JP2004055732A - Abrading block and polishing method using the abrading block - Google Patents

Abrading block and polishing method using the abrading block Download PDF

Info

Publication number
JP2004055732A
JP2004055732A JP2002209519A JP2002209519A JP2004055732A JP 2004055732 A JP2004055732 A JP 2004055732A JP 2002209519 A JP2002209519 A JP 2002209519A JP 2002209519 A JP2002209519 A JP 2002209519A JP 2004055732 A JP2004055732 A JP 2004055732A
Authority
JP
Japan
Prior art keywords
polishing
polishing body
resin
weight
chelate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002209519A
Other languages
Japanese (ja)
Other versions
JP4116352B2 (en
Inventor
Makoto Sato
佐藤 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2002209519A priority Critical patent/JP4116352B2/en
Publication of JP2004055732A publication Critical patent/JP2004055732A/en
Application granted granted Critical
Publication of JP4116352B2 publication Critical patent/JP4116352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique wherein suitable polishing work by a CMP method is enabled, without using slurry. <P>SOLUTION: Since base material resin 12, constituting an abrasion block 10, is a chelate resin which is provided with chelate ligand 20 combined with a main chain 16 via an alkyl chain 22, the resin 12 is hardly affected by stereostructure barrier and easily captures fine metal particles and metal ions which are released in polishing solution. Further, a hydrophilic group 18 is installed in the resin 12, so that abundant water is applied to the periphery of the chelate ligand 20, and a superior chelate forming capability can be obtained. Since abrasive particles 14, whose mean particle diameter is at least 1nm and smaller than 1μm, are contained at a ratio of at least 5 wt.% and at most 60 wt.%, sufficient abrasive performance can be obtained conjointly with the abrasive performance given to the base material resin 12 itself. As a result, the abrasion block 10, wherein suitable polishing work by a CMP method is enabled without using slurry can be provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば半導体ウェハのCMP法による研磨加工などに好適に用いられる研磨体およびその研磨体を用いた研磨加工方法に関する。
【0002】
【従来の技術】
一般に、超LSIの製造では半導体ウェハに多数のチップを形成し、最終工程で各チップサイズに切断するという製法が採られている。最近では超LSIの製造技術の向上に伴い集積度が飛躍的に向上し、配線の多層化が進んでいる為、各層を形成する工程においては、半導体ウェハ全体の平坦化(グローバルプラナリゼーション)が要求される。そのような半導体ウェハ全体の平坦化を実現する手法のひとつとして、CMP(Chemical Mechanical Polishing:化学的機械的研磨)法という研磨加工方法が挙げられる。このCMP法とは、定盤上に貼られた不織布あるいは発泡パッドなどの研磨パッドにウェハを押しつけて強制回転させ、そこに微細な研磨粒子(遊離砥粒)を含有したスラリ(細かい粉末がたとえば酸性水溶液などの液体中に分散している濃厚な懸濁液)を流して研磨をおこなうものである。かかるCMP法によれば、液体成分による化学的研磨と、遊離砥粒による機械的研磨との相乗効果によって精度の高い研磨加工がおこなわれる。
【0003】
【発明が解決しようとする課題】
しかし、そのような従来のCMP法では、定常的にスラリを研磨パッドに供給しつつ研磨加工をおこなうものであり、いきおいスラリの消費がかさむものであった。使用済みのスラリには産業廃棄物としての処理が求められる為、廃棄に無視できない費用がかかることに加え、環境保護の観点からも好ましくなかった。また、CMP法による研磨加工において最もコストがかかるのは、スラリに含まれる研磨粒子であり、さらには、必ずしもスラリに含まれる研磨粒子のすべてが研磨加工に関与するわけではなく、多数の研磨粒子が無駄に廃棄される為、非経済的であるという不具合があった。その為、スラリを用いないCMP法による研磨加工を実現する技術の開発が求められるようになってきた。
【0004】
本発明者は、スラリを用いないCMP法による研磨加工を実現する技術を開発すべく鋭意研究を継続する中で、所定の割合で研磨粒子を含むキレート樹脂を母材樹脂とした研磨体を用いることで、好適な研磨加工をおこない得るのではないかと考えるに至った。CMP法による研磨加工に際して研磨液中に遊離する微細な金属粒子乃至金属イオンをキレート配位子により捕捉することで、そのキレート配位子を備えた母材樹脂そのものが研磨性能を呈することが期待されるのである。
【0005】
これまでに、特開平11−188647号公報に記載された研磨体のように、研磨材を可撓性支持体の上にキレート樹脂で固定した研磨体が提案されているが、かかる研磨体は研磨性能の向上を目的とするものではないことに加えて、キレート樹脂のキレート形成機能が比較的短時間で飽和してしまう為、帯状の研磨体を送りながら用いて研磨面を連続的に入れ替えつつ研磨加工をおこなえば研磨性能の向上も期待できるが、前述のように定盤上に貼られた状態で用いられる場合には直ぐに金属イオンを捕捉する機能が低下してしまう。また、研磨粒子の目潰れおよび目零れ、あるいは研磨体の目詰まりが発生し易く、そうした場合には研磨性能が低下したり被研磨体の表面性状が悪化したりといった不具合が生じる。さらに、使用後の上記帯状の研磨体には産業廃棄物としての処理が求められる為、廃棄コストが嵩むことに加えて環境保護の観点からも問題がある。
【0006】
また、特開2001−138213号公報に記載された金属用研磨布およびそれを用いた研磨方法のように、キレート樹脂そのものに研磨性能を付与するように金属イオンを捕捉するものも提案されているが、かかる金属用研磨布に関してもキレート樹脂のキレート形成機能が比較的短時間で飽和してしまう為、研磨加工を所定時間継続しておこなう場合には直ぐに研磨能率が低下してしまい実用に耐えない。また、キレート配位子が主鎖に直接結合したキレート樹脂を用いている為、立体構造障害の影響を受け易く研磨液中に遊離する微細な金属粒子乃至金属イオンを捕捉し難いことに加え、主鎖が疎水性である場合にはキレート配位子の周囲に水がもたらされない為、キレート形成能力が比較的弱く、キレート樹脂そのものに十分な研磨性能を付与できない。そのような理由から、結果的にスラリを併用しなければならなかった。すなわち、前記研磨体の母材樹脂としてキレート樹脂を用いた種々の研磨体が提案されているが、スラリを用いずともCMP法による好適な研磨加工を実現する技術は未だ開発されていないのが現状である。
【0007】
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、スラリを用いずともCMP法による好適な研磨加工をおこない得る技術を提供することにある。
【0008】
【課題を解決するための第1の手段】
かかる課題を解決する為に、本第1発明の要旨とするところは、母材樹脂および多数の研磨粒子を備えて円板状に形成され、専らCMP法による研磨加工に用いられる研磨体であって、前記母材樹脂は親水基と、アルキル鎖を介して主鎖に結合したキレート配位子とを備えたキレート樹脂であり、平均粒径が1nm以上1μm未満である研磨粒子を5重量%以上60重量%未満の割合で含んでいることを特徴とするものである。
【0009】
【第1発明の効果】
このようにすれば、前記研磨体を構成する母材樹脂はアルキル鎖を介して主鎖に結合したキレート配位子を備えたキレート樹脂である為、立体構造障害の影響を受け難く研磨液中に遊離する微細な金属粒子乃至金属イオンを捕捉し易いことに加え、親水基を備えたものである為、かかるキレート配位子の周囲に潤沢な水がもたらされることにより優れたキレート形成能力が得られる。また、平均粒径が1nm以上1μm未満である研磨粒子を5重量%以上60重量%未満の割合で含んでいる為、前記母材樹脂そのものに付与される研磨性能と相俟って十分な研磨能力が得られる。すなわち、スラリを用いずともCMP法による好適な研磨加工をおこない得る研磨体を提供することができる。なお、前記研磨粒子が5重量%以下である場合には十分な研磨能力が得られず、60重量%以上である場合には被研磨体にスクラッチ傷が入り易くなる。
【0010】
【第1発明の他の態様】
ここで、好適には、前記研磨体は酸化剤または還元剤を含むものである。このようにすれば、前記研磨体そのものに含まれた酸化剤または還元剤が研磨加工に際して供給される研磨液に溶け出すことにより、CMP法における液体成分による化学的研磨に寄与するという利点がある。
【0011】
また、好適には、前記研磨体は酸化作用あるいは還元作用を有する光触媒を1重量%以上60重量%未満の割合で含むものである。このようにすれば、前記研磨体そのものに1重量%以上60重量%未満の割合で含まれた光触媒が研磨加工に際して供給される研磨液に作用することにより、CMP法において前記研磨体に光を照射することで液体成分による化学的研磨性能が向上し、研磨液として水を用いても十分な研磨性能が得られるという利点がある。なお、前記光触媒が1重量%以下である場合には酸化作用あるいは還元作用が生じ難く、60重量%以上である場合には被研磨体にスクラッチ傷が入り易くなる。
【0012】
【課題を解決するための第2の手段】
また、前記課題を解決するために、本第2発明の要旨とするところは、定盤上に貼られた円板状の研磨体に被研磨体を押しつけて、それらの間に研磨液を供給しつつ相対回転させる形式の研磨加工方法であって、前記研磨体として前記第1発明の研磨体を用い、常時機械的にあるいは化学的に前記母材樹脂を破壊しつつ、前記研磨体と被研磨体との間に供給されて研磨加工に用いられた研磨液を回収し且つ濾過して再び研磨液として供給することを特徴とするものである。
【0013】
【第2発明の効果】
このようにすれば、前記研磨体として前記第1発明の研磨体を用いている為、研磨加工に際して前記母材樹脂そのものが優れた研磨能力を示すことに加え、常時機械的にあるいは化学的に前記母材樹脂を破壊しつつ研磨加工をおこなうものである為、前記研磨体に絶えず新しい研磨面が表出してその母材樹脂のキレート形成能力が低下せずに保たれる。また、前記研磨体と被研磨体との間に供給されて研磨加工に用いられた研磨液を回収し且つ濾過して再び研磨液として供給するものである為、廃棄コストが少なくて済むことに加えて環境保護の観点からも好ましい。すなわち、スラリを用いずともCMP法による好適な研磨加工をおこない得る前記研磨体を用いた好適な研磨加工方法を提供することができる。
【0014】
【第2発明の他の態様】
ここで、好適には、前記研磨体は酸化作用あるいは還元作用を有する光触媒を1重量%以上60重量%未満の割合で含むものであり、その研磨体に波長が200nm以上600nm未満である光を照射するものである。このようにすれば、前記研磨体そのものに1重量%以上60重量%未満の割合で含まれた光触媒がCMP法による研磨加工に際して供給される研磨液に作用し、その研磨体に波長が200nm以上600nm未満である光を照射することで液体成分による化学的研磨性能が向上し、研磨液として水を用いても十分な研磨性能が得られるという利点がある。
【0015】
【実施例】
以下、本発明の好適な実施例を図面に基づいて詳細に説明する。
【0016】
図1は、本発明の一実施例である研磨体10を示す斜視図である。この図に示すように、かかる研磨体10は、母材樹脂12および多数の研磨粒子14を備えてその寸法がたとえば450mmφ×t5mm程度の円板状に形成されたものであり、後述するように、図3に示す研磨加工装置18の研磨定盤20に貼り付けられて、専らCMP(Chemical Mechanical Polishing:化学的機械的研磨)法による研磨加工に用いられるものである。
【0017】
上記母材樹脂12としては、たとえば6重量部のビスフェノール系エポキシ主剤と、2重量部の脂環式アミン系硬化剤と、2重量部の直鎖2官能エポキシおよびイミノ2酢酸とを混合して加熱することにより得られるキレート樹脂などが好適に用いられる。図2は、かかるキレート樹脂における一部の構成を模式的に示す図であり、(a)は親水基がアルキル鎖の中途に設けられた構成例、(b)は親水基がアルキル鎖の側鎖を成す構成例、(c)は親水基がアルキル鎖の中途に設けられた構成と、アルキル鎖の側鎖を成す構成とが組み合わされた構成例である。この図に示すように、上記キレート樹脂は親水基(静電的相互作用や水素結合などによって水分子と弱い結合をつくり、水に対して親和性を示すヒドロキシル基、カルボキシル基、アミノ基、カルボニル基、スルホ基などの官能基や、エステル、アミド、エーテル、ケトン構造)18と、アルキル鎖(一般式C2nで表わされる鎖状原子団)22を介して主鎖16に結合したキレート配位子(金属イオンなどとキレート結合を形成することができる官能基)20とを備えたものであり、金属粒子乃至金属イオンをそのキレート配位子20により捕捉することで、前記母材樹脂12そのものに研磨性能が付与されるものと考えられる。ここで、好適には、上記母材樹脂12はたとえば過酸化水素などの酸化剤または還元剤を含むものであり、さらに好適には、酸化作用あるいは還元作用を有するたとえば酸化チタンなどの光触媒を1重量%以上60重量%未満の割合で含むものである。また、上記研磨粒子14は、平均粒径が1nm以上1μm未満であるたとえば球状シリカ、アルミナ、ジルコニア、セリア、二酸化マンガンなどであり、上記研磨体10に5重量%以上60重量%未満の割合で含まれている。
【0018】
前記研磨体10は、たとえば次のようにして製造される。すなわち、先ずキレート樹脂の原料である上記所定の樹脂材料が混合および加熱されることにより、上記母材樹脂12を構成するキレート樹脂が形成される。次にそのようにして形成されたキレート樹脂が硬化しないうちに上記酸化剤または還元剤、光触媒、および研磨粒子がそのキレート樹脂に投入されて混合および撹拌される。続いてその混合原料が所定の型に注型されて常温で硬化させられることにより、本実施例の研磨体10が製造される。
【0019】
図3は、前記研磨体10が用いられるCMP法による研磨加工装置24の大まかな構成を示す図であり、(a)は研磨定盤26の軸心方向から見た平面図、(b)は正面図である。この図に示すように、かかる研磨加工装置24では、研磨定盤26がその軸心まわりに回転可能に支持された状態で設けられており、その研磨定盤26は、図示しない定盤駆動モータにより、図に矢印で示す1回転方向へ回転駆動されるようになっている。この研磨定盤26の上面すなわち被研磨体が押しつけられる面には、本実施例の研磨体10が貼り付けられている。一方、上記研磨定盤26の近傍には、被研磨体を保持する為のワーク保持部材28がその軸心まわりに回転可能、その軸心方向に移動可能に支持された状態で配置されており、そのワーク保持部材28は、図示しないワーク駆動モータにより図に矢印で示す1回転方向へ回転駆動されるようになっている。かかるワーク保持部材28の下面すなわち上記研磨体10と対向する面には吸着層30を介して被研磨体であるウェハ32が吸着保持される。また、所定の弾性を備えた合成樹脂などから成る仕切板34が、研磨体10の中心を通り径方向に横断するように接触させられており、その仕切板34を挟んでワーク保持部材28側に第1ノズル36が、反対側に第2ノズル38がそれぞれ配置されている。また、前記研磨定盤26の軸心に平行な軸心まわりに回転可能、その軸心方向および前記研磨定盤26の径方向に移動可能に配置された調整工具保持部材40と、その調整工具保持部材40の下面すなわち前記研磨体10と対向する面に取り付けられた研磨体調整工具42とが設けられている。
【0020】
図4は、前記研磨体10を用いてCMP法による研磨加工をおこなう工程を示す工程図である。図3および図4に示すように、CMP法による研磨加工に際しては、先ず研磨液供給工程S1において、上記研磨定盤26およびそれに貼り付けられた研磨体10と、ワーク保持部材28およびそれに吸着保持されたウェハ32とが、上記定盤駆動モータおよびワーク駆動モータによりそれぞれの軸心まわりに回転駆動された状態で、上記第1ノズル36および第2ノズル38から、たとえば酢酸水溶液などの研磨液が上記研磨体10の表面上に供給されつつ、ワーク保持部材28に吸着保持されたウェハ32がその研磨体10に押しつけられる。そうすることにより、上記ウェハ32の被研磨面すなわち上記研磨体10に対向する面が、かかる研磨液による化学的研磨作用と、上記研磨体10により自己供給された研磨粒子14および金属イオンを捕捉して研磨性能が付与された母材樹脂12による機械的研磨作用とによって平坦に研磨される。
【0021】
上記研磨液供給工程S1と前後して、研磨体微量破壊工程S2において、前記研磨体10が微量ずつ破壊される。かかる微量破壊は、前記調整工具保持部材40およびそれに取り付けられた研磨体調整工具42が、図示しない調整工具駆動モータにより回転駆動された状態で前記研磨体10に押しつけられ、必要に応じて前記研磨定盤26の径方向に往復移動させられることにより機械的に、および前記第2ノズル38から供給される研磨液によって化学的に破壊するものであり、研磨加工に際して常時継続しておこなわれる。ここで、図5に示すように、前記研磨加工装置24には前記第1ノズル36および第2ノズル38からそれぞれ供給される研磨液のpHを調整するpH調整器44が備えられており、前記第1ノズル36からは被研磨体であるウェハ32の研磨加工に適したたとえばpH4程度の研磨液が、前記第2ノズル38からは前記研磨体10の母材樹脂12を化学的に微量ずつ破壊するのに適したたとえばpH1程度の研磨液がそれぞれ供給されるようになっている。かかる研磨体微量破壊工程S2により、前記研磨体10の母材樹脂12が微量ずつ破壊される為、絶えず新しい研磨面が表出してその母材樹脂12のキレート形成能力が低下せずに保たれるのである。
【0022】
また、前記研磨液供給工程S1および研磨体微量破壊工程S2と前後して、光照射工程S3において、図3(b)に示すように前記研磨体10に波長が200nm以上600nm未満である光が照射される。かかる研磨体10は、前述のように、酸化作用あるいは還元作用を有するたとえば酸化チタンなどの光触媒を含むものである為、そのように照射される光は前記光触媒に酸化作用あるいは還元作用を生じさせて前記第1ノズル30から供給される研磨液に作用し、CMP法における液体成分による化学的研磨性能が向上する。
【0023】
また、前記研磨液供給工程S1、研磨体微量破壊工程S2、および光照射工程S3と前後して、研磨液回収工程S4において、前記研磨体10と被研磨体であるウェハ32との間に供給されて研磨加工に用いられた研磨液が回収される。ここで、図5に示すように、前記研磨加工装置24には回収された研磨液を濾過する為のたとえば孔径0.1μmφ程度のフィルタ46が備えられており、上記研磨液回収工程S4において回収された研磨液は、研磨液濾過工程S5において、かかるフィルタ46により濾過されて研磨屑などの不要物が除去された後、前述のpH調整器44に送られる。そしてそのpH調整器44によりpHを調整されて前記第1ノズル36および第2ノズル38から供給されることにより、再び研磨加工に用いられるのである。
【0024】
次に、本発明の効果を検証する為に本発明者がおこなった研磨試験について説明する。かかる研磨試験においては、6重量部のビスフェノール系エポキシ主剤と、2重量部の脂環式アミン系硬化剤と、2重量部の直鎖2官能エポキシおよびイミノ2酢酸とを混合して加熱することにより得られるキレート樹脂を45重量%の割合で、平均粒径が0.3μmの球状シリカを55重量%の割合で含む本発明の実施例試料1と、6重量部のビスフェノール系エポキシ主剤と、2重量部の脂環式アミン系硬化剤と、2重量部の直鎖2官能エポキシおよびイミノ2酢酸とを混合して加熱することにより得られるキレート樹脂を45重量%の割合で、平均粒径が0.3μmの球状シリカを40重量%の割合で、平均粒径が0.3μmの酸化チタン粉末を15重量%の割合で含む本発明の実施例試料2と、スラリを用いた従来のCMP法に使用される発泡ウレタンパッドである比較例試料とを用意し、それぞれの試料を用いて研磨加工をおこなった。それらの試料は外径450mmφ×厚さt5mm程度の寸法を備えたものであった。以下にその研磨試験の試験条件および試験結果を示す。
【0025】
[試験条件]
ルブリカント:過酸化水素10重量%水溶液
スラリ:80nmシリカ12重量%含有 過酸化水素10重量%水溶液およびpH3酢酸水溶液の混合液
ワーク1:銅板(150mmφ×t1.0mm)
ワーク2:0.5μmの溝を銅鍍金で埋めたシリコンウェハ(150mmφ×t0.6mm)
ワーク回転数:60rpm[1s−1
研磨定盤回転数:60rpm[1s−1
加工面圧:300gf/cm[29.4kPa]
研磨液量:500ml/min[8.3cm/s]
その他:比較例試料2には波長365nmの光を照射しつつ研磨加工をおこなった

Figure 2004055732
【0026】
かかる試験結果から、研磨液として水を用い且つ研磨体として実施例試料1を用いたもので若干研磨能率が劣る他は、本発明の実施例試料1または2を用いた研磨加工では、研磨液としてスラリを用い且つ研磨体として発泡ウレタンパッドを用いた従来のCMP法による研磨加工と同程度もしくはより優れた研磨能率を示すことが確認された。また、ワーク2のシリコンウェハに形成された0.5μmの溝に埋められた銅鍍金の凹み量を示すディッシング量に関しては、本発明の実施例試料1または2を用いた研磨加工の何れも従来のCMP法による研磨加工より少なくて済み、より優れた表面性状が得られることが確認された。さらには、研磨体として実施例試料2を用い且つ波長365nmの光を照射しつつ研磨加工をおこなったものでは、研磨液として水を用いても研磨能率、ディッシング量共に従来のCMP法による研磨加工より優れた結果が得られることが確認された。すなわち、本発明の研磨体およびその研磨体を用いた研磨加工方法によれば、スラリを用いずともCMP法による好適な研磨加工をおこない得ることが検証された。
【0027】
このように、本実施例によれば、前記研磨体10を構成する母材樹脂12はアルキル鎖22を介して主鎖16に結合したキレート配位子20を備えたキレート樹脂である為、立体構造障害の影響を受け難く研磨液中に遊離する微細な金属粒子乃至金属イオンを捕捉し易いことに加え、親水基18を備えたものである為、かかるキレート配位子20の周囲に潤沢な水がもたらされることにより優れたキレート形成能力が得られる。また、平均粒径が1nm以上1μm未満である研磨粒子14を5重量%以上60重量%未満の割合で含んでいる為、前記母材樹脂12そのものに付与される研磨性能と相俟って十分な研磨能力が得られる。すなわち、スラリを用いずともCMP法による好適な研磨加工をおこない得る研磨体10を提供することができる。
【0028】
また、前記研磨体10は酸化剤または還元剤を含むものである為、前記研磨体10そのものに含まれた酸化剤または還元剤が研磨加工に際して供給される研磨液に溶け出すことにより、CMP法における液体成分による化学的研磨に寄与するという利点がある。
【0029】
また、前記研磨体10は酸化作用あるいは還元作用を有する光触媒を1重量%以上60重量%未満の割合で含むものである為、前記研磨体10そのものに1重量%以上60重量%未満の割合で含まれた光触媒が研磨加工に際して供給される研磨液に作用することにより、CMP法において前記研磨体10に光を照射することで液体成分による化学的研磨性能が向上し、研磨液として水を用いても十分な研磨性能が得られるという利点がある。
【0030】
また、本実施例によれば、前記研磨体10を用いている為、研磨加工に際して前記母材樹脂12そのものが優れた研磨能力を示すことに加え、研磨体微量破壊工程S2において常時機械的にあるいは化学的に前記母材樹脂12を破壊しつつ研磨加工をおこなうものである為、前記研磨体10に絶えず新しい研磨面が表出してその母材樹脂12のキレート形成能力が低下せずに保たれる。また、研磨液供給工程S1において前記研磨体10と被研磨体であるウェハ32との間に供給されて研磨加工に用いられた研磨液を研磨液回収工程S4において回収し、続く研磨液濾過工程S5において濾過して、再び研磨液供給工程S1において研磨液として供給するものである為、従来のスラリを用いたCMP法による研磨加工に比べて廃棄物を1/100〜1/10に削減することができ、廃棄コストが少なくて済むことに加えて環境保護の観点からも好ましい。すなわち、スラリを用いずともCMP法による好適な研磨加工をおこない得る前記研磨体10を用いた好適な研磨加工方法を提供することができる。
【0031】
また、前記研磨体10は酸化作用あるいは還元作用を有する光触媒を1重量%以上60重量%未満の割合で含むものであり、光照射工程S3においてその研磨体に波長が200nm以上600nm未満である光を照射するものである為、前記研磨体10そのものに1重量%以上60重量%未満の割合で含まれた光触媒がCMP法による研磨加工に際して供給される研磨液に作用し、その研磨体10に波長が200nm以上600nm未満である光を照射することで液体成分による化学的研磨性能が向上し、研磨液として水を用いても十分な研磨性能が得られるという利点がある。
【0032】
以上、本発明の好適な実施例を図面に基づいて詳細に説明したが、本発明はこれに限定されるものではなく、さらに別の態様においても実施される。
【0033】
たとえば、前述の実施例では、前記研磨体10は半導体ウェハの研磨加工に用いられていたが、本発明はこれに限定されるものではなく、たとえば金属材料の表面超仕上加工など、様々な被研磨材のCMP法による研磨加工に広く用いられるものである。
【0034】
また、前述の実施例では、前記母材樹脂12の主鎖としてエポキシ系樹脂が用いられていたが、たとえば主鎖としてアクリル系樹脂などを用いたキレート樹脂であっても構わない。前記母材樹脂12は、ビスフェノール系エポキシ主剤と、脂環式アミン系硬化剤と、直鎖2官能エポキシおよびイミノ2酢酸とを混合して加熱することにより得られるキレート樹脂であったが、これはあくまで本発明の好適な実施例に過ぎず、たとえば被研磨体の性状などに応じて様々なキレート樹脂が適宜選択されて用いられる。
【0035】
また、前述の実施例では、前記研磨体10は酸化剤として過酸化水素を含むものであったが、これはたとえば硝酸鉄またはヨウ素酸カリウムなどであっても構わない。すなわち、CMP法による研磨加工に際して研磨液に溶け出してその化学的研磨に寄与する酸化剤または還元剤であればその種類は問わない。
【0036】
また、前述の実施例では、前記研磨体10は光触媒として酸化チタン粉末を含むものであったが、これはたとえばシリコン半導体またはジルコニアなどであっても構わない。すなわち、酸化作用あるいは還元作用を有し、CMP法による研磨加工に際して研磨液の化学的研磨に寄与するものであればその種類は問わない。
【0037】
また、前述の実施例では特に説明していないが、前記母材樹脂12の主鎖16は前記アルキル鎖22のみならず、たとえば親水基を備えた他のアルキル鎖など様々な側鎖を備えたものであっても当然に構わない。
【0038】
その他一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。
【図面の簡単な説明】
【図1】本発明の一実施例である研磨体を示す斜視図である。
【図2】図1の研磨体の母材樹脂における一部の構成を模式的に示す図であり、(a)は親水基がアルキル鎖の中途に設けられた構成例、(b)は親水基がアルキル鎖の側鎖を成す構成例、(c)は親水基がアルキル鎖の中途に設けられた構成と、アルキル鎖の側鎖を成す構成とが組み合わされた構成例である。
【図3】図1の研磨体が用いられるCMP法による研磨加工装置の大まかな構成を示す図であり、(a)は研磨定盤の軸心方向から見た平面図、(b)は正面図である。
【図4】図1の研磨体を用いてCMP法による研磨加工をおこなう工程を示す工程図である。
【図5】図3の研磨加工装置を用いたCMP法による研磨加工における研磨液の循環を説明する図である。
【符号の説明】
10:研磨体
12:母材樹脂
14:研磨粒子
16:主鎖
18:親水基
20:キレート配位子
22:アルキル鎖
26:研磨定盤
32:ウェハ(被研磨体)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polishing body suitably used for polishing a semiconductor wafer by a CMP method, for example, and a polishing method using the polishing body.
[0002]
[Prior art]
Generally, in the manufacture of VLSI, a manufacturing method is adopted in which a large number of chips are formed on a semiconductor wafer and cut into each chip size in the final step. In recent years, the integration degree has been dramatically improved with the improvement of the VLSI manufacturing technology, and multilayer wiring has been promoted. In the process of forming each layer, flattening (global planarization) of the entire semiconductor wafer is required. Required. As one of the methods for realizing such flattening of the entire semiconductor wafer, there is a polishing method called a CMP (Chemical Mechanical Polishing) method. In the CMP method, a wafer is pressed against a polishing pad such as a nonwoven fabric or a foam pad attached on a surface plate and forcedly rotated, and a slurry (fine powder containing fine abrasive particles (free abrasive particles)) Polishing is performed by flowing a thick suspension dispersed in a liquid such as an acidic aqueous solution. According to such a CMP method, high-precision polishing is performed by a synergistic effect of chemical polishing by a liquid component and mechanical polishing by free abrasive grains.
[0003]
[Problems to be solved by the invention]
However, in such a conventional CMP method, the polishing process is performed while the slurry is constantly supplied to the polishing pad, and the consumption of the slurry is increased. Since used slurry is required to be treated as industrial waste, it is not unpreferable from the viewpoint of environmental protection, in addition to the considerable cost of disposal. In addition, the most costly polishing process by the CMP method is the polishing particles contained in the slurry. Further, not all of the polishing particles contained in the slurry are involved in the polishing process. However, there is a problem that it is uneconomic because the waste is wasted. Therefore, there has been a demand for the development of a technique for realizing polishing by a CMP method without using a slurry.
[0004]
The inventor of the present invention has continued his intensive research to develop a technique for realizing a polishing process by a CMP method without using a slurry, and uses a polishing body whose base resin is a chelate resin containing abrasive particles in a predetermined ratio. As a result, they came to think that suitable polishing could be performed. By trapping fine metal particles or metal ions released in the polishing liquid during polishing by the CMP method with a chelating ligand, it is expected that the matrix resin itself having the chelating ligand will exhibit polishing performance. It is done.
[0005]
Until now, there has been proposed a polishing body in which an abrasive is fixed on a flexible support with a chelating resin, such as a polishing body described in JP-A-11-188647. In addition to not improving the polishing performance, the chelating function of the chelating resin saturates in a relatively short time. If the polishing process is performed while the polishing performance is expected to be improved, the function of immediately catching metal ions is deteriorated when used in a state of being attached on a surface plate as described above. In addition, the abrasive particles are likely to be crushed or lost, or the abrasive body is likely to be clogged. In such a case, problems such as a decrease in polishing performance and a deterioration in the surface properties of the body to be polished occur. Further, since the used band-shaped abrasive body after use is required to be treated as industrial waste, there is a problem from the viewpoint of environmental protection in addition to an increase in disposal cost.
[0006]
Further, as in a polishing cloth for metal and a polishing method using the polishing cloth described in Japanese Patent Application Laid-Open No. 2001-138213, a method of capturing metal ions so as to impart polishing performance to a chelate resin itself has been proposed. However, even with such a metal polishing cloth, the chelate forming function of the chelate resin saturates in a relatively short period of time, so that if polishing is continued for a predetermined time, the polishing efficiency is immediately reduced, and the polishing endurable. Absent. In addition, since the chelate ligand uses a chelate resin directly bonded to the main chain, it is difficult to capture fine metal particles or metal ions that are easily affected by the steric structure disorder and released in the polishing solution, When the main chain is hydrophobic, water is not brought around the chelate ligand, so that the chelate-forming ability is relatively weak and sufficient polishing performance cannot be imparted to the chelate resin itself. For that reason, slurry had to be used consequently. That is, various polishing bodies using a chelate resin as a base material resin of the polishing body have been proposed, but a technique for realizing suitable polishing by a CMP method without using a slurry has not yet been developed. It is the current situation.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique capable of performing suitable polishing by a CMP method without using a slurry.
[0008]
[First means for solving the problem]
In order to solve this problem, the gist of the first invention is an abrasive body which is formed in a disk shape with a base resin and a large number of abrasive particles and is exclusively used for polishing by a CMP method. The matrix resin is a chelate resin having a hydrophilic group and a chelate ligand bonded to a main chain via an alkyl chain, and 5% by weight of abrasive particles having an average particle diameter of 1 nm or more and less than 1 μm. It is characterized in that it is contained in a proportion of less than 60% by weight.
[0009]
[Effect of the first invention]
According to this configuration, since the base resin constituting the polishing body is a chelate resin having a chelate ligand bonded to the main chain via an alkyl chain, the base resin is less likely to be affected by the three-dimensional structure obstacle, and thus the polishing liquid is used. In addition to easy capture of fine metal particles or metal ions released to the surface, since it has a hydrophilic group, excellent chelate forming ability is provided by providing abundant water around such a chelate ligand. can get. In addition, since abrasive particles having an average particle diameter of 1 nm or more and less than 1 μm are contained at a ratio of 5% by weight or more and less than 60% by weight, sufficient polishing is performed in combination with the polishing performance given to the base resin itself. Ability is obtained. That is, it is possible to provide a polished body that can perform suitable polishing by a CMP method without using a slurry. When the amount of the abrasive particles is 5% by weight or less, sufficient polishing ability cannot be obtained, and when the amount is 60% by weight or more, scratches are liable to be made on the polished body.
[0010]
[Other aspects of the first invention]
Here, preferably, the polishing body contains an oxidizing agent or a reducing agent. This has the advantage that the oxidizing agent or the reducing agent contained in the polishing body itself dissolves in the polishing liquid supplied during polishing, thereby contributing to chemical polishing by a liquid component in the CMP method. .
[0011]
Preferably, the polishing body contains a photocatalyst having an oxidizing action or a reducing action in a proportion of 1% by weight or more and less than 60% by weight. According to this configuration, the photocatalyst contained in the polishing body itself at a ratio of 1% by weight or more and less than 60% by weight acts on the polishing liquid supplied at the time of the polishing process, so that light is applied to the polishing body in the CMP method. Irradiation has the advantage that the chemical polishing performance by the liquid component is improved, and sufficient polishing performance can be obtained even when water is used as the polishing liquid. When the photocatalyst is 1% by weight or less, an oxidizing action or a reducing action hardly occurs, and when the photocatalyst is 60% by weight or more, scratches easily occur in the polished body.
[0012]
[Second means for solving the problem]
In order to solve the above-mentioned problem, the gist of the second invention is that a polishing target is pressed against a disk-shaped polishing body stuck on a surface plate, and a polishing liquid is supplied therebetween. A polishing method of a type in which the polishing body of the first invention is used as the polishing body while mechanically or chemically destroying the base resin at all times. The polishing liquid supplied between the polishing body and used for polishing is collected, filtered, and supplied again as a polishing liquid.
[0013]
[Effect of the second invention]
With this configuration, since the polishing body of the first invention is used as the polishing body, the base resin itself exhibits excellent polishing performance during polishing, and is also always mechanically or chemically. Since the polishing process is performed while destroying the matrix resin, a new polished surface is constantly exposed on the polishing body, and the chelate forming ability of the matrix resin is maintained without being reduced. Further, since the polishing liquid supplied between the polishing body and the object to be polished and used for polishing is collected, filtered, and supplied again as the polishing liquid, the disposal cost can be reduced. In addition, it is preferable from the viewpoint of environmental protection. That is, it is possible to provide a preferable polishing method using the polishing body, which can perform a preferable polishing process by a CMP method without using a slurry.
[0014]
[Another aspect of the second invention]
Preferably, the polishing body contains a photocatalyst having an oxidizing action or a reducing action in a proportion of 1% by weight or more and less than 60% by weight, and the polishing body emits light having a wavelength of 200 nm or more and less than 600 nm. Irradiation. In this case, the photocatalyst contained in the polishing body itself at a ratio of 1% by weight or more and less than 60% by weight acts on the polishing liquid supplied at the time of polishing by the CMP method, and the wavelength of the polishing body is 200 nm or more. Irradiation with light having a wavelength of less than 600 nm has an advantage that the chemical polishing performance by the liquid component is improved, and sufficient polishing performance can be obtained even when water is used as the polishing liquid.
[0015]
【Example】
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
FIG. 1 is a perspective view showing a polishing body 10 according to one embodiment of the present invention. As shown in FIG. 1, the polishing body 10 includes a base material resin 12 and a large number of polishing particles 14 and is formed in a disk shape having a size of, for example, about 450 mmφ × t5 mm. This is attached to the polishing platen 20 of the polishing apparatus 18 shown in FIG. 3 and is used exclusively for polishing by a CMP (Chemical Mechanical Polishing) method.
[0017]
As the base resin 12, for example, 6 parts by weight of a bisphenol-based epoxy main agent, 2 parts by weight of an alicyclic amine-based curing agent, and 2 parts by weight of a linear bifunctional epoxy and imino diacetic acid are mixed. A chelate resin obtained by heating is preferably used. FIGS. 2A and 2B are diagrams schematically showing a part of the configuration of such a chelate resin, wherein FIG. 2A is a configuration example in which a hydrophilic group is provided in the middle of an alkyl chain, and FIG. (C) is a configuration example in which a configuration in which a hydrophilic group is provided in the middle of an alkyl chain and a configuration forming a side chain of the alkyl chain are combined. As shown in the figure, the chelating resin forms a hydrophilic group (eg, a hydroxyl group, a carboxyl group, an amino group, a carbonyl group, which forms a weak bond with a water molecule by an electrostatic interaction or a hydrogen bond and has an affinity for water). Group, a sulfo group or another functional group, an ester, amide, ether or ketone structure) 18 and an alkyl chain (general formula C n H 2n And a chelating ligand (functional group capable of forming a chelate bond with a metal ion or the like) 20 bonded to the main chain 16 via a chain atom group 22 represented by It is considered that by capturing metal ions by the chelating ligand 20, polishing performance is imparted to the base resin 12 itself. Here, preferably, the base material resin 12 contains an oxidizing agent such as hydrogen peroxide or a reducing agent. More preferably, a photocatalyst such as titanium oxide having an oxidizing or reducing action is used. It is contained in a proportion of not less than 60% by weight by weight. The abrasive particles 14 are, for example, spherical silica, alumina, zirconia, ceria, manganese dioxide, or the like having an average particle size of 1 nm or more and less than 1 μm. include.
[0018]
The polishing body 10 is manufactured, for example, as follows. That is, first, the predetermined resin material, which is a raw material of the chelate resin, is mixed and heated to form the chelate resin constituting the base resin 12. Next, before the chelate resin thus formed is cured, the oxidizing agent or the reducing agent, the photocatalyst, and the abrasive particles are charged into the chelate resin, and mixed and stirred. Subsequently, the mixed material is cast into a predetermined mold and cured at room temperature, whereby the polishing body 10 of the present embodiment is manufactured.
[0019]
FIGS. 3A and 3B are diagrams schematically illustrating a configuration of a polishing apparatus 24 using the polishing body 10 by the CMP method, wherein FIG. 3A is a plan view of the polishing platen 26 as viewed from an axial direction, and FIG. It is a front view. As shown in this figure, in such a polishing apparatus 24, a polishing platen 26 is provided so as to be rotatable about its axis, and the polishing platen 26 is provided with a platen driving motor (not shown). Thus, it is driven to rotate in one rotation direction indicated by an arrow in the figure. The polishing body 10 of this embodiment is attached to the upper surface of the polishing platen 26, that is, the surface on which the object to be polished is pressed. On the other hand, in the vicinity of the polishing platen 26, a work holding member 28 for holding an object to be polished is disposed so as to be rotatable around its axis and supported so as to be movable in its axis direction. The work holding member 28 is driven to rotate in one rotation direction indicated by an arrow in the figure by a work drive motor (not shown). A wafer 32 to be polished is suction-held on the lower surface of the work holding member 28, that is, the surface opposed to the polishing body 10 via the suction layer 30. Further, a partition plate 34 made of synthetic resin or the like having a predetermined elasticity is brought into contact with the polishing body 10 so as to cross the center of the polishing body 10 in the radial direction. And the second nozzle 38 is arranged on the opposite side. An adjusting tool holding member 40 rotatable about an axis parallel to the axis of the polishing platen 26 and movable in the axial direction and in the radial direction of the polishing platen 26; A polishing body adjusting tool 42 attached to the lower surface of the holding member 40, that is, the surface facing the polishing body 10 is provided.
[0020]
FIG. 4 is a process diagram showing a process of performing polishing by a CMP method using the polishing body 10. As shown in FIGS. 3 and 4, in the polishing process by the CMP method, first, in the polishing liquid supply step S1, the polishing platen 26, the polishing body 10 attached thereto, the work holding member 28, and the suction holding thereof. The polishing liquid such as acetic acid aqueous solution is discharged from the first nozzle 36 and the second nozzle 38 from the first nozzle 36 and the second nozzle 38 in a state where the wafer 32 thus rotated is driven to rotate around its respective axis by the platen drive motor and the work drive motor. While being supplied onto the surface of the polishing body 10, the wafer 32 sucked and held by the work holding member 28 is pressed against the polishing body 10. By doing so, the surface to be polished of the wafer 32, that is, the surface opposite to the polishing body 10, captures the chemical polishing action of the polishing liquid and the polishing particles 14 and metal ions supplied by the polishing body 10 by themselves. As a result, the substrate is polished flatly by the mechanical polishing action of the base resin 12 to which the polishing performance is imparted.
[0021]
Before and after the polishing liquid supply step S1, in the polishing body minute destruction step S2, the polishing body 10 is broken down little by little. Such a small amount of destruction is caused when the adjusting tool holding member 40 and the polishing body adjusting tool 42 attached thereto are pressed against the polishing body 10 while being rotated and driven by an adjusting tool driving motor (not shown), and the polishing It is broken mechanically by the reciprocating movement in the radial direction of the platen 26 and chemically by the polishing liquid supplied from the second nozzle 38, and is continuously performed at the time of polishing. Here, as shown in FIG. 5, the polishing apparatus 24 is provided with a pH adjuster 44 for adjusting the pH of the polishing liquid supplied from the first nozzle 36 and the second nozzle 38, respectively. From the first nozzle 36, a polishing liquid having a pH of, for example, about 4 suitable for polishing the wafer 32 to be polished, and from the second nozzle 38, the base resin 12 of the polished body 10 is chemically broken down by minute amounts. For example, a polishing liquid having a pH of about 1, which is suitable for polishing, is supplied. In the polishing body minute destruction step S2, the base material resin 12 of the polishing body 10 is broken down by small amounts, so that a new polished surface is constantly exposed and the chelate forming ability of the base material resin 12 is maintained without deterioration. It is done.
[0022]
Before and after the polishing liquid supply step S1 and the polishing body minute destruction step S2, in the light irradiation step S3, light having a wavelength of 200 nm or more and less than 600 nm is applied to the polishing body 10 as shown in FIG. Irradiated. As described above, since the polishing body 10 includes a photocatalyst such as titanium oxide having an oxidizing or reducing action as described above, the light irradiated in such a manner causes the photocatalyst to generate an oxidizing action or a reducing action, It acts on the polishing liquid supplied from the first nozzle 30, and the chemical polishing performance by the liquid component in the CMP method is improved.
[0023]
Before and after the polishing liquid supply step S1, the polishing body minute destruction step S2, and the light irradiation step S3, the polishing liquid is supplied between the polishing body 10 and the wafer 32 to be polished in the polishing liquid recovery step S4. Then, the polishing liquid used for the polishing process is collected. Here, as shown in FIG. 5, the polishing apparatus 24 is provided with a filter 46 having a pore diameter of, for example, about 0.1 μm for filtering the collected polishing liquid. The polishing liquid thus obtained is filtered by the filter 46 in a polishing liquid filtration step S5 to remove unnecessary substances such as polishing dust, and then sent to the pH adjuster 44 described above. Then, the pH is adjusted by the pH adjuster 44 and supplied from the first nozzle 36 and the second nozzle 38, so that it is used again for polishing.
[0024]
Next, a polishing test performed by the present inventor to verify the effect of the present invention will be described. In the polishing test, 6 parts by weight of a bisphenol-based epoxy base material, 2 parts by weight of an alicyclic amine-based curing agent, and 2 parts by weight of a linear bifunctional epoxy and imino diacetic acid are mixed and heated. Example sample 1 of the present invention containing the chelate resin obtained by the above at a rate of 45% by weight and spherical silica having an average particle diameter of 0.3 μm at a rate of 55% by weight, 6 parts by weight of a bisphenol-based epoxy main agent, A chelate resin obtained by mixing and heating 2 parts by weight of an alicyclic amine-based curing agent, 2 parts by weight of a linear bifunctional epoxy and iminodiacetic acid at an average particle size of 45% by weight. Example 2 of the present invention containing spherical silica having a particle size of 0.3 μm at a ratio of 40% by weight and titanium oxide powder having an average particle size of 0.3 μm at a ratio of 15% by weight, and a conventional CMP using a slurry. Used in the law Prepared and Comparative Sample a urethane foam pad that was subjected to polishing using each of the samples. These samples had dimensions of about 450 mm in outer diameter x about 5 mm in thickness. The test conditions and test results of the polishing test are shown below.
[0025]
[Test condition]
Lubricant: 10% by weight aqueous solution of hydrogen peroxide
Slurry: 80 nm silica containing 12 wt% Hydrogen peroxide 10 wt% aqueous solution and pH 3 acetic acid aqueous solution
Work 1: Copper plate (150mmφ × t1.0mm)
Work 2: Silicon wafer (150 mmφ × t0.6 mm) with 0.5 μm grooves filled with copper plating
Work rotation speed: 60 rpm [1s] -1 ]
Polishing table rotation speed: 60 rpm [1s] -1 ]
Working surface pressure: 300gf / cm 2 [29.4 kPa]
Polishing liquid amount: 500 ml / min [8.3 cm 3 / S]
Other: Comparative Example Sample 2 was polished while being irradiated with light having a wavelength of 365 nm.
Figure 2004055732
[0026]
From the test results, the polishing using the sample 1 or 2 of the present invention was performed in a polishing process using the sample 1 or 2 of the present invention, except that the polishing efficiency was slightly reduced by using water as the polishing solution and using the sample 1 of the embodiment as the polishing body. As a result, it was confirmed that the polishing efficiency was approximately the same as or superior to that of a conventional CMP process using a slurry using a slurry and a foamed urethane pad as a polishing body. Regarding the dishing amount indicating the amount of depression of copper plating buried in the 0.5 μm groove formed in the silicon wafer of the work 2, any of the polishing processes using the sample 1 or 2 of the embodiment of the present invention It was confirmed that less polishing was required than the polishing process by the CMP method, and more excellent surface properties could be obtained. Furthermore, in the case where the polishing was performed using the sample of Example 2 as the polishing body and irradiating light with a wavelength of 365 nm, the polishing efficiency and the dishing amount were both reduced by the conventional CMP method even when water was used as the polishing liquid. It was confirmed that better results were obtained. That is, it has been verified that the polishing body of the present invention and the polishing method using the polishing body can perform suitable polishing by the CMP method without using a slurry.
[0027]
As described above, according to the present embodiment, since the base resin 12 constituting the polishing body 10 is a chelate resin having the chelate ligand 20 bonded to the main chain 16 via the alkyl chain 22, the base resin 12 is three-dimensional. In addition to being easy to capture fine metal particles or metal ions which are hardly affected by structural obstacles and liberated in the polishing liquid, since they have the hydrophilic group 18, the surroundings of the chelating ligand 20 are abundant. The provision of water provides excellent chelating ability. In addition, since the abrasive particles 14 having an average particle diameter of 1 nm or more and less than 1 μm are contained at a ratio of 5% by weight or more and less than 60% by weight, the polishing performance given to the base resin 12 itself is sufficient. Polishing ability is obtained. That is, it is possible to provide the polishing body 10 that can perform a preferable polishing process by the CMP method without using the slurry.
[0028]
In addition, since the polishing body 10 contains an oxidizing agent or a reducing agent, the oxidizing agent or the reducing agent contained in the polishing body 10 itself dissolves in a polishing liquid supplied at the time of polishing, thereby forming a liquid in the CMP method. There is an advantage that it contributes to chemical polishing by the component.
[0029]
Further, since the polishing body 10 contains a photocatalyst having an oxidizing action or a reducing action at a ratio of 1% by weight or more and less than 60% by weight, the polishing body 10 itself contains 1% by weight or more and less than 60% by weight. The photocatalyst acts on the polishing liquid supplied at the time of polishing, thereby irradiating the polishing body 10 with light in the CMP method, thereby improving the chemical polishing performance by the liquid component, and using water as the polishing liquid. There is an advantage that sufficient polishing performance can be obtained.
[0030]
Further, according to the present embodiment, since the polishing body 10 is used, the base resin 12 itself exhibits excellent polishing performance during polishing, and the polishing body 10 is always mechanically used in the polishing body minute destruction step S2. Alternatively, since the polishing process is performed while chemically destroying the base material resin 12, a new polished surface is constantly exposed on the polishing body 10 and the chelate forming ability of the base material resin 12 is maintained without deterioration. Dripping. The polishing liquid supplied between the polishing body 10 and the wafer 32 to be polished in the polishing liquid supply step S1 and used for polishing is collected in a polishing liquid collection step S4, and the polishing liquid filtration step is performed. Since it is filtered in S5 and supplied again as a polishing liquid in the polishing liquid supply step S1, waste is reduced to 1/100 to 1/10 as compared with polishing processing by the CMP method using a conventional slurry. This is preferable from the viewpoint of environmental protection in addition to the low disposal cost. That is, it is possible to provide a suitable polishing method using the polishing body 10 that can perform a suitable polishing process by the CMP method without using a slurry.
[0031]
The polishing body 10 contains a photocatalyst having an oxidizing action or a reducing action at a ratio of 1% by weight or more and less than 60% by weight. In the light irradiation step S3, the polishing body has a light wavelength of 200 nm or more and less than 600 nm. Therefore, the photocatalyst contained in the polishing body 10 itself at a ratio of 1% by weight or more and less than 60% by weight acts on the polishing liquid supplied at the time of polishing by the CMP method, and the polishing body 10 By irradiating light having a wavelength of 200 nm or more and less than 600 nm, there is an advantage that chemical polishing performance by a liquid component is improved, and sufficient polishing performance can be obtained even when water is used as a polishing liquid.
[0032]
As described above, the preferred embodiments of the present invention have been described in detail with reference to the drawings. However, the present invention is not limited to these embodiments, and may be implemented in other embodiments.
[0033]
For example, in the above-described embodiment, the polishing body 10 was used for polishing a semiconductor wafer. However, the present invention is not limited to this. It is widely used for polishing of abrasives by the CMP method.
[0034]
In the above-described embodiment, an epoxy resin is used as a main chain of the base resin 12, but a chelate resin using an acrylic resin or the like as a main chain may be used. The base material resin 12 is a chelate resin obtained by mixing and heating a bisphenol-based epoxy base material, an alicyclic amine-based curing agent, a linear bifunctional epoxy, and iminodiacetic acid. This is merely a preferred embodiment of the present invention, and various chelating resins are appropriately selected and used depending on, for example, the properties of the object to be polished.
[0035]
Further, in the above-described embodiment, the polishing body 10 contains hydrogen peroxide as an oxidizing agent. However, this may be, for example, iron nitrate or potassium iodate. That is, any type of oxidizing or reducing agent can be used as long as it is an oxidizing agent or a reducing agent that dissolves in the polishing liquid during polishing by the CMP method and contributes to the chemical polishing.
[0036]
Further, in the above-described embodiment, the polishing body 10 contains titanium oxide powder as a photocatalyst, but this may be a silicon semiconductor or zirconia, for example. In other words, any type may be used as long as it has an oxidizing action or a reducing action and contributes to the chemical polishing of the polishing liquid during polishing by the CMP method.
[0037]
Although not particularly described in the above-described embodiment, the main chain 16 of the base resin 12 includes not only the alkyl chain 22 but also various side chains such as another alkyl chain having a hydrophilic group. Of course, it does not matter.
[0038]
Although not illustrated one by one, the present invention is embodied with various changes without departing from the spirit thereof.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a polishing body according to one embodiment of the present invention.
FIGS. 2A and 2B are diagrams schematically showing a part of a structure of a base resin of the polishing body of FIG. 1, wherein FIG. 2A is a structural example in which a hydrophilic group is provided in the middle of an alkyl chain, and FIG. A configuration example in which the group forms a side chain of an alkyl chain, and (c) is a configuration example in which a configuration in which a hydrophilic group is provided in the middle of the alkyl chain and a configuration forming a side chain of the alkyl chain are combined.
3A and 3B are diagrams schematically illustrating a configuration of a polishing apparatus using the polishing body of FIG. 1 by a CMP method, wherein FIG. 3A is a plan view of the polishing platen viewed from an axial center direction, and FIG. FIG.
FIG. 4 is a process diagram showing a step of performing polishing by a CMP method using the polishing body of FIG. 1;
FIG. 5 is a diagram illustrating circulation of a polishing liquid in polishing by a CMP method using the polishing apparatus of FIG. 3;
[Explanation of symbols]
10: Polished body
12: Base material resin
14: abrasive particles
16: Main chain
18: hydrophilic group
20: Chelating ligand
22: alkyl chain
26: Polishing surface plate
32: Wafer (object to be polished)

Claims (5)

母材樹脂および多数の研磨粒子を備えて円板状に形成され、専らCMP法による研磨加工に用いられる研磨体であって、
前記母材樹脂は親水基と、アルキル鎖を介して主鎖に結合したキレート配位子とを備えたキレート樹脂であり、平均粒径が1nm以上1μm未満である研磨粒子を5重量%以上60重量%未満の割合で含んでいることを特徴とする研磨体。
A polishing body which is formed in a disk shape with a base resin and a large number of polishing particles, and is exclusively used for polishing by a CMP method,
The base resin is a chelate resin having a hydrophilic group and a chelate ligand bonded to a main chain via an alkyl chain. The base resin is made of abrasive particles having an average particle diameter of 1 nm or more and less than 1 μm in an amount of 5% by weight to 60% by weight. A polishing body, characterized in that the polishing body is contained in a proportion of less than% by weight.
前記研磨体は酸化剤または還元剤を含むものである請求項1の研磨体。2. The polishing body according to claim 1, wherein the polishing body contains an oxidizing agent or a reducing agent. 前記研磨体は酸化作用あるいは還元作用を有する光触媒を1重量%以上60重量%未満の割合で含むものである請求項1または2の研磨体。3. The polishing body according to claim 1, wherein the polishing body contains a photocatalyst having an oxidizing action or a reducing action at a ratio of 1% by weight or more and less than 60% by weight. 定盤上に貼られた円板状の研磨体に被研磨体を押しつけて、それらの間に研磨液を供給しつつ相対回転させる形式の研磨加工方法であって、
前記研磨体として請求項1から3の何れかの研磨体を用い、常時機械的にあるいは化学的に前記母材樹脂を破壊しつつ、前記研磨体と被研磨体との間に供給されて研磨加工に用いられた研磨液を回収し且つ濾過して再び研磨液として供給することを特徴とする研磨加工方法。
A polishing method of a type in which the object to be polished is pressed against a disk-shaped abrasive body stuck on a surface plate and relatively rotated while supplying a polishing liquid therebetween,
The polishing body according to any one of claims 1 to 3, which is supplied between the polishing body and the object to be polished while constantly or mechanically destroying the base resin. A polishing method, wherein a polishing liquid used for processing is collected, filtered, and supplied again as a polishing liquid.
前記研磨体として請求項3の研磨体を用い、該研磨体に波長が200nm以上600nm未満である光を照射するものである請求項4の研磨加工方法。The polishing method according to claim 4, wherein the polishing body according to claim 3 is used as the polishing body, and the polishing body is irradiated with light having a wavelength of 200 nm or more and less than 600 nm.
JP2002209519A 2002-07-18 2002-07-18 Polishing body and polishing method using the polishing body Expired - Lifetime JP4116352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209519A JP4116352B2 (en) 2002-07-18 2002-07-18 Polishing body and polishing method using the polishing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209519A JP4116352B2 (en) 2002-07-18 2002-07-18 Polishing body and polishing method using the polishing body

Publications (2)

Publication Number Publication Date
JP2004055732A true JP2004055732A (en) 2004-02-19
JP4116352B2 JP4116352B2 (en) 2008-07-09

Family

ID=31933342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209519A Expired - Lifetime JP4116352B2 (en) 2002-07-18 2002-07-18 Polishing body and polishing method using the polishing body

Country Status (1)

Country Link
JP (1) JP4116352B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070618A1 (en) * 2004-01-23 2005-08-04 Bando Chemical Industries, Ltd. Polishing method and polishing film used in such polishing method
JP2016162915A (en) * 2015-03-03 2016-09-05 株式会社ディスコ Grinding wheel, grinding device, and processing method of wafer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070618A1 (en) * 2004-01-23 2005-08-04 Bando Chemical Industries, Ltd. Polishing method and polishing film used in such polishing method
JP2016162915A (en) * 2015-03-03 2016-09-05 株式会社ディスコ Grinding wheel, grinding device, and processing method of wafer
KR20160107116A (en) * 2015-03-03 2016-09-13 가부시기가이샤 디스코 Grinding wheel, grinding apparatus, and method of grinding a wafer
TWI680033B (en) * 2015-03-03 2019-12-21 日商迪思科股份有限公司 Polishing device and wafer polishing method
KR102343531B1 (en) * 2015-03-03 2021-12-28 가부시기가이샤 디스코 Grinding wheel, grinding apparatus, and method of grinding a wafer

Also Published As

Publication number Publication date
JP4116352B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
US8485863B2 (en) Polishing liquids for activating and/or conditioning fixed abrasive polishing pads, and associated systems and methods
JP5336699B2 (en) Polishing method of crystal material
US6548407B1 (en) Method and apparatus for controlling chemical interactions during planarization of microelectronic substrates
US6881127B2 (en) Method and apparatuses for planarizing microelectronic substrate assemblies
JP2003532292A5 (en)
CN101490200A (en) CMP method for metal-containing substrates
EP1912760A1 (en) Chemically modified polishing pad for chemical mechanical polishing
JP2005271151A (en) Polishing apparatus and polishing method
JP2013042132A5 (en)
JP2004025415A (en) Polishing body and its manufacturing method
JP6243009B2 (en) Polishing method of GaN single crystal material
JP2001332517A (en) Chemical mechanical polishing method for substrate
WO2008058200A2 (en) Method and apparatus for electrochemical mechanical polishing nip substrates
JP2004055732A (en) Abrading block and polishing method using the abrading block
JP4977493B2 (en) Dressing method and dressing tool for grinding wheel
KR19990013408A (en) Semiconductor Wafer Planarization Method
JP6054341B2 (en) Abrasive grains, manufacturing method thereof, polishing method, polishing member and slurry
JP4053755B2 (en) CMP slurry and method for manufacturing semiconductor device
JPH10329032A (en) Grinding wheel for polishing lsi oxide film and polishing method therefor
JPH11188369A (en) Treatment method of polishing waste liquid of cmp apparatus
JP4426192B2 (en) Method for producing polishing composition
JP2002200554A (en) Polishing pad and polishing device and method using it
JP2004042213A (en) Polishing device and dressing method of polishing tool
JPH06254754A (en) Mirror grinding device and method
JP4057322B2 (en) Abrasive and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4116352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term