JP2004060040A - Method for producing ultralow core loss grain oriented silicon steel sheet having excellent thermal stability - Google Patents

Method for producing ultralow core loss grain oriented silicon steel sheet having excellent thermal stability Download PDF

Info

Publication number
JP2004060040A
JP2004060040A JP2002224123A JP2002224123A JP2004060040A JP 2004060040 A JP2004060040 A JP 2004060040A JP 2002224123 A JP2002224123 A JP 2002224123A JP 2002224123 A JP2002224123 A JP 2002224123A JP 2004060040 A JP2004060040 A JP 2004060040A
Authority
JP
Japan
Prior art keywords
film
vapor deposition
steel sheet
chemical vapor
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002224123A
Other languages
Japanese (ja)
Other versions
JP4232408B2 (en
Inventor
Hiroshi Yamaguchi
山口  広
Mineo Muraki
村木 峰男
Eiji Hina
日名 英司
Michiro Komatsubara
小松原 道郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002224123A priority Critical patent/JP4232408B2/en
Publication of JP2004060040A publication Critical patent/JP2004060040A/en
Application granted granted Critical
Publication of JP4232408B2 publication Critical patent/JP4232408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an ultralow core loss grain oriented silicon steel sheet in which, even when a film is deposited by a chemical vapor deposition method, and the surface of the film is further subjected to heat treatment such as the baking of tensile application type coating and stress relieving annealing, excellent thermal stability is maintained in the film. <P>SOLUTION: A film is continuously deposited on the surface of a grain oriented silicon steel sheet subjected to final finish annealing, and comprising no forsterite film on the surface by chemical vapor deposition treatment. In this case, the oxidizability, PH<SB>2</SB>O/PH<SB>2</SB>of an atmosphere in the chemical vapor deposition treatment is controlled to ≤0.03, and the concentration of hydrogen is controlled to ≥5 vol%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、方向性電磁鋼板の製造方法に関して、特に鋼板の表面に極めて張力付与効果の大きな被膜を形成し、鉄損特性の向上を図ろうとするものである。
【0002】
【従来の技術】
電磁鋼板は、無方向性電磁鋼板と方向性電磁鋼板の2つに大別され、無方向性電磁鋼板は主として回転機等の鉄心材料に、方向性電磁鋼板は主として変圧器その他の電気機器の鉄心材料として使用され、いずれもエネルギーロスを少なくするため、低鉄損の材料が求められている。
【0003】
方向性電磁鋼板の鉄損低減には、板厚を低減する、Si含有量を増す、或いは結晶方位の配向性を高める等の方法があるが、それに加えて鋼板に張力を付与することが有効である。鋼板への張力の付与方法としては、鋼板より熱膨張係数の小さい材質からなる被膜を設けることが一般的である。すなわち、最終的に結晶方位を揃える2次再結晶と鋼板の純化とを兼ねる最終仕上焼鈍工程にて、鋼板表面の酸化物と鋼板表面に塗布した焼純分離剤とが反応してフォルステライトを主成分とする被膜が形成されるが、この被膜は鋼板に与える張力が大きく、鉄損低減に効果がある。さらに、張力効果を増すために、フォルステライト被膜の上に、上塗りの低熱膨張性のコーティングを施して製品とすることも、一般に行われている。
【0004】
ところが、近年、鋼板表面を磁気的に平滑化する手法が開発され、仕上焼純工程で意図的にフォルステライト被膜の形成を抑制したり、形成されたフォルステライト被膜を除去した後、その表面を平滑に仕上げることが、鉄損の減少に有効であることが明らかとなってきている。例えば、特公昭52−24499号公報には、仕上焼鈍後、酸洗により表面生成物を除去し、次いで化学研磨または電解研磨により鏡面状態に仕上げる方法が開示されている。また、特開平5−43943号公報には、フォルステライト被膜を除去後、1000〜1200℃のH中でサーマルエッチングする方法が開示されている。このような表面処理によって鉄損が減少するのは、磁化過程において、鋼板表面近傍の磁壁移動の妨げとなる、ピニングサイトが減少するためである。
【0005】
なお、ヒステリシス損失を減少させる磁気的に平滑な表面とは、一般にRa(算術平均粗さ)で表現される、いわゆる表面粗さのみで示されるものでなく、特公平4−72920号公報に記載された、表面生成物を除去した後にハロゲン化水溶液中で電解する、結晶方位強調処理にて得られるものも知られている。
【0006】
また、電磁鋼板の表面には、絶縁性の被膜が必要であるため、絶縁コーティングが施されるのが通例であり、現在、フォルステライト被膜を有する方向性電磁鋼板に適用される、張力付加型の絶縁コーティングとしては、Alやアルカリ土類金属のリン酸塩とコロイダルシリカ、無水クロム酸またはクロム酸塩を主成分とした処理液を、鋼板に塗布して焼付けることによって、形成されているものが多い。張力付加型の絶縁コーティングは、鋼板より熱膨張係数の小さいコロイダルシリカに代表される無機質被膜を高温で形成することより、地鉄と絶縁コーティングとの熱膨張差を利用して、常温において張力を鋼板に付与している。この方法で形成される絶縁被膜は鋼板に対して張力を付与する効果が大きく、鉄損低減に有効である。例えば、特公昭53−28375号公報あるいは特公昭56−52117号公報などに、その形成法が示されている。
【0007】
しかしながら、鋼板に対する張力付加の大きい被膜ほど、下地との密着力が強くなければ被膜が剥落してしまうため、上記張力付与型コーティングは、フォルステライト系の最終仕上焼鈍被膜が鋼板表面に存在する場合には問題ないが、鏡面化等の表面平滑化処理を行うような、最終仕上焼鈍後にフォルステライト被膜がない場合には、被膜を付着させることができなかった。このために、表面を磁気的に平滑化し鉄損を低減する技術と張力付与型コーティングによる鉄損低減技術とを両立させることは困難であった。
【0008】
従来、フォルステライト被膜のない表面、さらには調整された平滑な表面に張力付加型コーティングを被成する方法として、いくつかの方法が提案されている。例えば、特公昭52−24499号公報には金属めっき後に、そして特開平6−184762号公報にはSiO薄膜を形成させた後に、それぞれ張力付加コーティング溶液を塗布して焼付ける方法が、示されている。また、特公昭56−4150号公報には、セラミックス薄膜を蒸着、スパッタリング、または溶射などによって形成させる方法が、そして特公昭63−54767号公報には窒化物や炭化物のセラミックス被膜をイオンプレーティングまたはイオンプランテーションによって形成する方法が、それぞれ示されている。さらに、特開平2−243770号公報には、いわゆるゾル−ゲル法によって、高張力付与型のセラミックス被膜を鋼板表面に直接形成する方法が開示されている。
【0009】
これらの方法は、平滑化された表面を有する鋼板に張力を付与する方法として開発されたものではあるが、いくつかの問題点を有し、実用化されるに至っていない。
すなわち、金属薄めっきを下地とし、その上にコーティング処理する方法では、均一なめっき面の平滑さ故に、被膜の密着性が十分でなく、SiO薄膜を形成させる方法は張力付与効果に劣るなど、鉄損の改善効果は十分ではなかった。また、窒化物や炭化物等、あるいはその組合せからなるセラミックス被膜はいずれもその熱膨張係数が地鉄と比較してかなり低いため、熱膨張係数差による張力効果は大さいが、それゆえ曲げ加工時の地鉄と被膜との密着性に問題があった。
【0010】
さらに蒸着、スパッタリング、溶射、イオンプレーティング、イオンプランテーションによるセラミックス被膜の形成は高コストである上、大面積を大量処理する際の均一性確保が困難であったり、ゾル−ゲル法では従来と同様の塗布、焼付けによる被膜形成が可能であるものの、0.5μm以上の厚さの健全な被膜の形成がきわめて困難なため、大きな張力付与効果をもたらすには至らず、所期する鉄損善効果が得られなかった。
【0011】
特開昭63−57781号公報には、珪酸塩系被膜を設けた後、クロム酸やリン酸を主体とする絶縁被膜を形成する手法が開示されている。密着性は改善されるが、珪酸塩被膜、クロム酸−リン酸被膜ともに鋼板に対する張力付与効果がなく、被膜張力による鉄損値低減の効果は全く得られない。
【0012】
一方、特開昭61−201732号公報に開示されている化学気相蒸着法は、制約の多い真空槽を必要とすることなく、大面積に均一なセラミックス膜を形成することが可能な有力な手法である。すなわち、高温反応ゆえにセラミックスと鋼板との密着性も良好であり、上記スパッタリング、溶射、イオンプレーティング、イオンプランテーションなどの物理蒸着と比較して、被生成物の鋼板表面への衝突が弱いためか、平滑化された表面で達成されている極めて低いヒステリシス損失を損なうことなく、セラミックス膜を被成することが可能である。特に、ヤング率が高く、熱膨張係数の小さな窒化物や炭化物を、鋼板表面に被成するのに適している。
【0013】
【発明が解決しようとする課題】
しかしながら,セラミックス膜被成後、さらに張力付与型の絶縁コーティングを施したり、付与張力の増加を目的とする焼鈍を実施した場合に、被膜が変色や変質を生じて、密着性が劣化したり、張力効果が減少する、すなわち被膜の熱安定性が阻害される結果、鉄損値が劣化することがあった。これは、化学気相蒸着法に限らず前述の物理蒸着法にも当てはまる問題である。
【0014】
そこで、この発明は、化学気相蒸着法によって被膜を被成した後に、さらに該被膜上への張力付与型コーティングの焼き付けや付与張力の増加を目的とする焼鈍等の熱処理を行った場合にあっても、優れた熱安定性が上記被膜において維持される、低鉄損方向性電磁鋼板の製造方法について提案することを目的とする。
【0015】
【課題を解決するための手段】
発明者らは、化学気相蒸着処理中に被膜の窒化物や炭化物等の生成と同時に形成される酸化物の存在や、化学気相蒸着処理に引き続き成される熱処理時に被膜が鋼板より感受する熱膨張係数差に起因した応力変化に着目し、化学気相蒸着法によって被成した被膜の熱安定性を向上する手段について鋭意究明したところ、この発明を完成するに到った。
【0016】
すなわち、この発明の要旨構成は、以下の通りである。
(1)表面にフォルステライト被膜のない、最終仕上焼鈍済の方向性電磁鋼板の表面に、化学気相蒸着処理によって連続的に被膜を形成するに際し、該化学気相蒸着処理における雰囲気の酸化性PH0/PHを0.03以下、かつ水素濃度を5vol%以上とすることを特徴とする熱安定性に優れた超低鉄損方向性電磁鋼板の製造方法。
【0017】
(2)上記(1)において、化学蒸着処理に引き続いて鋼板に熱処理を施すに当たり、該熱処理の温度を化学蒸着処理の雰囲気温度より50℃以上低くすることを特徴とする熱安定性に優れた超低鉄損方向性電磁鋼板の製造方法。
【0018】
【発明の実施の形態】
以下、この発明を導くに到った実験結果について詳細に説明する。
C:0.06mass%、Si:3mass%、およびMn:0.04mass%を含有する、最終板厚0.23mmに圧延された冷延鋼板を、脱炭、一次再結晶焼鈍した後、MgOを主体とし塩化アンチモンを添加した焼純分離剤を塗布し、二次再結晶過程と純化過程を含む最終仕上焼鈍を施し、フォルステライト膜のない鏡面の方向性電磁鋼板を得た。
【0019】
その後、1040℃でTiClガス、HガスおよびNガスを主体とする雰囲気中で化学気相蒸着処理を行い、1.0μmのTiN膜を、鋼板表面に形成した。次いで、リン酸塩とコロイダルシリカとを主成分とするコーティング液を塗布し、850℃で絶縁被膜を被成した。
【0020】
かくして得られた製品について、その鉄損特性と化学気相蒸着処理における雰囲気の酸化性、すなわち水蒸気分圧PH0とHガス分圧PHとの比PHO/PHとの関係を調査した。その調査結果を、比PHO/PHを横軸とし、また絶縁コーティング前後の鉄損変化を縦軸として、図1に示す。図1において、縦軸が正となるのは鉄損値が増加した場合であり、PHO/PHが0.03より大きな条件において、磁気特性が劣化したことを示している。
【0021】
なお、磁性が劣化した鋼板では、化学気相蒸着後の被膜が金色よりやや黒みがかっていて、その後の絶縁コーティングの焼き付け処理にてさらに被膜は黒変した。これは、蒸着時の雰囲気酸化性PHO/PHが0.03より大きくなると、TiNの他にTiOが混在して形成され、絶縁コーティング焼き付け等の熱処理時に、熱膨張係数などの両者物性の違いに起因して、被膜が不均一になって自身の膜質を劣化させ、その結果鉄損値の増加を引き起したと考えられる。
【0022】
ここで、特開昭62−70520号公報には、セラミックス膜を蒸着後に非酸化性雰囲気中で熱処理を行う方法が開示されているが、その目的は鋼中の炭素や窒素の表面拡散の促進であり、この発明の耐熱処理性向上のための酸化物形成抑止とは趣旨が異なる。さらに、例えば一旦形成されたTiO等の酸化物は、TiNやTiCと同時に混合形成されるようであり、水素を含む非酸化性雰囲気で焼鈍処理を行っても容易に分解でさない。従って、この発明のように、蒸着時に酸化物の形成を抑止することが肝要である。
【0023】
また、Si浸透処理に関して、特開平6−212397号公報には、酸素濃度および水蒸気濃度を規定する手法が開示されているが、その目的は処理中の鋼板の表面酸化および粒界酸化の防止であり、この発明とは根本的に異なる。すなわち、Si浸透処理における鋼板表面での反応はSiC1+5Fe→FeSi+2FeC1であり、これはSiとFeとの置換反応と見なせ水素を必要としない。
【0024】
これに対して、この発明の例えばTiNの成膜反応では、反応式 TiC1+1/2N+2H→TiN+4HClからもわかるように、水素が還元剤の役割を果たしており、水蒸気濃度とともに水素濃度の制御がきわめて重要であり、5vol%以上必要である。すなわち、5vol%未満の場合は、TiNおよびTiC膜ともに健全な生成が実現できなかった。TiCの生成反応式は、炭素源として例えばメタンガスを使用する場合、TiC1+CH→TiC+4 HClとなり、水素は反応式には現れてこないが、TiC1の分解還元剤として重要な役割を担っていると推定される。
【0025】
次に、発明者らは、化学気相蒸着処理における雰囲気温度および引き続き行われる熱処理温度について着目した。すなわち、図1に結果を示した実験と同じ、鏡面の方向性電磁鋼板を用いて、種々の温度でTiN被膜を化学気相蒸着した後、100%Nガス中での3時間の熱処理を種々の温度で行った。その結果、Hガス50vol%および露点−30℃の雰囲気の酸化性PHO/PHを0.03の条件下にて、被膜の形成を行ったにもかかわらず、一部の条件で磁性劣化を招き、TiN膜が部分的に剥落していた。以上の実験結果を、図2に、TiN被膜形成時の雰囲気温度を横軸として、その後に実施した熱処理温度を縦軸として、熱処理前後の鉄損値を比較し、劣化しなかった条件を○印、やや劣化した条件を△印、大幅に劣化した条件を×印で表した。この図2より、化学気相蒸着処理の雰囲気温度を、その後の熱処理温度より50℃以上高く設定していない場合に、磁性劣化を生じることがわかった。
【0026】
この要因については、以下のように考えている。
さて、張力付与被膜による作用は、熱膨張係数が小さな物質として窒化物や炭化物等を選んで鋼板上に被成し、この被膜と鋼板との熱膨張係数差に基づいた熱残留応力を利用して、実際に方向性電磁鋼板が使用される室温付近で磁気特性に有利な引張応力を鋼板に加え、鉄損値の大幅な低減を達成している。このとき、被膜自身には圧縮応力がかかっているのは言うまでもない。
【0027】
ここで、化学気相蒸着処理後に施される熱処理中の鋼板および被膜の体積変化に着目すると、仮に熱処理温度より低い温度で被膜が形成されていた場合、熱処理中、鋼板は大いに熱膨張し、低熱膨張のセラミックスによる被膜が逆に鋼板より引張応力を受けることとなる。窒化物や炭化物に代表されるセラミックスは、ほとんど弾性変形しないため、引張応力に対しては脆弱である。従って、低温蒸着された被膜は、その後の熱処理中に、高温かつ引張応力下で劣化し、クラック等の欠陥を生じたりして膜自身が剥落し、それに起因して磁性劣化を招いたのではないか、と推定される。
【0028】
一方、熱処理温度より高い温度で蒸着された場合、熱処理中でも被膜には、依然として圧縮応力がかかっている。この圧縮応力下では、セラミックスの高温における耐久性が向上することが知られており、上記の実験結果をよく説明できる。すなわち、化学気相蒸着処理と引き続きなされる熱処理との温度差が50℃以上あれば、被膜の高温での耐久性がより向上するため、被膜密着性の劣化や磁性劣化が回避されるものと考えられる。
【0029】
なお、化学気相蒸着処理に引き続きなされる熱処理としては、絶縁コーティングの焼き付け処理や、被膜の張力向上を所期した焼鈍、せん断やトランス組立時の塑性加工を除去する歪取焼鈍等が挙げられる。ここで、張力向上焼鈍としては、750〜950℃程度で1min〜3h程度施すことにより、酸化物を主体とする絶縁コーティングの張力付与効果が向上する。また、歪取り焼鈍としては780〜900℃で5min〜3hで上記の磁性劣化要因となる各種歪を除去できるため、これを施すことが好ましい。
【0030】
ここで、化学気相蒸着法としては、TiC1等の金属塩化物ガスと、もう一方の原料ガスとして、窒化物ならばN, NH, (CHN, (CHNHガスなど、炭化物ならばCH, CO, C, C, C, C, i−C12などを混合した雰囲気中にて、鋼板を加熱することにより、セラミックスの被膜を得る。もちろん、両者を混合して炭窒化物としても何ら問題はないし、酸化物や硼化物等も公知の方法で実施可能である。その他、バランスガスとしてArガスなどが使用される。
【0031】
また、金属源として、有機金属ガスを用いる、いわゆるMO−CVD法やプラズマやレーザー、光誘起などを併用し、より低温化を指向したCVD手法も近年盛んになりつつあるが、この発明の場合、後続の熱処理温度にもよるが、試料あるいは化学蒸着槽全体を加熱する熱CVD法がより適していると思われる。ただし、蒸着速度向上等を目的として、上記手法を併用するのは、この発明の範囲内であれば、何ら差し支えない。
【0032】
かくして得られる被膜物質としては、Ti,Zr,V,Nb,Ta,Cr,Mo,W,Mn,Co,Ni,Al,BおよびSiなどの窒化物、炭化物または炭窒化物等であり、その2種以上を積層しても構わない。
【0033】
被膜の厚みについては、0.01μm以上5μm以下の範囲が適合し、0.01μmに満たない場合は、十分な張力付与効果や被膜密着性が得られず、5μmを越えると膜自身の密着性や電磁鋼板の占有率において不利となる。
【0034】
この発明に従って化学蒸着処理を適用する仕上焼鈍後の鋼板表面としては、単にフォルステライト被膜の形成を抑制した、もしくはフォルステライト被膜を除去しただけの地鉄面でも有効ではあるが、さらに表面に平滑化処理を施した方が、鉄損値の低下により効果的である。例えば、サーマルエッチングや化学研磨等により表面粗さを極力小さくし、鏡面状態に仕上げた表面やハロゲン化物水溶液中での電解による結晶方位強調処理で得られるグレイニング様面等が挙げられる。
なお、「フォルステライト被膜がない」状態とは、フォルステライトが離散的な島状になる等、部分的に存在し、実質的に被膜を形成していない場合も含まれる。
【0035】
また、打ち抜き性等の加工性を重視して最終仕上焼鈍に使用する焼純分離剤の主成分を替えたり、添加物を加えることにより、最終仕上焼鈍被膜の形成を抑止した、方向性電磁鋼板も好適である。
【0036】
さらに、化学気相蒸着した窒化物、炭化物または炭窒化物の被膜上に被成する絶縁被膜としては、方向性電磁鋼板に使用される無機質コートが利用可能である。特に、張力付与効果を有するコーティングは、超低鉄損化を達成するために表面を平滑化した方向性電磁鋼板と組合せると、極めて有効である。張力付与型コーティングとしては、熱膨張係数を低下させるシリカを含むコーティングが推奨され、従来、フォルステライト被膜を有する方向性電磁鋼板に用いられている、リン酸塩−コロイダルシリカークロム酸系のコーティング等が、その効果およびコスト、均一処理性などの点から、適している。また、絶縁被膜の厚みとしては、張力付与効果や占積率、被膜密着性等の点から、0.3μm以上10μm以下の範囲が好ましい。
【0037】
また、張力コーティングとしては、上記以外にも、特開平6−65754号公報、特開平6−65755号公報および特開平6−299366号公報などで提案されている、ホウ酸−アルミナ等の酸化物系被膜を適用することも可能である。
【0038】
以下、この発明の電磁鋼板について、まず成分組成から順に説明する。
この発明で使用される鋼板の成分としては、Siを1.5〜7.0mass%含有することが望ましい。すなわち、Siは製品の電気抵抗を高め鉄損を低減するのに有効な成分であるが、Siは7.0mass%を超えると硬度が高くなり、製造や加工が困難になりがちである。一方、1.5%未満であると、最終仕上焼鈍中に変態を生じて安定した2次再結晶組織が得られない。
【0039】
また、インヒビター元素として、Alを初期鋼中に0.006mass%以上含有することにより、結晶配向性をより一層向上することができる。上限は0.06mass%程度であり、これを越えると再び結晶配向の劣化が生じる。
【0040】
Nも同様の効果があり、上限はふくれ欠陥の発生から100ppm程度とすることが好ましい。一方、下限は特に規定しないが、20ppm以下に工業的に低下させるのは経済的に困難である。
【0041】
また、1次再結晶焼鈍後に増窒素処理を行うことも可能である。この増窒化処理を行わない場合には、初期鋼中にSe+Sで0.01mass%以上0.06mass%以下を含有することが好適であり、加えてMn化合物として析出させるために0.02〜0.2mass%程度のMnを含有させることが好ましい。それぞれ、少なすぎると2次再結晶を生じるための析出物が過小となり、また多すぎると熱延前の固溶が困難となる。増窒化処理を行う場合でも、Mnは、鋼の延性改善などの目的で適宜添加可能である。
【0042】
さらに、鋼中には、上記の元素の他に、公知の方向性電磁鋼板の製造に適するインヒビター成分として、B,Bi,Sb,Mo,Te,Sn,P,Ge,As,Nb,Cr,Ti,Cu,Pb,ZnおよびInなどが知られていて、これらの元素を単独、または複合で含有させることができる。また、インヒビターを使用しない方法による方向性電磁鋼板に対しても、この発明の適用が可能である。
【0043】
一方、C,S,Nなどの不純物はいずれも、磁気特性上有害な作用があり、特に鉄損を劣化させるため、それぞれC:0.003mass%以下、S:0.002mass%以下およびN:0.002mass%以下とすることが好ましい。
【0044】
次に、この発明の電磁鋼板の製造方法について、詳しく説明する。
上記した所定成分に調整された鋼スラブは、通常スラブ加熱に供された後、熱間圧延により熱延コイルとされるが、この鋼スラブの加熱温度については1300℃以上の高温度とする場合と、1250℃以下の低温度とする場合のいずれでも良い。また、近年、スラブ加熱を行わず連続鋳造後、直接熱間圧延を行う方法が開発されているが、この方法で熱間圧延される場合にも適用できる。
【0045】
熱間圧延後の鋼板は必要に応じて熱延板焼鈍を施し、1回の冷間圧廷もしくは中間焼鈍を挟む複数回の圧延によって最終冷間圧延板とされる。これらの圧延については、動的時効を狙ったいわゆる温間圧延や、静的時効を狙ったパス間時効を施したものであっても良い。
【0046】
最終冷間圧延後の鋼板は、脱炭焼鈍を兼ねる1次再結晶焼鈍に供され、最終仕上焼純により2次再結晶処理をされ、方向性磁気を得る。通常、1次再結晶焼鈍後に焼鈍分離剤を塗布し、最終仕上焼純の際にフォルステライト被膜を形成させるが、このフォルステライト被膜を酸洗や研磨等により除去するか、もしくは焼鈍分離剤の組成を調整して、鋼板表面上のフォルステライト被膜の生成を抑制し、実質的に金属外観を有する状態とする。
【0047】
そして、この鋼板表面に前述した化学気相蒸着処理を行うが、その際、雰囲気の酸化性PH0/PHを0.03以下、かつ水素濃度を5vol%以上とすることが肝要である。
まず、雰囲気の酸化性PH0/PHを0.03以下とするのは、先に図1に示したように、0.03未満になると磁気特性が急激に劣化するためである。
次に、雰囲気の水素濃度を5vol%以上とするのは、水素濃度が5vol%未満になると、化学気相蒸着処理における成膜が阻害されるからである。
【0048】
さらに、化学気相蒸着処理に引き続いて熱処理を行う場合は、該熱処理の温度を化学蒸着処理の雰囲気温度より50℃以上低くする必要がある。なぜなら、先に図2に示したように、化学気相蒸着処理の雰囲気温度が熱処理温度より50℃以上高くない場合には、磁性劣化を生じるためである。
【0049】
このようにして得られた鋼板に、更なる鉄損低減を目的として、レーザーあるいはプラズマ炎等を照射して磁区の細分化を行うことは、絶縁コーティングの密着性にはなんら問題ない。また、この発明の方向性電磁鋼板の製造工程の任意の段階において、磁区細分化のために、鋼板表面にエッチングや歯形ロールで一定間隔の溝を形成することも、一層の鉄損低減をはかる手段として有効である。
【0050】
【実施例】
実施例1
C:0.05mass%、Si:3.3mass%、Al:0.006mass%、N:20massppm、Sn:0.20mass%、Mn:0.03 mass%およびS:0.02 mass%を含有する、最終板厚0.23mmに圧延された冷延コイルに、磁区細分化のために5mm間隔で、圧延方向に延びる複数の溝をエッチングにて形成してから、脱炭を兼ねた一次再結晶焼鈍を施した後、MgOを主成分とし塩化鉛を含む焼純分離剤を塗布し、フォルステライト被膜のない平滑な表面を有する、最終仕上焼鈍済のコイルを作製した。得られた鋼板に対し、化学気相蒸着処理槽内において、表1に示す組成のTiC1,HおよびCHの混合ガスからなる雰岡気にて、TiCを片面当たり1μm厚で形成した。
ここで、TiC1濃度はHガスをキャリアガスとしTiC1液中をバブリングさせることで調整した。化学気相蒸着処理槽内の露点は、試料取付のため大気解放後、密閉してから反応ガス導入開始とともに低下した。その時々で雰囲気の酸化性PH0/PH(HとH0の分圧比)を測定しつつ、TiC膜を形成させた。化学気相蒸着処理の雰囲気温度についても900〜1150℃まで変化させた。
その後、硼酸とベーマイトとを主成分とする絶縁コーティング液(酸化物換算モル比B/A1=0.5)をロールコーターにて塗布し、800℃で120秒間焼き付けた。さらに、張力付与のために、900℃で1時間の焼鈍を行った後、大気中での歪取り焼鈍を行った。
【0051】
表1に、化学気相蒸着処理条件と、900℃1時間の張力向上焼鈍前後の鉄損値W17 50と、被膜の外観変化とをまとめて示す。表1から明らかなように、試料1,5および6は、この発明に適合する化学蒸着によるTiC膜の形成条件によるものであり、優れた外観と被膜密着性および鉄損値を示している。これらに対し、雰囲気酸化性PH0/PHが0.03より大きい条件による試料2〜4は、TiC膜の膜質が変化したためか変色し、磁気特性も劣化した。一方、水素濃度が5vol%未満の試料7は、TiC層を形成することができず、良好な絶縁コーティングの密着性が得られなかった。
【0052】
また、請求項2の要件について考察すると、化学気相蒸着処理に続く張力向上焼鈍時の温度である900℃より50℃以上高い雰囲気温度で被膜を形成していない試料1および4は、試料5および6と比べて、耐高温焼純性に劣っていて、被膜が一部剥落したりした。従って、試料1は化学気相蒸着処理後の絶縁コーティング焼付けに対しては適合するが、その後の張力向上焼鈍には適合していない。
【0053】
【表1】

Figure 2004060040
【0054】
実施例2
C:0.06mass%、Si:3.2mass%、Al:0.02 mass%、N:70massppmを含有する、最終板厚0.23mmに圧延された冷延板を、脱炭を兼ねた一次再結晶焼鈍に供した後、酸洗によりSiO被膜を除去後、焼純分離剤としてアルミナを用いることにより、フォルステライト被膜のない平滑な表面を有する最終仕上焼鈍板を得た。得られた鋼板に対し、TiC1,HおよびNの混合ガスからなる雰囲気中にて、TiNを片面当たり0.7μm厚で形成した。TiC1は気化器で150℃に加熱することでガス化させ、HおよびNガスと種々の混合比率でミキシングし、それぞれの分圧を調整した。化学気相蒸着処理槽内の露点と水素分圧とから雰囲気の酸化性PH0/PH(HとH0の分圧比)を測定した。化学気相蒸着処理の雰囲気温度は800〜1080℃まで変化させた。
【0055】
その後、第一リン酸Mgに重クロム酸Kを15重量部加えた水溶液に、30mass%コロイダルシリカを30重量部混合したものを、ロールコーターで塗布し、850℃で1分間焼き付け、絶縁被膜を形成させた。
【0056】
表2に、TiN化学蒸着条件と、絶縁被膜形成後の鉄損値W17 50と、被膜の外観変化とをまとめて示した。表2から明らかなように、試料4および5は、この発明に適合する化学蒸着によるTiN膜の形成条件によるものであり、優れた外観と被膜密着性および鉄損値を示している。これらに対し、雰囲気酸化性PH0/PHが0.03より大きい条件による試料1および3は、元々金色に近かったTiN膜が黒褐色に変化し、磁気特性も劣化した。また、水素濃度が5vol%未満の試料2は、TiN膜を形成することができなかった。
【0057】
さらに、化学気相蒸着処理に続く被膜焼付温度である850℃より50℃以上高い雰囲気温度で被膜を形成していない試料3は、耐高温焼鈍性に劣るため、リン酸とコロイダルシリカからなる絶縁コーティングごと剥落した。
【0058】
【表2】
Figure 2004060040
【0059】
【発明の効果】
この発明により、無機鉱物質被膜のない平滑な方向性電磁鋼板の表面に、張力付与効果が大きく、かつ熱安定性に極めて優れる被膜を化学蒸着処理にて被成することができるため、極めて鉄損値の低い方向性電磁鋼板の製造が可能となる。
【図面の簡単な説明】
【図1】化学蒸着処理における雰囲気酸化性と得られた鋼板の鉄損との関係を示す図である.
【図2】化学蒸着処理における雰囲気温度とその後の熱処理温度との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet, and particularly intends to improve the iron loss characteristics by forming a coating film having a very large tensioning effect on the surface of the steel sheet.
[0002]
[Prior art]
Electrical steel sheets are roughly classified into two types: non-oriented electrical steel sheets and directional electrical steel sheets. Non-oriented electrical steel sheets are mainly used for iron core materials such as rotating machines, and directional electrical steel sheets are used mainly for transformers and other electrical equipment. In order to reduce energy loss, both are used as iron core materials, and low iron loss materials are required.
[0003]
In order to reduce the iron loss of grain-oriented electrical steel sheets, there are methods such as reducing the plate thickness, increasing the Si content, or increasing the orientation of the crystal orientation, but in addition, it is effective to give tension to the steel sheet It is. As a method for imparting tension to a steel plate, it is common to provide a coating made of a material having a smaller thermal expansion coefficient than that of the steel plate. That is, in the final finishing annealing process, which finally serves as secondary recrystallization to align the crystal orientation and the purification of the steel sheet, the oxide on the surface of the steel sheet reacts with the quenching separation agent applied to the surface of the steel sheet to react forsterite. A film having a main component is formed. This film has a large tension applied to the steel sheet, and is effective in reducing iron loss. Furthermore, in order to increase the tension effect, it is generally performed to produce a product by applying a low thermal expansion coating on the forsterite film.
[0004]
However, in recent years, a method for magnetically smoothing the surface of a steel sheet has been developed, and after the forsterite film has been intentionally suppressed in the finish tempering process or the formed forsterite film has been removed, It has become clear that a smooth finish is effective in reducing iron loss. For example, Japanese Examined Patent Publication No. 52-24499 discloses a method of removing surface products by pickling after finish annealing and then finishing to a mirror state by chemical polishing or electrolytic polishing. Japanese Patent Laid-Open No. 5-43943 discloses a method of performing thermal etching in H 2 at 1000 to 1200 ° C. after removing the forsterite film. The reason why the iron loss is reduced by such a surface treatment is that pinning sites that hinder the domain wall movement in the vicinity of the steel sheet surface are reduced in the magnetization process.
[0005]
The magnetically smooth surface that reduces hysteresis loss is not only expressed by Ra (arithmetic average roughness), which is generally expressed by so-called surface roughness, but is described in Japanese Patent Publication No. 4-72920. There are also known those obtained by crystal orientation emphasis treatment in which electrolysis is performed in a halogenated aqueous solution after removing the surface product.
[0006]
In addition, since an insulating coating is required on the surface of the electrical steel sheet, an insulating coating is usually applied, and is currently applied to a grain-oriented electrical steel sheet having a forsterite coating. The insulating coating is formed by applying and baking a treatment liquid mainly composed of Al or alkaline earth metal phosphate and colloidal silica, chromic anhydride or chromate on a steel plate. There are many things. The tension-added insulation coating forms an inorganic coating typified by colloidal silica, which has a smaller coefficient of thermal expansion than that of a steel plate, at a high temperature. It is given to the steel plate. The insulating coating formed by this method has a great effect of imparting tension to the steel sheet and is effective in reducing iron loss. For example, Japanese Patent Publication No. 53-28375 or Japanese Patent Publication No. 56-52117 discloses a method for forming the same.
[0007]
However, the higher the tension applied to the steel sheet, the more the film will peel off if the adhesion to the substrate is not strong.Therefore, the forsterite-type coating has a forsterite-type final finish annealed film on the steel sheet surface. However, the film could not be deposited when there was no forsterite film after final finish annealing such as surface smoothing such as mirror finishing. For this reason, it has been difficult to achieve both a technique for magnetically smoothing the surface and reducing iron loss and a technique for reducing iron loss using a tension-imparting coating.
[0008]
Conventionally, several methods have been proposed as a method for depositing a tension-applying coating on a surface without a forsterite coating, or even on a smooth surface that has been adjusted. For example, Japanese Patent Publication No. 52-24499 discloses a method of applying and baking a tension-applying coating solution after forming a SiO 2 thin film after metal plating and JP-A-6-184762. ing. Japanese Patent Publication No. 56-4150 discloses a method of forming a ceramic thin film by vapor deposition, sputtering, or thermal spraying, and Japanese Patent Publication No. 63-54767 discloses a nitride or carbide ceramic film by ion plating or Each method of forming by ion plantation is shown. Further, JP-A-2-243770 discloses a method of directly forming a high-tension imparting ceramic film on the surface of a steel sheet by a so-called sol-gel method.
[0009]
These methods have been developed as methods for applying tension to a steel plate having a smoothed surface, but have some problems and have not yet been put into practical use.
That is, a thin metal plating and the base, the method for coating treatment thereon, because smoothness of uniform plated surface, is not sufficient adhesion of the film, a method of forming a thin SiO 2 film is inferior in tensioning effect such The improvement effect of iron loss was not enough. In addition, the ceramic coating made of nitride, carbide, etc., or a combination of both has a much lower thermal expansion coefficient than that of the base iron, so the tension effect due to the difference in the thermal expansion coefficient is great, and therefore during bending. There was a problem in the adhesion between the steel and the coating.
[0010]
Furthermore, the formation of ceramic coatings by vapor deposition, sputtering, thermal spraying, ion plating, and ion plantation is expensive, and it is difficult to ensure uniformity when large areas are processed in large quantities. Although it is possible to form a film by coating and baking, it is extremely difficult to form a healthy film with a thickness of 0.5 μm or more, so it does not bring about a large tension imparting effect, and the expected iron loss improving effect Was not obtained.
[0011]
Japanese Patent Application Laid-Open No. 63-57781 discloses a method of forming an insulating film mainly composed of chromic acid or phosphoric acid after providing a silicate-based film. Although the adhesion is improved, neither the silicate film nor the chromic acid-phosphoric acid film has the effect of imparting tension to the steel sheet, and the effect of reducing the iron loss value due to the film tension cannot be obtained.
[0012]
On the other hand, the chemical vapor deposition method disclosed in Japanese Patent Application Laid-Open No. 61-201732 is a powerful technique capable of forming a uniform ceramic film over a large area without requiring a vacuum chamber with many restrictions. It is a technique. That is, because of the high temperature reaction, the adhesion between the ceramics and the steel sheet is also good, and compared with the physical vapor deposition such as sputtering, thermal spraying, ion plating, ion plantation, etc., the impact of the product on the steel sheet surface is weak. It is possible to deposit a ceramic film without compromising the very low hysteresis loss achieved with a smoothed surface. In particular, it is suitable for depositing a nitride or carbide having a high Young's modulus and a small thermal expansion coefficient on the steel sheet surface.
[0013]
[Problems to be solved by the invention]
However, after the ceramic film is formed, when a tension-imparting type insulation coating is applied, or when annealing for the purpose of increasing the applied tension is performed, the coating is discolored or altered, and the adhesion is deteriorated. As a result of the reduced tension effect, i.e., the thermal stability of the coating is impaired, the iron loss value may deteriorate. This is a problem that applies not only to chemical vapor deposition but also to the physical vapor deposition described above.
[0014]
Therefore, the present invention is applied when a film is formed by chemical vapor deposition and further subjected to a heat treatment such as baking of the tension-imparting type coating on the film or annealing for the purpose of increasing the applied tension. However, it aims at proposing about the manufacturing method of the low iron loss directionality electrical steel plate in which the outstanding thermal stability is maintained in the said film.
[0015]
[Means for Solving the Problems]
The inventors are sensitive to the presence of oxides formed simultaneously with the formation of nitrides and carbides of the film during the chemical vapor deposition process, and the steel sheet from the steel sheet during the heat treatment subsequent to the chemical vapor deposition process. Focusing on the stress change caused by the difference in thermal expansion coefficient, the inventors have intensively studied the means for improving the thermal stability of the film formed by chemical vapor deposition, and have completed the present invention.
[0016]
That is, the gist configuration of the present invention is as follows.
(1) When a film is continuously formed by chemical vapor deposition on the surface of a final finish annealed grain-oriented electrical steel sheet having no forsterite film on the surface, the oxidizability of the atmosphere in the chemical vapor deposition process A method for producing an ultra-low iron loss grain-oriented electrical steel sheet excellent in thermal stability, characterized in that PH 2 0 / PH 2 is 0.03 or less and the hydrogen concentration is 5 vol% or more.
[0017]
(2) In the above (1), when the steel plate is subjected to heat treatment subsequent to the chemical vapor deposition treatment, the heat treatment temperature is lower by 50 ° C. or more than the atmospheric temperature of the chemical vapor deposition treatment, and the thermal stability is excellent. Manufacturing method of ultra-low iron loss grain-oriented electrical steel sheet.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the experimental results leading to the present invention will be described in detail.
C: 0.06 mass%, Si: 3 mass%, and Mn: 0.04 mass%, cold-rolled steel sheet rolled to a final sheet thickness of 0.23 mm, decarburized, primary recrystallization annealing, MgO A pure separating agent containing antimony chloride as a main component was applied, and final finishing annealing including a secondary recrystallization process and a purification process was performed to obtain a mirror-oriented grain-oriented electrical steel sheet without a forsterite film.
[0019]
Thereafter, chemical vapor deposition was performed at 1040 ° C. in an atmosphere mainly composed of TiCl 4 gas, H 2 gas, and N 2 gas to form a 1.0 μm TiN film on the steel sheet surface. Subsequently, the coating liquid which has a phosphate and a colloidal silica as a main component was apply | coated, and the insulating film was formed at 850 degreeC.
[0020]
Regarding the product thus obtained, the relationship between the iron loss characteristics and the oxidizing property of the atmosphere in the chemical vapor deposition process, that is, the ratio PH 2 O / PH 2 between the water vapor partial pressure PH 2 0 and the H 2 gas partial pressure PH 2 investigated. The investigation results are shown in FIG. 1 with the ratio PH 2 O / PH 2 as the horizontal axis and the iron loss change before and after the insulation coating as the vertical axis. In Figure 1, the vertical axis is positive is a case where iron loss value is increased, PH 2 O / PH 2 is at greater condition than 0.03, indicating that magnetic properties are deteriorated.
[0021]
In the steel sheet with deteriorated magnetism, the film after chemical vapor deposition was slightly blackish than gold, and the film further turned black by the baking treatment of the insulating coating thereafter. This is because, when the atmospheric oxidizing PH 2 O / PH 2 at the time of vapor deposition is larger than 0.03, TiO 2 is mixed with TiN, and both the thermal expansion coefficient and the like during the heat treatment such as baking of the insulating coating. It is thought that due to the difference in physical properties, the coating became non-uniform and the quality of the film itself deteriorated, resulting in an increase in iron loss value.
[0022]
Here, JP-A-62-70520 discloses a method of performing a heat treatment in a non-oxidizing atmosphere after depositing a ceramic film, the purpose of which is to promote surface diffusion of carbon and nitrogen in steel. Therefore, the gist of the present invention is different from the suppression of oxide formation for improving heat resistance. Furthermore, once formed oxide such as TiO 2 seems to be mixed and formed simultaneously with TiN and TiC, and is not easily decomposed even if annealing is performed in a non-oxidizing atmosphere containing hydrogen. Therefore, as in the present invention, it is important to suppress the formation of oxides during vapor deposition.
[0023]
In addition, regarding Si infiltration treatment, Japanese Patent Application Laid-Open No. 6-212397 discloses a method for defining oxygen concentration and water vapor concentration, but its purpose is to prevent surface oxidation and grain boundary oxidation of the steel plate during treatment. Yes, it is fundamentally different from this invention. That is, reaction in the steel sheet surface in the Si infiltration process is SiC1 4 + 5Fe → Fe 3 Si + 2FeC1 2, which does not require hydrogen regarded as substitution reaction between Si and Fe.
[0024]
On the other hand, in the film-forming reaction of TiN of the present invention, for example, hydrogen plays the role of a reducing agent as can be seen from the reaction formula TiC1 4 + 1 / 2N 2 + 2H 2 → TiN + 4HCl. Control is extremely important, and 5 vol% or more is necessary. That is, in the case of less than 5 vol%, it was impossible to realize sound generation of both the TiN and TiC films. For example, when methane gas is used as a carbon source, the TiC production reaction formula is TiC1 4 + CH 4 → TiC + 4 HCl, and hydrogen does not appear in the reaction formula, but plays an important role as a decomposition reducing agent for TiC1 4. It is estimated that
[0025]
Next, the inventors focused on the atmospheric temperature in the chemical vapor deposition process and the subsequent heat treatment temperature. That is, after the chemical vapor deposition of the TiN film at various temperatures using the same directional magnetic steel sheet having the mirror surface as in the experiment whose result is shown in FIG. 1, the heat treatment is performed in 100% N 2 gas for 3 hours. Performed at various temperatures. As a result, the film was formed under the condition of oxidizing PH 2 O / PH 2 in an atmosphere of 50 vol% H 2 gas and dew point −30 ° C. under the condition of 0.03. The TiN film was partially peeled off due to magnetic deterioration. The above experimental results are shown in FIG. 2, where the abscissa represents the ambient temperature during TiN film formation, the ordinate represents the heat treatment temperature performed thereafter, and the iron loss values before and after the heat treatment were compared. A mark, a slightly deteriorated condition is indicated by Δ, and a greatly deteriorated condition is indicated by X. From FIG. 2, it was found that when the atmospheric temperature of the chemical vapor deposition process is not set higher than the subsequent heat treatment temperature by 50 ° C. or more, magnetic deterioration occurs.
[0026]
This factor is considered as follows.
Now, the effect of the tension-imparting coating is to select a nitride, carbide, etc. as a material having a small thermal expansion coefficient, and to deposit it on the steel plate, and to utilize the thermal residual stress based on the difference in thermal expansion coefficient between this coating and the steel plate. Thus, a tensile stress that is advantageous for magnetic properties is applied to the steel sheet at around room temperature where the grain-oriented electrical steel sheet is actually used, and the iron loss value is greatly reduced. At this time, it goes without saying that compressive stress is applied to the coating itself.
[0027]
Here, paying attention to the volume change of the steel plate and the coating during the heat treatment performed after the chemical vapor deposition treatment, if the coating is formed at a temperature lower than the heat treatment temperature, the steel plate greatly expands during the heat treatment, On the contrary, the coating made of ceramic with low thermal expansion receives tensile stress from the steel sheet. Ceramics typified by nitrides and carbides are hardly elastically deformed, and are vulnerable to tensile stress. Therefore, the film deposited at low temperature was deteriorated under high temperature and tensile stress during the subsequent heat treatment, causing defects such as cracks, and the film itself was peeled off, resulting in magnetic deterioration. It is estimated that there is not.
[0028]
On the other hand, when vapor deposition is performed at a temperature higher than the heat treatment temperature, the compressive stress is still applied to the coating during the heat treatment. Under this compressive stress, it is known that the durability of ceramics at high temperatures is improved, and the above experimental results can be well explained. That is, if the temperature difference between the chemical vapor deposition process and the subsequent heat treatment is 50 ° C. or more, the durability of the film at a high temperature is further improved, so that deterioration of film adhesion and magnetic deterioration are avoided. Conceivable.
[0029]
Examples of the heat treatment that follows the chemical vapor deposition process include an insulating coating baking process, annealing intended to improve the tension of the coating, and strain relief annealing that eliminates plastic working during shearing and transformer assembly. . Here, as tension improvement annealing, the tension | tensile_strength provision effect of the insulating coating which has an oxide as a main body improves by performing about 750-950 degreeC about 1min-3h. Further, as the strain relief annealing, since various strains that cause the above-mentioned magnetic deterioration can be removed at 780 to 900 ° C. for 5 minutes to 3 hours, it is preferable to apply this.
[0030]
Here, as a chemical vapor deposition method, a metal chloride gas such as TiC1 4 and the other raw material gas are N 2 , NH 3 , (CH 3 ) 3 N, (CH 3 ) 2 as a nitride. In the case of carbide such as NH gas, the steel plate is heated in an atmosphere in which CH 4 , CO, C 2 H 4 , C 3 H 6 , C 3 H 8 , C 2 H 6 , i-C 5 H 12, etc. are mixed. By doing so, a ceramic film is obtained. Of course, there is no problem even if both are mixed to form carbonitride, and oxides, borides and the like can be implemented by known methods. In addition, Ar gas or the like is used as a balance gas.
[0031]
In addition, the so-called MO-CVD method using an organic metal gas as a metal source, plasma, laser, photo induction, etc., and a CVD method aiming at lowering the temperature are becoming popular recently. Depending on the subsequent heat treatment temperature, the thermal CVD method for heating the sample or the entire chemical vapor deposition tank seems to be more suitable. However, any combination of the above methods for the purpose of improving the deposition rate is acceptable as long as it is within the scope of the present invention.
[0032]
Examples of the coating material thus obtained include nitrides such as Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Co, Ni, Al, B and Si, carbides or carbonitrides, and the like. Two or more kinds may be laminated.
[0033]
As for the thickness of the film, the range of 0.01 μm or more and 5 μm or less is suitable, and if it is less than 0.01 μm, sufficient tension imparting effect and film adhesion cannot be obtained, and if it exceeds 5 μm, the film itself adheres to itself. It is disadvantageous in the occupation ratio of electromagnetic steel sheets.
[0034]
The steel plate surface after finish annealing to which chemical vapor deposition treatment is applied according to the present invention is effective even if the surface of the steel plate is simply suppressed from forsterite coating or removed from the forsterite coating. It is more effective to reduce the iron loss value. For example, the surface roughness is made as small as possible by thermal etching, chemical polishing, or the like, and the surface finished in a mirror state or the graining-like surface obtained by crystal orientation enhancement treatment by electrolysis in an aqueous halide solution.
The “no forsterite film” state includes a case where the forsterite is partially present, such as in the form of discrete islands, and does not substantially form a film.
[0035]
In addition, the grain-oriented electrical steel sheet that suppresses the formation of the final finish annealed film by changing the main component of the sinter separation agent used in the final finish annealing with emphasis on workability such as punchability and adding additives. Is also suitable.
[0036]
Furthermore, as the insulating coating formed on the nitride, carbide or carbonitride coating formed by chemical vapor deposition, an inorganic coating used for grain-oriented electrical steel sheets can be used. In particular, a coating having a tension imparting effect is extremely effective when combined with a grain-oriented electrical steel sheet having a smooth surface in order to achieve ultra-low iron loss. As the tension-imparting coating, a coating containing silica that lowers the coefficient of thermal expansion is recommended, and a phosphate-colloidal silica-chromic acid type coating conventionally used for grain oriented electrical steel sheets having a forsterite film Are suitable from the viewpoints of the effect and cost, uniform processability, and the like. In addition, the thickness of the insulating coating is preferably in the range of 0.3 μm or more and 10 μm or less from the viewpoint of tension application effect, space factor, coating adhesion, and the like.
[0037]
In addition to the above, as the tension coating, oxides such as boric acid-alumina proposed in JP-A-6-65754, JP-A-6-65555, JP-A-6-299366, etc. It is also possible to apply a system coating.
[0038]
Hereinafter, the electrical steel sheet of the present invention will be described in order from the component composition.
As a component of the steel plate used in the present invention, it is desirable to contain 1.5 to 7.0 mass% of Si. That is, Si is an effective component for increasing the electrical resistance of the product and reducing the iron loss. However, if Si exceeds 7.0 mass%, the hardness tends to be high, and manufacturing and processing tend to be difficult. On the other hand, if it is less than 1.5%, transformation occurs during final finish annealing, and a stable secondary recrystallized structure cannot be obtained.
[0039]
Moreover, crystal orientation can be further improved by containing 0.006 mass% or more of Al as an inhibitor element in the initial steel. The upper limit is about 0.06 mass%, and if it exceeds this, the crystal orientation deteriorates again.
[0040]
N has the same effect, and the upper limit is preferably about 100 ppm from the occurrence of blister defects. On the other hand, the lower limit is not particularly defined, but it is economically difficult to reduce it to 20 ppm or less industrially.
[0041]
It is also possible to perform a nitrogen increase treatment after the primary recrystallization annealing. When this nitriding treatment is not performed, it is preferable to contain 0.01 mass% or more and 0.06 mass% or less of Se + S in the initial steel, and in addition, 0.02 to 0 for precipitation as a Mn compound. It is preferable to contain about 2 mass% of Mn. If the amount is too small, the amount of precipitates for causing secondary recrystallization is too small. If the amount is too large, solid solution before hot rolling becomes difficult. Even when the nitriding treatment is performed, Mn can be added as appropriate for the purpose of improving the ductility of the steel.
[0042]
Further, in addition to the above-described elements, the steel contains B, Bi, Sb, Mo, Te, Sn, P, Ge, As, Nb, Cr, as inhibitor components suitable for the production of known grain-oriented electrical steel sheets. Ti, Cu, Pb, Zn, and In are known, and these elements can be contained alone or in combination. The present invention can also be applied to grain-oriented electrical steel sheets by a method that does not use an inhibitor.
[0043]
On the other hand, impurities such as C, S, and N all have a harmful effect on magnetic properties, and particularly deteriorate iron loss. Therefore, C: 0.003 mass% or less, S: 0.002 mass% or less, and N: It is preferable to set it to 0.002 mass% or less.
[0044]
Next, the manufacturing method of the electrical steel sheet of this invention is demonstrated in detail.
The steel slab adjusted to the above-mentioned predetermined component is usually subjected to slab heating and then hot-rolled by hot rolling. The heating temperature of the steel slab is set to a high temperature of 1300 ° C. or higher. And a low temperature of 1250 ° C. or lower. In recent years, a method of directly performing hot rolling after continuous casting without performing slab heating has been developed. However, it can also be applied to the case of hot rolling by this method.
[0045]
The hot-rolled steel sheet is subjected to hot-rolled sheet annealing as necessary, and is made into a final cold-rolled sheet by a plurality of rollings with one cold pressing or intermediate annealing. About these rolling, what was called warm rolling aiming at dynamic aging, and what carried out aging between passes aiming at static aging may be given.
[0046]
The steel sheet after the final cold rolling is subjected to primary recrystallization annealing that also serves as decarburization annealing, and is subjected to secondary recrystallization treatment by final finish annealing to obtain directional magnetism. Usually, after the primary recrystallization annealing, an annealing separator is applied to form a forsterite film at the final finish annealing, but this forsterite film is removed by pickling or polishing, or an annealing separator. The composition is adjusted to suppress the formation of a forsterite film on the surface of the steel sheet, so that it has a substantially metallic appearance.
[0047]
Then, although a chemical vapor deposition process described above in this steel sheet surface, in which the oxidizing PH 2 0 / PH 2 of the atmosphere than 0.03, and it is important to the 5 vol% or more of hydrogen concentration .
First, the reason why the oxidizing PH 2 0 / PH 2 in the atmosphere is set to 0.03 or less is that, as shown in FIG.
Next, the reason why the hydrogen concentration in the atmosphere is 5 vol% or more is that when the hydrogen concentration is less than 5 vol%, film formation in the chemical vapor deposition process is hindered.
[0048]
Furthermore, when heat treatment is performed subsequent to the chemical vapor deposition process, the temperature of the heat treatment needs to be lower by 50 ° C. or more than the atmospheric temperature of the chemical vapor deposition process. This is because, as previously shown in FIG. 2, when the atmospheric temperature of the chemical vapor deposition process is not higher than the heat treatment temperature by 50 ° C. or more, magnetic deterioration occurs.
[0049]
For the purpose of further reducing the iron loss, the magnetic domain is subdivided by irradiating the obtained steel plate with a laser or a plasma flame or the like without any problem in the adhesion of the insulating coating. In addition, at any stage of the manufacturing process of the grain-oriented electrical steel sheet according to the present invention, it is possible to further reduce iron loss by forming grooves at regular intervals by etching or tooth profile rolls on the steel sheet surface for magnetic domain fragmentation. It is effective as a means.
[0050]
【Example】
Example 1
C: 0.05 mass%, Si: 3.3 mass%, Al: 0.006 mass%, N: 20 massppm, Sn: 0.20 mass%, Mn: 0.03 mass% and S: 0.02 mass% are contained. The primary recrystallization also serves as decarburization after forming a plurality of grooves extending in the rolling direction at intervals of 5 mm in the cold rolled coil rolled to a final thickness of 0.23 mm at intervals of 5 mm. After annealing, a pure separation agent containing MgO as a main component and containing lead chloride was applied to produce a final finish annealed coil having a smooth surface without a forsterite film. TiC was formed with a thickness of 1 μm per side of the obtained steel plate in a chemical vapor deposition treatment tank in an atmosphere composed of a mixed gas of TiC1 4 , H 2 and CH 4 having the composition shown in Table 1. .
Here, the TiC1 4 concentration was adjusted by bubbling the TiC1 4 liquid using H 2 gas as a carrier gas. The dew point in the chemical vapor deposition bath decreased with the start of reaction gas introduction after sealing the sample after it was released to the atmosphere for sample mounting. At that time, a TiC film was formed while measuring the oxidizing PH 2 0 / PH 2 (H 2 and H 2 0 partial pressure ratio) of the atmosphere. The atmospheric temperature of the chemical vapor deposition process was also changed from 900 to 1150 ° C.
Thereafter, an insulating coating solution mainly composed of boric acid and boehmite (as oxide molar ratio B 2 O 3 / A1 2 O 3 = 0.5) was applied by a roll coater and baked for 120 seconds at 800 ° C.. Further, after annealing at 900 ° C. for 1 hour for imparting tension, strain relief annealing in the atmosphere was performed.
[0051]
Table 1 collectively shows the chemical vapor deposition process conditions, the tension increased annealing before and after the iron loss value W 17/50 of 900 ° C. 1 hour, and change in appearance of the coating. As is apparent from Table 1, Samples 1, 5 and 6 were obtained under the conditions for forming a TiC film by chemical vapor deposition suitable for the present invention, and showed excellent appearance, coating adhesion and iron loss value. On the other hand, Samples 2 to 4 under the condition where the atmospheric oxidizing PH 2 0 / PH 2 is larger than 0.03 are discolored because the film quality of the TiC film is changed, and the magnetic characteristics are also deteriorated. On the other hand, Sample 7 having a hydrogen concentration of less than 5 vol% could not form a TiC layer, and good insulating coating adhesion could not be obtained.
[0052]
Further, considering the requirements of claim 2, samples 1 and 4 in which no film is formed at an atmospheric temperature higher by 50 ° C. or more than 900 ° C., which is the temperature at the time of tension-enhanced annealing following chemical vapor deposition, Compared with No. 6 and No. 6, it was inferior in high-temperature tempering resistance, and the coating partly peeled off. Therefore, sample 1 is suitable for baking an insulating coating after chemical vapor deposition, but not for subsequent tension-enhanced annealing.
[0053]
[Table 1]
Figure 2004060040
[0054]
Example 2
C: 0.06 mass%, Si: 3.2 mass%, Al: 0.02 mass%, N: 70 massppm, cold rolled sheet rolled to a final sheet thickness of 0.23 mm, primary decarburization After being subjected to recrystallization annealing, after removing the SiO 2 film by pickling, alumina was used as a tempered separation agent to obtain a final finish annealed plate having a smooth surface without a forsterite film. TiN was formed to a thickness of 0.7 μm per side of the obtained steel sheet in an atmosphere composed of a mixed gas of TiC1 4 , H 2 and N 2 . TiC1 4 is then gasified by heating to 0.99 ° C. in a vaporizer, mixing with H 2 and N 2 gas and various mixing ratios to prepare a respective partial pressures. From the dew point and hydrogen partial pressure in the chemical vapor deposition treatment tank, the oxidizing PH 2 0 / PH 2 (partial pressure ratio of H 2 and H 2 0) of the atmosphere was measured. The atmospheric temperature of the chemical vapor deposition process was changed from 800 to 1080 ° C.
[0055]
Then, 30 parts by weight of 30 mass% colloidal silica mixed with an aqueous solution in which 15 parts by weight of dichromic acid K is added to primary phosphoric acid Mg is applied with a roll coater and baked at 850 ° C. for 1 minute to form an insulating coating. Formed.
[0056]
Table 2, and TiN chemical vapor deposition conditions, the iron loss W 17/50 after the insulating film forming, collectively shows the change in appearance of the coating. As can be seen from Table 2, Samples 4 and 5 were obtained under the conditions for forming a TiN film by chemical vapor deposition suitable for the present invention, and showed excellent appearance, coating adhesion, and iron loss value. On the other hand, in the samples 1 and 3 under the condition that the atmospheric oxidizing PH 2 0 / PH 2 is larger than 0.03, the TiN film which was originally close to gold changed to blackish brown, and the magnetic characteristics were also deteriorated. Sample 2 having a hydrogen concentration of less than 5 vol% could not form a TiN film.
[0057]
Furthermore, since the sample 3 in which the film is not formed at an ambient temperature higher than 850 ° C., which is the film baking temperature following the chemical vapor deposition process, is inferior in high-temperature annealing resistance, an insulating material composed of phosphoric acid and colloidal silica is used. The coating was peeled off.
[0058]
[Table 2]
Figure 2004060040
[0059]
【The invention's effect】
According to the present invention, a coating having a great effect of imparting tension and extremely excellent in thermal stability can be formed on the surface of a smooth grain-oriented electrical steel sheet having no inorganic mineral coating by chemical vapor deposition. It becomes possible to produce a grain-oriented electrical steel sheet having a low loss value.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between atmospheric oxidation in chemical vapor deposition and iron loss of the obtained steel sheet.
FIG. 2 is a diagram showing a relationship between an atmospheric temperature in a chemical vapor deposition process and a subsequent heat treatment temperature.

Claims (2)

表面にフォルステライト被膜のない、最終仕上焼鈍済の方向性電磁鋼板の表面に、化学気相蒸着処理によって連続的に被膜を形成するに際し、該化学気相蒸着処理における雰囲気の酸化性PH0/PHを0.03以下、かつ水素濃度を5vol%以上とすることを特徴とする熱安定性に優れた超低鉄損方向性電磁鋼板の製造方法。When continuously forming a film by chemical vapor deposition on the surface of a final finish annealed grain-oriented electrical steel sheet having no forsterite film on the surface, the oxidizing PH 2 0 of the atmosphere in the chemical vapor deposition is / PH 2 of 0.03 or less, and method for producing ultra-low core loss oriented electrical steel sheet excellent hydrogen concentration in heat stability which is characterized in that a 5 vol% or more. 請求項1において、化学蒸着処理に引き続いて鋼板に熱処理を施すに当たり、該熱処理の温度を化学蒸着処理の雰囲気温度より50℃以上低くすることを特徴とする熱安定性に優れた超低鉄損方向性電磁鋼板の製造方法。The ultra-low iron loss excellent in thermal stability according to claim 1, characterized in that, when the steel sheet is subjected to a heat treatment subsequent to the chemical vapor deposition treatment, the temperature of the heat treatment is lower by 50 ° C or more than the atmospheric temperature of the chemical vapor deposition treatment. A method for producing grain-oriented electrical steel sheets.
JP2002224123A 2002-07-31 2002-07-31 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP4232408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224123A JP4232408B2 (en) 2002-07-31 2002-07-31 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224123A JP4232408B2 (en) 2002-07-31 2002-07-31 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2004060040A true JP2004060040A (en) 2004-02-26
JP4232408B2 JP4232408B2 (en) 2009-03-04

Family

ID=31943703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224123A Expired - Fee Related JP4232408B2 (en) 2002-07-31 2002-07-31 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4232408B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249495A (en) * 2005-03-10 2006-09-21 Jfe Steel Kk Method for producing grain-oriented silicon steel sheet strip with ceramics film in excellent in steel sheet shape
JP2010196081A (en) * 2009-02-20 2010-09-09 Jfe Steel Corp Decarburizing and denitrizing treatment method for grain-oriented electrical steel sheet
KR101356053B1 (en) 2011-12-28 2014-01-28 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same
JP2023508032A (en) * 2019-12-20 2023-02-28 ポスコホールディングス インコーポレーティッド Grain-oriented electrical steel sheet and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249495A (en) * 2005-03-10 2006-09-21 Jfe Steel Kk Method for producing grain-oriented silicon steel sheet strip with ceramics film in excellent in steel sheet shape
JP2010196081A (en) * 2009-02-20 2010-09-09 Jfe Steel Corp Decarburizing and denitrizing treatment method for grain-oriented electrical steel sheet
KR101356053B1 (en) 2011-12-28 2014-01-28 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same
JP2023508032A (en) * 2019-12-20 2023-02-28 ポスコホールディングス インコーポレーティッド Grain-oriented electrical steel sheet and manufacturing method thereof
JP7440639B2 (en) 2019-12-20 2024-02-28 ポスコホールディングス インコーポレーティッド Grain-oriented electrical steel sheet and its manufacturing method

Also Published As

Publication number Publication date
JP4232408B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
EP3396022B1 (en) Grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet
KR20000075590A (en) Ultra-low core loss grain oriented silicon steel sheet and method of producing the same
JP2000063950A (en) Grain oriented silicon steel sheet excellent in magnetic property and film characteristic and its production
JPH08191010A (en) Orientation silicon steel plate of excellent magnetic characteristic and its manufacturing method
JP4232407B2 (en) Method for producing grain-oriented electrical steel sheet
JP5047466B2 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP4232408B2 (en) Method for producing grain-oriented electrical steel sheet
US7435304B2 (en) Coating composition, and method for manufacturing high silicon electrical steel sheet using thereof
JP3979004B2 (en) Method for forming insulating coating on grain-oriented electrical steel sheet
JP4259061B2 (en) Method for producing grain-oriented electrical steel sheet
JP2006253555A6 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP4192818B2 (en) Oriented electrical steel sheet
JP7073498B2 (en) Manufacturing method of ultra-low iron loss directional electrical steel sheet
JP5063862B2 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP3562433B2 (en) Grain-oriented silicon steel sheet with excellent magnetic and coating properties
JP3382804B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating
KR102080165B1 (en) Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing the same
JP4725711B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
JP2663229B2 (en) Method for producing grain-oriented electrical steel sheet having a uniform glass film and extremely excellent magnetic properties
JP4016756B2 (en) Method for producing grain-oriented electrical steel sheet
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof
JPH11236682A (en) Superlow core loss grain oriented silicon steel sheet and its production
JP4374108B2 (en) Method for producing grain-oriented electrical steel sheet
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
WO2023068236A1 (en) Grain-oriented electromagnetic steel sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4232408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees