記風下側フィルタが網状部材で構成されていることを特徴とする請求項1又は2記載の熱移動装置。The heat transfer device according to claim 1, wherein the leeward filter is formed of a mesh member.
JP2002218030A 2002-07-26 2002-07-26 Heat transfer device Pending JP2004060957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002218030A JP2004060957A (en) 2002-07-26 2002-07-26 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002218030A JP2004060957A (en) 2002-07-26 2002-07-26 Heat transfer device

Publications (1)

Publication Number Publication Date
JP2004060957A true JP2004060957A (en) 2004-02-26

Family

ID=31939337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218030A Pending JP2004060957A (en) 2002-07-26 2002-07-26 Heat transfer device

Country Status (1)

Country Link
JP (1) JP2004060957A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106224750A (en) * 2016-08-25 2016-12-14 珠海格力电器股份有限公司 Oil strainer
CN106403385A (en) * 2015-08-03 2017-02-15 东焕产业株式会社 Integrated module of evaporator-core and heater-core for air conditioner
KR101730172B1 (en) * 2015-08-03 2017-04-25 동환산업 주식회사 Evaporator for vehicle air conditioner with vertical structure of header pipe
WO2020121186A1 (en) * 2018-12-11 2020-06-18 Denso Thermal Systems S.P.A. Air conditioning system provided with a droplet separator, in particular for a motor vehicle
WO2024069864A1 (en) * 2022-09-29 2024-04-04 日本電気株式会社 Heat exchange device and heat exchange method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403385A (en) * 2015-08-03 2017-02-15 东焕产业株式会社 Integrated module of evaporator-core and heater-core for air conditioner
KR101730172B1 (en) * 2015-08-03 2017-04-25 동환산업 주식회사 Evaporator for vehicle air conditioner with vertical structure of header pipe
CN106224750A (en) * 2016-08-25 2016-12-14 珠海格力电器股份有限公司 Oil strainer
WO2020121186A1 (en) * 2018-12-11 2020-06-18 Denso Thermal Systems S.P.A. Air conditioning system provided with a droplet separator, in particular for a motor vehicle
WO2024069864A1 (en) * 2022-09-29 2024-04-04 日本電気株式会社 Heat exchange device and heat exchange method

Similar Documents

Publication Publication Date Title
AU2009299104B2 (en) Cooling system with microchannel heat exchanger
CN106546045A (en) Cooling device of frequency converter, air conditioning unit and control method
KR20140078351A (en) Heating tower with heat pump
KR100791963B1 (en) A Package Airconditioner
JP2013047588A (en) Air conditioning structure of building construction
JP6478733B2 (en) Cooling unit
JP2004060957A (en) Heat transfer device
JP2008209070A (en) Heat exchanger and sealed cooling tower
JP2003042586A (en) Outdoor heat exchanger and air conditioner
US20080173438A1 (en) Dehunidifer/cooler and method
JP2007127374A (en) Integrated air conditioner
JP2004060956A (en) Heat transfer system and method of operating the same
JP2008075998A (en) Air conditioner
CN110068064A (en) Seat hanging air conditioner
KR101371889B1 (en) Apparatus for preventing leakage of condensate in air conditioner
CN114017846A (en) Control method of gravity heat pipe inter-row air conditioner and gravity heat pipe inter-row air conditioner
JP2002333237A (en) Heat transfer device
JPH06221594A (en) Outside recooling air conditioning system utilizing condensed water of air conditioner
WO2015129398A1 (en) Air conditioner
CN106524365A (en) Anti-white smoke evaporation cooling water chilling unit and control method thereof
JP4446536B2 (en) Temperature stratified cooling system
JP2004108684A (en) Air conditioner
JP2010216708A (en) Water receiving tray
JP2022515584A (en) Atmospheric water generator
KR100896805B1 (en) A thermo hygrostat steam type air conditioner