JP2003203643A - Molding material for fuel cell separator and its manufacturing method and fuel cell separator - Google Patents

Molding material for fuel cell separator and its manufacturing method and fuel cell separator

Info

Publication number
JP2003203643A
JP2003203643A JP2002000594A JP2002000594A JP2003203643A JP 2003203643 A JP2003203643 A JP 2003203643A JP 2002000594 A JP2002000594 A JP 2002000594A JP 2002000594 A JP2002000594 A JP 2002000594A JP 2003203643 A JP2003203643 A JP 2003203643A
Authority
JP
Japan
Prior art keywords
fuel cell
molding material
carbon
molding
cell separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002000594A
Other languages
Japanese (ja)
Inventor
Hideki Murayama
英樹 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002000594A priority Critical patent/JP2003203643A/en
Publication of JP2003203643A publication Critical patent/JP2003203643A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding material for a fuel cell separator that is superior in molding and conductivity and a method of manufacturing this without using a complicated process, and a fuel cell separator made by molding the above forming material. <P>SOLUTION: This is a molding material for a fuel cell separator which contains as an essential content a thermosetting resin and a carbon-group base material having conductivity and in which carbon-group base material having conductivity in the material at the stage of molding material has an average particle size of 50 μm or more and 100 μm or less, and 85% or more of all particles has a particle size of 10 μm or more and 200 μm or less. It is desirable that the carbon-group base material having conductivity has a particle size of 50 μm or more and 200 μm or less for 30-50% of all particles, and a particle size of 10 μm or more and less than 50 μm for 35-55% of the all particles. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術的分野】本発明は燃料電池セパレー
ター用成形材料とその製造方法、及び燃料電池セパレー
ターに関するものである。
TECHNICAL FIELD The present invention relates to a molding material for a fuel cell separator, a method for producing the same, and a fuel cell separator.

【0002】[0002]

【従来の技術】固体高分子形燃料電池は燃料ガスと酸化
ガスとの電気化学的反応によって生ずる電気を取り出す
一種の発電装置である。セパレーターとは電極の間で燃
料ガス及び酸化ガスの流路を形成すると共に、両ガスを
隔てる分離板である。また、発生した電気を集める集電
板としての役割も果たしている。従って、セパレーター
には高導電性とガス不透過性が要求される。
2. Description of the Related Art A polymer electrolyte fuel cell is a kind of power generation device that takes out electricity generated by an electrochemical reaction between a fuel gas and an oxidizing gas. The separator is a separation plate that forms a flow path for fuel gas and oxidizing gas between the electrodes and separates the two gases. It also plays the role of a current collector that collects the electricity generated. Therefore, the separator is required to have high conductivity and gas impermeability.

【0003】固体高分子形燃料電池セパレーターの製造
方法としては、カーボン粉末を原料としてこれにフェノ
ール樹脂をバインダとして加え、混練、成形した後に炭
化及び黒鉛化する方法が知られている(例えば特開平8
−222241号公報等)。しかし、この場合、100
0〜3000℃の高温で長時間加熱を行う焼成の工程を
含むとともに、焼成したカーボン板にガス流路を切削加
工する工程を含むために、製造に要する時間とコストが
高くなるという問題があった。或いは、金属板などに溝
をプレス加工した上で樹脂コートを行うなどの金属樹脂
コンポジットを素材とする方法(例えば、特開平11−
345618号公報、新エネルギー産業技術総合開発機
構 平成12年度固体高分子形燃料電池研究開発成果報告
会要旨集P70)などにより製作が試みられてきたが、
使用される環境において金属と樹脂との界面層で層剥離
及び金属板の腐食問題外が解決せず、品質と価格で適切
なセパレーターを供給する目処が立っていない。
As a method for producing a polymer electrolyte fuel cell separator, there is known a method in which carbon powder is used as a raw material, a phenol resin is added as a binder to the carbon powder, and the mixture is kneaded, molded, and then carbonized and graphitized (see, for example, Japanese Patent Application Laid-Open No. Hei 10 (1999) -135242). 8
-222241 publication etc.). However, in this case 100
There is a problem in that the time and cost required for production are increased because it includes the step of firing at a high temperature of 0 to 3000 ° C. for a long time and the step of cutting the gas channel in the fired carbon plate. It was Alternatively, a method of using a metal resin composite as a material, such as pressing a groove on a metal plate or the like and then performing resin coating (for example, JP-A-11-
No. 345618 gazette, New Energy Industrial Technology Development Organization, 2000, Polymer Electrolyte Fuel Cell R & D Results Report Summary, P70)
In the environment in which it is used, there is no solution to the problems of layer peeling and metal plate corrosion at the interface layer between metal and resin, and there is no prospect of supplying an appropriate separator in terms of quality and price.

【0004】このため、更に種々の試みがなされてお
り、黒鉛やカーボンブラック等の導電性炭素系基材を樹
脂でバインドして成形材料化し、これを加熱成形するこ
とにより溝形状を付与するモールド成形がコストと特性
の両立する手法として有望視されている。この手法では
セパレーターとして高導電性を得るために、成形材料中
の炭素系基材の配合量を多くする必要がある。しかし、
炭素系基材をこのように大量に配合した場合、材料の流
動性が十分でないために充填不足となったり、燃料ガス
や酸化ガスが透過してしまったりするなどの問題が発生
してしまう。従って、成形性と導電性を両立させるため
の技術が必要となるが、これには炭素系基材の粒子形状
の最適化が重要なポイントとなる。このため、成形性に
優れ、導電性が高い成形体を得るのに炭素系基材として
使用する黒鉛粒子のアスペクト比を小さくし、粒径を揃
えることが試みられてきた(例えば、特公昭64−34
0号公報)。しかし、この方法は黒鉛粒子の粉砕や磨
砕、及び分級工程が必要となり生産コストが高くなる欠
点があった。しかも、粒度調整により最適化した黒鉛粒
子の粒径を保持して、成形体中に残すためには、樹脂と
黒鉛を混合して、溶剤を大量に用いてスラリー状にして
造粒するなどの方法(特開平11−204120号公
報)により、材料化しなければならず、工程が長くなる
問題があった。
For this reason, various attempts have been made further, and a mold in which a conductive carbon-based material such as graphite or carbon black is bound with a resin to form a molding material, and this is heat-molded to give a groove shape. Molding is considered to be a promising method for achieving both cost and characteristics. In this method, in order to obtain high conductivity as a separator, it is necessary to increase the blending amount of the carbon-based base material in the molding material. But,
When such a large amount of carbon-based material is blended, problems such as insufficient filling due to insufficient fluidity of the material and permeation of fuel gas and oxidizing gas occur. Therefore, a technique for achieving both moldability and conductivity is required, and the optimization of the particle shape of the carbon-based substrate is an important point for this. For this reason, it has been attempted to reduce the aspect ratio of graphite particles used as a carbon-based base material to obtain a molded product having excellent moldability and high conductivity (for example, JP-B-64). -34
No. 0). However, this method has a drawback that the crushing and grinding of the graphite particles and the classification step are required and the production cost becomes high. Moreover, in order to maintain the particle size of the graphite particles optimized by particle size adjustment and leave them in the molded body, the resin and graphite are mixed, and a large amount of the solvent is used to form a slurry and granulate. According to the method (Japanese Patent Laid-Open No. 11-204120), the material has to be made into a material, and there is a problem that the process becomes long.

【0005】[0005]

【発明が解決しようとする課題】本発明は、成形性、導
電性に優れた燃料電池セパレーター用成形材料と、これ
を煩雑な工程を経ることなく製造する方法、およびこの
成形材料を成形してなる燃料電池用セパレーターを提供
するものである。
DISCLOSURE OF THE INVENTION The present invention provides a molding material for a fuel cell separator having excellent moldability and conductivity, a method for producing the same without complicated steps, and molding the molding material. The present invention provides a separator for a fuel cell.

【0006】[0006]

【課題を解決するための手段】このような目的は、下記
の本発明(1)〜(6)によって達成される。 (1)熱硬化性樹脂と導電性を有する炭素系基材とを必
須成分として含有し、成形材料化された段階での成形材
料中の前記導電性を有する炭素系基材が、平均粒径が5
0μm以上、100μm以下の範囲内にあり、かつ、全
粒子の85%以上が粒径10μm以上、200μm以下
の範囲内にあることを特徴とする燃料電池セパレーター
用成形材料。 (2)前記成形材料化された段階での成形材料中の導電
性を有する炭素系基材が、全粒子の30〜50%が粒径
50μm以上、200μm以下の範囲内にあり、かつ、
全粒子の35〜55%が粒径10μm以上、50μm未
満の範囲内にある上記(1)に記載の燃料電池セパレー
ター用成形材料。 (3)導電性を有する炭素系基材の含有量が、熱硬化性
樹脂100重量部に対して300〜900重量部である
上記(1)または(2)に記載の燃料電池セパレーター
用成形材料。 (4)上記(1)ないし(3)のいずれかに記載の燃料
電池セパレーター用成形材料を成形してなる燃料電池セ
パレーター。 (5)上記(1)ないし(3)のいずれかに記載の燃料
電池セパレーター用成形材料を製造する方法であって、
熱硬化性樹脂と導電性を有する炭素系基材とを必須成分
として含有する原材料混合物を、溶融混練装置を用いて
混練することを特徴とする燃料電池セパレーター用成形
材料の製造方法。 (6)上記(5)に記載の燃料電池セパレーター用成形
材料の製造方法により得られた成形材料を成形してなる
燃料電池セパレーター。
Such objects are achieved by the present inventions (1) to (6) described below. (1) The carbonaceous base material containing a thermosetting resin and a carbonaceous base material having conductivity as essential components, and having conductivity in the molding material at the stage of being formed into a molding material has an average particle size. Is 5
A molding material for a fuel cell separator, which is in the range of 0 μm or more and 100 μm or less, and 85% or more of all particles are in the range of 10 μm or more and 200 μm or less. (2) The conductive carbon-based base material in the molding material at the stage of forming the molding material has 30 to 50% of all particles within a particle size range of 50 μm or more and 200 μm or less, and
The molding material for a fuel cell separator according to (1) above, wherein 35 to 55% of all the particles have a particle size of 10 μm or more and less than 50 μm. (3) The molding material for a fuel cell separator according to the above (1) or (2), wherein the content of the conductive carbon-based substrate is 300 to 900 parts by weight with respect to 100 parts by weight of the thermosetting resin. . (4) A fuel cell separator obtained by molding the molding material for a fuel cell separator according to any one of (1) to (3) above. (5) A method for producing the molding material for a fuel cell separator according to any one of (1) to (3) above,
A method for producing a molding material for a fuel cell separator, which comprises kneading a raw material mixture containing a thermosetting resin and a conductive carbon-based substrate as essential components using a melt-kneading device. (6) A fuel cell separator obtained by molding the molding material obtained by the method for producing a molding material for a fuel cell separator according to (5) above.

【0007】[0007]

【発明の実施の形態】以下、本発明について詳しく説明
する。本発明の燃料電池セパレーター用成形材料(以
下、単に「成形材料」という)は、熱硬化性樹脂と導電
性を有する炭素系基材とを必須成分として含有し、成形
材料化された段階での成形材料中の導電性を有する炭素
系基材が、平均粒径が50〜100μmであり、かつ、
全粒子の85%以上が粒径10μm以上、200μm以
下の範囲内にあることを特徴とする。また、本発明の成
形材料の製造方法は、熱硬化性樹脂と導電性を有する炭
素系基材とを必須成分として含有する原材料混合物を、
溶融混練装置を用いて混練することを特徴とする。そし
て、本発明の燃料電池セパレーターは、前記成形材料、
あるいは前記製造方法により得られた成形材料を成形し
てなることを特徴とする。まず、本発明の成形材料につ
いて述べる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The molding material for a fuel cell separator of the present invention (hereinafter, simply referred to as “molding material”) contains a thermosetting resin and a conductive carbon-based substrate as essential components, The conductive carbon-based base material in the molding material has an average particle size of 50 to 100 μm, and
It is characterized in that 85% or more of all particles are in the range of 10 μm or more and 200 μm or less in particle diameter. Further, the method for producing a molding material of the present invention, a raw material mixture containing a thermosetting resin and a carbon-based substrate having conductivity as an essential component,
It is characterized in that kneading is performed using a melt kneading device. And the fuel cell separator of the present invention, the molding material,
Alternatively, it is characterized in that the molding material obtained by the above-mentioned manufacturing method is molded. First, the molding material of the present invention will be described.

【0008】本発明の成形材料で用いられる熱硬化性樹
脂としては特に限定されないが、例えばフェノール樹
脂、エポキシ樹脂、ポリエステル樹脂、ジアリルフタレ
ート樹脂、シリコン樹脂などが挙げられる。これらの中
でも、フェノール樹脂、エポキシ樹脂を用いた場合は、
耐熱性、機械的強度、電気安定性、価格などにおいて優
れている。また、ベースとなる樹脂を低分子量のものか
ら選択することができるため、導電性を有する炭素系基
材の配合比率が高い本発明の成形材料においても、成形
材料製造時の材料粘度を調整しやすく、さらに、成形時
に流動性を付与しやすいという点でも好ましいものであ
る。
The thermosetting resin used in the molding material of the present invention is not particularly limited, but examples thereof include phenol resin, epoxy resin, polyester resin, diallyl phthalate resin, and silicone resin. Among these, when a phenol resin or an epoxy resin is used,
Excellent in heat resistance, mechanical strength, electrical stability and price. In addition, since the base resin can be selected from those having a low molecular weight, even in the molding material of the present invention in which the conductive carbon-based material has a high compounding ratio, the material viscosity at the time of manufacturing the molding material can be adjusted. It is preferable because it is easy and fluidity is easily imparted during molding.

【0009】本発明の成形材料には、成形品に導電性を
付与するために導電性を有する炭素系基材(以下、単に
「炭素系基材」という)を配合する。炭素系基材として
は特に限定されないが、黒鉛、炭素繊維、カーボンブラ
ックなどの炭素材が挙げられる。これらの炭素材の中で
も導電性の優れているものが好ましく用いられ、具体的
にはグラファイト構造が成長したものであり、天然や人
造の黒鉛がこれに該当する。天然に算出する鉱物として
の黒鉛には天然黒鉛と称される鱗片状の黒鉛と土壌黒鉛
があるが、これらの中でも天然黒鉛が導電性に優れてい
る。また、人造黒鉛については、石炭系コークスを熱処
理したものと石油系コークスを熱処理したものがあり、
形状としては鱗状、針状、塊状、球状、凝集体などがあ
るが、いずれのものも、X線解析による格子定数精密法
で求めるc軸(002)層面間距離(d002)が0.3
35〜0.460nmの範囲にあって、真比重が2.0
4〜2.34の範囲にあることが好ましい。なお、天然
黒鉛や人造黒鉛を後加工により球形状化したものは、成
形時に流動性を付与することができるため、これも好ま
しいものである。炭素系基材には主として黒鉛が好まし
く用いられるが、必要に応じてカーボンブラックや炭素
繊維を併用してもよい。カーボンブラックは樹脂相内に
分散して導電補助剤として働き、炭素繊維はその形状に
よる効果として、曲げや強靭性などの機械的特性を改善
する効果がある。
The molding material of the present invention contains a conductive carbon-based substrate (hereinafter, simply referred to as "carbon-based substrate") in order to impart conductivity to the molded product. The carbon-based substrate is not particularly limited, and examples thereof include carbon materials such as graphite, carbon fiber, and carbon black. Among these carbon materials, those having excellent conductivity are preferably used, specifically, those having a grown graphite structure, and natural or artificial graphite corresponds to this. There are scaly graphite called natural graphite and soil graphite as the graphite that is calculated naturally, and among them, natural graphite is excellent in conductivity. In addition, regarding artificial graphite, there are heat treated coal-based coke and heat-treated petroleum-based coke,
The shape includes scales, needles, lumps, spheres, aggregates, etc., and all of them have a c-axis (002) inter-layer surface distance (d 002 ) of 0.3 obtained by a lattice constant precision method by X-ray analysis.
It has a true specific gravity of 2.0 in the range of 35 to 0.460 nm.
It is preferably in the range of 4 to 2.34. It should be noted that natural graphite and artificial graphite, which are spherically shaped by post-processing, are also preferable because they can impart fluidity during molding. Graphite is mainly preferably used for the carbon-based substrate, but carbon black or carbon fiber may be used in combination if necessary. Carbon black is dispersed in the resin phase to act as a conductive auxiliary agent, and carbon fiber has an effect of improving mechanical properties such as bending and toughness as an effect of its shape.

【0010】本発明の炭素系基材は、成形材料化された
段階での平均粒径が50μm以上、100μm以下の範
囲内にあり、かつ、全粒子の85%以上が粒径10μm
以上、200μm以下の範囲内にあることを特徴とす
る。これにより、成形材料を燃料電池セパレーターに成
形する際の成形性や、成形品の導電性を良好なものにす
ることができる。平均粒径が前記上限値を越えたり、粒
径200μmを越える粒子が多くなったりすると、硬化
した熱硬化性樹脂の間に破壊されやすい大きな炭素系基
材が存在することになるため、成形品の機械的強度が低
下する。さらに、炭素系基材間の大きな空間を熱硬化性
樹脂で完全に埋められないことにより、成形品のガス不
透過性も低下するようになる。また、大きな粒径の炭素
系基材が表面に現れ、成形品の表面平滑性が損なわれる
ためにガスケットとの密着性が低下する。一方、燃料電
池セパレーターは高い板厚精度が要求されるが、平均粒
径が前記下限値未満であったり、粒径10μ未満の粒子
が多くなったりすると、成形時の流動性が小さくなるた
め成形性が低下し、十分な厚み精度が得られない。ま
た、成形品内で熱硬化性樹脂を介して炭素系基材どうし
が接触する部分が多くなるため、導電性が低下するよう
になる。
The carbon-based base material of the present invention has an average particle size in the range of 50 μm or more and 100 μm or less at the stage of forming a molding material, and 85% or more of all particles have a particle size of 10 μm.
As described above, it is characterized by being in the range of 200 μm or less. This makes it possible to improve the moldability when molding the molding material into the fuel cell separator and the conductivity of the molded product. If the average particle size exceeds the upper limit or the number of particles exceeds 200 μm, there will be a large carbon-based base material that is easily broken between the cured thermosetting resins, so that a molded product is obtained. Mechanical strength is reduced. Further, since the large space between the carbonaceous base materials cannot be completely filled with the thermosetting resin, the gas impermeability of the molded product also decreases. Further, a carbonaceous base material having a large particle size appears on the surface, and the surface smoothness of the molded product is impaired, so that the adhesion with the gasket decreases. On the other hand, the fuel cell separator is required to have a high plate thickness accuracy, but if the average particle size is less than the lower limit value or the number of particles having a particle size of less than 10 μ is large, the fluidity at the time of molding becomes small, so Properties deteriorate, and sufficient thickness accuracy cannot be obtained. Further, since the carbon-based base materials are in large contact with each other via the thermosetting resin in the molded product, the conductivity is lowered.

【0011】また、本発明の炭素系基材は特に限定され
ないが、成形材料化された段階で全粒子の30〜50%
が粒径50μm以上、200μm以下の範囲内にあり、
かつ、全粒子の35〜55%が粒径10μm以上、50
μm未満の範囲内にあることが好ましい。このような粒
径分布の炭素系基材を含有する成形材料を成形した成形
品においては、炭素系基材は粒径50μm以上、200
μm以下のものが比較的規則正しく配列した構造を基本
とし、この間にできた比較的大きな隙間に、粒径10μ
m以上、50μm未満のものが隙間を充填する形態で配
置する。このような構造は炭素系基材間に大きな隙間が
残存しにくいため、熱硬化性樹脂でこれを充填する際
に、炭素系基材に対する熱硬化性樹脂の配合量が少ない
場合でも未充填が発生しにくく、これにより、成形性、
ガス不透過性を向上させることができる。
The carbonaceous substrate of the present invention is not particularly limited, but 30 to 50% of all particles are formed at the stage of forming a molding material.
Has a particle size of 50 μm or more and 200 μm or less,
In addition, 35 to 55% of all particles have a particle size of 10 μm or more, 50
It is preferably in the range of less than μm. In a molded product obtained by molding a molding material containing a carbon-based substrate having such a particle size distribution, the carbon-based substrate has a particle size of 50 μm or more and 200
Basically, a structure in which particles with a size of less than μm are arranged in a relatively regular manner is used.
Those having a size of m or more and less than 50 μm are arranged so as to fill the gap. With such a structure, a large gap is unlikely to remain between the carbon-based base materials, so that when the thermosetting resin is filled, even if the amount of the thermosetting resin to the carbon-based base material is small, no unfilled material is left. It is less likely to occur, which results in moldability,
The gas impermeability can be improved.

【0012】本発明の成形材料において、熱硬化性樹脂
と炭素系基材との配合割合については特に限定されない
が、熱硬化性樹脂100重量部に対して炭素系基材30
0〜900重量部であることが好ましい。さらに好まし
くは熱硬化性樹脂100重量部に対して炭素系基材50
0〜800重量部である。かかる範囲内の炭素系基材を
配合することにより、成形材料を成形する際に十分な流
動性と、成形品である燃料電池セパレーターに良好な導
電性を付与することができる。炭素系基材の配合量が前
記上限値を上回ると、成形時の流動性が不足し精密な形
状を成形することが難しいことがある。一方、前記下限
値を下回ると、燃料電池セパレーターとして要求される
導電性が十分でなくなることがある。これは、成形品内
において熱硬化性樹脂が占有する体積が増えることで、
炭素系基材粒子間に絶縁層である樹脂が多く存在する確
率が高くなり、結果として絶縁体部分が増えて導電性を
低下させるものと考えられる。
In the molding material of the present invention, the mixing ratio of the thermosetting resin and the carbon-based base material is not particularly limited, but the carbon-based base material 30 relative to 100 parts by weight of the thermosetting resin.
It is preferably from 0 to 900 parts by weight. More preferably, the carbon-based base material 50 is added to 100 parts by weight of the thermosetting resin.
0 to 800 parts by weight. By blending the carbon-based base material in such a range, it is possible to impart sufficient fluidity when molding the molding material and good conductivity to the fuel cell separator that is a molded article. When the blending amount of the carbon-based base material exceeds the upper limit value, the fluidity at the time of molding becomes insufficient, and it may be difficult to mold a precise shape. On the other hand, when the amount is below the lower limit, the conductivity required for the fuel cell separator may be insufficient. This is because the volume occupied by the thermosetting resin in the molded product increases,
It is considered that there is a high probability that a large amount of resin, which is an insulating layer, exists between the carbon-based base particles, and as a result, the number of insulating portions increases and conductivity decreases.

【0013】なお、本発明の成形材料には、これまで説
明した熱硬化性樹脂、炭素系基材以外にも、本発明の目
的および効果に反しない範囲内において、燃料電池セパ
レーター用成形材料として一般的に用いられる滑材、離
型剤、着色剤、硬化促進剤、難燃剤などを用いることが
できる。
The molding material of the present invention may be used as a molding material for a fuel cell separator, in addition to the thermosetting resin and the carbon-based base material described above, within a range not deviating from the object and effect of the present invention. Generally used lubricants, release agents, colorants, curing accelerators, flame retardants and the like can be used.

【0014】次に、本発明の成形材料の製造方法(以
下、単に「製造方法」という)について説明する。本発
明の製造方法としては特に限定されないが、熱硬化性樹
脂と炭素系基材とを必須成分として含有する原材料混合
物を、溶融混練装置を用いて混練する方法が挙げられ
る。溶融混練装置としては特に限定されないが、二軸ニ
ーダー、二軸押出機、単軸押出機、ロール混練装置など
の公知のものを用いることができる。混練条件としても
特に限定されず、用いる原料炭素系基材の粒度分布・性
状、溶融混練装置の種類、成形材料の組成・性状、およ
び目的とする成形材料中の炭素系基材の粒度分布などを
考慮し、最適な混練条件を選定して用いることができ
る。この方法は、熱硬化性樹脂と炭素系基材とを混合
し、溶剤を大量に用いてスラリー状にして造粒する方法
などと比較すると、工程を簡略化でき、溶剤の処理を行
う必要がなく好ましいものである。また、市販されてい
る黒鉛のような炭素系基材は、粒度分布が比較的シャー
プであるものが多い。このような炭素系基材を用いた場
合でも、溶融混練装置で混練することにより、前もって
分級や組合せ等の処理を必要とせずに用いることができ
る。例えば、成形材料化された段階での平均粒径よりも
大きい平均粒径を有する炭素系基材を原料として用い、
熱硬化性樹脂等を配合して溶融混練装置で混練すること
により、平均粒径を小径粒子化し、分布をブロード化す
る。このようにして、成形材料中の炭素系基材を本発明
の効果を有する粒度分布とすることができる。このよう
に溶融混練装置を用いて混練した後、冷却して粉砕する
か、あるいは溶融混練の直後にペレタイザーなどにより
顆粒化することにより、成形材料とすることができる。
Next, a method for producing the molding material of the present invention (hereinafter simply referred to as "production method") will be described. The production method of the present invention is not particularly limited, and examples thereof include a method of kneading a raw material mixture containing a thermosetting resin and a carbon-based substrate as essential components using a melt-kneading device. The melt-kneading device is not particularly limited, but a known device such as a twin-screw kneader, a twin-screw extruder, a single-screw extruder, or a roll kneader can be used. The kneading conditions are also not particularly limited, and the particle size distribution / property of the raw material carbon-based base material to be used, the type of the melt-kneading device, the composition / property of the molding material, and the particle-size distribution of the carbon-based base material in the target molding material, etc. In consideration of the above, the optimum kneading conditions can be selected and used. This method, compared with a method of mixing a thermosetting resin and a carbon-based substrate and granulating in a slurry using a large amount of a solvent, the process can be simplified and it is necessary to treat the solvent. It is not preferable. In addition, many commercially available carbon-based substrates such as graphite have a relatively sharp particle size distribution. Even when such a carbon-based base material is used, it can be used by kneading with a melt-kneading device without requiring treatment such as classification or combination in advance. For example, using as a raw material a carbon-based substrate having an average particle size larger than the average particle size at the stage of forming a molding material,
By blending a thermosetting resin and the like and kneading with a melt-kneading device, the average particle size is reduced to a small particle size and the distribution is broadened. In this way, the carbon-based base material in the molding material can have a particle size distribution having the effect of the present invention. After being kneaded by using the melt-kneading apparatus in this way, it is cooled and pulverized, or granulated by a pelletizer or the like immediately after the melt-kneading to obtain a molding material.

【0015】また、前記溶融混練装置を用いる方法とは
別に、目的とする成形材料中の炭素系基材の粒度分布に
近い粒度分布を有した炭素系基材を原料として用いる場
合は、成形材料製造時に大きな混練エネルギーを与えず
に成形材料化する方法を用いることが好ましい。このよ
うな製造方法としては特に限定されないが、例えば、熱
硬化性樹脂、炭素系基材、その他必要に応じて配合する
原材料を配合した原材料混合物を、ヘンシェルミキサ
ー、リボンブレンダー、ユニバーサルミキサーのような
撹拌装置を用いて混合し、必要に応じて加温しながら処
理することにより、混合しながら造粒化して成形材料と
する方法が挙げられる。この方法を用いる場合は、炭素
系基材以外の原材料を予め微粉砕し、予備混合等を行っ
ておくことが好ましい。これにより、大きな混練エネル
ギーを与えなくても炭素系基材との混合精度を充分なも
のとすることができ、かつ、成形材料中の炭素系基材を
目的とする粒度分布に容易に調製することができる。
In addition to the method using the melt-kneading apparatus, when a carbon-based material having a particle size distribution close to that of the target carbon-based material in the molding material is used as a raw material, It is preferable to use a method of forming a molding material without giving a large kneading energy during manufacturing. Such a production method is not particularly limited, but for example, a raw material mixture containing a thermosetting resin, a carbon-based substrate, and other raw materials to be blended as necessary may be used as a Henschel mixer, a ribbon blender, or a universal mixer. Examples of the method include mixing using a stirrer and performing treatment while heating as needed to granulate while mixing to obtain a molding material. When this method is used, it is preferable to preliminarily pulverize raw materials other than the carbon-based base material and perform preliminary mixing. As a result, the mixing accuracy with the carbon-based base material can be made sufficient without giving a large amount of kneading energy, and the carbon-based base material in the molding material can be easily adjusted to the target particle size distribution. be able to.

【0016】次に、本発明の燃料電池セパレーターにつ
いて説明する。本発明の燃料電池セパレーターは、前記
成形材料、あるいは前記製造方法により得られた成形材
料を成形してなるものである。本発明の燃料電池セパレ
ーターの成形方法としては特に限定されないが、通常、
圧縮成形やトランスファー成形が用いられる。圧縮成形
を用いる場合は、成形品の形状に合わせて予備成形品を
成形し、これを成形することで成形性を補助することも
できる。圧縮成形の一例を挙げると、圧力50〜400
kg/cm2、温度20〜70℃、時間0.1〜2分で予
備成形品を成形し、これをさらに圧力200〜1500
kg/cm2、温度150〜200℃、時間1〜30分
で成形することにより、燃料電池セパレーター用成形品
を得ることができる。
Next, the fuel cell separator of the present invention will be described. The fuel cell separator of the present invention is formed by molding the molding material or the molding material obtained by the manufacturing method. The method for molding the fuel cell separator of the present invention is not particularly limited, but usually,
Compression molding or transfer molding is used. In the case of using compression molding, it is possible to assist the moldability by molding a preformed product according to the shape of the molded product and molding the preformed product. As an example of compression molding, the pressure is 50 to 400.
kg / cm 2, temperature of 20 to 70 ° C., molding the preform in time 0.1-2 min, further pressure this 200 to 1500
A molded article for a fuel cell separator can be obtained by molding at a temperature of 150 to 200 ° C. for 1 to 30 minutes in kg / cm 2 .

【0017】[0017]

【実施例】以下、実施例により本発明を説明する。 1.成形材料の製造 表1に示した原料配合比で、原料混合物をヘンシェルミ
キサー(三井鉱山社製・FM20B)を用い、室温で1
分間350rpmで混合した後、引き続き、二軸押出機
(東芝機械製・TEM−50)を用い、80℃で混練、
造粒した。なお、表1において、「混練時の比エネルギ
ー」とは、二軸混練機の駆動に要した電力量(kW)
を、材料の吐出量(kg)で除した値であり、混練度の
指標とした。
EXAMPLES The present invention will be described below with reference to examples. 1. Manufacture of molding material The raw material mixture was mixed at the raw material mixture ratio shown in Table 1 using a Henschel mixer (FM20B manufactured by Mitsui Mining Co., Ltd.) at room temperature.
After mixing at 350 rpm for min., Subsequently, kneading at 80 ° C. using a twin-screw extruder (TEM-50 manufactured by Toshiba Machine),
Granulated. In Table 1, "specific energy during kneading" means the amount of electric power (kW) required to drive the twin-screw kneader.
Was divided by the discharge amount (kg) of the material and used as an index of the kneading degree.

【0018】2.成形材料化された段階での炭素系基材
の粒度分布測定 実施例および比較例で得られた成形材料約1gを採取
し、これに含有される樹脂分をろ紙を用いてアセトンで
洗い流し、炭素系基材だけを取り出した。これを十分に
乾燥させた後に、レーザー回折型粒度分布測定器(堀場
製作所製・LA920)を用いて測定した。
2. Measurement of particle size distribution of carbon-based substrate at the stage of forming a molding material About 1 g of the molding material obtained in Examples and Comparative Examples was sampled, and the resin content contained in this was washed off with acetone using a filter paper to remove carbon. Only the system base material was taken out. After sufficiently drying this, measurement was performed using a laser diffraction particle size distribution analyzer (LA920, manufactured by Horiba, Ltd.).

【0019】3.燃料電池セパレーター用材料としての
諸特性評価 (1)貫通方向抵抗率の測定 図1に示す方法で行った。実施例および比較例で得られ
た成形材料を用いて、金型温度170℃、成形圧力30
0kg/cm2、成形時間3分で圧縮成形して、80×
80×15mmの試料3、及び80×80×5mmの試
料4を得た。これらの試料を用いて貫通方向の抵抗を測
定した。即ち、厚さの異なる2枚の試料3、4を組み合
わせて、カーボンペーパー2を介して電極1にセット
し、成形体の厚みが異なった状態での抵抗値より、貫通
方向の固有抵抗を求めた。
3. Evaluation of various properties as a material for a fuel cell separator (1) Measurement of resistivity in the penetrating direction It was carried out by the method shown in FIG. Using the molding materials obtained in the examples and comparative examples, the mold temperature was 170 ° C. and the molding pressure was 30.
80 kg / cm 2 , compression molding at a molding time of 3 minutes, 80 ×
80 × 15 mm sample 3 and 80 × 80 × 5 mm sample 4 were obtained. The resistance in the penetrating direction was measured using these samples. That is, two samples 3 and 4 having different thicknesses are combined and set on the electrode 1 via the carbon paper 2, and the specific resistance in the penetrating direction is obtained from the resistance value in the state where the thickness of the molded body is different. It was

【0020】4.燃料電池セパレーター用素材としての
諸特性評価 実施例又は比較例で得られた成形材料を用いて、金型温
度170℃、成形圧力400kg/cm2、成形時間3
分で圧縮成形して300×300×2mmの大きさの成
形品を得た。これよりテストピースを切り出して作成し
て評価を行った。 (1)曲げ弾性率、曲げ強さ:JISK7203により
測定した。 (2)ガス透過率:窒素ガスを用いてJISK7126
A法により測定した。 (3)モノホール流動性:JISK6911により測定
した。 (4)厚み精度:300×300×2mmの大きさの成
形品を用い、ミツトヨ社製・3次元測定器を用いて等間
隔に16ヶ所の厚みを測定し、最大値と最小値の差を厚
み精度とした。
4. Evaluation of various properties as raw material for fuel cell separator Using the molding materials obtained in Examples or Comparative Examples, mold temperature 170 ° C., molding pressure 400 kg / cm 2 , molding time 3
It was compression molded in minutes to obtain a molded product having a size of 300 × 300 × 2 mm. From this, a test piece was cut out, created and evaluated. (1) Flexural modulus and flexural strength: Measured according to JIS K7203. (2) Gas permeability: Using nitrogen gas, JISK7126
It was measured by Method A. (3) Monohole fluidity: measured according to JIS K6911. (4) Thickness accuracy: Using a molded product with a size of 300 x 300 x 2 mm, a thickness of 16 places is measured at equal intervals using a three-dimensional measuring instrument manufactured by Mitutoyo, and the difference between the maximum value and the minimum value is measured. Thickness accuracy was used.

【0021】実施例、比較例における原材料の配合、成
形材料ならびに成形品の評価結果を表1に示す。
Table 1 shows the blending of the raw materials, the molding materials and the evaluation results of the molded products in Examples and Comparative Examples.

【表1】 (表の注) (1)フェノール樹脂:以下の方法により製造したもの
を用いた。2リットルフラスコにホルムアルデヒド
(F)とフェノール(P)をモル比(F/P)=1.7
で投入し、ナフテン酸亜鉛と蓚酸を用いてPHを5.5
に調整し、120rpmで攪拌しながら4時間反応させ
た。次に常圧のまま120℃まで脱水昇温したあと、減
圧かで脱水しながら160℃まで昇温した後、フラスコ
から取り出してフェノール樹脂(フリーフェノール除外
平均分子量=864)を得た。 (2)エポキシ樹脂:ジャパンエポキシレジン社製・エ
ピコート1001(ビスフェノールA型エポキシ樹脂、
数平均分子量900) (3)硬化剤:四国化成工業社製・2MZ (4)脂肪酸:東亜化成社製カルナバワックス(平均炭
素数26、融点83℃) (5)人造黒鉛1:日本黒鉛工業社製・PAG−60
(平均粒径580μm) (6)人造黒鉛2:日本黒鉛工業社製・PAG−80
(平均粒径400μm) (7)人造黒鉛3:日本黒鉛工業社製・PAG−120
(平均粒径120μm)
[Table 1] (Note in the table) (1) Phenol resin: The one produced by the following method was used. Formaldehyde (F) and phenol (P) in a 2 liter flask in molar ratio (F / P) = 1.7.
Then, the pH is adjusted to 5.5 by using zinc naphthenate and oxalic acid.
And the reaction was carried out for 4 hours while stirring at 120 rpm. Next, after dehydration temperature was raised to 120 ° C. under normal pressure, the temperature was raised to 160 ° C. while dehydrating under reduced pressure, and then taken out from the flask to obtain a phenol resin (excluding average molecular weight of free phenol = 864). (2) Epoxy resin: manufactured by Japan Epoxy Resin Co., Ltd., Epicoat 1001 (bisphenol A type epoxy resin,
Number average molecular weight 900) (3) Curing agent: Shikoku Kasei Co., Ltd., 2MZ (4) Fatty acid: Toa Kasei carnauba wax (average carbon number 26, melting point 83 ° C.) (5) Artificial graphite 1: Nippon Graphite Industry Co., Ltd. Made by PAG-60
(Average particle size 580 μm) (6) Artificial graphite 2: PAG-80 manufactured by Nippon Graphite Industry Co., Ltd.
(Average particle size 400 μm) (7) Artificial graphite 3: PAG-120 manufactured by Nippon Graphite Industry Co., Ltd.
(Average particle size 120 μm)

【0022】実施例1、2、3では熱硬化性樹脂、炭素
系基材、脂肪酸などを所定量配合した原材料混合物を、
二軸押出機を用いて成形材料化した。これらは原材料と
して使用した炭素系基材の平均粒径は大きく異なるが、
溶融混練装置で混練することにより炭素系基材が小径粒
子化され、成形材料化された段階での炭素系基材の粒度
分布を好ましい範囲とすることができた。そして、これ
らを用いた成形品は導電性、機械的強度、ガス不透過
性、および厚み精度に優れたものとなった。特に、実施
例1、2では、成形材料化された段階での炭素系基材の
粒度分布が最も好ましいものであったので、厚み精度を
さらに良好なものにすることができた。一方、比較例1
は実施例3で使用したものと同じ炭素系基材を原材料と
して用い、低い混練度で混練したものであるが、炭素系
基材の小径粒子化が不十分であり、成形材料化された段
階での炭素系基材の粒度分布は平均粒径が大きいものと
なった。この結果、これを用いた成形品はガス不透過性
が劣る結果となった。また、比較例2では実施例1で使
用したものと同じ炭素系基材を原材料として用い、高い
混練度で混練したものであるが、炭素系基材の小径粒子
化が進みすぎ、成形材料化された段階での炭素系基材の
粒度分布は平均粒径が小さいものとなった。この結果、
これを用いた成形品は導電性、厚み精度がいずれも低下
した。
In Examples 1, 2, and 3, a raw material mixture prepared by mixing a thermosetting resin, a carbon-based base material, a fatty acid, and the like in predetermined amounts was used.
It was made into a molding material using a twin-screw extruder. Although the average particle size of the carbon-based base materials used as raw materials differs greatly,
By kneading with a melt-kneading device, the carbon-based base material was made into small-sized particles, and the particle size distribution of the carbon-based base material at the stage of forming a molding material could be set within a preferable range. Then, the molded products using these became excellent in conductivity, mechanical strength, gas impermeability, and thickness accuracy. Particularly, in Examples 1 and 2, the particle size distribution of the carbon-based base material at the stage of forming the molding material was the most preferable, so that the thickness accuracy could be further improved. On the other hand, Comparative Example 1
Is a material obtained by using the same carbon-based material as that used in Example 3 as a raw material and kneading at a low kneading degree. The average particle size was large in the particle size distribution of the carbon-based substrate in. As a result, the molded product using this resulted in poor gas impermeability. In Comparative Example 2, the same carbon-based material as that used in Example 1 was used as a raw material and kneaded at a high kneading degree. The average particle size was small in the particle size distribution of the carbon-based substrate at this stage. As a result,
A molded product using this has reduced conductivity and thickness accuracy.

【0023】[0023]

【発明の効果】本発明は、熱硬化性樹脂と導電性を有す
る炭素系基材とを必須成分として含有し、成形材料化さ
れた段階での成形材料中の前記導電性を有する炭素系基
材が、平均粒径が50μm以上、100μm以下の範囲
内にあり、かつ、全粒子の85%以上が粒径10μm以
上、200μm以下の範囲内にあることを特徴とする燃
料電池セパレーター用成形材料である。本発明の成形材
料を用いた成形品は、導電性と成形性に優れたものであ
り、燃料電池セパレーター用として好適に使用できる。
INDUSTRIAL APPLICABILITY The present invention contains a thermosetting resin and a carbonaceous base material having conductivity as essential components, and has a conductive carbonaceous group in the molding material at the stage of forming a molding material. Material having an average particle size of 50 μm or more and 100 μm or less, and 85% or more of all particles having a particle size of 10 μm or more and 200 μm or less. Is. A molded product using the molding material of the present invention has excellent conductivity and moldability, and can be suitably used for a fuel cell separator.

【図面の簡単な説明】[Brief description of drawings]

【図1】 貫通方向抵抗率の測定法を示す概略図FIG. 1 is a schematic diagram showing a method for measuring a through-direction resistivity.

【符号の説明】[Explanation of symbols]

1 電極 2 カーボンペーパー 3 本発明の樹脂組成物の成形物(厚さ15mm) 4 本発明の樹脂組成物の成形物(厚さ5mm) 5 定電流装置 6 電圧計 1 electrode 2 carbon paper 3 Molded product of resin composition of the present invention (thickness: 15 mm) 4 Molded product of resin composition of the present invention (thickness: 5 mm) 5 constant current device 6 Voltmeter

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂と導電性を有する炭素系基
材とを必須成分として含有し、成形材料化された段階で
の成形材料中の前記導電性を有する炭素系基材が、平均
粒径が50μm以上、100μm以下の範囲内にあり、
かつ、全粒子の85%以上が粒径10μm以上、200
μm以下の範囲内にあることを特徴とする燃料電池セパ
レーター用成形材料。
1. A carbon-based base material having conductivity, which contains a thermosetting resin and a carbon-based base material having conductivity as essential components, and is contained in the molding material at the stage of forming a molding material. The particle size is in the range of 50 μm or more and 100 μm or less,
Moreover, 85% or more of all particles have a particle size of 10 μm or more, 200
A molding material for a fuel cell separator, which is in the range of μm or less.
【請求項2】 前記成形材料化された段階での成形材料
中の導電性を有する炭素系基材が、全粒子の30〜50
%が粒径50μm以上、200μm以下の範囲内にあ
り、かつ、全粒子の35〜55%が粒径10μm以上、
50μm未満の範囲内にある請求項1に記載の燃料電池
セパレーター用成形材料。
2. The conductive carbonaceous base material in the molding material at the stage of forming the molding material is 30 to 50 of all particles.
% Within a range of 50 μm or more and 200 μm or less, and 35 to 55% of all particles have a particle size of 10 μm or more,
The molding material for a fuel cell separator according to claim 1, which is in a range of less than 50 μm.
【請求項3】 導電性を有する炭素系基材の含有量が、
熱硬化性樹脂100重量部に対して300〜900重量
部である請求項1または2に記載の燃料電池セパレータ
ー用成形材料。
3. The content of the carbon-based base material having conductivity is
The molding material for a fuel cell separator according to claim 1, which is 300 to 900 parts by weight with respect to 100 parts by weight of the thermosetting resin.
【請求項4】 請求項1ないし3のいずれかに記載の燃
料電池セパレーター用成形材料を成形してなる燃料電池
セパレーター。
4. A fuel cell separator obtained by molding the molding material for a fuel cell separator according to claim 1.
【請求項5】 請求項1ないし3のいずれかに記載の燃
料電池セパレーター用成形材料を製造する方法であっ
て、熱硬化性樹脂と導電性を有する炭素系基材とを必須
成分として含有する原材料混合物を、溶融混練装置を用
いて混練することを特徴とする燃料電池セパレーター用
成形材料の製造方法。
5. A method for producing the molding material for a fuel cell separator according to claim 1, which comprises a thermosetting resin and a carbonaceous base material having conductivity as essential components. A method for producing a molding material for a fuel cell separator, which comprises kneading a raw material mixture using a melt-kneading device.
【請求項6】 請求項5に記載の燃料電池セパレーター
用成形材料の製造方法により得られた成形材料を成形し
てなる燃料電池セパレーター。
6. A fuel cell separator obtained by molding the molding material obtained by the method for producing a molding material for a fuel cell separator according to claim 5.
JP2002000594A 2002-01-07 2002-01-07 Molding material for fuel cell separator and its manufacturing method and fuel cell separator Pending JP2003203643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002000594A JP2003203643A (en) 2002-01-07 2002-01-07 Molding material for fuel cell separator and its manufacturing method and fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002000594A JP2003203643A (en) 2002-01-07 2002-01-07 Molding material for fuel cell separator and its manufacturing method and fuel cell separator

Publications (1)

Publication Number Publication Date
JP2003203643A true JP2003203643A (en) 2003-07-18

Family

ID=27640937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002000594A Pending JP2003203643A (en) 2002-01-07 2002-01-07 Molding material for fuel cell separator and its manufacturing method and fuel cell separator

Country Status (1)

Country Link
JP (1) JP2003203643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108589A (en) * 2003-09-30 2005-04-21 Nichias Corp Separator for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108589A (en) * 2003-09-30 2005-04-21 Nichias Corp Separator for fuel cell
JP4660082B2 (en) * 2003-09-30 2011-03-30 ニチアス株式会社 Fuel cell separator

Similar Documents

Publication Publication Date Title
JP4537809B2 (en) Carbon / phenolic resin composite material, carbon / phenolic resin composite cured material, carbon / phenolic resin composite carbonized material, fuel cell separator, conductive resin composition, battery electrode, electric double layer capacitor
JP2002083609A (en) Composition for fuel cell separator, and its manufacturing method
JP2003203643A (en) Molding material for fuel cell separator and its manufacturing method and fuel cell separator
TWI389380B (en) An isolator material for fuel cell and a method for manufacturing the same
JP2004119346A (en) Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator
JP2003213137A (en) Thermosetting resin molding material and molded article obtained by molding the same
JP2002083608A (en) Separator for fuel cell and its manufacturing method
JP4854979B2 (en) Composition for fuel cell separator, method for producing fuel cell separator, and fuel cell separator
JP2003242995A (en) Molding material for fuel cell separator and its manufacturing method, and fuel cell separator
JP4810142B2 (en) Manufacturing method of fuel cell separator
CA3040446A1 (en) Resin composition for dense fuel cell separators
JP2005129507A (en) Graphitic powder for fuel cell separator, and fuel cell separator
JP2004075954A (en) Epoxy resin composition for fuel cell separator
JP2008291132A (en) Resin composition for fuel cell separator and fuel cell separator
JP2004055375A (en) Molding material for fuel cell separator and its manufacturing method, and fuel cell separator
JP2005008436A (en) Graphite material, method for producing the same, and fuel cell separator
JP2004281261A (en) Separator for fuel cells and its manufacturing method
JP2000331690A (en) Manufacture of separator for fuel cell
JP2003217605A (en) Molding material for fuel cell separator, and fuel cell separator molded of the same
JP2004134159A (en) Molding material for fuel cell separator and fuel cell separator molded from the same
JP4633356B2 (en) Composition for fuel cell separator and method for producing fuel cell separator
JP2006318695A (en) Manufacturing method of graphite powder for fuel cell separator
JP2005108591A (en) Molding material for fuel cell separator
JPWO2005064721A1 (en) Composition for fuel cell separator and method for producing fuel cell separator
JP2004059678A (en) Conductive unsaturated polyester resin molding material and fuel cell separator produced by molding the same