JP4116352B2 - Polishing body and polishing method using the polishing body - Google Patents

Polishing body and polishing method using the polishing body Download PDF

Info

Publication number
JP4116352B2
JP4116352B2 JP2002209519A JP2002209519A JP4116352B2 JP 4116352 B2 JP4116352 B2 JP 4116352B2 JP 2002209519 A JP2002209519 A JP 2002209519A JP 2002209519 A JP2002209519 A JP 2002209519A JP 4116352 B2 JP4116352 B2 JP 4116352B2
Authority
JP
Japan
Prior art keywords
polishing
polishing body
resin
less
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002209519A
Other languages
Japanese (ja)
Other versions
JP2004055732A (en
Inventor
佐藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2002209519A priority Critical patent/JP4116352B2/en
Publication of JP2004055732A publication Critical patent/JP2004055732A/en
Application granted granted Critical
Publication of JP4116352B2 publication Critical patent/JP4116352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば半導体ウェハのCMP法による研磨加工などに好適に用いられる研磨体およびその研磨体を用いた研磨加工方法に関する。
【0002】
【従来の技術】
一般に、超LSIの製造では半導体ウェハに多数のチップを形成し、最終工程で各チップサイズに切断するという製法が採られている。最近では超LSIの製造技術の向上に伴い集積度が飛躍的に向上し、配線の多層化が進んでいる為、各層を形成する工程においては、半導体ウェハ全体の平坦化(グローバルプラナリゼーション)が要求される。そのような半導体ウェハ全体の平坦化を実現する手法のひとつとして、CMP(Chemical Mechanical Polishing:化学的機械的研磨)法という研磨加工方法が挙げられる。このCMP法とは、定盤上に貼られた不織布あるいは発泡パッドなどの研磨パッドにウェハを押しつけて強制回転させ、そこに微細な研磨粒子(遊離砥粒)を含有したスラリ(細かい粉末がたとえば酸性水溶液などの液体中に分散している濃厚な懸濁液)を流して研磨をおこなうものである。かかるCMP法によれば、液体成分による化学的研磨と、遊離砥粒による機械的研磨との相乗効果によって精度の高い研磨加工がおこなわれる。
【0003】
【発明が解決しようとする課題】
しかし、そのような従来のCMP法では、定常的にスラリを研磨パッドに供給しつつ研磨加工をおこなうものであり、いきおいスラリの消費がかさむものであった。使用済みのスラリには産業廃棄物としての処理が求められる為、廃棄に無視できない費用がかかることに加え、環境保護の観点からも好ましくなかった。また、CMP法による研磨加工において最もコストがかかるのは、スラリに含まれる研磨粒子であり、さらには、必ずしもスラリに含まれる研磨粒子のすべてが研磨加工に関与するわけではなく、多数の研磨粒子が無駄に廃棄される為、非経済的であるという不具合があった。その為、スラリを用いないCMP法による研磨加工を実現する技術の開発が求められるようになってきた。
【0004】
本発明者は、スラリを用いないCMP法による研磨加工を実現する技術を開発すべく鋭意研究を継続する中で、所定の割合で研磨粒子を含むキレート樹脂を母材樹脂とした研磨体を用いることで、好適な研磨加工をおこない得るのではないかと考えるに至った。CMP法による研磨加工に際して研磨液中に遊離する微細な金属粒子乃至金属イオンをキレート配位子により捕捉することで、そのキレート配位子を備えた母材樹脂そのものが研磨性能を呈することが期待されるのである。
【0005】
これまでに、特開平11−188647号公報に記載された研磨体のように、研磨材を可撓性支持体の上にキレート樹脂で固定した研磨体が提案されているが、かかる研磨体は研磨性能の向上を目的とするものではないことに加えて、キレート樹脂のキレート形成機能が比較的短時間で飽和してしまう為、帯状の研磨体を送りながら用いて研磨面を連続的に入れ替えつつ研磨加工をおこなえば研磨性能の向上も期待できるが、前述のように定盤上に貼られた状態で用いられる場合には直ぐに金属イオンを捕捉する機能が低下してしまう。また、研磨粒子の目潰れおよび目零れ、あるいは研磨体の目詰まりが発生し易く、そうした場合には研磨性能が低下したり被研磨体の表面性状が悪化したりといった不具合が生じる。さらに、使用後の上記帯状の研磨体には産業廃棄物としての処理が求められる為、廃棄コストが嵩むことに加えて環境保護の観点からも問題がある。
【0006】
また、特開2001−138213号公報に記載された金属用研磨布およびそれを用いた研磨方法のように、キレート樹脂そのものに研磨性能を付与するように金属イオンを捕捉するものも提案されているが、かかる金属用研磨布に関してもキレート樹脂のキレート形成機能が比較的短時間で飽和してしまう為、研磨加工を所定時間継続しておこなう場合には直ぐに研磨能率が低下してしまい実用に耐えない。また、キレート配位子が主鎖に直接結合したキレート樹脂を用いている為、立体構造障害の影響を受け易く研磨液中に遊離する微細な金属粒子乃至金属イオンを捕捉し難いことに加え、主鎖が疎水性である場合にはキレート配位子の周囲に水がもたらされない為、キレート形成能力が比較的弱く、キレート樹脂そのものに十分な研磨性能を付与できない。そのような理由から、結果的にスラリを併用しなければならなかった。すなわち、前記研磨体の母材樹脂としてキレート樹脂を用いた種々の研磨体が提案されているが、スラリを用いずともCMP法による好適な研磨加工を実現する技術は未だ開発されていないのが現状である。
【0007】
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、スラリを用いずともCMP法による好適な研磨加工をおこない得る技術を提供することにある。
【0008】
【課題を解決するための第1の手段】
かかる課題を解決する為に、本第1発明の要旨とするところは、母材樹脂および多数の研磨粒子を備えて円板状に形成され、専らCMP法による研磨加工に用いられる研磨体であって、前記母材樹脂は親水基と、アルキル鎖を介して主鎖に結合したキレート配位子とを備えたキレート樹脂であり、平均粒径が1nm以上1μm未満である研磨粒子を5重量%以上60重量%未満の割合で含んでいることを特徴とするものである。
【0009】
【第1発明の効果】
このようにすれば、前記研磨体を構成する母材樹脂はアルキル鎖を介して主鎖に結合したキレート配位子を備えたキレート樹脂である為、立体構造障害の影響を受け難く研磨液中に遊離する微細な金属粒子乃至金属イオンを捕捉し易いことに加え、親水基を備えたものである為、かかるキレート配位子の周囲に潤沢な水がもたらされることにより優れたキレート形成能力が得られる。また、平均粒径が1nm以上1μm未満である研磨粒子を5重量%以上60重量%未満の割合で含んでいる為、前記母材樹脂そのものに付与される研磨性能と相俟って十分な研磨能力が得られる。すなわち、スラリを用いずともCMP法による好適な研磨加工をおこない得る研磨体を提供することができる。なお、前記研磨粒子が5重量%以下である場合には十分な研磨能力が得られず、60重量%以上である場合には被研磨体にスクラッチ傷が入り易くなる。
【0010】
【第1発明の他の態様】
ここで、好適には、前記研磨体は酸化剤または還元剤を含むものである。このようにすれば、前記研磨体そのものに含まれた酸化剤または還元剤が研磨加工に際して供給される研磨液に溶け出すことにより、CMP法における液体成分による化学的研磨に寄与するという利点がある。
【0011】
また、好適には、前記研磨体は酸化作用あるいは還元作用を有する光触媒を1重量%以上60重量%未満の割合で含むものである。このようにすれば、前記研磨体そのものに1重量%以上60重量%未満の割合で含まれた光触媒が研磨加工に際して供給される研磨液に作用することにより、CMP法において前記研磨体に光を照射することで液体成分による化学的研磨性能が向上し、研磨液として水を用いても十分な研磨性能が得られるという利点がある。なお、前記光触媒が1重量%以下である場合には酸化作用あるいは還元作用が生じ難く、60重量%以上である場合には被研磨体にスクラッチ傷が入り易くなる。
【0012】
【課題を解決するための第2の手段】
また、前記課題を解決するために、本第2発明の要旨とするところは、定盤上に貼られた円板状の研磨体に被研磨体を押しつけて、それらの間に研磨液を供給しつつ相対回転させる形式の研磨加工方法であって、前記研磨体として前記第1発明の研磨体を用い、常時機械的にあるいは化学的に前記母材樹脂を破壊しつつ、前記研磨体と被研磨体との間に供給されて研磨加工に用いられた研磨液を回収し且つ濾過して再び研磨液として供給することを特徴とするものである。
【0013】
【第2発明の効果】
このようにすれば、前記研磨体として前記第1発明の研磨体を用いている為、研磨加工に際して前記母材樹脂そのものが優れた研磨能力を示すことに加え、常時機械的にあるいは化学的に前記母材樹脂を破壊しつつ研磨加工をおこなうものである為、前記研磨体に絶えず新しい研磨面が表出してその母材樹脂のキレート形成能力が低下せずに保たれる。また、前記研磨体と被研磨体との間に供給されて研磨加工に用いられた研磨液を回収し且つ濾過して再び研磨液として供給するものである為、廃棄コストが少なくて済むことに加えて環境保護の観点からも好ましい。すなわち、スラリを用いずともCMP法による好適な研磨加工をおこない得る前記研磨体を用いた好適な研磨加工方法を提供することができる。
【0014】
【第2発明の他の態様】
ここで、好適には、前記研磨体は酸化作用あるいは還元作用を有する光触媒を1重量%以上60重量%未満の割合で含むものであり、その研磨体に波長が200nm以上600nm未満である光を照射するものである。このようにすれば、前記研磨体そのものに1重量%以上60重量%未満の割合で含まれた光触媒がCMP法による研磨加工に際して供給される研磨液に作用し、その研磨体に波長が200nm以上600nm未満である光を照射することで液体成分による化学的研磨性能が向上し、研磨液として水を用いても十分な研磨性能が得られるという利点がある。
【0015】
【実施例】
以下、本発明の好適な実施例を図面に基づいて詳細に説明する。
【0016】
図1は、本発明の一実施例である研磨体10を示す斜視図である。この図に示すように、かかる研磨体10は、母材樹脂12および多数の研磨粒子14を備えてその寸法がたとえば450mmφ×t5mm程度の円板状に形成されたものであり、後述するように、図3に示す研磨加工装置18の研磨定盤20に貼り付けられて、専らCMP(Chemical Mechanical Polishing:化学的機械的研磨)法による研磨加工に用いられるものである。
【0017】
上記母材樹脂12としては、たとえば6重量部のビスフェノール系エポキシ主剤と、2重量部の脂環式アミン系硬化剤と、2重量部の直鎖2官能エポキシおよびイミノ2酢酸とを混合して加熱することにより得られるキレート樹脂などが好適に用いられる。図2は、かかるキレート樹脂における一部の構成を模式的に示す図であり、(a)は親水基がアルキル鎖の中途に設けられた構成例、(b)は親水基がアルキル鎖の側鎖を成す構成例、(c)は親水基がアルキル鎖の中途に設けられた構成と、アルキル鎖の側鎖を成す構成とが組み合わされた構成例である。この図に示すように、上記キレート樹脂は親水基(静電的相互作用や水素結合などによって水分子と弱い結合をつくり、水に対して親和性を示すヒドロキシル基、カルボキシル基、アミノ基、カルボニル基、スルホ基などの官能基や、エステル、アミド、エーテル、ケトン構造)18と、アルキル鎖(一般式C2nで表わされる鎖状原子団)22を介して主鎖16に結合したキレート配位子(金属イオンなどとキレート結合を形成することができる官能基)20とを備えたものであり、金属粒子乃至金属イオンをそのキレート配位子20により捕捉することで、前記母材樹脂12そのものに研磨性能が付与されるものと考えられる。ここで、好適には、上記母材樹脂12はたとえば過酸化水素などの酸化剤または還元剤を含むものであり、さらに好適には、酸化作用あるいは還元作用を有するたとえば酸化チタンなどの光触媒を1重量%以上60重量%未満の割合で含むものである。また、上記研磨粒子14は、平均粒径が1nm以上1μm未満であるたとえば球状シリカ、アルミナ、ジルコニア、セリア、二酸化マンガンなどであり、上記研磨体10に5重量%以上60重量%未満の割合で含まれている。
【0018】
前記研磨体10は、たとえば次のようにして製造される。すなわち、先ずキレート樹脂の原料である上記所定の樹脂材料が混合および加熱されることにより、上記母材樹脂12を構成するキレート樹脂が形成される。次にそのようにして形成されたキレート樹脂が硬化しないうちに上記酸化剤または還元剤、光触媒、および研磨粒子がそのキレート樹脂に投入されて混合および撹拌される。続いてその混合原料が所定の型に注型されて常温で硬化させられることにより、本実施例の研磨体10が製造される。
【0019】
図3は、前記研磨体10が用いられるCMP法による研磨加工装置24の大まかな構成を示す図であり、(a)は研磨定盤26の軸心方向から見た平面図、(b)は正面図である。この図に示すように、かかる研磨加工装置24では、研磨定盤26がその軸心まわりに回転可能に支持された状態で設けられており、その研磨定盤26は、図示しない定盤駆動モータにより、図に矢印で示す1回転方向へ回転駆動されるようになっている。この研磨定盤26の上面すなわち被研磨体が押しつけられる面には、本実施例の研磨体10が貼り付けられている。一方、上記研磨定盤26の近傍には、被研磨体を保持する為のワーク保持部材28がその軸心まわりに回転可能、その軸心方向に移動可能に支持された状態で配置されており、そのワーク保持部材28は、図示しないワーク駆動モータにより図に矢印で示す1回転方向へ回転駆動されるようになっている。かかるワーク保持部材28の下面すなわち上記研磨体10と対向する面には吸着層30を介して被研磨体であるウェハ32が吸着保持される。また、所定の弾性を備えた合成樹脂などから成る仕切板34が、研磨体10の中心を通り径方向に横断するように接触させられており、その仕切板34を挟んでワーク保持部材28側に第1ノズル36が、反対側に第2ノズル38がそれぞれ配置されている。また、前記研磨定盤26の軸心に平行な軸心まわりに回転可能、その軸心方向および前記研磨定盤26の径方向に移動可能に配置された調整工具保持部材40と、その調整工具保持部材40の下面すなわち前記研磨体10と対向する面に取り付けられた研磨体調整工具42とが設けられている。
【0020】
図4は、前記研磨体10を用いてCMP法による研磨加工をおこなう工程を示す工程図である。図3および図4に示すように、CMP法による研磨加工に際しては、先ず研磨液供給工程S1において、上記研磨定盤26およびそれに貼り付けられた研磨体10と、ワーク保持部材28およびそれに吸着保持されたウェハ32とが、上記定盤駆動モータおよびワーク駆動モータによりそれぞれの軸心まわりに回転駆動された状態で、上記第1ノズル36および第2ノズル38から、たとえば酢酸水溶液などの研磨液が上記研磨体10の表面上に供給されつつ、ワーク保持部材28に吸着保持されたウェハ32がその研磨体10に押しつけられる。そうすることにより、上記ウェハ32の被研磨面すなわち上記研磨体10に対向する面が、かかる研磨液による化学的研磨作用と、上記研磨体10により自己供給された研磨粒子14および金属イオンを捕捉して研磨性能が付与された母材樹脂12による機械的研磨作用とによって平坦に研磨される。
【0021】
上記研磨液供給工程S1と前後して、研磨体微量破壊工程S2において、前記研磨体10が微量ずつ破壊される。かかる微量破壊は、前記調整工具保持部材40およびそれに取り付けられた研磨体調整工具42が、図示しない調整工具駆動モータにより回転駆動された状態で前記研磨体10に押しつけられ、必要に応じて前記研磨定盤26の径方向に往復移動させられることにより機械的に、および前記第2ノズル38から供給される研磨液によって化学的に破壊するものであり、研磨加工に際して常時継続しておこなわれる。ここで、図5に示すように、前記研磨加工装置24には前記第1ノズル36および第2ノズル38からそれぞれ供給される研磨液のpHを調整するpH調整器44が備えられており、前記第1ノズル36からは被研磨体であるウェハ32の研磨加工に適したたとえばpH4程度の研磨液が、前記第2ノズル38からは前記研磨体10の母材樹脂12を化学的に微量ずつ破壊するのに適したたとえばpH1程度の研磨液がそれぞれ供給されるようになっている。かかる研磨体微量破壊工程S2により、前記研磨体10の母材樹脂12が微量ずつ破壊される為、絶えず新しい研磨面が表出してその母材樹脂12のキレート形成能力が低下せずに保たれるのである。
【0022】
また、前記研磨液供給工程S1および研磨体微量破壊工程S2と前後して、光照射工程S3において、図3(b)に示すように前記研磨体10に波長が200nm以上600nm未満である光が照射される。かかる研磨体10は、前述のように、酸化作用あるいは還元作用を有するたとえば酸化チタンなどの光触媒を含むものである為、そのように照射される光は前記光触媒に酸化作用あるいは還元作用を生じさせて前記第1ノズル30から供給される研磨液に作用し、CMP法における液体成分による化学的研磨性能が向上する。
【0023】
また、前記研磨液供給工程S1、研磨体微量破壊工程S2、および光照射工程S3と前後して、研磨液回収工程S4において、前記研磨体10と被研磨体であるウェハ32との間に供給されて研磨加工に用いられた研磨液が回収される。ここで、図5に示すように、前記研磨加工装置24には回収された研磨液を濾過する為のたとえば孔径0.1μmφ程度のフィルタ46が備えられており、上記研磨液回収工程S4において回収された研磨液は、研磨液濾過工程S5において、かかるフィルタ46により濾過されて研磨屑などの不要物が除去された後、前述のpH調整器44に送られる。そしてそのpH調整器44によりpHを調整されて前記第1ノズル36および第2ノズル38から供給されることにより、再び研磨加工に用いられるのである。
【0024】
次に、本発明の効果を検証する為に本発明者がおこなった研磨試験について説明する。かかる研磨試験においては、6重量部のビスフェノール系エポキシ主剤と、2重量部の脂環式アミン系硬化剤と、2重量部の直鎖2官能エポキシおよびイミノ2酢酸とを混合して加熱することにより得られるキレート樹脂を45重量%の割合で、平均粒径が0.3μmの球状シリカを55重量%の割合で含む本発明の実施例試料1と、6重量部のビスフェノール系エポキシ主剤と、2重量部の脂環式アミン系硬化剤と、2重量部の直鎖2官能エポキシおよびイミノ2酢酸とを混合して加熱することにより得られるキレート樹脂を45重量%の割合で、平均粒径が0.3μmの球状シリカを40重量%の割合で、平均粒径が0.3μmの酸化チタン粉末を15重量%の割合で含む本発明の実施例試料2と、スラリを用いた従来のCMP法に使用される発泡ウレタンパッドである比較例試料とを用意し、それぞれの試料を用いて研磨加工をおこなった。それらの試料は外径450mmφ×厚さt5mm程度の寸法を備えたものであった。以下にその研磨試験の試験条件および試験結果を示す。
【0025】
[試験条件]
ルブリカント:過酸化水素10重量%水溶液
スラリ:80nmシリカ12重量%含有 過酸化水素10重量%水溶液およびpH3酢酸水溶液の混合液
ワーク1:銅板(150mmφ×t1.0mm)
ワーク2:0.5μmの溝を銅鍍金で埋めたシリコンウェハ(150mmφ×t0.6mm)
ワーク回転数:60rpm[1s−1
研磨定盤回転数:60rpm[1s−1
加工面圧:300gf/cm[29.4kPa]
研磨液量:500ml/min[8.3cm/s]
その他:比較例試料2には波長365nmの光を照射しつつ研磨加工をおこなった

Figure 0004116352
【0026】
かかる試験結果から、研磨液として水を用い且つ研磨体として実施例試料1を用いたもので若干研磨能率が劣る他は、本発明の実施例試料1または2を用いた研磨加工では、研磨液としてスラリを用い且つ研磨体として発泡ウレタンパッドを用いた従来のCMP法による研磨加工と同程度もしくはより優れた研磨能率を示すことが確認された。また、ワーク2のシリコンウェハに形成された0.5μmの溝に埋められた銅鍍金の凹み量を示すディッシング量に関しては、本発明の実施例試料1または2を用いた研磨加工の何れも従来のCMP法による研磨加工より少なくて済み、より優れた表面性状が得られることが確認された。さらには、研磨体として実施例試料2を用い且つ波長365nmの光を照射しつつ研磨加工をおこなったものでは、研磨液として水を用いても研磨能率、ディッシング量共に従来のCMP法による研磨加工より優れた結果が得られることが確認された。すなわち、本発明の研磨体およびその研磨体を用いた研磨加工方法によれば、スラリを用いずともCMP法による好適な研磨加工をおこない得ることが検証された。
【0027】
このように、本実施例によれば、前記研磨体10を構成する母材樹脂12はアルキル鎖22を介して主鎖16に結合したキレート配位子20を備えたキレート樹脂である為、立体構造障害の影響を受け難く研磨液中に遊離する微細な金属粒子乃至金属イオンを捕捉し易いことに加え、親水基18を備えたものである為、かかるキレート配位子20の周囲に潤沢な水がもたらされることにより優れたキレート形成能力が得られる。また、平均粒径が1nm以上1μm未満である研磨粒子14を5重量%以上60重量%未満の割合で含んでいる為、前記母材樹脂12そのものに付与される研磨性能と相俟って十分な研磨能力が得られる。すなわち、スラリを用いずともCMP法による好適な研磨加工をおこない得る研磨体10を提供することができる。
【0028】
また、前記研磨体10は酸化剤または還元剤を含むものである為、前記研磨体10そのものに含まれた酸化剤または還元剤が研磨加工に際して供給される研磨液に溶け出すことにより、CMP法における液体成分による化学的研磨に寄与するという利点がある。
【0029】
また、前記研磨体10は酸化作用あるいは還元作用を有する光触媒を1重量%以上60重量%未満の割合で含むものである為、前記研磨体10そのものに1重量%以上60重量%未満の割合で含まれた光触媒が研磨加工に際して供給される研磨液に作用することにより、CMP法において前記研磨体10に光を照射することで液体成分による化学的研磨性能が向上し、研磨液として水を用いても十分な研磨性能が得られるという利点がある。
【0030】
また、本実施例によれば、前記研磨体10を用いている為、研磨加工に際して前記母材樹脂12そのものが優れた研磨能力を示すことに加え、研磨体微量破壊工程S2において常時機械的にあるいは化学的に前記母材樹脂12を破壊しつつ研磨加工をおこなうものである為、前記研磨体10に絶えず新しい研磨面が表出してその母材樹脂12のキレート形成能力が低下せずに保たれる。また、研磨液供給工程S1において前記研磨体10と被研磨体であるウェハ32との間に供給されて研磨加工に用いられた研磨液を研磨液回収工程S4において回収し、続く研磨液濾過工程S5において濾過して、再び研磨液供給工程S1において研磨液として供給するものである為、従来のスラリを用いたCMP法による研磨加工に比べて廃棄物を1/100〜1/10に削減することができ、廃棄コストが少なくて済むことに加えて環境保護の観点からも好ましい。すなわち、スラリを用いずともCMP法による好適な研磨加工をおこない得る前記研磨体10を用いた好適な研磨加工方法を提供することができる。
【0031】
また、前記研磨体10は酸化作用あるいは還元作用を有する光触媒を1重量%以上60重量%未満の割合で含むものであり、光照射工程S3においてその研磨体に波長が200nm以上600nm未満である光を照射するものである為、前記研磨体10そのものに1重量%以上60重量%未満の割合で含まれた光触媒がCMP法による研磨加工に際して供給される研磨液に作用し、その研磨体10に波長が200nm以上600nm未満である光を照射することで液体成分による化学的研磨性能が向上し、研磨液として水を用いても十分な研磨性能が得られるという利点がある。
【0032】
以上、本発明の好適な実施例を図面に基づいて詳細に説明したが、本発明はこれに限定されるものではなく、さらに別の態様においても実施される。
【0033】
たとえば、前述の実施例では、前記研磨体10は半導体ウェハの研磨加工に用いられていたが、本発明はこれに限定されるものではなく、たとえば金属材料の表面超仕上加工など、様々な被研磨材のCMP法による研磨加工に広く用いられるものである。
【0034】
また、前述の実施例では、前記母材樹脂12の主鎖としてエポキシ系樹脂が用いられていたが、たとえば主鎖としてアクリル系樹脂などを用いたキレート樹脂であっても構わない。前記母材樹脂12は、ビスフェノール系エポキシ主剤と、脂環式アミン系硬化剤と、直鎖2官能エポキシおよびイミノ2酢酸とを混合して加熱することにより得られるキレート樹脂であったが、これはあくまで本発明の好適な実施例に過ぎず、たとえば被研磨体の性状などに応じて様々なキレート樹脂が適宜選択されて用いられる。
【0035】
また、前述の実施例では、前記研磨体10は酸化剤として過酸化水素を含むものであったが、これはたとえば硝酸鉄またはヨウ素酸カリウムなどであっても構わない。すなわち、CMP法による研磨加工に際して研磨液に溶け出してその化学的研磨に寄与する酸化剤または還元剤であればその種類は問わない。
【0036】
また、前述の実施例では、前記研磨体10は光触媒として酸化チタン粉末を含むものであったが、これはたとえばシリコン半導体またはジルコニアなどであっても構わない。すなわち、酸化作用あるいは還元作用を有し、CMP法による研磨加工に際して研磨液の化学的研磨に寄与するものであればその種類は問わない。
【0037】
また、前述の実施例では特に説明していないが、前記母材樹脂12の主鎖16は前記アルキル鎖22のみならず、たとえば親水基を備えた他のアルキル鎖など様々な側鎖を備えたものであっても当然に構わない。
【0038】
その他一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。
【図面の簡単な説明】
【図1】本発明の一実施例である研磨体を示す斜視図である。
【図2】図1の研磨体の母材樹脂における一部の構成を模式的に示す図であり、(a)は親水基がアルキル鎖の中途に設けられた構成例、(b)は親水基がアルキル鎖の側鎖を成す構成例、(c)は親水基がアルキル鎖の中途に設けられた構成と、アルキル鎖の側鎖を成す構成とが組み合わされた構成例である。
【図3】図1の研磨体が用いられるCMP法による研磨加工装置の大まかな構成を示す図であり、(a)は研磨定盤の軸心方向から見た平面図、(b)は正面図である。
【図4】図1の研磨体を用いてCMP法による研磨加工をおこなう工程を示す工程図である。
【図5】図3の研磨加工装置を用いたCMP法による研磨加工における研磨液の循環を説明する図である。
【符号の説明】
10:研磨体
12:母材樹脂
14:研磨粒子
16:主鎖
18:親水基
20:キレート配位子
22:アルキル鎖
26:研磨定盤
32:ウェハ(被研磨体)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polishing body suitably used for polishing processing of a semiconductor wafer by, for example, a CMP method, and a polishing processing method using the polishing body.
[0002]
[Prior art]
In general, in the manufacture of VLSI, a manufacturing method is employed in which a large number of chips are formed on a semiconductor wafer and cut into each chip size in the final process. Recently, with the improvement of VLSI manufacturing technology, the degree of integration has dramatically improved, and the number of layers of wiring has increased. In the process of forming each layer, the entire semiconductor wafer has been flattened (global planarization). Required. One method for realizing the flattening of the entire semiconductor wafer is a polishing method called CMP (Chemical Mechanical Polishing). This CMP method means that a wafer is pressed against a polishing pad such as a non-woven fabric or foam pad affixed on a surface plate and forcibly rotated, and a slurry containing fine abrasive particles (free abrasive grains) Polishing is performed by flowing a concentrated suspension dispersed in a liquid such as an acidic aqueous solution. According to the CMP method, high-precision polishing is performed by a synergistic effect of chemical polishing using a liquid component and mechanical polishing using loose abrasive grains.
[0003]
[Problems to be solved by the invention]
However, in such a conventional CMP method, polishing is performed while constantly supplying the slurry to the polishing pad, and the consumption of the slurry is increased. Since the used slurry is required to be treated as an industrial waste, it is not preferable from the viewpoint of environmental protection, in addition to a cost that cannot be ignored. In addition, the most cost in the polishing process by the CMP method is the abrasive particles contained in the slurry. Furthermore, not all of the abrasive particles contained in the slurry are necessarily involved in the polishing process. Was wasted and was uneconomical. For this reason, development of a technique for realizing a polishing process by a CMP method without using a slurry has been demanded.
[0004]
The present inventor uses a polishing body in which a chelate resin containing abrasive particles at a predetermined ratio is used as a base material resin, while continuing intensive research to develop a technique for realizing a polishing process by a CMP method without using a slurry. As a result, it came to be considered that a suitable polishing process could be performed. By capturing the fine metal particles or metal ions released in the polishing liquid by the chelating ligand during polishing by the CMP method, it is expected that the base material resin itself having the chelating ligand exhibits polishing performance. It is done.
[0005]
So far, a polishing body in which an abrasive is fixed on a flexible support with a chelate resin has been proposed, as in the polishing body described in JP-A-11-188647. In addition to not aiming at improving the polishing performance, the chelate forming function of the chelate resin saturates in a relatively short time, so the polishing surface is continuously replaced while feeding the belt-shaped polishing body. However, if the polishing process is performed, an improvement in polishing performance can be expected. However, as described above, when used in a state of being stuck on a surface plate, the function of capturing metal ions immediately decreases. In addition, crushing and clogging of the abrasive particles or clogging of the polishing body is likely to occur. In such a case, problems such as deterioration in polishing performance and deterioration of the surface properties of the object to be polished occur. Furthermore, since the band-shaped polishing body after use is required to be treated as industrial waste, there is a problem from the viewpoint of environmental protection in addition to an increase in disposal cost.
[0006]
In addition, as in the metal polishing cloth and the polishing method using the same described in Japanese Patent Application Laid-Open No. 2001-138213, there is also proposed one that captures metal ions so as to impart polishing performance to the chelate resin itself. However, even with such metal polishing cloths, the chelate-forming function of the chelate resin is saturated in a relatively short time. Absent. In addition, since a chelate resin in which a chelate ligand is directly bonded to the main chain is used, it is easily affected by a steric structure hindrance and it is difficult to capture fine metal particles or metal ions released in the polishing liquid. When the main chain is hydrophobic, water is not provided around the chelate ligand, so that the chelate forming ability is relatively weak, and sufficient polishing performance cannot be imparted to the chelate resin itself. For that reason, it was necessary to use a slurry as a result. That is, various polishing bodies using a chelate resin as a base material resin of the polishing body have been proposed, but a technique for realizing a suitable polishing process by the CMP method without using a slurry has not been developed yet. Currently.
[0007]
The present invention has been made against the background described above, and an object of the present invention is to provide a technique capable of performing a suitable polishing process by a CMP method without using a slurry.
[0008]
[First Means for Solving the Problems]
In order to solve this problem, the gist of the first invention is a polishing body that is formed into a disk shape including a base material resin and a large number of abrasive particles, and is used exclusively for polishing by the CMP method. The base resin is a chelate resin having a hydrophilic group and a chelate ligand bonded to the main chain via an alkyl chain, and 5% by weight of abrasive particles having an average particle diameter of 1 nm or more and less than 1 μm. More than 60% by weight is contained.
[0009]
[Effect of the first invention]
In this case, since the base material resin constituting the polishing body is a chelate resin having a chelate ligand bonded to the main chain via an alkyl chain, it is difficult to be affected by a three-dimensional structure obstacle in the polishing liquid. In addition to being easy to capture fine metal particles or metal ions that are liberated on the surface of the chelate ligand, it has a hydrophilic group. can get. In addition, since abrasive particles having an average particle diameter of 1 nm or more and less than 1 μm are contained in a proportion of 5 wt% or more and less than 60 wt%, sufficient polishing in combination with the polishing performance imparted to the base material resin itself. Ability is gained. That is, it is possible to provide a polishing body that can perform a suitable polishing process by CMP without using a slurry. When the abrasive particles are 5% by weight or less, sufficient polishing ability cannot be obtained, and when the abrasive particles are 60% by weight or more, scratches are likely to enter the object to be polished.
[0010]
[Other aspects of the first invention]
Here, preferably, the polishing body contains an oxidizing agent or a reducing agent. In this way, the oxidizing agent or reducing agent contained in the polishing body itself dissolves in the polishing liquid supplied during the polishing process, thereby contributing to chemical polishing by the liquid component in the CMP method. .
[0011]
Preferably, the polishing body contains a photocatalyst having an oxidizing action or a reducing action in a proportion of 1 wt% or more and less than 60 wt%. In this case, the photocatalyst contained in the polishing body itself at a ratio of 1% by weight or more and less than 60% by weight acts on the polishing liquid supplied during the polishing process, so that light is applied to the polishing body in the CMP method. Irradiation improves the chemical polishing performance of the liquid component, and there is an advantage that sufficient polishing performance can be obtained even when water is used as the polishing liquid. When the photocatalyst is 1% by weight or less, an oxidizing action or a reducing action hardly occurs. When the photocatalyst is 60% by weight or more, scratches are likely to occur in the object to be polished.
[0012]
[Second means for solving the problem]
Further, in order to solve the above-mentioned problems, the gist of the second invention is that the object to be polished is pressed against a disk-shaped abrasive body affixed on a surface plate and a polishing liquid is supplied between them. A polishing method of a type in which the polishing body is relatively rotated while the polishing body of the first invention is used as the polishing body, and the base material resin is constantly destroyed mechanically or chemically while the polishing body and the substrate are covered. The polishing liquid supplied to the polishing body and used for the polishing process is collected, filtered, and supplied again as the polishing liquid.
[0013]
[Effect of the second invention]
In this case, since the polishing body of the first invention is used as the polishing body, the base resin itself exhibits excellent polishing ability during polishing, and is always mechanically or chemically. Since the polishing process is performed while destroying the base material resin, a new polished surface is constantly exposed on the polishing body, and the chelate forming ability of the base material resin is maintained without lowering. Moreover, since the polishing liquid supplied between the polishing body and the object to be polished and used for the polishing process is collected, filtered, and supplied again as the polishing liquid, the disposal cost can be reduced. In addition, it is also preferable from the viewpoint of environmental protection. That is, it is possible to provide a suitable polishing method using the polishing body capable of performing a suitable polishing process by the CMP method without using a slurry.
[0014]
[Other aspects of the second invention]
Here, preferably, the polishing body contains a photocatalyst having an oxidizing action or a reducing action at a ratio of 1 wt% or more and less than 60 wt%, and the polishing body is irradiated with light having a wavelength of 200 nm or more and less than 600 nm. Irradiation. In this case, the photocatalyst contained in the polishing body itself at a ratio of 1 wt% or more and less than 60 wt% acts on the polishing liquid supplied in the polishing process by the CMP method, and the wavelength of the polishing body is 200 nm or more. By irradiating with light having a wavelength of less than 600 nm, chemical polishing performance by the liquid component is improved, and there is an advantage that sufficient polishing performance can be obtained even when water is used as the polishing liquid.
[0015]
【Example】
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
FIG. 1 is a perspective view showing a polishing body 10 according to an embodiment of the present invention. As shown in this figure, the abrasive body 10 is provided with a base material resin 12 and a large number of abrasive particles 14 and is formed in a disk shape having a size of, for example, about 450 mmφ × t5 mm. 3 is affixed to the polishing surface plate 20 of the polishing apparatus 18 shown in FIG. 3 and used exclusively for polishing by the CMP (Chemical Mechanical Polishing) method.
[0017]
As the base material resin 12, for example, 6 parts by weight of a bisphenol-based epoxy base agent, 2 parts by weight of an alicyclic amine-based curing agent, 2 parts by weight of a linear bifunctional epoxy and iminodiacetic acid are mixed. A chelate resin obtained by heating is preferably used. FIG. 2 is a diagram schematically showing a part of the configuration of the chelate resin, in which (a) is a configuration example in which a hydrophilic group is provided in the middle of an alkyl chain, and (b) is a side in which the hydrophilic group is on the side of an alkyl chain. (C) is a configuration example in which a configuration in which a hydrophilic group is provided in the middle of an alkyl chain and a configuration in which a side chain of the alkyl chain is formed are combined. As shown in this figure, the chelate resin has a hydrophilic group (a hydroxyl group, a carboxyl group, an amino group, a carbonyl group that forms a weak bond with water molecules by electrostatic interaction or hydrogen bonding, and has an affinity for water. Group, sulfo group or other functional group, ester, amide, ether, ketone structure) 18 and alkyl chain (general formula C n H 2n And a chelate ligand (functional group capable of forming a chelate bond with a metal ion or the like) 20 bonded to the main chain 16 via a chain atom group represented by It is considered that the metal ion is captured by the chelate ligand 20 so that polishing performance is imparted to the base resin 12 itself. Here, preferably, the base resin 12 contains an oxidizing agent or a reducing agent such as hydrogen peroxide, and more preferably, a photocatalyst such as titanium oxide having an oxidizing action or a reducing action is used. It is included at a ratio of not less than 60% by weight. The abrasive particles 14 are, for example, spherical silica, alumina, zirconia, ceria, manganese dioxide or the like having an average particle diameter of 1 nm or more and less than 1 μm, and the abrasive body 10 has a ratio of 5 wt% or more and less than 60 wt%. include.
[0018]
The polishing body 10 is manufactured, for example, as follows. That is, first, the predetermined resin material that is a raw material of the chelate resin is mixed and heated, whereby the chelate resin constituting the base material resin 12 is formed. Next, before the chelate resin thus formed is cured, the oxidizing agent or reducing agent, photocatalyst, and abrasive particles are put into the chelate resin and mixed and stirred. Subsequently, the mixed raw material is poured into a predetermined mold and cured at room temperature, whereby the polishing body 10 of this example is manufactured.
[0019]
3A and 3B are diagrams showing a rough configuration of a polishing processing apparatus 24 using the CMP method in which the polishing body 10 is used. FIG. 3A is a plan view seen from the axial direction of the polishing surface plate 26, and FIG. It is a front view. As shown in this figure, in this polishing processing apparatus 24, a polishing surface plate 26 is provided in a state of being rotatably supported around its axis, and the polishing surface plate 26 is a surface plate driving motor (not shown). Thus, it is driven to rotate in one rotation direction indicated by an arrow in the figure. The polishing body 10 of this embodiment is attached to the upper surface of the polishing surface plate 26, that is, the surface against which the object to be polished is pressed. On the other hand, in the vicinity of the polishing surface plate 26, a work holding member 28 for holding the object to be polished is arranged in a state of being supported so as to be rotatable about its axis and movable in the direction of the axis. The work holding member 28 is rotationally driven in one rotation direction indicated by an arrow in the figure by a work drive motor (not shown). The lower surface of the work holding member 28, that is, the surface facing the polishing body 10, holds the wafer 32, which is the object to be polished, through the adsorption layer 30. Further, a partition plate 34 made of synthetic resin or the like having a predetermined elasticity is brought into contact with the center of the polishing body 10 so as to cross the radial direction, and the workpiece holding member 28 side with the partition plate 34 interposed therebetween. The first nozzle 36 is disposed on the opposite side, and the second nozzle 38 is disposed on the opposite side. Further, an adjustment tool holding member 40 disposed so as to be rotatable about an axis parallel to the axis of the polishing surface plate 26 and movable in the axial direction and the radial direction of the polishing surface plate 26, and the adjustment tool A polishing body adjusting tool 42 attached to the lower surface of the holding member 40, that is, the surface facing the polishing body 10 is provided.
[0020]
FIG. 4 is a process diagram showing a process of performing polishing by the CMP method using the polishing body 10. As shown in FIGS. 3 and 4, in the polishing process by the CMP method, first, in the polishing liquid supply step S1, the polishing surface plate 26, the polishing body 10 affixed thereto, the work holding member 28, and the suction holding thereof. In a state where the wafer 32 is rotated around the respective axis by the surface plate driving motor and the work driving motor, a polishing liquid such as an acetic acid aqueous solution is supplied from the first nozzle 36 and the second nozzle 38. While being supplied onto the surface of the polishing body 10, the wafer 32 sucked and held by the work holding member 28 is pressed against the polishing body 10. By doing so, the surface to be polished of the wafer 32, that is, the surface facing the polishing body 10, captures the chemical polishing action by the polishing liquid and the abrasive particles 14 and metal ions supplied by the polishing body 10. Then, it is polished flatly by the mechanical polishing action by the base resin 12 to which the polishing performance is imparted.
[0021]
Before and after the polishing liquid supply step S1, the polishing body 10 is broken in small amounts in the polishing body microdestruction step S2. Such microdestruction is caused by pressing the adjusting tool holding member 40 and the polishing body adjusting tool 42 attached thereto against the polishing body 10 while being rotated by an adjusting tool drive motor (not shown), and if necessary, polishing the polishing body 10. By being reciprocated in the radial direction of the surface plate 26, it is mechanically destroyed by the polishing liquid supplied from the second nozzle 38, and is continuously performed during polishing. Here, as shown in FIG. 5, the polishing apparatus 24 is provided with a pH adjuster 44 for adjusting the pH of the polishing liquid supplied from the first nozzle 36 and the second nozzle 38, respectively. For example, a polishing solution having a pH of about 4 that is suitable for polishing the wafer 32, which is the object to be polished, is chemically broken from the first nozzle 36, and the base resin 12 of the polishing body 10 is chemically broken from the second nozzle 38 in small amounts. For example, a polishing liquid having a pH of about 1 is supplied. Since the base material resin 12 of the polishing body 10 is broken by a small amount by the polishing body microdestruction process S2, a new polished surface is constantly exposed and the chelate forming ability of the base material resin 12 is maintained without decreasing. It is.
[0022]
Further, before and after the polishing liquid supply step S1 and the polishing body microdestruction step S2, in the light irradiation step S3, light having a wavelength of 200 nm or more and less than 600 nm is applied to the polishing body 10 as shown in FIG. Irradiated. Since the polishing body 10 includes a photocatalyst such as titanium oxide having an oxidizing action or a reducing action as described above, the light thus irradiated causes an oxidizing action or a reducing action to the photocatalyst, and It acts on the polishing liquid supplied from the first nozzle 30 and the chemical polishing performance by the liquid component in the CMP method is improved.
[0023]
In addition, before and after the polishing liquid supply step S1, the polishing body microdestruction step S2, and the light irradiation step S3, the polishing liquid is recovered and supplied between the polishing body 10 and the wafer 32 that is the object to be polished in the polishing step S4. Then, the polishing liquid used for the polishing process is recovered. Here, as shown in FIG. 5, the polishing apparatus 24 is provided with a filter 46 having a hole diameter of about 0.1 μmφ for filtering the recovered polishing liquid, and is recovered in the polishing liquid recovery step S4. The polished polishing liquid is filtered by the filter 46 in the polishing liquid filtering step S5 to remove unnecessary materials such as polishing dust, and then sent to the pH adjuster 44 described above. Then, the pH is adjusted by the pH adjuster 44 and supplied from the first nozzle 36 and the second nozzle 38, so that it is used again for polishing.
[0024]
Next, a polishing test conducted by the present inventor in order to verify the effect of the present invention will be described. In this polishing test, 6 parts by weight of a bisphenol-based epoxy base agent, 2 parts by weight of an alicyclic amine-based curing agent, 2 parts by weight of a linear bifunctional epoxy and iminodiacetic acid are mixed and heated. Example sample 1 of the present invention containing 45 wt% of the chelate resin obtained in the above and spherical silica having an average particle size of 0.3 μm in a ratio of 55 wt%, 6 parts by weight of a bisphenol-based epoxy base agent, Average particle size of chelate resin obtained by mixing 2 parts by weight of alicyclic amine-based curing agent, 2 parts by weight of linear bifunctional epoxy and iminodiacetic acid and heating them in a proportion of 45% by weight Example 2 of the present invention containing spherical silica having a particle size of 0.3 μm in a proportion of 40% by weight and titanium oxide powder having an average particle size of 0.3 μm in a proportion of 15% by weight, and conventional CMP using a slurry Used in the law Prepared and Comparative Sample a urethane foam pad that was subjected to polishing using each of the samples. These samples had dimensions of an outer diameter of 450 mmφ × thickness t5 mm. The test conditions and test results of the polishing test are shown below.
[0025]
[Test conditions]
Lubricant: 10% by weight aqueous solution of hydrogen peroxide
Slurry: Mixture of 80% silica containing 12% by weight Hydrogen peroxide 10% by weight aqueous solution and pH 3 acetic acid aqueous solution
Work 1: Copper plate (150mmφ × t1.0mm)
Work 2: Silicon wafer (150mmφ × t0.6mm) with 0.5μm groove filled with copper plating
Work rotation speed: 60 rpm [1 s -1 ]
Polishing surface plate rotation speed: 60 rpm [1 s -1 ]
Processing surface pressure: 300 gf / cm 2 [29.4kPa]
Polishing liquid amount: 500 ml / min [8.3 cm 3 / S]
Other: Comparative sample 2 was polished while being irradiated with light having a wavelength of 365 nm.
Figure 0004116352
[0026]
From these test results, the polishing liquid using Example Sample 1 or 2 of the present invention was used except that water was used as the polishing liquid and Example Sample 1 was used as the polishing body. As a result, it was confirmed that the polishing efficiency was the same as or better than that of the conventional CMP method using a slurry as a polishing body and a urethane foam pad as a polishing body. In addition, regarding the dishing amount indicating the dent amount of the copper plating buried in the 0.5 μm groove formed on the silicon wafer of the work 2, both of the polishing processes using the example sample 1 or 2 of the present invention are conventional. Thus, it was confirmed that the polishing process by the CMP method was less and a superior surface property was obtained. Furthermore, in the case where the polishing was performed while using the sample sample 2 as a polishing body and irradiating light with a wavelength of 365 nm, polishing efficiency and dishing amount were both polished using the conventional CMP method even when water was used as the polishing liquid. It was confirmed that better results were obtained. That is, according to the polishing body of the present invention and the polishing method using the polishing body, it was verified that a suitable polishing process by the CMP method can be performed without using a slurry.
[0027]
Thus, according to the present embodiment, the base material resin 12 constituting the polishing body 10 is a chelate resin provided with the chelate ligand 20 bonded to the main chain 16 through the alkyl chain 22. In addition to being easy to capture fine metal particles or metal ions which are not easily affected by structural obstacles and are released in the polishing liquid, since they are provided with a hydrophilic group 18, there is plenty of surroundings around the chelate ligand 20. By providing water, an excellent chelating ability is obtained. Further, since the abrasive particles 14 having an average particle diameter of 1 nm or more and less than 1 μm are contained in a ratio of 5 wt% or more and less than 60 wt%, it is sufficient in combination with the polishing performance imparted to the base resin 12 itself. A good polishing ability. That is, it is possible to provide a polishing body 10 that can perform a suitable polishing process by CMP without using slurry.
[0028]
Further, since the polishing body 10 contains an oxidizing agent or a reducing agent, the oxidizing agent or the reducing agent contained in the polishing body 10 itself dissolves in the polishing liquid supplied during the polishing process, so that a liquid in the CMP method is obtained. There is an advantage that it contributes to chemical polishing by components.
[0029]
Further, since the polishing body 10 contains a photocatalyst having an oxidizing action or a reducing action in a proportion of 1 wt% or more and less than 60 wt%, the polishing body 10 itself is contained in a proportion of 1 wt% or more and less than 60 wt%. When the photocatalyst acts on the polishing liquid supplied during the polishing process, chemical polishing performance by the liquid component is improved by irradiating the polishing body 10 with light in the CMP method, and water can be used as the polishing liquid. There is an advantage that sufficient polishing performance can be obtained.
[0030]
In addition, according to the present embodiment, since the polishing body 10 is used, the base resin 12 itself exhibits excellent polishing ability during polishing, and mechanically always in the polishing body microdestruction process S2. Alternatively, the polishing process is performed while chemically destroying the base resin 12, so that a new polished surface is constantly exposed on the polishing body 10 and the chelate forming ability of the base resin 12 is not lowered. Be drunk. Further, the polishing liquid supplied between the polishing body 10 and the wafer 32 to be polished in the polishing liquid supply process S1 and used for the polishing process is recovered in the polishing liquid recovery process S4, followed by the polishing liquid filtering process. Since it is filtered in S5 and supplied again as the polishing liquid in the polishing liquid supply step S1, the waste is reduced to 1/100 to 1/10 compared to the polishing process by the CMP method using the conventional slurry. This is preferable from the viewpoint of environmental protection in addition to a low disposal cost. That is, it is possible to provide a suitable polishing method using the polishing body 10 that can perform a suitable polishing process by the CMP method without using a slurry.
[0031]
Further, the polishing body 10 contains a photocatalyst having an oxidizing action or a reducing action at a ratio of 1 wt% or more and less than 60 wt%. In the light irradiation step S3, the polishing body 10 has a wavelength of 200 nm or more and less than 600 nm. Therefore, the photocatalyst contained in the polishing body 10 at a ratio of 1 wt% or more and less than 60 wt% acts on the polishing liquid supplied in the polishing process by the CMP method, and the polishing body 10 is irradiated with the photocatalyst. By irradiating light having a wavelength of 200 nm or more and less than 600 nm, chemical polishing performance by the liquid component is improved, and there is an advantage that sufficient polishing performance can be obtained even when water is used as the polishing liquid.
[0032]
As mentioned above, although the suitable Example of this invention was described in detail based on drawing, this invention is not limited to this, Furthermore, it implements in another aspect.
[0033]
For example, in the above-described embodiment, the polishing body 10 is used for polishing a semiconductor wafer. However, the present invention is not limited to this, and various objects such as surface superfinishing of a metal material can be used. It is widely used for polishing of abrasives by the CMP method.
[0034]
In the above-described embodiment, the epoxy resin is used as the main chain of the base resin 12. However, for example, a chelate resin using an acrylic resin or the like as the main chain may be used. The base resin 12 was a chelate resin obtained by mixing and heating a bisphenol-based epoxy base agent, an alicyclic amine-based curing agent, a linear bifunctional epoxy, and iminodiacetic acid. Is merely a preferred embodiment of the present invention, and various chelate resins are appropriately selected and used depending on, for example, the properties of the object to be polished.
[0035]
In the above-described embodiment, the polishing body 10 contains hydrogen peroxide as an oxidizing agent. However, this may be, for example, iron nitrate or potassium iodate. That is, any type of oxidizing agent or reducing agent can be used as long as it dissolves in the polishing liquid during the polishing process by the CMP method and contributes to the chemical polishing.
[0036]
In the above-described embodiment, the polishing body 10 includes titanium oxide powder as a photocatalyst. However, this may be, for example, a silicon semiconductor or zirconia. In other words, any type can be used as long as it has an oxidizing action or a reducing action and contributes to chemical polishing of the polishing liquid during polishing by the CMP method.
[0037]
Although not specifically described in the above-described embodiments, the main chain 16 of the base resin 12 includes not only the alkyl chain 22 but also various side chains such as other alkyl chains having a hydrophilic group. Of course, it doesn't matter.
[0038]
Although not exemplified one by one, the present invention is implemented with various modifications within the scope not departing from the gist thereof.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a polishing body according to an embodiment of the present invention.
2 is a diagram schematically showing a part of the base resin of the polishing body of FIG. 1, in which (a) is a configuration example in which a hydrophilic group is provided in the middle of an alkyl chain, and (b) is a hydrophilic configuration. A configuration example in which a group forms a side chain of an alkyl chain, (c) is a configuration example in which a configuration in which a hydrophilic group is provided in the middle of an alkyl chain and a configuration in which a side chain of an alkyl chain is formed are combined.
3 is a diagram showing a rough configuration of a polishing apparatus using a CMP method in which the polishing body of FIG. 1 is used, (a) is a plan view seen from the axial direction of a polishing surface plate, and (b) is a front view. FIG.
4 is a process diagram showing a process of performing a polishing process by a CMP method using the polishing body of FIG. 1; FIG.
5 is a diagram illustrating circulation of a polishing liquid in polishing processing by a CMP method using the polishing processing apparatus of FIG. 3;
[Explanation of symbols]
10: Polishing body
12: Base material resin
14: Abrasive particles
16: Main chain
18: Hydrophilic group
20: Chelate ligand
22: Alkyl chain
26: Polishing surface plate
32: Wafer (object to be polished)

Claims (5)

母材樹脂および多数の研磨粒子を備えて円板状に形成され、専らCMP法による研磨加工に用いられる研磨体であって、
前記母材樹脂は親水基と、アルキル鎖を介して主鎖に結合したキレート配位子とを備えたキレート樹脂であり、平均粒径が1nm以上1μm未満である研磨粒子を5重量%以上60重量%未満の割合で含んでいることを特徴とする研磨体。
A polishing body that is formed into a disk shape with a base resin and a large number of abrasive particles, and is used exclusively for polishing by the CMP method,
The base material resin is a chelate resin comprising a hydrophilic group and a chelate ligand bonded to the main chain via an alkyl chain, and 5 wt% or more of abrasive particles having an average particle diameter of 1 nm or more and less than 1 μm. A polishing body comprising a proportion of less than% by weight.
前記研磨体は酸化剤または還元剤を含むものである請求項1の研磨体。The polishing body according to claim 1, wherein the polishing body contains an oxidizing agent or a reducing agent. 前記研磨体は酸化作用あるいは還元作用を有する光触媒を1重量%以上60重量%未満の割合で含むものである請求項1または2の研磨体。The polishing body according to claim 1 or 2, wherein the polishing body contains a photocatalyst having an oxidizing action or a reducing action at a ratio of 1 wt% or more and less than 60 wt%. 定盤上に貼られた円板状の研磨体に被研磨体を押しつけて、それらの間に研磨液を供給しつつ相対回転させる形式の研磨加工方法であって、
前記研磨体として請求項1から3の何れかの研磨体を用い、常時機械的にあるいは化学的に前記母材樹脂を破壊しつつ、前記研磨体と被研磨体との間に供給されて研磨加工に用いられた研磨液を回収し且つ濾過して再び研磨液として供給することを特徴とする研磨加工方法。
A polishing method of a type in which an object to be polished is pressed against a disk-shaped polishing body affixed on a surface plate, and a relative rotation is performed while supplying a polishing liquid between them,
The polishing body according to any one of claims 1 to 3 is used as the polishing body, and is supplied and polished between the polishing body and the object to be polished while constantly destroying the base resin mechanically or chemically. A polishing method, wherein the polishing liquid used for processing is collected, filtered and supplied again as a polishing liquid.
前記研磨体として請求項3の研磨体を用い、該研磨体に波長が200nm以上600nm未満である光を照射するものである請求項4の研磨加工方法。The polishing method according to claim 4, wherein the polishing body according to claim 3 is used as the polishing body, and the polishing body is irradiated with light having a wavelength of 200 nm or more and less than 600 nm.
JP2002209519A 2002-07-18 2002-07-18 Polishing body and polishing method using the polishing body Expired - Lifetime JP4116352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209519A JP4116352B2 (en) 2002-07-18 2002-07-18 Polishing body and polishing method using the polishing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209519A JP4116352B2 (en) 2002-07-18 2002-07-18 Polishing body and polishing method using the polishing body

Publications (2)

Publication Number Publication Date
JP2004055732A JP2004055732A (en) 2004-02-19
JP4116352B2 true JP4116352B2 (en) 2008-07-09

Family

ID=31933342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209519A Expired - Lifetime JP4116352B2 (en) 2002-07-18 2002-07-18 Polishing body and polishing method using the polishing body

Country Status (1)

Country Link
JP (1) JP4116352B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205552A (en) * 2004-01-23 2005-08-04 Bando Chem Ind Ltd Polishing method and polishing film used for this polishing method
JP6475518B2 (en) * 2015-03-03 2019-02-27 株式会社ディスコ Wafer processing method

Also Published As

Publication number Publication date
JP2004055732A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
JP5336699B2 (en) Polishing method of crystal material
US8485863B2 (en) Polishing liquids for activating and/or conditioning fixed abrasive polishing pads, and associated systems and methods
TW201125031A (en) Semiconductor substrate planarization apparatus and planarization method
US20070037491A1 (en) Chemically modified chemical mechanical polishing pad, process of making a modified chemical mechanical polishing pad and method of chemical mechanical polishing
TW201200583A (en) Chemical planarization of copper wafer polishing
TW201115641A (en) Method for grinding a semiconductor wafer
JP6243009B2 (en) Polishing method of GaN single crystal material
JP2001332517A (en) Chemical mechanical polishing method for substrate
JP2003257910A (en) Method for polishing copper layer of substrate
JP4116352B2 (en) Polishing body and polishing method using the polishing body
JP4977493B2 (en) Dressing method and dressing tool for grinding wheel
JPH0864562A (en) Polishing of semiconductor wafer and device
JP6054341B2 (en) Abrasive grains, manufacturing method thereof, polishing method, polishing member and slurry
JP4537778B2 (en) How to sharpen vitrified bond wheels
JP2005103696A (en) Polishing device
JP5127270B2 (en) Dressing method and dresser board
JPH10329032A (en) Grinding wheel for polishing lsi oxide film and polishing method therefor
JP3894474B2 (en) Combined grinding machine using loose abrasive grains
JPH11188369A (en) Treatment method of polishing waste liquid of cmp apparatus
JP4426192B2 (en) Method for producing polishing composition
JP3591995B2 (en) Processing method using fine abrasive wheel and grinding fluid for processing fine abrasive wheel
JP2002086350A (en) Polishing fluid for electrophoretic polishing and polishing method
TW202205420A (en) Polishing liquid
JP2001129764A (en) Tool for machining silicon and its manufacturing method, and machining method using the tool
JPH06254754A (en) Mirror grinding device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4116352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term