JP6478733B2 - Cooling unit - Google Patents

Cooling unit Download PDF

Info

Publication number
JP6478733B2
JP6478733B2 JP2015050594A JP2015050594A JP6478733B2 JP 6478733 B2 JP6478733 B2 JP 6478733B2 JP 2015050594 A JP2015050594 A JP 2015050594A JP 2015050594 A JP2015050594 A JP 2015050594A JP 6478733 B2 JP6478733 B2 JP 6478733B2
Authority
JP
Japan
Prior art keywords
pipe
cooling unit
radiator
evaporation
condensed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015050594A
Other languages
Japanese (ja)
Other versions
JP2016169916A (en
Inventor
和宏 表
和宏 表
昌敬 早川
昌敬 早川
健司 茂木
健司 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Holdings Corp filed Critical Sanden Holdings Corp
Priority to JP2015050594A priority Critical patent/JP6478733B2/en
Publication of JP2016169916A publication Critical patent/JP2016169916A/en
Application granted granted Critical
Publication of JP6478733B2 publication Critical patent/JP6478733B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Water From Condensation And Defrosting (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Description

本発明は、圧縮機や蒸発器等から成る冷媒回路を備えた冷却ユニットにおいて、特に蒸発器で発生する凝縮水の処理能力を改善したものに関する。   The present invention relates to a cooling unit provided with a refrigerant circuit including a compressor, an evaporator and the like, in particular, an apparatus having an improved ability to process condensed water generated in the evaporator.

従来より此の種冷却ユニットは、圧縮機、凝縮器(又は、放熱器)、膨張弁等の絞り手段、及び、蒸発器を環状に配管接続した冷媒回路を備えており、蒸発器で生じる冷媒の吸熱作用で冷却能力を発揮するように構成されている。このとき、蒸発器には熱交換した空気中の水分が凝縮して付着するため、機械室内に蒸発皿(ドレン受皿)を設け、蒸発器で生じた凝縮水(ドレン水)を排水パイプ(ドレンホース)で蒸発皿に導き、この蒸発皿にて蒸発させて処理するようにしている(例えば、特許文献1参照)。   A conventional seed cooling unit includes a compressor, a condenser (or a radiator), a throttling means such as an expansion valve, and a refrigerant circuit in which an evaporator is pipe-connected in a ring, and the refrigerant generated in the evaporator It is configured to exert a cooling capacity by the endothermic action of At this time, since the moisture in the heat-exchanged air condenses and adheres to the evaporator, an evaporation pan (drain pan) is provided in the machine room, and the condensed water (drain water) produced by the evaporator is It is led to an evaporation dish by a hose), and it is made to evaporate and process in this evaporation dish (for example, refer to patent documents 1).

この場合、従来では冷媒回路中の高温冷媒が流れる冷媒配管を蒸発皿底面に配置し、或いは、蒸発皿内に挿入して凝縮水を加熱することで、凝縮水を蒸発させるものが一般的であったが、前記特許文献1では、蒸発皿における凝縮水の処理能力を向上させるために、蒸発皿内に吸水性の蒸発部材を設けると共に、ドレン循環ポンプによってドレン配管に凝縮水を循環させ、冷媒回路中の高温冷媒と熱交換させて温度を上げるようにしていた。   In this case, conventionally, a refrigerant pipe in which a high temperature refrigerant in the refrigerant circuit flows is disposed on the bottom of the evaporation dish, or inserted into the evaporation dish to heat the condensation water to evaporate the condensed water. According to Patent Document 1, in order to improve the ability to process condensed water in the evaporating dish, a water absorbing evaporation member is provided in the evaporating dish, and the condensed water is circulated to the drain pipe by the drain circulation pump, Heat is exchanged with the high temperature refrigerant in the refrigerant circuit to raise the temperature.

特開2001−27473号公報JP 2001-27473 A

しかしながら、前述の如く高温冷媒が流れる冷媒配管で蒸発皿やその内部の凝縮水を加熱する場合、蒸発皿までの冷媒配管が長く複雑となるため、機械室内空間が限られている場合には、蒸発皿を加熱するための冷媒配管を機械室内に収納することが困難となる。   However, when heating the evaporating dish and the condensed water inside the evaporating dish with the refrigerant pipe through which the high-temperature refrigerant flows as described above, the refrigerant pipe leading to the evaporating dish becomes long and complicated. It becomes difficult to store a refrigerant pipe for heating the evaporating dish in the machine room.

一方、前記特許文献1の如く蒸発皿内に蒸発部材を配置し、ドレン循環ポンプで凝縮水の温度を上げるようにしても、蒸発皿に流入した直後の凝縮水の温度は低いため、凝縮水の量が多くなる環境下では処理能力が不足し、蒸発皿から凝縮水が溢れ出て周囲を汚損してしまうことになる。そのため、従来では蒸発皿で処理し切れない凝縮水を外部に排出するホースを取り付けていたが、例えば配電盤内を冷却する場合の如く、開閉パネルに外側から冷却ユニットを取り付けるときには、開閉パネルを開閉する際に冷却ユニットも移動することになるため、凝縮水を外部に排出するためのホースの取り回しが極めて面倒となる問題が生じる。   On the other hand, even if the evaporation member is disposed in the evaporation dish as in Patent Document 1 and the temperature of the condensation water is raised by the drain circulation pump, the condensed water immediately after flowing into the evaporation dish is low. In an environment where the amount of water is large, the processing capacity is insufficient, and condensed water overflows from the evaporation pan and contaminates the surroundings. For this reason, conventionally, a hose for discharging the condensed water which can not be treated with the evaporation dish to the outside has been attached. However, when attaching a cooling unit to the opening and closing panel from the outside, for example, Since the cooling unit is also moved when carrying out, there is a problem that the arrangement of the hose for discharging the condensed water to the outside becomes extremely troublesome.

本発明は、係る従来の技術的課題を解決するために成されたものであり、蒸発器で発生する凝縮水を外部に排出すること無く処理することができるようにしたノンドレンタイプの冷却ユニットを提供することを目的とする。   The present invention has been made to solve such conventional technical problems, and it is a non-drain type cooling unit which can be treated without discharging the condensed water generated in the evaporator to the outside. Intended to be provided.

本発明の冷却ユニットは、圧縮機、放熱器、絞り手段、及び、蒸発器が順次環状に配管接続された冷媒回路を備え、蒸発器における冷媒の蒸発温度が氷点より高いものであって、蒸発器で発生した凝縮水を受容するための蒸発皿と、蒸発器から蒸発皿に凝縮水を導く排水パイプとを備え、圧縮機から放熱器に至る吐出配管と排水パイプとを熱交換させることを特徴とする。   The cooling unit according to the present invention comprises a refrigerant circuit in which a compressor, a radiator, throttling means, and an evaporator are sequentially annularly connected by piping, and the evaporation temperature of the refrigerant in the evaporator is higher than the freezing point, Heat exchange between the discharge pipe and the discharge pipe from the compressor to the radiator, and an evaporation dish for receiving condensed water generated by the cooling vessel and a drainage pipe for guiding the condensed water from the evaporator to the evaporation dish It features.

請求項2の発明の冷却ユニットは、上記発明において蒸発皿内に設けられ、毛細管現象による吸水作用を有する蒸発部材を備えたことを特徴とする。   The cooling unit according to the invention of claim 2 is characterized in that, in the above-mentioned invention, the cooling unit is provided in the evaporation pan and has an evaporation member having a water absorbing action by capillary action.

請求項3の発明の冷却ユニットは、上記発明において排水パイプは、蒸発部材の上から凝縮水を流出させることを特徴とする。   The cooling unit of the invention of claim 3 is characterized in that, in the invention described above, the drainage pipe causes condensed water to flow out from above the evaporation member.

請求項4の発明の冷却ユニットは、上記各発明において、排水パイプを金属管にて構成し、この排水パイプと吐出配管とを半田付けにて密着させたことを特徴とする。   The cooling unit according to the invention of claim 4 is characterized in that, in each of the above-mentioned inventions, the drainage pipe is formed of a metal pipe, and the drainage pipe and the discharge pipe are closely attached by soldering.

請求項5の発明の冷却ユニットは、上記各発明において、圧縮機、放熱器、及び、蒸発皿が設置された機械室を備え、蒸発皿は、機械室の一側に配置され、排水パイプは、機械室の他側から一側に渡る直管部を有し、この直管部と吐出配管とを熱交換関係に配置したことを特徴とする。   The cooling unit of the invention according to claim 5 comprises, in each of the above-mentioned inventions, a compressor, a radiator, and a machine room in which an evaporation dish is installed, the evaporation dish is disposed on one side of the machine room, and the drainage pipe is And a straight pipe portion extending from the other side to the one side of the machine room, and the straight pipe portion and the discharge pipe are disposed in a heat exchange relationship.

請求項6の発明の冷却ユニットは、上記各発明において、吐出配管と排水パイプとが熱交換する箇所において、当該排水パイプ内を流れる凝縮水の流れと、吐出配管内を流れる冷媒の流れを対向流としたことを特徴とする。   In the cooling unit according to the invention of claim 6, in each of the inventions described above, the flow of condensed water flowing in the drainage pipe is opposed to the flow of refrigerant flowing in the discharge piping at a location where the discharge piping exchanges heat with the drainage pipe. It is characterized by having a style.

請求項7の発明の冷却ユニットは、上記各発明において、放熱器に外気を通風して空冷する放熱器用送風機を備え、蒸発皿を、放熱器用送風機による空気の流れに対して放熱器及び圧縮機の下流側に配置したことを特徴とする。   The cooling unit of the invention according to claim 7 comprises the radiator fan and the radiator fan for air cooling by ventilating outside air to air-cool the radiator according to the above respective inventions, and the evaporator and the compressor against the flow of air by the radiator fan. It is characterized in that it is disposed downstream of the

請求項8の発明の冷却ユニットは、上記各発明において、開閉パネルを有する機器の当該開閉パネルに外側から取り付けられ、この開閉パネルに形成された連通部より蒸発器に機器内の空気を循環通風することにより、当該機器内を冷却することを特徴とする。   The cooling unit according to the invention of claim 8 is, in each of the above inventions, attached from the outside to the open / close panel of the device having the open / close panel, and the air in the device is circulated and ventilated to the evaporator By cooling the inside of the device.

請求項9の発明の冷却ユニットは、上記各発明において、冷媒回路の冷媒として二酸化炭素を用いたことを特徴とする。   The cooling unit according to the invention of claim 9 is characterized in that carbon dioxide is used as the refrigerant of the refrigerant circuit in the above respective inventions.

本発明によれば、圧縮機、放熱器、絞り手段、及び、蒸発器が順次環状に配管接続された冷媒回路を備え、蒸発器における冷媒の蒸発温度が氷点より高い冷却ユニットにおいて、蒸発器で発生した凝縮水を受容するための蒸発皿と、蒸発器から蒸発皿に凝縮水を導く排水パイプとを備えており、圧縮機から放熱器に至る吐出配管と排水パイプとを熱交換させるようにしたので、圧縮機から吐出された高温冷媒により、排水パイプ内を流れて蒸発皿に向かう凝縮水を加熱し、排水パイプから蒸発皿に流出する凝縮水の温度を上昇させることができるようになる。   According to the present invention, the compressor, the radiator, the throttling means, and the refrigerant circuit in which the evaporator is sequentially and annularly pipe-connected, and the evaporation temperature of the refrigerant in the evaporator is higher than the freezing point in the cooling unit It is equipped with an evaporation pan for receiving the generated condensed water, and a drainage pipe that leads the condensed water from the evaporator to the evaporation pan, so that heat exchange is performed between the discharge piping from the compressor to the radiator and the drainage pipe. Therefore, the high temperature refrigerant discharged from the compressor can heat the condensed water flowing in the drainage pipe toward the evaporating dish and raise the temperature of the condensed water flowing out from the drainage pipe to the evaporating dish .

即ち、蒸発皿に流入する以前に、排水パイプを流れる過程で凝縮水の温度を上昇させることになるため、排水パイプから流出した凝縮水の蒸発量を効果的に増加させて、蒸発皿から外部に排出する必要性を解消し、ノンドレンタイプの冷却ユニットとすることができるようになる。これにより、例えば請求項8の発明の如く冷却ユニットが、開閉パネルを有する機器の当該開閉パネルに外側から取り付けられ、この開閉パネルに形成された連通部より蒸発器に機器内の空気を循環通風することにより、当該機器内を冷却するために用いられる場合に、従来の排水用のホースを取り回す必要がなくなるため、極めて好適なものとなる。   That is, since the temperature of the condensed water is raised in the process of flowing through the drainage pipe before flowing into the evaporation dish, the amount of evaporation of the condensed water flowing out of the drainage pipe is effectively increased. It is possible to eliminate the need to discharge the water into a non-drain type cooling unit. Thus, for example, according to the invention of claim 8, the cooling unit is attached from the outside to the open / close panel of the apparatus having the open / close panel, and the air in the apparatus is circulated and ventilated to the evaporator from the communication portion formed in the open / close panel. By doing this, when it is used to cool the inside of the device, there is no need to run the conventional drainage hose, which is extremely suitable.

一方、圧縮機から吐出された冷媒は放熱器に流入する以前に予め凝縮水により冷却されて温度が下がることになるので、冷凍能力の改善も図ることができるようになる。この場合、従来の如く蒸発皿まで冷媒配管を延長させる必要が無くなるので、省スペース化も実現することが可能となる。特に、請求項9の発明の如く冷媒回路の冷媒として二酸化炭素を使用する場合には、圧縮機の吐出冷媒温度が高くなるので、一層効果的に凝縮水を加熱し、冷凍能力の改善も図ることができるようになるものである。   On the other hand, since the refrigerant discharged from the compressor is cooled in advance by condensed water before flowing into the radiator and the temperature is lowered, the refrigeration capacity can also be improved. In this case, since it is not necessary to extend the refrigerant pipe to the evaporating dish as in the prior art, it is possible to realize space saving. In particular, when carbon dioxide is used as the refrigerant of the refrigerant circuit as in the invention of claim 9, the discharge refrigerant temperature of the compressor becomes high, so the condensed water is heated more effectively, and the refrigeration capacity is also improved. It will be possible to

また、請求項2の発明によれば、上記発明に加えて蒸発皿内に、毛細管現象による吸水作用を有する蒸発部材を設けたので、凝縮水がこの蒸発部材に浸透することで蒸発面積が拡張され、更に蒸発処理能力が向上することになる。   Further, according to the invention of claim 2, in addition to the above-mentioned invention, since the evaporation member having the water absorbing action by the capillary phenomenon is provided in the evaporation dish, the evaporation area is expanded by the condensed water penetrating into the evaporation member. The evaporation capacity will be further improved.

このとき、請求項3の発明の如く排水パイプが、蒸発部材の上から凝縮水を流出させるようにすれば、凝縮水が蒸発部材に直接振り掛けられることになる。このときに振り掛けられた凝縮水は、温度が高くなった水であるので、流下する過程で蒸発部材に行き渡り、迅速に蒸発するようになる。これにより、蒸発皿に溜まる以前に殆ど全ての凝縮水を蒸発させてしまうことも可能となり、外部への溢出を確実に防止することができるようになる。   At this time, if the drain pipe causes the condensed water to flow out from above the evaporation member as in the invention of claim 3, the condensed water is sprinkled directly on the evaporation member. Since the condensed water sprinkled at this time is water whose temperature has risen, it spreads to the evaporation member in the process of flowing down, and is quickly evaporated. This makes it possible to evaporate almost all the condensed water before accumulating in the evaporation pan, and it is possible to reliably prevent the spilling to the outside.

また、請求項4の発明の如く排水パイプを金属管にて構成し、この排水パイプと吐出配管とを半田付けにて密着させれば、圧縮機から吐出された高温冷媒と凝縮水とをより一層効果的に熱交換させることができるようになる。   Further, as in the invention of claim 4, if the drainage pipe is formed of a metal pipe and the drainage pipe and the discharge pipe are closely attached by soldering, the high temperature refrigerant and the condensed water discharged from the compressor are further increased. It will be possible to exchange heat more effectively.

また、請求項5の発明の如く圧縮機、放熱器、及び、蒸発皿が設置された機械室の一側に蒸発皿を配置し、排水パイプに、機械室の他側から一側に渡る直管部を設け、この直管部と吐出配管とを熱交換関係に配置することにより、限られた機械室内スペースにおいて、簡単な構成で高温冷媒と凝縮水とが熱交換する距離を確保することができるようになる。   According to the invention of claim 5, the evaporating dish is disposed on one side of the machine room in which the compressor, the radiator, and the evaporating dish are installed, and the drainage pipe is directly connected to the one side from the other side of the machine room. By providing a pipe portion and arranging the straight pipe portion and the discharge pipe in a heat exchange relationship, a distance between the high temperature refrigerant and the condensed water is exchanged with a simple configuration in a limited space inside the machine room. Will be able to

また、請求項6の発明の如く吐出配管と排水パイプとが熱交換する箇所において、当該排水パイプ内を流れる凝縮水の流れと、吐出配管内を流れる冷媒の流れを対向流とすることにより、高温冷媒と凝縮水それぞれの上流から下流に渡って、両者の間の温度差を確保し、熱交換効率を向上させることができるようになる。   According to the sixth aspect of the present invention, at the portion where the discharge pipe and the drain pipe exchange heat, the flow of the condensed water flowing in the drain pipe and the flow of the refrigerant flowing in the discharge pipe are made to be opposite flows. From the upstream to the downstream of each of the high temperature refrigerant and the condensed water, it is possible to secure the temperature difference between the two and improve the heat exchange efficiency.

また、請求項7の発明の如く放熱器に外気を通風して空冷する放熱器用送風機を備え、蒸発皿を、放熱器用送風機による空気の流れに対して放熱器及び圧縮機の下流側に配置することにより、放熱器や圧縮機を空冷して温度が上昇した空気を蒸発皿や蒸発部材に通風し、より効率的に凝縮水を蒸発させることができるようになる。   According to a seventh aspect of the present invention, the radiator is provided with a radiator fan for ventilating the outside air and air cooling, and the evaporation plate is disposed downstream of the radiator and the compressor with respect to the flow of air by the radiator fan. As a result, the radiator and the compressor can be air-cooled to ventilate the air whose temperature has risen to the evaporating dish and the evaporating member, and the condensed water can be evaporated more efficiently.

外装パネルを取り外した状態の本発明の一実施例の冷却ユニットを下から見た斜視図である。It is the perspective view which looked at the cooling unit of one Example of this invention of the state which removed the exterior panel from the bottom. 図1の冷却ユニットの吐出配管と排水パイプとが熱交換する箇所の拡大斜視図である。It is an enlarged perspective view of the location where the discharge piping and drainage pipe of the cooling unit of FIG. 1 heat-exchange. 図1の冷却ユニットの排水パイプから凝縮水が流出する箇所を拡大した斜視図である。It is the perspective view which expanded the location where condensed water flows out from the drainage pipe of the cooling unit of FIG. 図1の冷却ユニットの冷媒回路と排水経路を示す図である。It is a figure which shows the refrigerant circuit and drainage path of a cooling unit of FIG. 図1の冷却ユニットが取り付けられる機器の一実施例としての配電盤の斜視図である。It is a perspective view of the switchboard as an example of the apparatus with which the cooling unit of FIG. 1 is attached. 図5の配電盤と本発明の冷却ユニットの取付状態を説明する図である。It is a figure explaining the attachment state of the switchboard of FIG. 5, and the cooling unit of this invention.

以下、本発明の一実施形態について、図面に基づいて詳細に説明する。実施例の冷却ユニット1は、図5に示す如き工場の配電盤2(機器の実施例)に取り付けられて内部を冷却するために用いられる。冷却ユニット1は、図1に示すようなフレーム3に、図5に示される外装パネル4を取り付けた筐体状を呈しており、その内部に圧縮機6、放熱器(ガスクーラ)7、絞り手段としての膨張弁8(図4。又は、キャピラリチューブ)、蒸発器9、放熱器用送風機11(図4)及び冷気循環用送風機12等を収納して一体化した構成とされている。   Hereinafter, an embodiment of the present invention will be described in detail based on the drawings. The cooling unit 1 of the embodiment is attached to the factory switchboard 2 (embodiment of the device) as shown in FIG. 5 and used to cool the inside. The cooling unit 1 is in the form of a case where the exterior panel 4 shown in FIG. 5 is attached to the frame 3 as shown in FIG. 1, and the compressor 6, the radiator (gas cooler) 7, and the throttling means The expansion valve 8 (FIG. 4 or capillary tube), the evaporator 9, the radiator blower 11 (FIG. 4), the cold air circulation blower 12 and the like are housed and integrated.

前記圧縮機6、放熱器7、膨張弁8及び蒸発器9は、冷媒配管(銅管)によって図4に示すように順次環状に配管接続されて周知の冷媒回路Rが構成されており、実施例ではこの冷媒回路R内に、冷媒として二酸化炭素が所定量封入されている。この場合、冷却ユニット1内は仕切壁13により上下に区画され、この仕切壁13の下側が機械室14、上側が冷却室16とされている(図1)。   The compressor 6, the radiator 7, the expansion valve 8 and the evaporator 9 are sequentially annularly connected by a refrigerant pipe (copper pipe) as shown in FIG. 4 as shown in FIG. 4, and a known refrigerant circuit R is configured. In the example, a predetermined amount of carbon dioxide is enclosed in the refrigerant circuit R as a refrigerant. In this case, the inside of the cooling unit 1 is vertically divided by the partition wall 13, and the lower side of the partition wall 13 is a machine room 14 and the upper side is a cooling room 16 (FIG. 1).

そして、蒸発器9、膨張弁8及び冷気循環用送風機12は上側の冷却室16内に設置され、圧縮機6、放熱器7及び放熱器用送風機11は下側の機械室14内に設置されている。また、機械室14内の一側には蒸発皿17が設けられており、この蒸発皿17内には、蒸発部材18が載置されている。この蒸発部材18は毛細管現象による吸水作用を発揮する部材であり、実施例では蒸発紙を用いている。   The evaporator 9, the expansion valve 8 and the blower 12 for circulating cold air are installed in the upper cooling chamber 16, and the compressor 6, the radiator 7 and the blower 11 for radiator are installed in the lower machine chamber 14. There is. Further, an evaporation pan 17 is provided on one side in the machine room 14, and an evaporation member 18 is placed in the evaporation pan 17. The evaporation member 18 is a member that exerts a water absorbing action by capillary action, and in the embodiment, evaporation paper is used.

この場合、放熱器用送風機11は運転されて外気を吸引し、放熱器7及び圧縮機6に吹き付ける。蒸発皿17はこの放熱器用送風機11による空気の流れに対して放熱器7及び圧縮機6の下流側に配置されており、放熱器7及び圧縮機6を通過した空気はその後、蒸発皿17及び蒸発部材18に通風されることになる(図4)。   In this case, the radiator blower 11 is operated to suck outside air and spray it on the radiator 7 and the compressor 6. The evaporation tray 17 is disposed downstream of the radiator 7 and the compressor 6 with respect to the flow of air by the radiator blower 11, and the air having passed through the radiator 7 and the compressor 6 is then transferred to the evaporation tray 17 and the evaporator 6. It will be ventilated to the evaporation member 18 (FIG. 4).

一方、冷却室16内の蒸発器9下側にはドレンパン19(図4)が配置されており、このドレンパン19によって冷却室16内は、上側の吸込側16Aと下側の吹出側16Bとに区画されている。そしてこのドレンパン19には排水パイプ21が接続され、この排水パイプ21は、機械室14内にその一側から引き出されている。実施例では排水パイプ21は銅管(金属管の実施例)にて構成されており、機械室14内の上部を一側から他側に向かった後、Uターンして他側から一側に渡る形状を呈し、その出口21Aは蒸発部材18の直上にて開口されている(図3)。また、機械室14内で一側から他側に渡る部分と他側から一側に渡る部分の排水パイプ21はそれぞれ直管部21B、21Cとされている。   On the other hand, a drain pan 19 (FIG. 4) is disposed on the lower side of the evaporator 9 in the cooling chamber 16, and the inside of the cooling chamber 16 is thereby provided with an upper suction side 16A and a lower blowout side 16B. It is divided. A drain pipe 21 is connected to the drain pan 19, and the drain pipe 21 is drawn out from one side into the machine room 14. In the embodiment, the drainage pipe 21 is composed of a copper pipe (an embodiment of a metal pipe), and after the upper part in the machine room 14 is directed from one side to the other side, it is U-turned from the other side to one side The outlet 21A has an opening shape directly above the evaporation member 18 (FIG. 3). The drainage pipes 21 in the machine chamber 14 in the part extending from one side to the other side and in the part extending from the other side to the one side are straight pipe portions 21B and 21C, respectively.

他方、圧縮機6から放熱器7に至る吐出配管22(銅管)も、機械室14内の上部において、その一側から他側に渡る直管部22Aを有している。そして、この直管部22Aは、機械室14内を他側から一側に渡る排水パイプ21の直管部21Cと抱き合わされ、半田付けにて密着されている(図2)。   On the other hand, the discharge piping 22 (copper pipe) extending from the compressor 6 to the radiator 7 also has a straight pipe portion 22A extending from one side to the other side in the upper part in the machine chamber 14. The straight pipe portion 22A is held together with the straight pipe portion 21C of the drainage pipe 21 extending from the other side to the one side in the machine room 14 and is closely attached by soldering (FIG. 2).

係る構成の冷却ユニット1は、配電盤2の開閉パネル23に外側から取り付けられる。この場合、回動式(観音開き)の開閉パネル23には図6に示す如く矩形状の連通部24(透孔)が形成されており、冷却室16がこの連通部24に対応し、それを塞ぐかたちで冷却ユニット1は開閉パネル23に取り付けられる。開閉パネル23は内部に収納された電気部品の点検などのために開閉されるので、その際に冷却ユニット1も開閉パネル23と共に移動(回動)することになる。   The cooling unit 1 having such a configuration is attached to the switch panel 23 of the switchboard 2 from the outside. In this case, as shown in FIG. 6, a rectangular communication portion 24 (through hole) is formed in the pivoting (open-door) opening / closing panel 23, and the cooling chamber 16 corresponds to the communication portion 24. The cooling unit 1 is attached to the opening and closing panel 23 in a closed form. Since the opening and closing panel 23 is opened and closed for inspection of the electric components stored inside, the cooling unit 1 is also moved (rotated) together with the opening and closing panel 23 at that time.

以上の構成で、次に実施例の冷却ユニット1の動作を説明する。圧縮機6及び各送風機11、12が運転されると、圧縮機6にて圧縮されて超臨界状態となった二酸化炭素冷媒が吐出配管22に吐出される。このときの冷媒は約+80℃程まで温度上昇した高温冷媒である。吐出配管22に吐出された冷媒は直管部22Aに入り、機械室14内を一側から他側に向かって流れた後、放熱器7に入る。放熱器7に流入した冷媒は、放熱器用送風機11により吸引された外気により空冷されるが、未だ超臨界状態である。   Next, the operation of the cooling unit 1 of the embodiment having the above configuration will be described. When the compressor 6 and the blowers 11 and 12 are operated, the carbon dioxide refrigerant compressed by the compressor 6 and brought into a supercritical state is discharged to the discharge pipe 22. The refrigerant at this time is a high temperature refrigerant whose temperature has risen to about + 80.degree. The refrigerant discharged to the discharge pipe 22 enters the straight pipe portion 22A, flows from one side to the other side in the machine chamber 14, and then enters the radiator 7. The refrigerant flowing into the radiator 7 is air-cooled by the outside air drawn by the radiator blower 11, but is still in the supercritical state.

放熱器7で空冷された超臨界状態の冷媒は、膨張弁8に流入して減圧され、その過程で液相に移行する。そして、蒸発器9に流入して蒸発し、このときの吸熱作用で冷気循環用送風機12により通風される配電盤2内の空気を冷却する。即ち、配電盤2内の空気は冷気循環用送風機12により吸引され、連通部24を経て吸込側16Aに入り、蒸発器9を通過して冷却された後、吹出側16Bから再度連通部24を経て配電盤2内に吹き出される。このように配電盤2内の空気が冷却ユニット1の蒸発器9に循環通風されることにより、配電盤2内は冷却されて内部に収納された電気部品の過熱が防止される。   The refrigerant in the supercritical state, which is air-cooled by the radiator 7, flows into the expansion valve 8 and is decompressed, and in the process, it shifts to the liquid phase. Then, the air flows into the evaporator 9, evaporates, and the air inside the switchboard 2 ventilated by the cold air circulation fan 12 is cooled by the heat absorption function at this time. That is, the air in the switchboard 2 is sucked by the cold air circulation fan 12, passes through the communication portion 24, enters the suction side 16A, passes through the evaporator 9 and is cooled, and then passes through the communication portion 24 again from the blowout side 16B. It is blown out into the switchboard 2. Thus, the air in the switchboard 2 is circulated and ventilated to the evaporator 9 of the cooling unit 1, whereby the inside of the switchboard 2 is cooled and the overheat of the electrical components accommodated therein is prevented.

尚、蒸発器9での冷媒の蒸発温度は、氷点より高い、実施例では+5℃に制御される。そして、この蒸発器9で蒸発した冷媒は圧縮機6に再び吸い込まれることになる。   The evaporation temperature of the refrigerant in the evaporator 9 is controlled to be higher than the freezing point, that is, + 5 ° C. in the embodiment. Then, the refrigerant evaporated by the evaporator 9 is sucked into the compressor 6 again.

このような冷媒の蒸発による冷却作用で蒸発器9の表面には、配電盤2内の空気中の水分が凝結し、凝縮水となって付着する。この凝縮水は蒸発器9から滴下してドレンパン19に受容されるが、このときの凝縮水の温度は約+25℃程であり、運転中殆ど常時発生している。ドレンパン19に受け止められた凝縮水は排水パイプ21に入り、直管部21Bに流入して機械室14内を一側から他側に向かって流れた後、Uターンして直管部21Cに入る。そして、この直管部21C内を、機械室14内の他側から一側に向かって流れた後、出口21Aから流出する。   The moisture in the air in the switchboard 2 condenses on the surface of the evaporator 9 by such a cooling action by evaporation of the refrigerant, and adheres as condensed water. The condensed water drips from the evaporator 9 and is received by the drain pan 19. At this time, the temperature of the condensed water is about + 25 ° C. and is generated almost always during operation. The condensed water received by the drain pan 19 enters the drainage pipe 21, flows into the straight pipe portion 21B, flows from the inside of the machine room 14 from one side to the other side, and then makes a U-turn and enters the straight pipe portion 21C. . Then, after flowing in the straight pipe portion 21C from the other side in the machine chamber 14 toward one side, it flows out from the outlet 21A.

前述した如く実施例では排水パイプ21は熱伝導性の高い銅管にて構成されており、機械室14内の上部を一側から他側に向かった後、Uターンして他側から一側に渡る形状を呈しているので、凝縮水は直管部21B内を流れる過程で、圧縮機6や放熱器7からの放熱により温度が高くなっている機械室14内上部の空気により温められることになる。   As described above, in the embodiment, the drainage pipe 21 is formed of a copper tube having high thermal conductivity, and after the upper part in the machine room 14 is directed from one side to the other side, it is U-turned to make one side from the other side. In the process of flowing through the straight pipe portion 21B, the condensed water is warmed by the air in the upper part in the machine room 14 whose temperature is increased by the heat radiation from the compressor 6 and the radiator 7 become.

更に、排水パイプ21の直管部21Cは、前述した如く吐出配管22の直管部22Aと抱き合わされ、半田付けにて密着されているので、直管部21Bを出て直管部21C内に入った凝縮水は、当該直管部21C内を流れる過程で吐出配管22内を流れる高温冷媒と熱交換する。これにより凝縮水は更に加熱され、冷媒は逆に冷却されることになる。   Furthermore, since the straight pipe portion 21C of the drainage pipe 21 is held together with the straight pipe portion 22A of the discharge pipe 22 as described above and closely adhered by soldering, it exits the straight pipe portion 21B and enters the straight pipe portion 21C. The condensed water that has entered the heat exchanger exchanges heat with the high temperature refrigerant flowing in the discharge pipe 22 in the process of flowing in the straight pipe portion 21C. As a result, the condensed water is further heated, and the refrigerant is cooled in reverse.

また、直管部21C内を流れる凝縮水は、機械室14内を他側から一側に向かって流れ、直管部22A内を流れる高温冷媒は、機械室14内を一側から他側に向かって流れるので、吐出配管22と排水パイプ21とが熱交換する箇所(直管部22Aと直管部21C)において、高温冷媒と凝縮水の流れは対向流となる。そのため、直管部21C及び22Aの略全域において両者(冷媒は超臨界状態)の温度差が確保されることになり、熱交換効率は極めて良好なものとなる。   Further, the condensed water flowing in the straight pipe portion 21C flows from the other side toward the one side in the machine chamber 14, and the high temperature refrigerant flowing in the straight pipe portion 22A moves from the one side to the other side in the machine chamber 14. Since it flows toward the direction, the high temperature refrigerant and the condensed water flow in opposite directions at the portion where the discharge piping 22 and the drainage pipe 21 exchange heat (the straight pipe portion 22A and the straight pipe portion 21C). Therefore, the temperature difference between the two (the refrigerant is in the supercritical state) is secured substantially in the entire region of the straight pipe portions 21C and 22A, and the heat exchange efficiency becomes extremely good.

このような高温冷媒との熱交換により、凝縮水の温度は約+50℃程まで上昇し、出口21Aから流出する。この排水パイプ21の出口21Aは前述した如く蒸発部材18の直上にて開口しているので、出口21Aから流出した凝縮水(+50℃)は、蒸発部材18に上方から降り掛かり、上から下に流れながら蒸発部材18の全体に行き渡っていくことになる。   The heat exchange with such a high temperature refrigerant raises the temperature of the condensed water to about + 50 ° C. and flows out from the outlet 21A. As described above, the outlet 21A of the drain pipe 21 is opened immediately above the evaporation member 18, so the condensed water (+ 50 ° C.) flowing out from the outlet 21A falls on the evaporation member 18 from above, and from above to below As it flows, it will spread throughout the evaporation member 18.

また、前述した如く放熱器用送風機11の運転により、放熱器7及び圧縮機6を経て温度が上昇した空気が蒸発皿17及び蒸発部材18に通風されるので、蒸発部材18に滴下して面積が広がった温度の高い(+50℃)凝縮水は迅速に蒸発していき、殆どの場合蒸発皿17まで至る以前に蒸発し切ってしまう状況となる。即ち、この実施例の場合、蒸発皿17は環境条件(高温多湿など)により蒸発部材18で蒸発し切れなかった凝縮水を受けるためのものとなる。   In addition, since the air whose temperature has risen through the radiator 7 and the compressor 6 is ventilated to the evaporation pan 17 and the evaporation member 18 by the operation of the radiator blower 11 as described above, the air drips onto the evaporation member 18 and the area is reduced. The high temperature (+ 50.degree. C.) condensed water which has spread will evaporate quickly, and in most cases it will be in a situation where it evaporates before it reaches the evaporation pan 17. That is, in the case of this embodiment, the evaporation pan 17 is for receiving the condensed water which has not been evaporated by the evaporation member 18 due to the environmental conditions (high temperature and humidity etc.).

このように本発明の冷却ユニット1では、圧縮機6から放熱器7に至る吐出配管22と排水パイプ21とを熱交換させるようにしたので、圧縮機6から吐出された高温冷媒により、排水パイプ21内を流れて蒸発皿17に向かう凝縮水を加熱し、排水パイプ21から蒸発皿17に流出する凝縮水の温度を上昇させることができるようになる。   As described above, in the cooling unit 1 according to the present invention, the discharge pipe 22 from the compressor 6 to the radiator 7 and the drain pipe 21 are subjected to heat exchange, so the high temperature refrigerant discharged from the compressor 6 makes the drain pipe As a result, it is possible to heat the condensed water flowing in the flow direction 21 toward the evaporating dish 17 and to raise the temperature of the condensed water flowing out from the drainage pipe 21 to the evaporating dish 17.

即ち、蒸発皿17に流入する以前に、排水パイプ21を流れる過程で凝縮水の温度を上昇させることになるため、排水パイプ21から流出した凝縮水の蒸発量を効果的に増加させて、蒸発皿17から外部に排出する必要性を解消し、ノンドレンタイプの冷却ユニット1とすることができるようになる。   That is, since the temperature of the condensed water is raised in the process of flowing through the drainage pipe 21 before flowing into the evaporation dish 17, the evaporation amount of the condensed water flowing out of the drainage pipe 21 is effectively increased to evaporate It is possible to eliminate the need for discharging from the tray 17 to the outside, and to obtain a non-drain type cooling unit 1.

即ち、従来必要とされていた排水用のホースを取り付ける必要がなくなるので、実施例の如く冷却ユニット1が、配電盤2の開閉パネル23に外側から取り付けられ、この開閉パネル23に形成された連通部24より蒸発器9に配電盤2内の空気を循環通風することにより、当該配電盤2内を冷却するために用いられる場合に、排水用のホースを取り回す必要がなくなるため、極めて好適なものとなる。   That is, since it is not necessary to attach the hose for drainage conventionally required conventionally, the cooling unit 1 is attached from the outside to the opening and closing panel 23 of the switchboard 2 as in the embodiment, and the communication part formed in the opening and closing panel 23 By circulating and ventilating the air in the switchboard 2 from the air conditioner 24 to the evaporator 9 from 24 it is not necessary to route the drainage hose when it is used to cool the inside of the switchboard 2, which is extremely preferable. .

一方、圧縮機6から吐出された高温冷媒は放熱器7に流入する以前に予め凝縮水により冷却されて温度が下がることになるので、冷凍能力の改善も図ることができるようになる。この場合、従来の如く蒸発皿17まで冷媒配管を延長させる必要が無くなるので、機械室14の省スペース化も実現することが可能となる。特に、実施例の如く冷媒回路Rの冷媒として二酸化炭素を使用する場合には、圧縮機6の吐出冷媒温度が高くなるので、一層効果的に凝縮水を加熱し、冷凍能力の改善も図ることができるようになる。   On the other hand, since the high temperature refrigerant discharged from the compressor 6 is cooled by the condensed water in advance before flowing into the radiator 7, the temperature is lowered, so that the refrigeration capacity can be improved. In this case, since it is not necessary to extend the refrigerant pipe to the evaporation pan 17 as in the prior art, space saving of the machine room 14 can also be realized. In particular, when carbon dioxide is used as the refrigerant of the refrigerant circuit R as in the embodiment, since the temperature of the refrigerant discharged from the compressor 6 becomes high, the condensed water can be heated more effectively to improve the refrigeration capacity. Will be able to

また、実施例では蒸発皿17内に、毛細管現象による吸水作用を有する蒸発部材18を設けているので、凝縮水がこの蒸発部材18に浸透することで蒸発面積が拡張され、更に蒸発処理能力が向上することになる。   Further, in the embodiment, since the evaporation member 18 having a water absorption effect by capillary action is provided in the evaporation dish 17, the condensed water penetrates the evaporation member 18 to expand the evaporation area, and the evaporation processing capacity is further increased. It will improve.

このとき、実施例では排水パイプ21の出口21Aを蒸発部材18の直上に配置し、蒸発部材18の上から凝縮水を流出させるようにしているので、凝縮水が蒸発部材18に直接振り掛けられることになる。このときに振り掛けられた凝縮水は、温度が高くなった水であるので、流下する過程で蒸発部材18に行き渡り、迅速に蒸発するようになる。これにより、蒸発皿17に溜まる以前に殆ど全ての凝縮水を蒸発させてしまうことも可能となり、外部への溢出を確実に防止することができるようになる。   At this time, in the embodiment, the outlet 21A of the drainage pipe 21 is disposed directly above the evaporation member 18, and the condensed water is made to flow out from above the evaporation member 18, so that the condensed water is sprinkled directly on the evaporation member 18. become. Since the condensed water sprinkled at this time is water whose temperature has risen, the condensed water spreads to the evaporation member 18 in the process of flowing down, and is quickly evaporated. As a result, it is possible to evaporate almost all the condensed water before accumulating in the evaporation pan 17, and it is possible to reliably prevent the overflow to the outside.

また、実施例では排水パイプ21を銅管(金属管)にて構成し、この排水パイプ21と吐出配管22とを半田付けにて密着させているので、圧縮機6から吐出された高温冷媒と凝縮水とをより一層効果的に熱交換させることができるようになる。   Further, in the embodiment, since the drain pipe 21 is formed of a copper pipe (metal pipe) and the drain pipe 21 and the discharge pipe 22 are closely attached by soldering, the high temperature refrigerant discharged from the compressor 6 and Heat exchange with condensed water can be performed more effectively.

特に、圧縮機6と、放熱器7が設置された機械室14の一側に蒸発皿17を配置し、排水パイプ21には、機械室14の他側から一側に渡る直管部21Cを設け、この直管部21Cと吐出配管22の直管部22Aとを熱交換関係に配置したので、限られた機械室14内のスペースにおいて、例えば排水パイプ21と吐出配管22を抱き合わせ、或いは、二重管とした状態でコイル状に巻回するなどすること無く、簡単な構成で高温冷媒と凝縮水とが熱交換する距離を確保することができるようになる。   In particular, the evaporation plate 17 is disposed on one side of the machine chamber 14 in which the compressor 6 and the radiator 7 are installed, and the drain pipe 21 is a straight pipe portion 21C extending from the other side of the machine chamber 14 to one side. Since the straight pipe portion 21C and the straight pipe portion 22A of the discharge pipe 22 are disposed in a heat exchange relationship, for example, the drainage pipe 21 and the discharge pipe 22 are held together in a limited space in the machine room 14 or The distance between the high temperature refrigerant and the condensed water can be secured with a simple configuration without winding in a coil shape in a double pipe state, etc.

また、吐出配管22と排水パイプ21とが熱交換する直管部22A、21Cにおいて、排水パイプ21内を流れる凝縮水の流れと、吐出配管22内を流れる冷媒の流れが対向流となるようにしているので、高温冷媒と凝縮水それぞれの上流から下流に渡って、両者の間の温度差を確保し、熱交換効率を向上させることができるようになる。   Further, in the straight pipe portions 22A and 21C where the discharge piping 22 and the drainage pipe 21 exchange heat, the flow of condensed water flowing in the drainage pipe 21 and the flow of refrigerant flowing in the discharge piping 22 become opposite flows. As a result, the temperature difference between the high temperature refrigerant and the condensed water can be secured from the upstream to the downstream, and the heat exchange efficiency can be improved.

更に、放熱器7に外気を通風して空冷する放熱器用送風機11による空気の流れに対して、蒸発皿を放熱器7及び圧縮機6の下流側に配置しているので、放熱器7や圧縮機6を空冷して温度が上昇した空気を蒸発皿17や蒸発部材18に通風して、より効率的に凝縮水を蒸発させることができるようになる。   Furthermore, since the evaporation dish is disposed downstream of the radiator 7 and the compressor 6 with respect to the flow of air by the radiator blower 11 which ventilates the outside air to the radiator 7 to cool the air, the radiator 7 and the compressor 6 are compressed. By air-cooling the machine 6, the temperature rising air is ventilated to the evaporating dish 17 and the evaporating member 18, and condensed water can be evaporated more efficiently.

尚、本発明の冷却ユニット1が取り付けられる機器としては実施例のような配電盤2に限らず、コンピュータサーバのパネルや、家屋の窓、家屋の扉、配送トラックのドア、輸送コンテナのドア等に取り付けられる場合にも有効である。また、請求項8以外の発明ではこのような機器に限らず、通常の家庭用エアコンであっても良く、業務用のショーケース内を冷却するために用いられる場合にも有効である。   The device to which the cooling unit 1 of the present invention is attached is not limited to the switchboard 2 as in the embodiment, but may be a panel of a computer server, a window of a house, a window of a house, a door of a house, a door of a delivery truck, a door of a transport container, etc. It is also effective when attached. The invention other than claim 8 is not limited to such a device, and may be an ordinary household air conditioner, and is effective also when it is used to cool the inside of a showcase for business use.

更に、実施例では排水パイプ21を銅管(金属管)にて構成したが、請求項4以外の発明では通常の樹脂製ホースを用いても良い。但し、実施例の如く金属管にて構成し、吐出配管22と半田付けすることができるようにすれば、より一層の熱交換性能を得ることができる。   Furthermore, although the drain pipe 21 is comprised by the copper pipe (metal pipe) in the Example, you may use normal resin-made hoses in invention except Claim 4. However, if it can be made of a metal pipe and soldered to the discharge pipe 22 as in the embodiment, further heat exchange performance can be obtained.

更にまた、実施例では二酸化炭素を冷媒として使用したが、請求項9以外の発明ではそれに限らず、種々の冷媒を用いた冷媒回路Rを備えた冷却ユニットに本発明は有効である。   Furthermore, although carbon dioxide is used as the refrigerant in the embodiment, the invention is not limited to the invention except for the ninth aspect, and the present invention is effective to a cooling unit provided with a refrigerant circuit R using various refrigerants.

1 冷却ユニット
2 配電盤
6 圧縮機
7 放熱器
8 膨張弁(絞り手段)
9 蒸発器
11 放熱器用送風機
12 冷気循環用送風機
14 機械室
17 蒸発皿
18 蒸発部材
19 ドレンパン
21 排水パイプ
21A 出口
21C 直管部
22 吐出配管
21A 直管部
R 冷媒回路
1 Cooling unit 2 Switchboard 6 Compressor 7 Radiator 8 Expansion valve (throttling means)
9 evaporator 11 radiator blower 12 cold air circulation blower 14 machine room 17 evaporation plate 18 evaporation member 19 drain pan 21 drainage pipe 21A outlet 21C straight pipe portion 22 discharge piping 21A straight pipe portion R refrigerant circuit

Claims (9)

圧縮機、放熱器、絞り手段、及び、蒸発器が順次環状に配管接続された冷媒回路を備え、前記蒸発器における冷媒の蒸発温度が氷点より高い冷却ユニットにおいて、
前記蒸発器で発生した凝縮水を受容するための蒸発皿と、
前記蒸発器から前記蒸発皿に凝縮水を導く排水パイプとを備え、
前記圧縮機から前記放熱器に至る吐出配管と前記排水パイプとを熱交換させることを特徴とする冷却ユニット。
In a cooling unit including a refrigerant circuit in which a compressor, a radiator, throttling means, and an evaporator are sequentially and annularly connected by piping, and the evaporation temperature of the refrigerant in the evaporator is higher than the freezing point,
An evaporating dish for receiving condensed water generated by the evaporator;
And a drain pipe for guiding condensed water from the evaporator to the evaporation pan.
A cooling unit characterized in that heat exchange is performed between a discharge pipe extending from the compressor to the radiator and the drainage pipe.
前記蒸発皿内に設けられ、毛細管現象による吸水作用を有する蒸発部材を備えたことを特徴とする請求項1に記載の冷却ユニット。   The cooling unit according to claim 1, further comprising an evaporation member provided in the evaporation dish and having a water absorption effect by capillary action. 前記排水パイプは、前記蒸発部材の上から凝縮水を流出させることを特徴とする請求項2に記載の冷却ユニット。   The cooling unit according to claim 2, wherein the drainage pipe causes condensed water to flow out from above the evaporation member. 前記排水パイプを金属管にて構成し、該排水パイプと前記吐出配管とを半田付けにて密着させたことを特徴とする請求項1乃至請求項3のうちの何れかに記載の冷却ユニット。   The cooling unit according to any one of claims 1 to 3, wherein the drain pipe is formed of a metal pipe, and the drain pipe and the discharge pipe are closely attached by soldering. 前記圧縮機、前記放熱器、及び、前記蒸発皿が設置された機械室を備え、
前記蒸発皿は、前記機械室の一側に配置され、
前記排水パイプは、前記機械室の他側から一側に渡る直管部を有し、該直管部と前記吐出配管とを熱交換関係に配置したことを特徴とする請求項1乃至請求項4のうちの何れかに記載の冷却ユニット。
A machine room in which the compressor, the radiator, and the evaporation dish are installed;
The evaporating dish is disposed at one side of the machine room.
The drainage pipe has a straight pipe portion extending from the other side to the one side of the machine chamber, and the straight pipe portion and the discharge pipe are arranged in a heat exchange relationship. The cooling unit according to any one of 4.
前記吐出配管と前記排水パイプとが熱交換する箇所において、当該排水パイプ内を流れる凝縮水の流れと、前記吐出配管内を流れる冷媒の流れを対向流としたことを特徴とする請求項1乃至請求項5のうちの何れかに記載の冷却ユニット。   At a portion where the discharge pipe and the drainage pipe exchange heat, the flow of condensed water flowing in the drainage pipe and the flow of refrigerant flowing in the discharge pipe are made to be opposite flows. The cooling unit according to any one of claims 5. 前記放熱器に外気を通風して空冷する放熱器用送風機を備え、
前記蒸発皿を、前記放熱器用送風機による空気の流れに対して前記放熱器及び前記圧縮機の下流側に配置したことを特徴とする請求項1乃至請求項6のうちの何れかに記載の冷却ユニット。
The radiator is provided with a blower for radiator that ventilates the air and cools the air.
The cooling according to any one of claims 1 to 6, wherein the evaporating dish is disposed downstream of the radiator and the compressor with respect to the flow of air by the radiator fan. unit.
開閉パネルを有する機器の当該開閉パネルに外側から取り付けられ、該開閉パネルに形成された連通部より前記蒸発器に前記機器内の空気を循環通風することにより、当該機器内を冷却することを特徴とする請求項1乃至請求項7のうちの何れかに記載の冷却ユニット。   It is attached from the outside to the opening and closing panel of the device having the opening and closing panel, and the air in the device is circulated and ventilated to the evaporator from the communication part formed in the opening and closing panel to cool the inside of the device. The cooling unit according to any one of claims 1 to 7, wherein: 前記冷媒回路の冷媒として二酸化炭素を用いたことを特徴とする請求項1乃至請求項8のうちの何れかに記載の冷却ユニット。   The cooling unit according to any one of claims 1 to 8, wherein carbon dioxide is used as the refrigerant of the refrigerant circuit.
JP2015050594A 2015-03-13 2015-03-13 Cooling unit Expired - Fee Related JP6478733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050594A JP6478733B2 (en) 2015-03-13 2015-03-13 Cooling unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050594A JP6478733B2 (en) 2015-03-13 2015-03-13 Cooling unit

Publications (2)

Publication Number Publication Date
JP2016169916A JP2016169916A (en) 2016-09-23
JP6478733B2 true JP6478733B2 (en) 2019-03-06

Family

ID=56982257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050594A Expired - Fee Related JP6478733B2 (en) 2015-03-13 2015-03-13 Cooling unit

Country Status (1)

Country Link
JP (1) JP6478733B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403246A (en) * 2016-09-29 2017-02-15 西安华为技术有限公司 Condensate water processing device and air conditioner system free of condensate water
CN116123620A (en) * 2021-11-12 2023-05-16 重庆海峻机电设备有限公司 High-efficiency refrigerating structure of air conditioner
WO2023187920A1 (en) * 2022-03-28 2023-10-05 日本電気株式会社 Dew condensation drainage recovery device and cooling device
CN115095922B (en) * 2022-06-24 2024-09-24 珠海格力电器股份有限公司 Air conditioner smoke machine and control method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641628Y2 (en) * 1988-06-14 1994-11-02 日新電機株式会社 Dehumidifier drainage device
JPH10267508A (en) * 1997-03-28 1998-10-09 Nec Home Electron Ltd Electric refrigerator
JP4197562B2 (en) * 1999-07-13 2008-12-17 中野冷機株式会社 Drain evaporation structure of showcase with built-in refrigerator
JP2001280811A (en) * 2000-03-30 2001-10-10 Nippon Kentetsu Co Ltd Drain evaporating device
JP3587189B2 (en) * 2001-11-19 2004-11-10 ダイキン工業株式会社 Heat exchanger
EP1963763A4 (en) * 2005-03-18 2010-09-29 Carrier Comm Refrigeration Inc Condensate heat transfer for transcritical carbon dioxide refrigeration system

Also Published As

Publication number Publication date
JP2016169916A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
KR101760694B1 (en) Cooling mechanism for data center
JP6478733B2 (en) Cooling unit
JP6091302B2 (en) Air conditioner
JP2005249258A (en) Cooling system
JP6254349B2 (en) Heat pump equipment outdoor unit
JP2014202398A (en) Cooling system for air conditioner control box and air conditioner incorporating cooling system therein
JP2009079778A (en) Refrigerator
JP2012225563A (en) Heat source machine of heat pump device and outdoor unit of air conditioner
JP2013047588A (en) Air conditioning structure of building construction
JP6501149B2 (en) Refrigeration system
JP2010169273A (en) Heat pump type hot water heating device
JP2009134531A (en) Electronic device cooling system
JP2011142131A (en) Refrigerator
JP5405058B2 (en) Cooling system
JP6490221B2 (en) refrigerator
JP2008122060A (en) Cooling apparatus
KR20080041552A (en) Air-conditioning apparatus and method
KR20070102190A (en) Emission apparatus of heat in refrigerator
JP5992735B2 (en) Air conditioner
JP4583230B2 (en) Low temperature showcase
JP4513707B2 (en) vending machine
KR20150064408A (en) Dehumidifier having cooling system using condensation water circulation
JP2007017057A (en) Cooling chamber
JP2023030659A (en) air conditioner
JP2015052402A (en) Article storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R150 Certificate of patent or registration of utility model

Ref document number: 6478733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees