JP2004055650A - 半導体レーザ装置 - Google Patents

半導体レーザ装置 Download PDF

Info

Publication number
JP2004055650A
JP2004055650A JP2002208185A JP2002208185A JP2004055650A JP 2004055650 A JP2004055650 A JP 2004055650A JP 2002208185 A JP2002208185 A JP 2002208185A JP 2002208185 A JP2002208185 A JP 2002208185A JP 2004055650 A JP2004055650 A JP 2004055650A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser element
laser device
gas
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002208185A
Other languages
English (en)
Inventor
Teruhiko Kuramachi
蔵町 照彦
Hideo Yamanaka
山中 英生
Yoji Okazaki
岡崎 洋二
Kazuhiko Nagano
永野 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002208185A priority Critical patent/JP2004055650A/ja
Publication of JP2004055650A publication Critical patent/JP2004055650A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】半導体レーザ素子が密閉容器内に設置されてなる半導体レーザ装置において、容器内の汚染物質を除去し、良好な特性および信頼性を得る。
【解決手段】サブマウント5上に半導体レーザ素子6が接着されたヒートシンク4と、半導体レーザ素子6からワイヤ9によって接続された電極端子8と、電極端子11からワイヤ12によって接続されたモニタ用フォトダイオード10とを、ステム1上に固設する。これらを、無反射コーティングが施された窓ガラス3を備えた容器2によって、N=97%とH=3%の混合ガスを封入してリングウェルド封止する。
【選択図】     図1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体レーザ素子が密閉容器内に設置されてなる半導体レーザ装置に関するものである。
【0002】
【従来の技術】
半導体レーザ素子と、コリメータレンズ、集光レンズ、および光ファイバ等が密閉容器に封止されてなる半導体レーザ装置が知られているが、この半導体レーザ装置において、密閉容器内に残存する汚染物質が半導体レーザ素子の出射端面、レンズおよび光ファイバ等の光学部品に付着して、レーザ特性を劣化させるという問題がある。汚染物質としては、製造工程の雰囲気中から混入する炭化水素が挙げられ、この炭化水素が、レーザ光により重合あるいは分解されて付着することが知られている。
【0003】
この問題を解決するために、以下に示すように種々の方法が提案されている。例えば、特開平11−167132号において、400nm以下のレーザ光の出力低下を防止するためには容器内の炭化水素量を0.1%以下にすることが効果的であり、これにより炭化水素の光分解による光学部品等への堆積を防止できることが記載されている。また、封止雰囲気をドライエアとすることも提案されており、雰囲気中の酸素と堆積した炭化水素との光化学反応によって、堆積物の除去効果が期待されている。
【0004】
また、米国特許5392305号においては、炭化水素の光分解による半導体レーザ素子端面への炭化水素の付着を防止するため、このガスを分解することを目的とした酸素を100ppm以上封止ガスに混入させることが記載されている。
【0005】
また、特開平11−87814号においては、油分等の汚染物質を脱脂および洗浄して除去することにより、長期信頼性の確保が可能であることが記載されている。
【0006】
一方、特願2000−336850号において、本出願人により、発振波長が350〜450nmであるGaN系半導体レーザ素子を用いた半導体レーザ装置が提案されているが、短波長のレーザ光はエネルギーが高いため、モジュール内に存在する炭化水素が重合あるいは分解したものが、半導体レーザ素子の端面あるいは光学部品等に付着する確率が高く、特に問題となっている。
【0007】
【発明が解決しようとする課題】
レーザ光と炭化水素の反応により生成される炭化水素系の堆積物は、上記米国特許5392305号に示すように、一定量以上の酸素を含んだガス雰囲気においてCOとHOとに分解される。
【0008】
しかしながら、この種の堆積物は炭化水素化合物だけでなく、ケイ素化合物の存在が確認されており、酸素を雰囲気中に含有させるだけではこの種の堆積物を分解除去することが出来ないことが解っている。堆積するケイ素化合物は、シロキサン結合(Si−O−Si)、シラノ−ル基(−Si−OH)等のSiを含有した有機化合物ガス(以下有機ケイ素化合物と記す)とレーザ光との光化学反応により発生し、その反応は、シロキサン結合(Si−O−Si)、シラノ−ル基(−Si−OH)等のSi間を酸素分子により結合されポリマー化し、ケイ素化合物を堆積する。炭化水素化合物および有機ケイ素化合物の堆積物は、光学的な吸収を発生させるため、連続発振における経時信頼性を著しく損なうという問題がある。ここで言うケイ素化合物とは、有機、無機を問わずケイ素を含むあらゆる構造を有しているものを示し、無機SiOxおよび有機ケイ素化合物を含む。
【0009】
Siを含有した有機化合物ガス発生源としては、主として半導体レーザ装置製造工程の任意の場所に使用されているシリコーン系材料から発せられるガスである。これが半導体レーザ装置内の各部品表面に付着している場合があり、また、モジュールを封止して使用する場合は、その封止ガス中に微量含まれる。これらの工程中のガス成分を管理するには通常のクリーンルームや封止ガス精製機の設置では完全に除去することが出来ず、多大な設備投資が必要となる。特開平11−87814号に開示されているような油分等の脱脂工程を通しても上記のような製造過程雰囲気からの上記化合物の混入は避けることが出来ない。
【0010】
特に、発振波長415nmのレーザでは、酸素濃度に対する経時モジュール劣化速度の依存性は赤外の半導体レーザ素子の場合と異なる依存性を示し、赤外波長レーザに見られるような酸素濃度増加に伴う改良がみられない。すなわち、赤外波長のレーザ光に対しては酸素濃度の増加と共に、半導体レーザ素子端面、光学部品、モジュール内ファイバ入射端面等レーザ光路上に依存する光学部品表面に堆積する炭化水素化合物の分解反応が酸素濃度の増加と共に活発になり、経時信頼性の向上がみられるが、415nmの発振波長を有するレーザの場合は酸素濃度が100ppm以上では逆に信頼性が悪くなる。これは100ppm以上の領域ではケイ素化合物の堆積が顕在化するためである。しかし、化合物の堆積防止のため酸素を一定量封止することは不可欠である。
【0011】
このため、光学部品表面および半導体レーザ素子共振器表面にレーザ光の光化学反応により堆積した固形炭化水素化合物およびケイ素化合物を分解して、信頼性の高い半導体レーザ装置を提供するために、特願2002−101714号においては、炭化水素化合物量を制御し雰囲気ガスの酸素濃度を1ppm以上100ppm以下含む不活性ガスとする方法が、特願2002−101722号においては、ハロゲンガスおよびハロゲン化合物ガスの少なくとも1つを雰囲気ガスとして導入する方法が提案されている。しかし、酸素濃度を100ppm以下に制御するには生産コストがかかるという問題があり、また、上記ハロゲンガスを含むガスを一定量以上混入する場合は、光学部品表面および半導体レーザ素子共振器表面に用いる材料によっては、このガスと反応し膜破壊が生じるため、共振器表面に用いる材料の制約を受け、生産性と製造適正が低いという問題がある。
【0012】
本発明は上記事情に鑑みて、半導体レーザ素子が密閉容器内に配置されてなる半導体レーザ装置において、信頼性の高い半導体レーザ装置を提供することを目的するものである。
【0013】
【課題を解決するための手段】
本発明の半導体レーザ装置は、気密封止された容器内に半導体レーザ素子が設置されている半導体レーザ装置であって、気密封止された容器内の雰囲気が、不活性ガスと4%未満の水素ガスとの混合ガスであることを特徴とするものである。
【0014】
また、気密封止された容器内に、さらに、光ファイバと、前記半導体レーザ素子から出射されるレーザ光を該光ファイバに入力するための光学部材とを備えたものであってもよい。
【0015】
半導体レーザ素子の発振波長は415nm以下であることが望ましい。
【0016】
なお、水素の含有率を4%以上にすると、万一容器が開封された場合、爆発の危険性があるので好ましくない。
【0017】
【発明の効果】
本発明の半導体レーザ装置によれば、気密封止された容器内に半導体レーザ素子が設置されている半導体レーザ装置であって、気密封止された容器内の雰囲気が、不活性ガスと4%未満の水素ガスとの混合ガスであることにより、水素ガスにより、炭化水素化合物およびケイ素化合物等の汚染物質を良好に分解除去することができるので、半導体レーザ素子の共振器端面やパッケージの窓ガラス等にこれらの化合物が堆積して付着することを良好に防止することができ、レーザ特性および信頼性の高い半導体レーザ装置を得ることができる。
【0018】
また、本発明によれば、従来技術のような共振器端面に施された膜の破壊はほとんど無いためレーザ特性の劣化を抑制することができる。
【0019】
また、気密封止された容器内に、さらに、光ファイバと、半導体レーザ素子から出射されるレーザ光を該光ファイバに入力するための光学部材とを備えた半導体レーザ装置においても、半導体レーザ素子の共振器端面、光学部材の表面および光ファイバの入力端に汚染物質が堆積しやすいため、本発明を適用することは効果的である。
【0020】
特に発振波長が415nm以下の半導体レーザ素子の場合、これらの短波長レーザ光による炭化水素化合物等の堆積速度および堆積量は長波長のレーザ光の場合に比べて大きいため、本発明を適用することは効果的である。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて詳細に説明する。
【0022】
本発明の第1の実施の形態によるキャン型封止半導体レーザ装置について説明する。その半導体レーザ装置の概略構成図を図1に示す。
【0023】
本実施の形態による半導体レーザ装置は、図1に示すように、サブマウント5上に半導体レーザ素子6が接着されたヒートシンク4と、半導体レーザ素子6からワイヤ9によって接続された電極端子8と、ワイヤ12によって電極端子11に接続されたモニタ用フォトダイオード10とが、ステム1上に固設されており、これらが、無反射コーティングが施された窓ガラス3を備えた容器2によって、97%の窒素と3%の水素との混合ガスが封入されてリングウェルド封止されてなるものである。なお、容器2の内容積は、67.5mmである。
【0024】
なお、図1は、容器内の部品構成を解りやすくするため、円筒形の容器2の手前半分については記載していない。
【0025】
本実施の形態による半導体レーザ装置は、半導体レーザ素子6の前方出射光であるレーザ光7が無反射コーティングされた窓ガラス3から出射するものであり、半導体レーザ素子6の後方出射光がモニタフォトダイオード10によって発光量が感知されて、レーザ光7の出力が一定となるように電流が自動的に制御されるものである。
【0026】
なお、本実施の形態では封止雰囲気内の水素含有率は3%としたが、4%未満の含有率で水素が含まれることが望ましく、封止空間の容積、半導体レーザ装置の構成、あるいは接着剤量等を考慮して水素の含有率を決定することが望ましい。
【0027】
次に、本発明による効果を確認するため、半導体レーザ装置の信頼性試験を行った。その結果を図2に示す。なお、グラフの縦軸は、駆動電流を初期の駆動電流で規格化した値である。
【0028】
信頼性試験には、上記第1の実施の形態による半導体レーザ装置であって、半導体レーザ素子の発振波長が405nmであり、封止雰囲気が、(a)窒素のみ、(b)窒素と100ppmの酸素との混合ガス、および(c)97%の窒素と3%の水素との混合ガスの3種類の半導体レーザ装置を用いた。環境温度25℃で、光出力が30mWとなるようにAPC駆動させ、駆動電流をモニターすることにより評価を行った。
【0029】
図2に示すように、封止雰囲気が窒素のみの場合(a)は、経時で駆動電流が増加し、500時間で約10%電流が増加している。封止雰囲気が窒素と酸素との混合ガスの場合(b)は、500時間で約5%電流が増加している。そして本発明である窒素と水素との混合ガスの場合(c)は、500時間でほとんど駆動電流の増加がみられないことが確認できた。このことから、本発明により、封止雰囲気内あるいは半導体レーザ素子の共振器端面等に付着した炭化水素化合物およびケイ素化合物等からなる汚染物質が水素ガスにより良好に分解され、半導体レーザ素子の共振器端面等に汚染物質が付着するのを良好に抑制できたと考えることができる。
【0030】
次に、本発明の第2の実施の形態による半導体レーザ装置について説明する。その半導体レーザ装置の概略側面図および平面図を図3に示す。
【0031】
本実施の形態による半導体レーザ装置は、図3(a)に示すように、容器40の底面にベース板42が固定されており、このベース板42上に、7個のGaN系半導体レーザ素子LD21〜LD27が接着されたヒートブロック20と、該ヒートブロック20に取付けられたコリメータレンズホルダ44に保持されたコリメータレンズ31〜37と、集光レンズホルダ45に保持された集光レンズ43と、ファイバーホルダ46に保持されたマルチモード光ファイバ30とが固設されている。容器40の壁面には開口が形成され、この開口を通してGaN系半導体レーザ素子LD21〜LD27に駆動電流を供給する配線47が容器外に引き出されている。容器40は、97%の窒素と3%の水素との混合ガスが封入されて、蓋41によって気密封止されている。なお容器40の内容積は、8160mmであり
また、図3(b)に示すように、コリメータレンズ31〜37の各々は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂または光学ガラスをモールド成形することによって形成することができる。コリメータレンズ31〜37は、長さ方向がGaN系半導体レーザ素子LD21〜LD27の発光点の配列方向と直交するように、上記発光点の配列方向に密接配置されている。
【0032】
なお、図3においては、図の複雑化を避けるために。複数のGaN系半導体レーザ素子のうち、半導体レーザ素子LD21およびLD27にのみ符号を付し、複数のコリメータレンズのうちコリメータレンズ31および37にのみ符号を付している。
【0033】
一方、GaN系半導体レーザ素子LD21〜LD27としては、発光幅が2μmの活性層を備え、活性層と平行な方向、直角な方向の拡がり角が各々例えば10°、30°の状態で各々のレーザビームB21〜B27を発するレーザが用いられている。これらの半導体レーザ素子LD21〜LD27は活性層と平行な方向に発光点が一列に並ぶように配設されている。
【0034】
従って、各発光点から発せられたレーザビームB21〜B27は、上述のように細長形状の各コリメータレンズ31〜37に対して拡がり角度が大きい方向が長さ方向と一致し、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入射することになる。つまり、各コリメータレンズ31〜37の幅が1.1mm、長さが4.6mmであり、それらに入射するレーザビームB21〜B27の水平方向、垂直方向のビーム径は各々0.9mm、2.6mmである。コリメータレンズ31〜37の各々は、焦点距離f=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。
【0035】
集光レンズ43は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で長く切り取って、コリメータレンズ31〜37の配列方向、つまり水平方向に長く、それと直角な方向に短い形状に形成されている。この集光レンズ43は、焦点距離f=12.5mm、NA=0.3である。この集光レンズ43も、例えば、樹脂または光学ガラスをモールド成形することにより形成される。
【0036】
マルチモード光ファイバ30は、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ、および複合型光ファイバのいずれでもよい。例えば、三菱電線工業株式会社製のグレーテッドインデックス型光ファイバを用いることができる。この光ファイバ30は、コア中心部がグレーテッドインデックスで外周部がステップインデックスであり、コア径=25μm、NA=0.3、端面コートの透過率=99.5%以上である。
【0037】
本実施の形態においても、半導体レーザ素子LD21〜LD27の各光出力が30mWとなるように、各半導体レーザ素子の駆動電流を調整してAPC駆動させて評価を行ったところ、上記第1の実施の形態の半導体レーザ装置と同様に、経時で駆動電流の増加はほとんどみられないことが確認されている。
【0038】
本実施の形態による半導体レーザ装置は、合波レーザ光源を構成するGaN半導体レーザ素子LD21〜27の各々から発散光状態で出射したレーザビームB21、B22、B23、B24、B25、B26およびB27の各々は、対応するコリメータレンズ31〜37によって平行光化される。平行光化されたレーザビームB21〜B27は、集光レンズによって集光され、マルチモード光ファイバ30の入射端面に収束する。
【0039】
本実施の形態では、コリメータレンズ31〜37および集光レンズによって集光光学系が構成され、その集光光学系とマルチモード光ファイバ30に入射して光ファイバ内を伝搬し、1本のレーザビームに合波されてマルチモード光ファイバから出射する。
【0040】
上記レーザモジューでは、レーザビームB21〜B27のマルチモード光ファイバへの結合効率が0.9となる。従ってGaN系半導体レーザ素子LD21〜LD27の各出力が100mWの場合には、出力630mW(=100mW×0.9×7)の合波レーザビームを得ることができる。
【0041】
本発明により、半導体レーザ素子が封止されている容器内に存在する炭化水素系化合物あるいはびケイ素化合物等からなる汚染物質が良好に分解されるので、これらの化合物が半導体レーザ素子共振器端面等に付着するのを防止することができ、信頼性の高い半導体レーザ装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による半導体レーザ装置を示す概略構成図
【図2】封止雰囲気ガスの異なる半導体レーザ装置における駆動電流の変化を示すグラフ
【図3】本発明の第2の実施の形態による半導体レーザ装置を示す概略構成図
【符号の説明】
1  ステム
2  蓋
3  窓ガラス
4  ヒートシンク
5  サブマウント
6  半導体レーザ素子
7  レーザ光
8  電極端子
9  ワイヤ
10  モニタフォトダイオード
11  電極端子
12  ワイヤ

Claims (3)

  1. 気密封止された容器内に半導体レーザ素子が設置されている半導体レーザ装置であって、
    前記気密封止された容器内の雰囲気が、不活性ガスと4%未満の水素ガスとの混合ガスであることを特徴とする半導体レーザ装置。
  2. 前記気密封止された容器内に、光ファイバと、前記半導体レーザ素子から出射されるレーザ光を該光ファイバに入力するための光学部材とを備えたことを特徴とする請求項1記載の半導体レーザ装置。
  3. 前記半導体レーザ素子の発振波長が415nm以下であることを特徴とする請求項1または2記載の半導体レーザ装置。
JP2002208185A 2002-07-17 2002-07-17 半導体レーザ装置 Withdrawn JP2004055650A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208185A JP2004055650A (ja) 2002-07-17 2002-07-17 半導体レーザ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208185A JP2004055650A (ja) 2002-07-17 2002-07-17 半導体レーザ装置

Publications (1)

Publication Number Publication Date
JP2004055650A true JP2004055650A (ja) 2004-02-19

Family

ID=31932404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208185A Withdrawn JP2004055650A (ja) 2002-07-17 2002-07-17 半導体レーザ装置

Country Status (1)

Country Link
JP (1) JP2004055650A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022095967A (ja) * 2019-10-18 2022-06-28 日亜化学工業株式会社 光源装置
US11705691B2 (en) 2019-10-18 2023-07-18 Nichia Corporation Light source device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022095967A (ja) * 2019-10-18 2022-06-28 日亜化学工業株式会社 光源装置
JP7265213B2 (ja) 2019-10-18 2023-04-26 日亜化学工業株式会社 光源装置
US11705691B2 (en) 2019-10-18 2023-07-18 Nichia Corporation Light source device

Similar Documents

Publication Publication Date Title
US7296939B2 (en) Laser module with sealed package containing limited optical components
US7110425B2 (en) Laser module and production process thereof
US7226222B2 (en) Laser module with sealed packages having reduced total volume
JP6037293B2 (ja) 窒化物半導体発光装置
US11870214B2 (en) Semiconductor laser and method of production for optoelectronic semiconductor parts
JP2006309146A (ja) 光源モジュール
JP2004014820A (ja) レーザモジュール
KR100903982B1 (ko) 레이저장치
US20040184753A1 (en) Fiber module in which optical fiber coated with metal or inorganic material is fixed to sealable package so that an end of the optical fiber appears inside the package
JP2004252425A (ja) レーザモジュールおよびその製造方法
US7238076B2 (en) Method of assembling light-emitting apparatus
JP2004022918A (ja) レーザモジュールの製造方法
CN100583576C (zh) 激光模块及其制造方法
JP2004055650A (ja) 半導体レーザ装置
JP4115732B2 (ja) レーザモジュール及びその製造方法
US20050058167A1 (en) Laser module
JP2004233885A (ja) レーザモジュールおよびその製造方法
JP2004235535A (ja) 半導体レーザ装置
CN102957088A (zh) 光学构件和光学模块
JP2004179595A (ja) 光記録装置
JP2004126001A (ja) レーザ装置
JP4557133B2 (ja) 半導体光学装置
JP2003101116A (ja) 半導体レーザモジュール

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004