JP2004060525A - Variable air suction device - Google Patents

Variable air suction device Download PDF

Info

Publication number
JP2004060525A
JP2004060525A JP2002219765A JP2002219765A JP2004060525A JP 2004060525 A JP2004060525 A JP 2004060525A JP 2002219765 A JP2002219765 A JP 2002219765A JP 2002219765 A JP2002219765 A JP 2002219765A JP 2004060525 A JP2004060525 A JP 2004060525A
Authority
JP
Japan
Prior art keywords
drive shaft
bearing member
end bearing
shaft member
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002219765A
Other languages
Japanese (ja)
Inventor
Masao Ino
井野 正夫
Toshio Hayashi
林 俊男
Takashi Chatani
茶谷 隆
Tetsuji Yamanaka
山中 哲爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002219765A priority Critical patent/JP2004060525A/en
Priority to GB0316686A priority patent/GB2391907B/en
Publication of JP2004060525A publication Critical patent/JP2004060525A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0263Plenum chambers; Resonance chambers or resonance pipes the plenum chamber and at least one of the intake ducts having a common wall, and the intake ducts wrap partially around the plenum chamber, i.e. snail-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable air suction device capable of reducing the wear and precluding generation of vibrations and noises. <P>SOLUTION: The variable air suction device is structured so that the end of a drive shaft member 40 located opposite an actuator 60 is supported by an end bearing member 51, which is formed from metal and slides with a cover 42 for the drive shaft member 40. Because the end bearing member 51 of metal assures a high shape accuracy, the clearance between the cover 42 and the end bearing member 51 can be lessened. Even if this clearance is small, an eventual axis misalignment between the cover 42 and the end bearing member 51 is absorbed by a bushing 53 installed between the end bearing member 51 and an intake manifold 10. The cover 42 and the end bearing member 51 are made of different materials, which enlarges the limit PV value and reduces the wear. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関(以下、内燃機関を「エンジン」という。)の可変吸気装置に関する。
【0002】
【従来の技術】
従来、エンジンの回転数に応じて吸気通路の長さを可変に設定し、エンジンのトルクを向上する可変吸気装置が提案されている。エンジンの回転数が低いときは吸気通路の長さを延長し、回転数が高いときは吸気通路の長さを短縮することにより、エンジンの回転数にかかわらずトルクを向上することができる。
【0003】
このような可変吸気装置では、例えば通路長の異なる吸気通路が分岐して形成され、弁部材によって吸気通路を開閉することにより、吸気通路の全長および吸気通路の断面積を変更している。可変吸気装置の吸気通路を開閉する弁部材として、例えば独国のDE29916333U1に開示されているバタフライ弁が公知である。
【0004】
【発明が解決しようとする課題】
図3に示すように、インテークマニホールド100はエンジンのシリンダ数に応じて分岐し、吸気通路101〜104を形成している。弁部材105は、分岐した吸気通路101〜104にそれぞれ配置されている。弁部材105は駆動軸部材106を中心として回動する。駆動軸部材106は、シャフト107とシャフト107の外周側を覆っているカバー108とから構成されている。駆動軸部材106のアクチュエータ109側の端部は例えばベアリング110などにより軸受けされている。これにより、駆動軸部材106はインテークマニホールド100に回転可能に支持されている。
【0005】
近年、軽量化、ならびに断熱性および設計自由度の向上の観点から、例えばインテークマニホールド100および駆動軸部材106のカバー108など吸気装置を構成する部材の材質として、金属に代えて例えばポリアミド系の樹脂が広く用いられている。しかし、樹脂を用いる場合、金属と比較して形状精度が低下する。そのため、駆動軸部材106とインテークマニホールド100の軸受部111との間に形成されるクリアランスを小さくすると、駆動軸部材106とインテークマニホールド100の軸受部111とが接触し、摺動抵抗が増大する。摺動抵抗の増大を抑制するため、駆動軸部材106とインテークマニホールド100との間には大きなクリアランスを確保する必要がある。その結果、駆動軸部材106の反アクチュエータ側の端部すなわち吸気通路101側の端部は、軸受部111により移動が拘束されない自由端となる。
【0006】
ところで、吸気通路101〜104を流れる吸気はエンジンの回転による脈動をともなう。そのため、吸気通路101〜104に設置されている弁部材105は脈動によって振動する。特に、自由端となっている吸気通路101側の弁部材105に脈動にともなう吸気圧力が作用した場合、駆動軸部材106の反アクチュエータ側の端部は大きく振動する。その結果、駆動軸部材106と駆動軸部材106を軸受けするインテークマニホールド100との衝突速度は増大する。
【0007】
また、駆動軸部材100の外周側は、樹脂からなるカバー108によって覆われている。そのため、駆動軸部材100の反アクチュエータ側の端部では、樹脂からなるカバー108と樹脂からなるインテークマニホールド100の軸受部111とが接触する。樹脂からなる部材同士が接触する部位では、滑りやすさを示す限界PV値は小さい。そのため、駆動軸部材106と軸受部111との間では摩耗が進行する。摩耗が進行すると、駆動軸部材1006軸受部111との間に形成されるクリアランスは拡大する。その結果、振動にともなう駆動軸部材106の揺れは拡大し、駆動軸部材106と軸受部111との衝突速度はさらに増大するため、異音の発生を招くという問題がある。
【0008】
そこで、本発明の目的は、摩耗を低減し、振動および異音の発生を防止する可変吸気装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明の請求項1記載の可変吸気装置によると、端部軸受部材と駆動軸部材との間に形成されるクリアランスは、中間軸受部材と駆動軸部材との間に形成されるクリアランスよりも小さい。そのため、駆動軸部材の反アクチュエータ側における揺れは低減される。これにより、弁部材、特にアクチュエータから離れて位置する弁部材が吸気の脈動によって振動した場合でも、駆動軸部材と端部軸受部材との衝突が緩和され、駆動軸部材および端部軸受部材の摩耗が低減される。したがって、駆動軸部材の揺れによる振動、ならびに駆動軸部材と端部軸受部材との衝突による異音の発生を防止することができる。
【0010】
本発明の請求項2または3記載の可変吸気装置によると、駆動軸部材と端部軸受部材とは材質が異なる。そのため、駆動軸部材の材質に合わせて限界PV値が大きくなる端部軸受部材の材質を選択することにより、駆動軸部材および端部軸受部材の摩耗が低減される。したがって、駆動軸部材の揺れによる振動、ならびに駆動軸部材と端部軸受部材との衝突による異音の発生を防止することができる。また、端部軸受部材だけでなく中間軸受部材の材質を駆動軸部材の材質と異なるものにすることができる。
【0011】
本発明の請求項4記載の可変吸気装置によると、駆動軸部材は端部軸受部材により支持される部位が樹脂により形成されている。一方、端部軸受部材は金属により形成されている。そのため、駆動軸部材と端部軸受部材との間で限界PV値が大きくなり、駆動軸部材および端部軸受部材の摩耗が低減される。したがって、駆動軸部材の揺れによる振動、ならびに駆動軸部材と端部軸受部材との衝突による異音の発生を防止することができる。また、端部軸受部材を金属で形成することにより、端部軸受部材の形状精度が向上する。したがって、駆動軸部材と端部軸受部材との間に形成されるクリアランスを小さくすることができる。
【0012】
本発明の請求項5記載の可変吸気装置によると、端部軸受部材とインテークマニホールドとの間には弾性部材が設置されている。弾性部材を設置することにより、駆動軸部材と端部軸受部材との間に形成されるクリアランスを小さくする場合でも、駆動軸部材と端部軸受部材と中間軸受部材との間の軸のずれが吸収される。そのため、駆動軸部材と端部軸受部材との間の摺動抵抗が低減され、駆動軸部材および端部軸受部材の摩耗が低減される。したがって、駆動軸部材の揺れによる振動、ならびに駆動軸部材と端部軸受部材との衝突による異音の発生を防止することができる。また、弾性部材を設置することにより、駆動軸部材の振動を吸収することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を示す一実施例を図面に基づいて説明する。
本発明の一実施例による可変吸気装置は、エンジンの吸気系に設置されている。図2に示すように、可変吸気装置1はインテークマニホールド10を備えている。インテークマニホールド10は、エアコネクタ11とエンジン本体20のシリンダとを連通している。
【0014】
図示しない吸入ダクトから吸入された吸気は、図示しないエアクリーナおよびスロットルバルブを経由してエアコネクタ11へ流入し、サージタンク10aを経由してインテークマニホールド10が形成する吸気通路へ分配される。インテークマニホールド10は、図示しないスロットルバルブに連通しているエアコネクタ11の出口側のサージタンク10aからエンジン本体20のシリンダ数に対応して分岐している。インテークマニホールド10は、ポリアミド系の樹脂により一体に形成されている。
【0015】
低回転用の吸気通路12は、エンジン本体20までの全長が高回転用の吸気通路13よりも長く形成されている。分岐した低回転用の吸気通路12と高回転用の吸気通路13とは、吸気の流れ下流側すなわちエンジン本体20側で再び合流している。高回転用の吸気通路13には吸気通路1を開閉し断面積を変更する弁部材30が設置されている。弁部材30が吸気通路13を閉塞すると、吸気は低回転用の吸気通路12を経由してエンジン本体20へ供給される。一方、弁部材30が吸気通路12を開放すると、吸気はより流通抵抗の小さな高回転用の吸気通路13を経由してエンジン本体20へ供給される。すなわち、吸気通路13の断面積を変更することにより、吸気通路13を流れる吸気の流量が変更され、吸気が流れる吸気通路の全長が変更される。
【0016】
図1に示すように、高回転用の吸気通路13はエンジン本体20のシリンダ数に応じて分岐しており、各吸気通路131〜134には弁部材30が設置されている。弁部材30は、駆動軸部材40を中心に回動可能である。駆動軸部材40は、シャフト41とシャフト41の外周側を覆うカバー42とから構成されている。シャフト41は、例えば鉄などの金属により軸に垂直な断面が多角形に形成されている。断面が多角形のシャフト41を直接インテークマニホールド10に支持しても、シャフト41は滑らかに回転することができない。そのため、シャフト41のカバー42により覆われ、外周側が円周面状のカバー42を介してシャフト41はインテークマニホールド10に支持されている。
【0017】
シャフト41は弁部材30を貫いている。弁部材30は、ポリアミド系の樹脂によりカバー42と一体に成形されている。弁部材30およびカバー42にはシャフト41が貫くシャフト孔43が形成されている。シャフト孔43の断面は、多角形のシャフト41の断面と概ね同一の形状に形成されている。そのため、シャフト孔43にシャフト41を挿入した場合、シャフト41と弁部材30およびカバー42との相対的な回転は制限される。
【0018】
駆動軸部材40は、軸受部材を介してインテークマニホールド10に回転可能に支持されている。軸受部材は、駆動軸部材40の反アクチュエータ側の端部を支持する端部軸受部材51を備えている。また、軸受部材は、アクチュエータ60と端部軸受部材51との間において駆動軸部材40を支持する中間軸受部材52を備えている。
【0019】
本実施例の場合、中間軸受部材52はインテークマニホールド10と別体に形成されている。なお、中間軸受部材52は、インテークマニホールド10と一体すなわちインテークマニホールド10自体で構成してもよい。中間軸受部材52は、例えばポリアミド系の樹脂により形成されている。中間軸受部材52は、駆動軸部材40を回動可能にインテークマニホールド10に支持している。駆動軸部材40の中間部は、吸気通路131側の端部と比較して吸気の脈動にともなう揺れが小さい。そのため、駆動軸部材40のカバー42の外周側と中間軸受部材52の内周側との間に形成されるクリアランスを小さくする必要はない。これにより、中間軸受部材52は形状精度が低い樹脂であっても成形することができる。
【0020】
駆動軸部材40の端部軸受部材51と反対側の端部には、弁部材30を駆動するアクチュエータ60が設置されている。アクチュエータ60は、ポリアミド系の樹脂により形成されているハウジング61およびモータ62を有している。モータ62は図示しないECUに接続されており、ECUがモータ62への通電を断続することにより、弁部材30の駆動が制御される。モータ62の駆動力は、シャフト41の反ブッシュ側の端部に設置されている駆動ギア63を介してシャフト41に伝達される。
【0021】
駆動ギア63は、歯部64および筒部65を有している。歯部64および筒部65は、例えばポリアミド系の樹脂により一体に形成されている。歯部64はモータ62に取り付けられている図示しないピニオンと噛み合い可能である。筒部65は、歯部64からインテークマニホールド10側へ突出して形成され、内周側にシャフト41が挿入される挿入孔66を有している。挿入孔66はシャフト41と同様に多角形のシャフト41の断面と概ね同一の形状に形成され、駆動ギア63とシャフト41との相対的な回転が制限されている。駆動ギア63とインテークマニホールド10との間には、ベアリング67が設置されている。ベアリング67は駆動ギア63を介してシャフト41を支持している。これにより、駆動軸部材40のアクチュエータ60側の端部は、駆動ギア63を介してベアリング67によりインテークマニホールド10に支持されている。
【0022】
次に、駆動軸部材40の反アクチュエータ側の端部について詳細に説明する。
端部軸受部材51は、例えばアルミニウムや鉄などの金属により円環状に形成されている。端部軸受部材51とインテークマニホールド10との間には、弾性部材としての弾性ブッシュ53が設置されている。端部軸受部材51を金属により形成することにより、駆動軸部材40のうち端部軸受部材51により支持されるカバー42は端部軸受部材51と材質が異なる。すなわち、カバー42は樹脂により形成され、端部軸受部材51は金属により形成される。そのため、駆動軸部材40のカバー42と端部軸受部材51との間の限界PV値が向上し、摩耗が低減される。また、端部軸受部材51を金属により形成することにより、端部軸受部材51の形状精度が向上する。そのため、駆動軸部材40のカバー42の外周側と端部軸受部材51の内周側との間に形成されるクリアランスは縮小可能である。その結果、駆動軸部材40のカバー42と端部軸受部材51との間に形成されるクリアランスは、駆動軸部材40のカバー42と中間軸受部材52との間に形成されるクリアランスよりも小さくすることができる。
【0023】
弾性ブッシュ53は、例えばゴムなどの弾性を有する材料から形成されている。端部軸受部材51とインテークマニホールド10との間に弾性ブッシュ53を設置することにより、駆動軸部材40と端部軸受部材51との軸のずれは弾性ブッシュ53が吸収する。上述のように、端部軸受部材51を金属で形成し駆動軸部材40と端部軸受部材51との間のクリアランスを小さくすると、駆動軸部材40と端部軸受部材51との同軸度が低い場合、駆動軸部材40と端部軸受部材51との間で摺動抵抗の増大を招く。そこで、駆動軸部材40と端部軸受部材51との軸のずれを弾性ブッシュ53が吸収することにより、駆動軸部材40と端部軸受部材51との間の同軸度が向上し、摺動抵抗は減少する。また、吸気通路131〜134を流れる吸気の脈動により駆動軸部材40が振動した場合、弾性ブッシュ53は駆動軸部材40の振動を吸収する。そのため、駆動軸部材40と端部軸受部材51との衝突による衝撃は緩和される。
【0024】
以上、説明したように、本発明の一実施例では、駆動軸部材40の反アクチュエータ側の端部を金属製の端部軸受部材51により支持している。そのため、駆動軸部材40と端部軸受部材51との間に形成されるクリアランスは低減され、吸気脈動による駆動軸部材40の振動が低減される。したがって、駆動軸部材40と端部軸受部材51との衝突による異音の発生を防止することができる。また、駆動軸部材40の反アクチュエータ側において互いに接触するカバー42と端部軸受部材51との材質が異なるため、限界PV値を大きくすることができる。したがって、駆動軸部材40および端部軸受部材51の摩耗を低減することができる。
【0025】
また、本発明の一実施例によると、端部軸受部材51とインテークマニホールド10との間には弾性ブッシュ53が設置されている。そのため、駆動軸部材40と端部軸受部材51との間のクリアランスを小さくした場合でも、駆動軸部材40と端部軸受部材51の軸のずれは弾性ブッシュ53により吸収される。したがって、駆動軸部材40と端部軸受部材51との摺動抵抗の増大を抑制することができる。また、弾性ブッシュ53は、駆動軸部材40と端部軸受部材51との衝突の衝撃を吸収する。したがって、駆動軸部材40と端部軸受部材51との間の摩耗を低減することができる。
【0026】
以上説明した本発明の一実施例では、駆動軸部材の反アクチュエータ側の端部を支持する端部軸受部材のみを駆動軸部材とは異なる材料で形成する場合について説明した。しかし、端部軸受部材だけに限らず、中間軸受部材を端部軸受部材と同様に例えば金属により形成し弾性部材を介してインテークマニホールドに設置してもよい。また、本実施例では、端部軸受部材を円環状に形成する場合について説明したが、端部軸受部材あるいは中間軸受部材として例えばボールベアリングなどを適用してもよい。
【図面の簡単な説明】
【図1】本発明の一実施例による可変吸気装置を示す模式図であって、吸気通路に設置された弁部材をおよびアクチュエータなどを示す断面図である。
【図2】本発明の一実施例による可変吸気装置を適用したエンジンを示す模式図である。
【図3】従来の可変吸気装置を示す模式図であって、アクチュエータの近傍を示す断面図である。
【符号の説明】
1  可変吸気装置
10  インテークマニホールド
12  吸気通路
13  吸気通路
30  弁部材
40  駆動軸部材
41  シャフト
42  カバー
51  端部軸受部材
52  中間軸受部材
53  弾性ブッシュ(弾性部材)
60  アクチュエータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable intake device for an internal combustion engine (hereinafter, the internal combustion engine is referred to as an “engine”).
[0002]
[Prior art]
Conventionally, a variable intake device has been proposed in which the length of the intake passage is variably set in accordance with the engine speed to improve the engine torque. By increasing the length of the intake passage when the engine speed is low, and shortening the length of the intake passage when the engine speed is high, the torque can be improved regardless of the engine speed.
[0003]
In such a variable intake device, for example, intake passages having different passage lengths are branched and formed, and the overall length of the intake passage and the cross-sectional area of the intake passage are changed by opening and closing the intake passage by a valve member. As a valve member that opens and closes an intake passage of a variable intake device, for example, a butterfly valve disclosed in DE 29916333U1 of Germany is known.
[0004]
[Problems to be solved by the invention]
As shown in FIG. 3, the intake manifold 100 branches according to the number of cylinders of the engine to form intake passages 101 to 104. The valve member 105 is disposed in each of the branched intake passages 101 to 104. The valve member 105 rotates around the drive shaft member 106. The drive shaft member 106 includes a shaft 107 and a cover 108 that covers the outer peripheral side of the shaft 107. An end of the drive shaft member 106 on the actuator 109 side is supported by a bearing 110, for example. As a result, the drive shaft member 106 is rotatably supported by the intake manifold 100.
[0005]
In recent years, from the viewpoint of weight reduction and improvement in heat insulation and design flexibility, for example, polyamide resin instead of metal is used as the material of members constituting the intake device such as the intake manifold 100 and the cover 108 of the drive shaft member 106. Is widely used. However, when resin is used, the shape accuracy is lower than that of metal. Therefore, if the clearance formed between the drive shaft member 106 and the bearing portion 111 of the intake manifold 100 is reduced, the drive shaft member 106 and the bearing portion 111 of the intake manifold 100 come into contact with each other, and the sliding resistance increases. In order to suppress an increase in sliding resistance, it is necessary to ensure a large clearance between the drive shaft member 106 and the intake manifold 100. As a result, the end portion on the side opposite to the actuator of the drive shaft member 106, that is, the end portion on the intake passage 101 side becomes a free end where movement is not restricted by the bearing portion 111.
[0006]
Incidentally, the intake air flowing through the intake passages 101 to 104 is accompanied by pulsation due to the rotation of the engine. Therefore, the valve member 105 installed in the intake passages 101 to 104 vibrates due to pulsation. In particular, when an intake pressure accompanying pulsation acts on the valve member 105 on the intake passage 101 side which is a free end, the end portion on the side opposite to the actuator of the drive shaft member 106 vibrates greatly. As a result, the collision speed between the drive shaft member 106 and the intake manifold 100 bearing the drive shaft member 106 increases.
[0007]
Further, the outer peripheral side of the drive shaft member 100 is covered with a cover 108 made of resin. Therefore, at the end of the drive shaft member 100 on the side opposite to the actuator, the cover 108 made of resin and the bearing portion 111 of the intake manifold 100 made of resin come into contact. In the part where the members made of resin contact each other, the limit PV value indicating the slipperiness is small. Therefore, wear progresses between the drive shaft member 106 and the bearing portion 111. As wear progresses, the clearance formed between the drive shaft member 1006 and the bearing portion 111 increases. As a result, the vibration of the drive shaft member 106 due to the vibration is increased, and the collision speed between the drive shaft member 106 and the bearing portion 111 is further increased.
[0008]
Accordingly, an object of the present invention is to provide a variable intake device that reduces wear and prevents the occurrence of vibration and abnormal noise.
[0009]
[Means for Solving the Problems]
According to the variable intake device of the first aspect of the present invention, the clearance formed between the end bearing member and the drive shaft member is smaller than the clearance formed between the intermediate bearing member and the drive shaft member. . Therefore, the swing of the drive shaft member on the non-actuator side is reduced. As a result, even when the valve member, particularly the valve member located away from the actuator, is vibrated by the pulsation of intake air, the collision between the drive shaft member and the end bearing member is alleviated, and the drive shaft member and the end bearing member are worn. Is reduced. Therefore, it is possible to prevent vibration due to the shaking of the drive shaft member and generation of abnormal noise due to the collision between the drive shaft member and the end bearing member.
[0010]
According to the variable intake device of the second or third aspect of the present invention, the drive shaft member and the end bearing member are made of different materials. Therefore, the wear of the drive shaft member and the end bearing member is reduced by selecting the material of the end bearing member whose limit PV value increases in accordance with the material of the drive shaft member. Therefore, it is possible to prevent vibration due to the shaking of the drive shaft member and generation of abnormal noise due to the collision between the drive shaft member and the end bearing member. Further, not only the end bearing member but also the intermediate bearing member can be made of a material different from that of the drive shaft member.
[0011]
According to the variable intake device of the fourth aspect of the present invention, the portion of the drive shaft member that is supported by the end bearing member is formed of resin. On the other hand, the end bearing member is made of metal. Therefore, the limit PV value increases between the drive shaft member and the end bearing member, and wear of the drive shaft member and the end bearing member is reduced. Therefore, it is possible to prevent vibration due to the shaking of the drive shaft member and generation of abnormal noise due to the collision between the drive shaft member and the end bearing member. Moreover, the shape accuracy of an end bearing member improves by forming an end bearing member with a metal. Therefore, the clearance formed between the drive shaft member and the end bearing member can be reduced.
[0012]
According to the variable intake device of the fifth aspect of the present invention, the elastic member is installed between the end bearing member and the intake manifold. Even when the clearance formed between the drive shaft member and the end bearing member is reduced by installing the elastic member, the shaft shift between the drive shaft member, the end bearing member, and the intermediate bearing member is prevented. Absorbed. Therefore, sliding resistance between the drive shaft member and the end bearing member is reduced, and wear of the drive shaft member and the end bearing member is reduced. Therefore, it is possible to prevent vibration due to the shaking of the drive shaft member and generation of abnormal noise due to the collision between the drive shaft member and the end bearing member. Further, the vibration of the drive shaft member can be absorbed by installing the elastic member.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example showing an embodiment of the present invention will be described with reference to the drawings.
A variable intake device according to an embodiment of the present invention is installed in an intake system of an engine. As shown in FIG. 2, the variable intake device 1 includes an intake manifold 10. The intake manifold 10 communicates the air connector 11 and the cylinder of the engine body 20.
[0014]
Intake air drawn from a suction duct (not shown) flows into the air connector 11 via an air cleaner and a throttle valve (not shown), and is distributed to an intake passage formed by the intake manifold 10 via a surge tank 10a. The intake manifold 10 branches from the surge tank 10a on the outlet side of the air connector 11 communicating with a throttle valve (not shown) corresponding to the number of cylinders of the engine body 20. The intake manifold 10 is integrally formed of a polyamide-based resin.
[0015]
The low-rotation intake passage 12 is formed such that the entire length to the engine body 20 is longer than the high-rotation intake passage 13. The branched low-rotation intake passage 12 and high-rotation intake passage 13 merge again on the downstream side of the intake air flow, that is, on the engine body 20 side. A valve member 30 that opens and closes the intake passage 1 and changes the cross-sectional area is installed in the intake passage 13 for high rotation. When the valve member 30 closes the intake passage 13, the intake air is supplied to the engine body 20 via the low-speed intake passage 12. On the other hand, when the valve member 30 opens the intake passage 12, the intake air is supplied to the engine body 20 via the high-rotation intake passage 13 having a smaller flow resistance. That is, by changing the cross-sectional area of the intake passage 13, the flow rate of the intake air flowing through the intake passage 13 is changed, and the overall length of the intake passage through which intake air flows is changed.
[0016]
As shown in FIG. 1, the high-speed intake passage 13 is branched according to the number of cylinders of the engine body 20, and a valve member 30 is installed in each intake passage 131 to 134. The valve member 30 is rotatable around the drive shaft member 40. The drive shaft member 40 includes a shaft 41 and a cover 42 that covers the outer peripheral side of the shaft 41. The shaft 41 has a polygonal cross section perpendicular to the axis made of metal such as iron. Even if the shaft 41 having a polygonal cross section is directly supported by the intake manifold 10, the shaft 41 cannot rotate smoothly. Therefore, the shaft 41 is covered by the cover 42 of the shaft 41, and the shaft 41 is supported by the intake manifold 10 via the cover 42 whose outer peripheral side is a circumferential surface.
[0017]
The shaft 41 penetrates the valve member 30. The valve member 30 is formed integrally with the cover 42 from a polyamide-based resin. A shaft hole 43 through which the shaft 41 passes is formed in the valve member 30 and the cover 42. The cross section of the shaft hole 43 is formed in substantially the same shape as the cross section of the polygonal shaft 41. Therefore, when the shaft 41 is inserted into the shaft hole 43, relative rotation between the shaft 41, the valve member 30, and the cover 42 is limited.
[0018]
The drive shaft member 40 is rotatably supported by the intake manifold 10 via a bearing member. The bearing member includes an end bearing member 51 that supports the end of the drive shaft member 40 on the side opposite to the actuator. The bearing member also includes an intermediate bearing member 52 that supports the drive shaft member 40 between the actuator 60 and the end bearing member 51.
[0019]
In the present embodiment, the intermediate bearing member 52 is formed separately from the intake manifold 10. The intermediate bearing member 52 may be formed integrally with the intake manifold 10, that is, the intake manifold 10 itself. The intermediate bearing member 52 is made of, for example, a polyamide-based resin. The intermediate bearing member 52 supports the drive shaft member 40 on the intake manifold 10 so as to be rotatable. The middle portion of the drive shaft member 40 is less swayed due to intake air pulsation than the end portion on the intake passage 131 side. Therefore, it is not necessary to reduce the clearance formed between the outer peripheral side of the cover 42 of the drive shaft member 40 and the inner peripheral side of the intermediate bearing member 52. Thereby, the intermediate bearing member 52 can be molded even with a resin having low shape accuracy.
[0020]
An actuator 60 that drives the valve member 30 is installed at the end of the drive shaft member 40 opposite to the end bearing member 51. The actuator 60 has a housing 61 and a motor 62 that are made of polyamide-based resin. The motor 62 is connected to an ECU (not shown), and the driving of the valve member 30 is controlled when the ECU interrupts energization of the motor 62. The driving force of the motor 62 is transmitted to the shaft 41 via the driving gear 63 installed at the end of the shaft 41 on the opposite bush side.
[0021]
The drive gear 63 has a tooth part 64 and a cylinder part 65. The tooth part 64 and the cylinder part 65 are integrally formed, for example with the polyamide-type resin. The tooth portion 64 can mesh with a pinion (not shown) attached to the motor 62. The cylindrical portion 65 is formed so as to protrude from the tooth portion 64 toward the intake manifold 10 side, and has an insertion hole 66 into which the shaft 41 is inserted on the inner peripheral side. The insertion hole 66 is formed in substantially the same shape as the cross section of the polygonal shaft 41 like the shaft 41, and the relative rotation between the drive gear 63 and the shaft 41 is restricted. A bearing 67 is installed between the drive gear 63 and the intake manifold 10. The bearing 67 supports the shaft 41 via the drive gear 63. As a result, the end of the drive shaft member 40 on the actuator 60 side is supported by the intake manifold 10 by the bearing 67 via the drive gear 63.
[0022]
Next, the end of the drive shaft member 40 on the side opposite to the actuator will be described in detail.
The end bearing member 51 is formed in an annular shape from a metal such as aluminum or iron. Between the end bearing member 51 and the intake manifold 10, an elastic bush 53 as an elastic member is installed. By forming the end bearing member 51 from metal, the cover 42 supported by the end bearing member 51 of the drive shaft member 40 is made of a material different from that of the end bearing member 51. That is, the cover 42 is made of resin, and the end bearing member 51 is made of metal. Therefore, the limit PV value between the cover 42 of the drive shaft member 40 and the end bearing member 51 is improved, and wear is reduced. Further, by forming the end bearing member 51 from metal, the shape accuracy of the end bearing member 51 is improved. Therefore, the clearance formed between the outer peripheral side of the cover 42 of the drive shaft member 40 and the inner peripheral side of the end bearing member 51 can be reduced. As a result, the clearance formed between the cover 42 of the drive shaft member 40 and the end bearing member 51 is made smaller than the clearance formed between the cover 42 of the drive shaft member 40 and the intermediate bearing member 52. be able to.
[0023]
The elastic bushing 53 is made of an elastic material such as rubber. By installing the elastic bushing 53 between the end bearing member 51 and the intake manifold 10, the elastic bushing 53 absorbs the shaft misalignment between the drive shaft member 40 and the end bearing member 51. As described above, when the end bearing member 51 is formed of metal and the clearance between the drive shaft member 40 and the end bearing member 51 is reduced, the coaxiality between the drive shaft member 40 and the end bearing member 51 is low. In this case, the sliding resistance increases between the drive shaft member 40 and the end bearing member 51. Therefore, when the elastic bushing 53 absorbs the shift of the shaft between the drive shaft member 40 and the end bearing member 51, the coaxiality between the drive shaft member 40 and the end bearing member 51 is improved, and the sliding resistance is increased. Decrease. Further, when the drive shaft member 40 vibrates due to the pulsation of intake air flowing through the intake passages 131 to 134, the elastic bushing 53 absorbs the vibration of the drive shaft member 40. Therefore, the impact caused by the collision between the drive shaft member 40 and the end bearing member 51 is reduced.
[0024]
As described above, in the embodiment of the present invention, the end of the drive shaft member 40 on the side opposite to the actuator is supported by the metal end bearing member 51. Therefore, the clearance formed between the drive shaft member 40 and the end bearing member 51 is reduced, and the vibration of the drive shaft member 40 due to intake pulsation is reduced. Therefore, it is possible to prevent the generation of noise due to the collision between the drive shaft member 40 and the end bearing member 51. Moreover, since the material of the cover 42 and the end bearing member 51 that are in contact with each other on the side opposite to the actuator of the drive shaft member 40 is different, the limit PV value can be increased. Therefore, wear of the drive shaft member 40 and the end bearing member 51 can be reduced.
[0025]
According to one embodiment of the present invention, the elastic bushing 53 is installed between the end bearing member 51 and the intake manifold 10. Therefore, even when the clearance between the drive shaft member 40 and the end bearing member 51 is reduced, the shaft deviation of the drive shaft member 40 and the end bearing member 51 is absorbed by the elastic bushing 53. Therefore, an increase in sliding resistance between the drive shaft member 40 and the end bearing member 51 can be suppressed. The elastic bushing 53 absorbs the impact of the collision between the drive shaft member 40 and the end bearing member 51. Therefore, wear between the drive shaft member 40 and the end bearing member 51 can be reduced.
[0026]
In the embodiment of the present invention described above, the case where only the end bearing member that supports the end of the drive shaft member on the side opposite to the actuator is formed of a material different from that of the drive shaft member has been described. However, the intermediate bearing member is not limited to the end bearing member, and the intermediate bearing member may be formed of metal, for example, like the end bearing member, and installed in the intake manifold via the elastic member. In the present embodiment, the case where the end bearing member is formed in an annular shape has been described. However, for example, a ball bearing may be applied as the end bearing member or the intermediate bearing member.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a variable intake device according to an embodiment of the present invention, and is a cross-sectional view showing a valve member, an actuator, and the like installed in an intake passage.
FIG. 2 is a schematic view showing an engine to which a variable intake device according to an embodiment of the present invention is applied.
FIG. 3 is a schematic view showing a conventional variable intake device, and is a cross-sectional view showing the vicinity of an actuator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Variable intake device 10 Intake manifold 12 Intake passage 13 Intake passage 30 Valve member 40 Drive shaft member 41 Shaft 42 Cover 51 End bearing member 52 Intermediate bearing member 53 Elastic bush (elastic member)
60 Actuator

Claims (5)

吸気通路を形成するインテークマニホールドと、
駆動軸部材を中心に回動し、前記吸気通路の断面積を変更する弁部材と、
前記弁部材を駆動するアクチュエータと、
前記駆動軸部材を、前記アクチュエータとは反対側の端部で前記インテークマニホールドに支持する端部軸受部材と、
前記駆動軸部材を、前記アクチュエータと前記端部軸受部材との間で前記インテクマニホールドに支持する中間軸受部材とを備え、
前記端部軸受部材と前記駆動軸部材との間に形成されるクリアランスは、前記中間軸受部材と前記駆動軸部材との間に形成されるクリアランスよりも小さいことを特徴とする可変吸気装置。
An intake manifold that forms an intake passage;
A valve member that rotates about a drive shaft member and changes a cross-sectional area of the intake passage;
An actuator for driving the valve member;
An end bearing member for supporting the drive shaft member on the intake manifold at an end opposite to the actuator;
An intermediate bearing member for supporting the drive shaft member on the in-tech manifold between the actuator and the end bearing member;
The variable intake device, wherein a clearance formed between the end bearing member and the drive shaft member is smaller than a clearance formed between the intermediate bearing member and the drive shaft member.
前記駆動軸部材は、前記端部軸受部材と材質が異なることを特徴とする請求項1記載の可変吸気装置。The variable intake device according to claim 1, wherein the drive shaft member is made of a material different from that of the end bearing member. 前記駆動軸部材は、前記中間軸受部材と材質が異なることを特徴とする請求項2記載の可変吸気装置。The variable intake device according to claim 2, wherein the drive shaft member is made of a material different from that of the intermediate bearing member. 前記駆動軸部材は前記端部軸受部材により支持される部位が樹脂により形成され、前記端部軸受部材は金属により形成されていることを特徴とする請求項2または3記載の可変吸気装置。4. The variable intake device according to claim 2, wherein a portion of the drive shaft member supported by the end bearing member is formed of resin, and the end bearing member is formed of metal. 前記端部軸受部材と前記インテークマニホールドとの間に、弾性部材が配置されていることを特徴とする請求項1から4のいずれか一項記載の可変吸気装置。The variable intake device according to any one of claims 1 to 4, wherein an elastic member is disposed between the end bearing member and the intake manifold.
JP2002219765A 2002-07-29 2002-07-29 Variable air suction device Pending JP2004060525A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002219765A JP2004060525A (en) 2002-07-29 2002-07-29 Variable air suction device
GB0316686A GB2391907B (en) 2002-07-29 2003-07-16 Variable air flow intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219765A JP2004060525A (en) 2002-07-29 2002-07-29 Variable air suction device

Publications (1)

Publication Number Publication Date
JP2004060525A true JP2004060525A (en) 2004-02-26

Family

ID=27764591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219765A Pending JP2004060525A (en) 2002-07-29 2002-07-29 Variable air suction device

Country Status (2)

Country Link
JP (1) JP2004060525A (en)
GB (1) GB2391907B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045432A (en) * 2006-08-11 2008-02-28 Denso Corp Multiple series integrated valve open close device
CN100419237C (en) * 2004-06-21 2008-09-17 现代自动车株式会社 Variable intake system of a vehicle
JP2010019209A (en) * 2008-07-14 2010-01-28 Denso Corp Intake device of internal combustion engine
KR100978474B1 (en) 2008-07-22 2010-08-30 인지컨트롤스 주식회사 Manifold having moving prevention function of inside assembly
JP2010236359A (en) * 2009-03-30 2010-10-21 Denso Corp Intake device
WO2013118650A1 (en) * 2012-02-06 2013-08-15 日産自動車株式会社 Variable intake device for internal combustion engine
JP2014001719A (en) * 2012-06-21 2014-01-09 Mahle Filter Systems Japan Corp Intake system for internal combustion engine
JP2014152632A (en) * 2013-02-05 2014-08-25 Aisin Seiki Co Ltd Intake device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248987A (en) 2004-03-01 2005-09-15 Denso Corp Bearing support device
US7228834B2 (en) * 2005-07-20 2007-06-12 Siemens Canada Limited Intake manifold blade to runner alignment
JP6558156B2 (en) * 2015-09-03 2019-08-14 アイシン精機株式会社 Intake device and intake control valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135623A (en) * 1985-12-09 1987-06-18 Hitachi Ltd Throttle valve assembly
DE19951082B4 (en) * 1999-10-23 2013-05-29 Mann + Hummel Gmbh Suction tube with a shift drum

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100419237C (en) * 2004-06-21 2008-09-17 现代自动车株式会社 Variable intake system of a vehicle
JP2008045432A (en) * 2006-08-11 2008-02-28 Denso Corp Multiple series integrated valve open close device
JP4506735B2 (en) * 2006-08-11 2010-07-21 株式会社デンソー Multiple integrated valve opening and closing device
JP2010019209A (en) * 2008-07-14 2010-01-28 Denso Corp Intake device of internal combustion engine
KR100978474B1 (en) 2008-07-22 2010-08-30 인지컨트롤스 주식회사 Manifold having moving prevention function of inside assembly
JP2010236359A (en) * 2009-03-30 2010-10-21 Denso Corp Intake device
WO2013118650A1 (en) * 2012-02-06 2013-08-15 日産自動車株式会社 Variable intake device for internal combustion engine
JP2014001719A (en) * 2012-06-21 2014-01-09 Mahle Filter Systems Japan Corp Intake system for internal combustion engine
JP2014152632A (en) * 2013-02-05 2014-08-25 Aisin Seiki Co Ltd Intake device

Also Published As

Publication number Publication date
GB2391907B (en) 2005-11-30
GB2391907A (en) 2004-02-18
GB0316686D0 (en) 2003-08-20

Similar Documents

Publication Publication Date Title
JP4767183B2 (en) Engine exhaust device
US7800277B2 (en) Engine with attached axial gap type rotating electric machine
US6609367B2 (en) Exhaust control valve
JP2004060525A (en) Variable air suction device
JP4609911B2 (en) Throttle control device for motorcycle engine
WO2013146703A1 (en) Air intake device for internal combustion engine
JP4544603B2 (en) Throttle control device for motorcycle engine
JP5449559B2 (en) Electric control actuator and turbo wastegate actuator
JP3838217B2 (en) Variable intake system
JP3925707B2 (en) Variable intake system
US10711690B2 (en) Wastegate assembly and turbocharger including the same
JP2009197816A (en) Engine
JP3874267B2 (en) Variable intake system
JP2010084749A (en) Exhaust gas recirculation device
JP2008115702A (en) Arrangement structure of electrically-driven actuator
JP5355673B2 (en) engine
KR20110054543A (en) Tumble control valve assembly for intake flowing of gasoline engine
JP2006009780A (en) Intake air quantity control device
KR20170013122A (en) A waste gate valve actutator assembly
JP4992922B2 (en) Intake valve drive unit and intake valve device
JP2001263098A (en) Throttle device
JP2009167855A (en) Variable nozzle device of supercharger
JP2020112178A (en) Actuator
JP5143275B2 (en) engine
EP1561979A1 (en) Throttle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061207