JP2004059678A - Conductive unsaturated polyester resin molding material and fuel cell separator produced by molding the same - Google Patents

Conductive unsaturated polyester resin molding material and fuel cell separator produced by molding the same Download PDF

Info

Publication number
JP2004059678A
JP2004059678A JP2002218041A JP2002218041A JP2004059678A JP 2004059678 A JP2004059678 A JP 2004059678A JP 2002218041 A JP2002218041 A JP 2002218041A JP 2002218041 A JP2002218041 A JP 2002218041A JP 2004059678 A JP2004059678 A JP 2004059678A
Authority
JP
Japan
Prior art keywords
molding
unsaturated polyester
conductive
polyester resin
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002218041A
Other languages
Japanese (ja)
Inventor
Takayuki Suzuki
鈴木 孝之
Shunsuke Fujii
藤井 俊介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002218041A priority Critical patent/JP2004059678A/en
Publication of JP2004059678A publication Critical patent/JP2004059678A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive unsaturated polyester resin molding material having excellent moldability and electric characteristics, and to provide a fuel cell separator produced by molding the same. <P>SOLUTION: This conductive unsaturated polyester resin molding material is characterized by comprising an unsaturated polyester resin (a), a conductive carbonaceous material (b) and a fatty acid (c) as essential components. The conductive carbonaceous material (a) is preferably graphite. The fuel cell separator is characterized by molding the conductive unsaturated polyester resin molding material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、導電性不飽和ポリエステル樹脂成形材料及びこれを成形してなる燃料電池セパレーターに関する。
【0002】
【従来の技術】
従来、燃料電池セパレーターは熱硬化性樹脂と炭素質粉末の混合物を成形した後、成形体を焼成し導電性を高める黒鉛化工程や、切削や研磨などにより必要形状を付与する機械加工工程を含む方法(例えば、特開2000−169230号公報)、或いは金属板に溝などの形状加工をした上で樹脂コートを行うなどの金属樹脂コンポジットを素材とする方法(例えば、特開平11−345618号公報、新エネルギー産業技術総合開発機構 平成12年度固体高分子型燃料電池研究開発成果報告会要旨集P70)などにより、作成が試みられて来た。ところが黒鉛化工程や機械加工工程を必要とする手法では、大量生産への展開が困難な為にコストが下げられず、一方、溝加工した金属板樹脂コンポジットを素材とする手法では、使用される環境において金属と樹脂との界面層で発生する層剥離及び金属板の腐食問題が解決せず、品質と価格で適切なセパレーターを供給する目処が立っていない。このため、さらに種々の試みがなされており、黒鉛やカーボンブラック等の炭素系基材に、熱硬化性樹脂のうちフェノール樹脂をバインダーの主成分として配合した成形材料での試みがなされている。近年になり燃料電池セパレーターはその用途から軽薄短小化が求められているが、黒鉛高配合による導電性の付与と成形性のバランスが難しくフェノール樹脂を使用した成形材料では十分な導電性と成形性が得られていない。
【0003】
【発明が解決しようとする課題】
本発明は、成形性、電気的特性に優れた導電性不飽和ポリエステル樹脂成形材料ならびにこれを成形してなる燃料電池セパレーターを提供するものである。
【0004】
【課題を解決するための手段】
このような目的は、下記(1)〜(4)記載の本発明により達成される。
(1)不飽和ポリエステル樹脂(a)、導電性を有する炭素系基材(b)及び脂肪酸(c)を必須成分として含有することを特徴とする導電性不飽和ポリエステル樹脂成形材料。
(2)導電性を有する炭素系基材(b)が、黒鉛である上記(1)に記載の導電性不飽和ポリエステル樹脂成形材料。
(3)成形材料全体に対して、不飽和ポリエステル樹脂(a)10〜30重量%、導電性を有する炭素系基材(b)67〜88重量%、及び脂肪酸(c)0.1〜3重量%を含有する上記(1)または(2)に記載の導電性不飽和ポリエステル樹脂成形材料。
(4)上記(1)ないし(3)のいずれかに記載の導電性不飽和ポリエステル樹脂成形材料を成形してなる燃料電池セパレーター。
【0005】
【発明の実施の形態】
本発明は、導電性不飽和ポリエステル樹脂成形材料(以下、「導電性成形材料」という)に関するものである。本発明の導電性成形材料は、不飽和ポリエステル樹脂(a)、導電性を有する炭素系基材(以下、炭素系基材という)(b)及び脂肪酸(c)を必須成分として含有するものであり、好ましくは前記導電性を有する炭素系基材(b)が、黒鉛であるものである。
以下、本発明の導電性成形材料について詳細に説明する。
【0006】
本発明の導電性成形材料に用いられる不飽和ポリエステル樹脂(a)としては、特に限定されないが、オルソタイプ、イソタイプ、パラタイプのものがあり、これらのプレポリマーも含まれる。また、これらの1種または2種以上を併用して用いることができる。
これらの中でも、イソタイプまたはパラタイプのものを使用することが好ましい。これにより、成形体に耐熱性を付与することができる。さらに、パラタイプのものを使用することが特に好ましい。これにより、さらに高い耐熱性を付与することができる。
【0007】
また、これらの不飽和ポリエステル樹脂(a)は、特に限定しないが、室温で固形のもの、液状のもの、を単独または併用して用いることができる。樹脂(a)として、室温で固形のものを用いた場合は、生産工程における取扱いが容易で生産性を高く出来、一方、室温で液状のものを用いた場合は、取扱いや生産性にはやや劣るものの、炭素系基材(b)と混合する際の初期粘度を更に低くすることが容易であるので、樹脂(a)の分散性を高くするには好適である。
【0008】
これらの不飽和ポリエステル樹脂(a)の配合量は、特に限定しないが、これを配合してなる成形材料100重量%に対して10〜30重量%であることが好ましく、さらに好ましくは14〜25重量%である。かかる範囲内の樹脂(a)配合することにより、成形材料を成形する際に十分な流動性と、燃料電池セパレーターなどの成形体に良好な導電性を付与することができる。樹脂(a)の配合量が前記下限値を下回ると、成形時の流動性が不足し精密な形状を成形することが難しいことがある。また、前記上限値を上回ると、導電性を有する炭素系基材(b)の量が少なくなり、燃料電池セパレーター等の導電性成形体として要求される導電性が十分でない。これは樹脂体積が増えることで導電性を有する炭素系基材(b)の粒子間に絶縁層である樹脂が多く存在する確率が高くなり、結果として不導体層部分が増えて導電性を低下させるものと考えられる。
【0009】
本発明の成形材料には、導電性を付与するために炭素系基材(b)を配合する。炭素系基材としては特に限定されないが、黒鉛、炭素繊維、カーボンブラックなどの炭素材が挙げられる。これらの炭素材の中でも導電性の優れているものが好ましく用いられ、具体的にはグラファイト構造が成長したものであり、天然や人造の黒鉛がこれに該当する。天然に算出する鉱物としての黒鉛には天然黒鉛と称される鱗片状の黒鉛と土壌黒鉛があるが、このうち天然黒鉛が導電性に優れている。また、人造黒鉛については、石炭系コークスを熱処理したものと石油系コークスを熱処理したものがあり、形状としては鱗状、針状、塊状、球状、凝集体などがあるが、いずれのものも、X線解析による格子定数精密法で求めるc軸(002)層面間距離(d002)が0.335〜0.460nmの範囲にあって、真比重が2.04〜2.34の範囲にあることが好ましい。
【0010】
炭素系基材(b)には黒鉛が好ましく用いられるが、必要に応じてカーボンブラックや炭素繊維を併用してもよい。カーボンブラックは樹脂相内に分散して導電補助剤として働き、炭素繊維はその形状による効果として、曲げや強靭性などの機械的特性を改善する効果がある。ただし、炭素系基材(b)の配合量が前記下限値未満である系では、カーボンブラックや炭素繊維の併用もその効果が小さくなる。
【0011】
炭素系基材(b)の配合量は特に限定しないが、これを配合してなる組成物100重量%に対して67〜88重量%であることが好ましく、さらに好ましくは73〜85重量%である。かかる範囲内の炭素系基材(b)を配合することにより、成形材料を成形する際に十分な流動性と、成形体である燃料電池セパレーターに良好な導電性を付与することができる。炭素系基材(b)の配合量が前記上限値を越えると、成形時の流動性が不足し精密な形状を成形することが難しいことがある。また、前記下限値を下回ると、燃料電池セパレーターとして要求される導電性が十分でない。これは樹脂体積が増えることで黒鉛粒子間に絶縁層である樹脂が多く存在する確率が高くなり、結果として不導体層部分が増えて導電性を低下させるものと考えられる。
【0012】
本発明の成形材料には、成形時の離型性を付与するために、脂肪酸(c)を配合する。燃料電池セパレーターは複雑な溝形状を持った精密成形体であり、成形後の離型性が重要である。脂肪酸(c)は離型剤として機能するだけでなく、成形材料化の工程や成形時に可塑剤として働き、溶融粘度を下げ、炭素系基材(b)である黒鉛の劈開を低減させたり、充填性を向上させる効果も有する。
ここで用いられる脂肪酸(c)は特に限定しないが、炭素数16〜30のものが好ましい。かかる炭素数の脂肪酸は、室温で固形であって、取扱いが容易であり、十分な離型効果を有する。これらの脂肪酸は、融点が60〜90℃程度であり、成形材料化の際の混練温度や成形材料の成形条件に合わせ、成形材料が適正な粘度や流動性を有するように配合して用いられる。
【0013】
前記脂肪酸(c)の配合量は特に限定しないが、これを配合してなる成形材料全体に対して0.1〜3重量%であることが好ましく、さらに好ましくは0.1〜2重量%である。かかる範囲内で脂肪酸(c)を配合することにより、成形体に良好な離型性を付与することができる。脂肪酸(c)の配合量が前記上限値を越えると、成形体表面にブリードを生ずることがある。また、前記下限値を下回ると、離型性の効果が十分でないことがある。
【0014】
本発明において、導電性成形材料に脂肪酸(c)を配合するのは、以下の理由による。すなわち、従来から成形材料においては、離型剤として脂肪酸やそのエステル、アミド化物、金属塩が用いられてきた。これらの離型剤のうち金属塩を用いると、この成形体を燃料電池セパレータとして使用した場合に、発電時に解離した金属イオンが触媒毒として作用してしまうことがある。また、エステルやアミド化物の場合でも、これらが脂肪酸との化合物であるために発電中に解離して、金属イオンと同じような現象を起こすことにより発電効率の低下が観察される場合がある。これに対し脂肪酸には同様の現象がみられない。これは、その解離物がセパレーター中を通過するプロトンと同じであり、触媒毒として作用しないためではないかと考えられる。
【0015】
本発明の導電性成形材料には、これまで説明した原料の他にも、通常、不飽和ポリエステル樹脂の反応開始剤を用いる。反応開始剤としては特に限定されないが、例えば、ジクミルパーオキサイド、tert−ブチルパーオキサイドなどの過酸化物が一般的に用いられる。
さらにこのほかにも、本発明の目的や効果を損なわない範囲で、必要に応じて補強、寸法精度向上の為の無機フィラー等を配合することができる。
【0016】
本発明の導電性成形材料は、通常の方法により製造することができる。すなわち、前記の各材料を所定量配合し、リボンブレンダーやプラネタリミキサーなどを用いて予備混合する。さらにこれを加熱ロール、二軸押出混練機などを使用して溶融混練し、混練後のものを造粒したり冷却後に粉砕・分級することにより得られる。本発明の導電性樹脂成形材料を用いて成形体を得るための成形方法は、移送成形、射出成形、圧縮成形等があり、特に限定するものではないが、成形性の観点から圧縮成形が好ましい。
【0017】
次に、本発明の燃料電池セパレーターについて説明する。本発明の燃料電池セパレーターは、上記で説明した成形材料を成形してなるものである。
本発明の燃料電池セパレーターの成形方法としては特に限定されないが、通常、圧縮成形やトランスファー成形が用いられる。圧縮成形を用いる場合は、成形品の形状に合わせて予備成形体を成形し、これを成形することで成形性を補助することもできる。圧縮成形の一例を挙げると、圧力200〜1500kg/cm、温度150〜200℃、時間1〜30分間で成形することにより、燃料電池セパレーター用成形体を得ることができる。また、予め予備成形体を成形する場合、圧力50〜400kg/cm、温度20〜70℃、時間0.1〜2分間の条件で行うことができる。このようにして得られた燃料電池セパレーターは、厚み精度が優れ、良好な導電性を有している。
【0018】
【実施例】
以下本発明を実施例により詳しく説明する。成形材料の配合割合は重量%である。
【0019】
実施例1〜8
表1に示した配合にて導電性成形材料を製造した。トアトマイザー粉砕機(不二パウダー(株)製)で微粉砕した不飽和ポリエステル樹脂と反応開始剤を、人造黒鉛、脂肪酸とともにヘンシェルミキサーで10分間混合して予備混合物を得た。これらの混合物を80℃の二軸押出混練機で溶融混練した後、取り出し冷却し顆粒状に粉砕して、成形材料を得た。得られたそれぞれの成形材料を金型温度170℃、成形圧力400kg/cm、成形時間3分で圧縮成形して板状成形体を得た。なお、実施例7の場合、圧力200kg/cm、金型温度50℃、時間1分間の条件で、平面面積95%の板状の予備成形体を成形した後、圧縮成形を行った。これらの成形体の特性を表1下段に示す。
【0020】
比較例1〜3
樹脂をレゾール型フェノール樹脂とし、表1に示した配合にて導電性フェノール樹脂成形材料を製造した。製造方法は実施例の場合と同様である。次いで、実施例7と同じ方法にて予備成形体を成形した後、圧縮成形により板状成形体を成形した。成形体の特性を表1下段に示す。
【0021】
1.燃料電池セパレーター用素材としての導電性評価
(1)貫通方向抵抗率および体積固有抵抗率の評価
実施例及び比較例で得られた成形材料を用いて、金型温度170℃、成形圧力400kg/cm、成形時間3分で圧縮成形して、80×80×15mmの成形体(図1の成形体3)、および80×80×5mmの成形体(図1の成形体4)を得た。これらの成形体を用いて、図1に概略を示す方法にて貫通方向の抵抗を測定し、導電性の評価を行った。即ち、厚さの異なる2枚の成形体3,4を組み合わせて、カーボンペーパー2を介して電極1にセットし、成形体の厚みが異なった状態での抵抗値より、貫通方向の固有抵抗を求めた。比較データとしてJIS K 7194により体積固有抵抗率も測定した。
【0022】
2.燃料電池セパレーター用素材としての諸特性評価
実施例及び比較例で得られた成形材料を用いて、金型温度170℃、成形圧力400kg/cm、成形時間3分で圧縮成形して200×250×2mmの大きさの成形体を得た。これよりテストピースを切り出して作製し評価を行った。(1)曲げ弾性率、曲げ強さ:JIS K 7203により測定した。
(2)厚み精度:200×250×2mmの大きさの成形体をミツトヨ社製3次元測定機を用いて等間隔に16箇所の厚みを測定し、最大値と最小値の差を厚み精度とした。
【0023】
3.成形材料の流動性評価
(1)モノホール流動性:JIS K 6911により測定した。
【0024】
実施例、比較例における原材料の配合および、成形体等の評価結果を表1に示す。
【表1】

Figure 2004059678
【0025】
(表の注)
(1)不飽和ポリエステル樹脂(パラタイプ):大日本インキ化学工業(株)製「ポリライトPB−958」、常温で固形
(2)不飽和ポリエステル樹脂(イソタイプ):武田薬品工業(株)製「ポリマール6099EH」、常温で固形
(3)フェノール樹脂:ジメチレンエーテル型レゾールフェノール樹脂、数平均分子量700、融点80℃
(4)反応開始剤:ジクミルパーオキサイド
(5)人造黒鉛:日本黒鉛工業(株)製人造黒鉛:平均粒径120μm(篩分)、比表面積0.60m/g
(6)離型剤(脂肪酸):ステアリン酸(炭素数18)
【0026】
表1、2に示すように、実施例1〜8はいずれも、不飽和ポリエステル樹脂、炭素系基材(人造黒鉛)、脂肪酸を配合した成形材料である。これらの成形材料による成形体は、他の樹脂(フェノール樹脂など)に比べ成形性がよいため、導電性と成形性のパランスが取れた成形材料となった。特に、実施例1〜5は、導電性と成形性とともに、厚み精度も良好であり、燃料電池セパレーターとして好適な成形材料であった。一方、比較例1〜3は、樹脂として粘度の高いフェノール樹脂を使用したため、導電性と成形性のバランスが不十分であった。
【0027】
【発明の効果】
本発明は、不飽和ポリエステル樹脂、炭素系基材、脂肪酸を必須成分として含有し、好ましくは前記炭素系基材が黒鉛である導電性不飽和ポリエステル樹脂成形材料であり、従来の導電性成形材料に比べ優れた成形性、電気的特性を付与することができる。従って、本発明は、燃料電池セパレータ用の成形材料として好適である。また、本発明の燃料電池セパレータは、前記導電性不飽和ポリエステル樹脂成形材料を使用して効率よく製造することができる。
【図面の簡単な説明】
【図1】本発明の実施例の貫通方向抵抗率の測定法を示す概略図
【符号の説明】
1 電極
2 カーボンペーパー
3 本発明の樹脂組成物の成形体(厚さ15mm)
4 本発明の樹脂組成物の成形体(厚さ5mm)
5 定電流装置
6 電圧計[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive unsaturated polyester resin molding material and a fuel cell separator obtained by molding the same.
[0002]
[Prior art]
Conventionally, a fuel cell separator includes a graphitization step of forming a mixture of a thermosetting resin and a carbonaceous powder and then firing the formed body to increase conductivity, and a machining step of imparting a required shape by cutting or polishing. (For example, JP-A-2000-169230), or a method using a metal-resin composite as a material such as forming a groove on a metal plate and then coating the resin (for example, JP-A-11-345618). , New Energy and Industrial Technology Development Organization, 2000 Polymer Polymer Fuel Cell Research and Development Achievement Report Abstracts P70). However, methods that require a graphitization process or a machining process cannot reduce the cost because it is difficult to expand to mass production.On the other hand, a method that uses a grooved metal plate resin composite as a material is used. In the environment, the problems of delamination and metal plate corrosion occurring at the interface layer between metal and resin have not been solved, and there is no prospect of supplying an appropriate separator with quality and price. For this reason, various attempts have been made, and a molding material in which a phenol resin among thermosetting resins is blended as a main component of a binder with a carbon-based material such as graphite or carbon black has been attempted. In recent years, fuel cell separators have been required to be lighter, thinner and shorter because of their applications.However, it is difficult to balance conductivity with moldability due to the high content of graphite, and molding materials using phenol resin have sufficient conductivity and moldability. Is not obtained.
[0003]
[Problems to be solved by the invention]
The present invention provides a conductive unsaturated polyester resin molding material having excellent moldability and electrical properties, and a fuel cell separator obtained by molding the same.
[0004]
[Means for Solving the Problems]
Such an object is achieved by the present invention described in the following (1) to (4).
(1) A conductive unsaturated polyester resin molding material comprising, as essential components, an unsaturated polyester resin (a), a conductive carbon-based substrate (b), and a fatty acid (c).
(2) The conductive unsaturated polyester resin molding material according to (1), wherein the conductive carbon-based substrate (b) is graphite.
(3) 10 to 30% by weight of unsaturated polyester resin (a), 67 to 88% by weight of conductive carbon-based substrate (b), and 0.1 to 3 of fatty acid (c), based on the whole molding material. The electrically conductive unsaturated polyester resin molding material according to the above (1) or (2), which contains 0.1% by weight.
(4) A fuel cell separator formed by molding the conductive unsaturated polyester resin molding material according to any one of the above (1) to (3).
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a conductive unsaturated polyester resin molding material (hereinafter, referred to as “conductive molding material”). The conductive molding material of the present invention contains an unsaturated polyester resin (a), a conductive carbon-based substrate (hereinafter referred to as a carbon-based substrate) (b), and a fatty acid (c) as essential components. Preferably, the conductive carbon-based substrate (b) is graphite.
Hereinafter, the conductive molding material of the present invention will be described in detail.
[0006]
The unsaturated polyester resin (a) used for the conductive molding material of the present invention is not particularly limited, but includes ortho-type, iso-type, and para-type, and also includes these prepolymers. One or more of these can be used in combination.
Among these, it is preferable to use isotype or paratype ones. Thereby, heat resistance can be imparted to the molded body. Furthermore, it is particularly preferred to use para-types. Thereby, higher heat resistance can be imparted.
[0007]
Moreover, these unsaturated polyester resins (a) are not particularly limited, and solid or liquid ones at room temperature can be used alone or in combination. When a resin that is solid at room temperature is used as the resin (a), it is easy to handle in the production process and productivity can be increased. On the other hand, when a resin that is liquid at room temperature is used, the handling and productivity are slightly increased. Although it is inferior, it is easy to further lower the initial viscosity at the time of mixing with the carbon-based substrate (b), so that it is suitable for increasing the dispersibility of the resin (a).
[0008]
The amount of the unsaturated polyester resin (a) is not particularly limited, but is preferably from 10 to 30% by weight, more preferably from 14 to 25%, based on 100% by weight of the molding material containing the unsaturated polyester resin (a). % By weight. By blending the resin (a) within such a range, sufficient fluidity can be imparted when molding a molding material, and good conductivity can be imparted to a molded article such as a fuel cell separator. When the amount of the resin (a) is less than the lower limit, fluidity during molding may be insufficient, and it may be difficult to mold a precise shape. On the other hand, when the value exceeds the upper limit, the amount of the conductive carbon-based substrate (b) decreases, and the conductivity required for a conductive molded article such as a fuel cell separator is not sufficient. This is because an increase in the resin volume increases the probability that a large amount of resin serving as an insulating layer is present between particles of the conductive carbon-based substrate (b), resulting in an increase in the non-conductive layer portion and a decrease in conductivity. It is thought to cause.
[0009]
The molding material of the present invention contains a carbon-based substrate (b) for imparting conductivity. The carbon-based substrate is not particularly limited, and examples thereof include carbon materials such as graphite, carbon fiber, and carbon black. Among these carbon materials, those having excellent conductivity are preferably used, and specifically, those having a grown graphite structure, such as natural or artificial graphite. Graphite as a mineral calculated naturally includes flaky graphite and soil graphite called natural graphite. Of these, natural graphite has excellent conductivity. In addition, artificial graphite includes those obtained by heat-treating coal-based coke and those obtained by heat-treating petroleum-based coke. The shapes include scales, needles, lumps, spheres, and aggregates. The distance between the c-axis (002) layers (d 002 ) determined by the lattice constant precision method based on line analysis is in the range of 0.335 to 0.460 nm, and the true specific gravity is in the range of 2.04 to 2.34. Is preferred.
[0010]
Graphite is preferably used for the carbon-based substrate (b), but if necessary, carbon black or carbon fiber may be used in combination. Carbon black is dispersed in the resin phase and functions as a conductive auxiliary, and carbon fiber has an effect of improving mechanical properties such as bending and toughness as an effect of its shape. However, in a system in which the blending amount of the carbon-based substrate (b) is less than the lower limit, the combined use of carbon black and carbon fiber has a smaller effect.
[0011]
The amount of the carbon-based substrate (b) is not particularly limited, but is preferably 67 to 88% by weight, more preferably 73 to 85% by weight, based on 100% by weight of the composition containing the carbon-based substrate (b). is there. By blending the carbon-based substrate (b) within such a range, sufficient fluidity can be imparted when molding a molding material, and good conductivity can be imparted to the fuel cell separator as a molded body. If the amount of the carbon-based substrate (b) exceeds the upper limit, fluidity during molding may be insufficient, and it may be difficult to mold a precise shape. On the other hand, below the lower limit, the conductivity required as a fuel cell separator is not sufficient. This is considered to be due to the fact that the probability of the presence of a large amount of the resin serving as the insulating layer between the graphite particles increases due to the increase in the resin volume, and as a result, the nonconductive layer portion increases and the conductivity decreases.
[0012]
The fatty acid (c) is blended with the molding material of the present invention in order to impart releasability during molding. The fuel cell separator is a precision molded body having a complicated groove shape, and the releasability after molding is important. The fatty acid (c) not only functions as a mold release agent, but also acts as a plasticizer during the molding material forming process and during molding, lowering the melt viscosity, reducing the cleavage of graphite as the carbon-based substrate (b), It also has the effect of improving the filling properties.
The fatty acid (c) used here is not particularly limited, but preferably has 16 to 30 carbon atoms. Fatty acids having such a number of carbon atoms are solid at room temperature, are easy to handle, and have a sufficient releasing effect. These fatty acids have a melting point of about 60 to 90 ° C., and are used by being blended so that the molding material has appropriate viscosity and fluidity in accordance with the kneading temperature and molding conditions of the molding material. .
[0013]
The amount of the fatty acid (c) is not particularly limited, but is preferably 0.1 to 3% by weight, more preferably 0.1 to 2% by weight, based on the whole molding material containing the fatty acid (c). is there. By blending the fatty acid (c) within such a range, good releasability can be imparted to the molded article. If the amount of the fatty acid (c) exceeds the upper limit, bleeding may occur on the surface of the molded product. If the value is below the lower limit, the effect of the releasability may not be sufficient.
[0014]
In the present invention, the reason why the fatty acid (c) is blended into the conductive molding material is as follows. That is, fatty acids, their esters, amidates, and metal salts have been conventionally used as mold release agents in molding materials. If a metal salt is used among these release agents, when this molded article is used as a fuel cell separator, metal ions dissociated during power generation may act as catalyst poisons. Further, even in the case of esters and amidates, since these are compounds with fatty acids, they are dissociated during power generation, causing a phenomenon similar to that of metal ions, and a decrease in power generation efficiency may be observed. On the other hand, the same phenomenon is not observed in fatty acids. This is probably because the dissociated product is the same as the proton passing through the separator and does not act as a catalyst poison.
[0015]
For the conductive molding material of the present invention, a reaction initiator of an unsaturated polyester resin is usually used in addition to the above-described raw materials. The reaction initiator is not particularly limited. For example, peroxides such as dicumyl peroxide and tert-butyl peroxide are generally used.
Further, in addition to the above, inorganic fillers for reinforcing and improving dimensional accuracy can be blended as needed, as long as the objects and effects of the present invention are not impaired.
[0016]
The conductive molding material of the present invention can be produced by a usual method. That is, a predetermined amount of each of the above-mentioned materials is blended, and preliminarily mixed using a ribbon blender, a planetary mixer, or the like. Further, this is melt-kneaded using a heating roll, a twin-screw extrusion kneader or the like, and the kneaded product is granulated or cooled and then pulverized and classified. The molding method for obtaining a molded body using the conductive resin molding material of the present invention includes transfer molding, injection molding, and compression molding, and is not particularly limited, but compression molding is preferable from the viewpoint of moldability. .
[0017]
Next, the fuel cell separator of the present invention will be described. The fuel cell separator of the present invention is obtained by molding the molding material described above.
The method for forming the fuel cell separator of the present invention is not particularly limited, but usually, compression molding or transfer molding is used. In the case of using compression molding, a preform can be formed in accordance with the shape of a molded article, and the molded article can be formed to assist the moldability. As an example of compression molding, a molded article for a fuel cell separator can be obtained by molding at a pressure of 200 to 1500 kg / cm 2 , a temperature of 150 to 200 ° C., and a time of 1 to 30 minutes. When the preform is formed in advance, the preform can be formed under the conditions of a pressure of 50 to 400 kg / cm 2 , a temperature of 20 to 70 ° C, and a time of 0.1 to 2 minutes. The fuel cell separator thus obtained has excellent thickness accuracy and good conductivity.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The mixing ratio of the molding material is% by weight.
[0019]
Examples 1 to 8
A conductive molding material was produced according to the formulation shown in Table 1. The unsaturated polyester resin finely pulverized by a tomizer pulverizer (manufactured by Fuji Powder Co., Ltd.) and the reaction initiator were mixed with artificial graphite and fatty acid by a Henschel mixer for 10 minutes to obtain a premix. These mixtures were melt-kneaded in a twin-screw extruder at 80 ° C., taken out, cooled, and pulverized into granules to obtain a molding material. Each of the obtained molding materials was compression-molded at a mold temperature of 170 ° C., a molding pressure of 400 kg / cm 2 and a molding time of 3 minutes to obtain a plate-like molded body. In the case of Example 7, a plate-shaped preform having a plane area of 95% was formed under the conditions of a pressure of 200 kg / cm 2 , a mold temperature of 50 ° C, and a time of 1 minute, followed by compression molding. The properties of these compacts are shown in the lower part of Table 1.
[0020]
Comparative Examples 1-3
The resin was a resol-type phenol resin, and a conductive phenol resin molding material was produced with the composition shown in Table 1. The manufacturing method is the same as that of the embodiment. Next, a preform was molded in the same manner as in Example 7, and then a plate-like molded body was molded by compression molding. The properties of the compact are shown in the lower part of Table 1.
[0021]
1. Conductivity evaluation as material for fuel cell separator (1) Evaluation of resistivity in through direction and specific volume resistivity Using molding materials obtained in Examples and Comparative Examples, mold temperature 170 ° C., molding pressure 400 kg / cm. 2. Compression molding was performed in a molding time of 3 minutes to obtain a molded body of 80 × 80 × 15 mm (molded body 3 in FIG. 1) and a molded body of 80 × 80 × 5 mm (molded body 4 in FIG. 1). Using these molded products, the resistance in the penetration direction was measured by the method schematically shown in FIG. 1 to evaluate the conductivity. That is, two molded articles 3 and 4 having different thicknesses are combined and set on the electrode 1 via the carbon paper 2, and the specific resistance in the penetration direction is determined from the resistance value when the molded articles have different thicknesses. I asked. The volume specific resistivity was also measured according to JIS K 7194 as comparative data.
[0022]
2. Evaluation of Various Characteristics as Material for Fuel Cell Separator Using the molding materials obtained in Examples and Comparative Examples, compression molding was performed at a mold temperature of 170 ° C., a molding pressure of 400 kg / cm 2 , and a molding time of 3 minutes, and 200 × 250. A molded article having a size of × 2 mm was obtained. From this, a test piece was cut out and produced for evaluation. (1) Flexural modulus and flexural strength: Measured according to JIS K7203.
(2) Thickness accuracy: The thickness of a molded body having a size of 200 × 250 × 2 mm is measured at equal intervals at 16 locations using a Mitutoyo three-dimensional measuring device, and the difference between the maximum value and the minimum value is determined as the thickness accuracy. did.
[0023]
3. Fluidity evaluation of molding material (1) Monohole fluidity: Measured according to JIS K 6911.
[0024]
Table 1 shows the blending of the raw materials and the evaluation results of the molded articles and the like in Examples and Comparative Examples.
[Table 1]
Figure 2004059678
[0025]
(Note in the table)
(1) Unsaturated polyester resin (para type): "Polylite PB-958" manufactured by Dainippon Ink and Chemicals, Inc. Solid at room temperature. (2) Unsaturated polyester resin (isotype): "Polymer" manufactured by Takeda Pharmaceutical Co., Ltd. 6099EH ", solid at ordinary temperature (3) Phenol resin: dimethylene ether type resole phenol resin, number average molecular weight 700, melting point 80 ° C
(4) Reaction initiator: dicumyl peroxide (5) Artificial graphite: artificial graphite manufactured by Nippon Graphite Industry Co., Ltd .: average particle size 120 μm (sieving), specific surface area 0.60 m 2 / g
(6) Release agent (fatty acid): stearic acid (18 carbon atoms)
[0026]
As shown in Tables 1 and 2, Examples 1 to 8 are all molding materials containing an unsaturated polyester resin, a carbon-based substrate (artificial graphite), and a fatty acid. Molded articles made of these molding materials had better moldability than other resins (such as phenolic resin), and thus were formed into molding materials having a balance between conductivity and moldability. In particular, Examples 1 to 5 had good thickness accuracy as well as conductivity and moldability, and were suitable molding materials as fuel cell separators. On the other hand, in Comparative Examples 1 to 3, the phenol resin having high viscosity was used as the resin, so that the balance between conductivity and moldability was insufficient.
[0027]
【The invention's effect】
The present invention is a conductive unsaturated polyester resin molding material containing an unsaturated polyester resin, a carbon-based substrate, and a fatty acid as essential components, and preferably the carbon-based substrate is graphite, and a conventional conductive molding material. It is possible to impart excellent moldability and electrical characteristics as compared with those of the above. Therefore, the present invention is suitable as a molding material for a fuel cell separator. Further, the fuel cell separator of the present invention can be manufactured efficiently using the conductive unsaturated polyester resin molding material.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a method for measuring the through-direction resistivity according to an embodiment of the present invention.
Reference Signs List 1 electrode 2 carbon paper 3 molded product of resin composition of the present invention (thickness: 15 mm)
4. Molded product (5 mm thick) of the resin composition of the present invention
5 Constant current device 6 Voltmeter

Claims (4)

不飽和ポリエステル樹脂(a)、導電性を有する炭素系基材(b)及び脂肪酸(c)を必須成分として含有することを特徴とする導電性不飽和ポリエステル樹脂成形材料。A conductive unsaturated polyester resin molding material comprising, as essential components, an unsaturated polyester resin (a), a conductive carbon-based substrate (b) and a fatty acid (c). 導電性を有する炭素系基材(b)が、黒鉛である請求項1に記載の導電性不飽和ポリエステル樹脂成形材料。The conductive unsaturated polyester resin molding material according to claim 1, wherein the conductive carbon-based substrate (b) is graphite. 成形材料全体に対して、不飽和ポリエステル樹脂(a)10〜30重量%、導電性を有する炭素系基材(b)67〜88重量%、及び脂肪酸(c)0.1〜3重量%を含有する請求項1または2に記載の導電性不飽和ポリエステル樹脂成形材料。Based on the entire molding material, 10 to 30% by weight of the unsaturated polyester resin (a), 67 to 88% by weight of the conductive carbon-based substrate (b), and 0.1 to 3% by weight of the fatty acid (c). The conductive unsaturated polyester resin molding material according to claim 1, further comprising: 請求項1ないし3のいずれかに記載の導電性不飽和ポリエステル樹脂成形材料を成形してなる燃料電池セパレーター。A fuel cell separator formed by molding the conductive unsaturated polyester resin molding material according to claim 1.
JP2002218041A 2002-07-26 2002-07-26 Conductive unsaturated polyester resin molding material and fuel cell separator produced by molding the same Pending JP2004059678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002218041A JP2004059678A (en) 2002-07-26 2002-07-26 Conductive unsaturated polyester resin molding material and fuel cell separator produced by molding the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002218041A JP2004059678A (en) 2002-07-26 2002-07-26 Conductive unsaturated polyester resin molding material and fuel cell separator produced by molding the same

Publications (1)

Publication Number Publication Date
JP2004059678A true JP2004059678A (en) 2004-02-26

Family

ID=31939345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218041A Pending JP2004059678A (en) 2002-07-26 2002-07-26 Conductive unsaturated polyester resin molding material and fuel cell separator produced by molding the same

Country Status (1)

Country Link
JP (1) JP2004059678A (en)

Similar Documents

Publication Publication Date Title
JP2006004944A (en) Raw material for molding fuel cell separator, manufacturing method for the same. fuel cell separator and fuel cell
JP2002201257A (en) Electroconductive epoxy resin molding material
JP2003105108A (en) Heat conductive sheet
JP5138239B2 (en) Resin composition for fuel cell separator and fuel cell separator
JP2001335695A (en) Thermosettable resin molding material and molded article using the same
JP4780257B2 (en) Fuel cell separator and manufacturing method thereof
JP5465091B2 (en) Manufacturing method of fuel cell separator and fuel cell separator
JP2006199812A (en) Conductive epoxy resin composition and separator for fuel cell
JP2004059678A (en) Conductive unsaturated polyester resin molding material and fuel cell separator produced by molding the same
JP2003213137A (en) Thermosetting resin molding material and molded article obtained by molding the same
JP4854979B2 (en) Composition for fuel cell separator, method for producing fuel cell separator, and fuel cell separator
JP2004119346A (en) Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator
JP2004075954A (en) Epoxy resin composition for fuel cell separator
EP1995810A1 (en) Fuel cell separator resin composition and fuel cell separator
CN103748177A (en) Heat-curable resin composition, method for producing cured article and molded article thereof, cured article, molded article, and separator for fuel cell
JP2003242995A (en) Molding material for fuel cell separator and its manufacturing method, and fuel cell separator
JP2004281261A (en) Separator for fuel cells and its manufacturing method
JP2006310021A (en) Conductive material and separator for fuel cell
JP2003257447A (en) Separator for fuel cell, manufacturing method therefor, and fuel cell by use of separator for fuel cell
JP4989880B2 (en) Fuel cell separator, resin composition therefor and method for producing the same
JP2003203643A (en) Molding material for fuel cell separator and its manufacturing method and fuel cell separator
JP2009110944A (en) Resin composition for fuel cell separator and fuel cell separator
JPWO2005064721A1 (en) Composition for fuel cell separator and method for producing fuel cell separator
JP2005339899A (en) Resin composite for fuel cell separator
JP2003272648A (en) Molding material for fuel cell separator and manufacturing method of molded product for fuel cell separator