JP2004055452A - Manufacturing method of organic light emitting device - Google Patents

Manufacturing method of organic light emitting device Download PDF

Info

Publication number
JP2004055452A
JP2004055452A JP2002214131A JP2002214131A JP2004055452A JP 2004055452 A JP2004055452 A JP 2004055452A JP 2002214131 A JP2002214131 A JP 2002214131A JP 2002214131 A JP2002214131 A JP 2002214131A JP 2004055452 A JP2004055452 A JP 2004055452A
Authority
JP
Japan
Prior art keywords
emitting device
organic light
light emitting
organic
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002214131A
Other languages
Japanese (ja)
Inventor
Kazunari Yonemoto
米元 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002214131A priority Critical patent/JP2004055452A/en
Publication of JP2004055452A publication Critical patent/JP2004055452A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an organic light emitting device in which the organic light emitting device of a long life is easily producible wherein occurrence of a dark spot is suppressed. <P>SOLUTION: This has a process in which a liquid containing an organic layer material is coated and film-formation is carried out under inactive gas atmosphere of oxygen concentration 1,000ppm or less. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はウエット成膜方法および真空蒸着法により形成された有機発光層を有する有機EL表示体等の有機発光デバイスの製造方法に関する。
【0002】
【従来の技術】
有機発光デバイス(有機EL素子)は蛍光性有機化合物を含む薄膜を、陰極と陽極とで挟んだ構成を有し、前記薄膜に電子及び正孔(ホール)を注入して再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光、燐光)を利用して発光させる素子である。
【0003】
この有機発光デバイスの特徴は、10V以下の低電圧で100〜100000cd/m程度の高輝度の面発光が可能であり、また蛍光物質の種類を選択することにより青色から赤色までの発光が可能なことである。
【0004】
ここで有機薄膜の形成法は低分子(モノマー)有機EL材料では真空蒸着法、さらに電極形成についても真空蒸着法で引き続き成膜して、金属製あるいはガラス製の封止缶で素子空間を封止形成することが一般的である。
【0005】
また高分子(ポリマー)有機EL材料であれば印刷法あるいはインクジェット法を用いた薄膜形成も行われており、低分子有機EL材料でもスピン法、印刷法が性能面、コスト面での優位性から薄膜形成プロセス検討が行われている。
【0006】
ここで有機発光デバイスは電流駆動型の発光素子でであり、高電流発光時において素子が発熱するため各積層膜や素子周囲に酸素や水分があった場合には素子構成材料が酸化促進され、構成材料の変質による発光不良、いわゆるダークスポットが発生、成長してしまうという問題が生じている。そこで各成膜工程および工程間においては素子の大気接触を極力無くし素子膜への酸素や水分付着によるダメージを抑え素子封止まで行う必要がある。
【0007】
ここで特開平10−233283号公報や特開平10−241858号公報や特開2000−133446号公報においては成膜作業および搬送領域を水分含有量100PPM以下の不活性ガス雰囲気に規定して有機EL素子を製作することでダークスポットの発生を抑制している。しかしながらダークスポットの発生については素子周囲の酸素量の存在が大きく、水分量の抑制だけでは雰囲気制御が不十分である。また特開平8−78159号公報においては積層した有機EL素子の外周空間を溶存酸素濃度1PPM以下の不活性液体層で封止することで素子膜の酸化を抑制しダークスポットの発生を抑制している。ただし液体層での封止領域の充填は工程上煩雑になりコストアップ要因になる。
【0008】
【発明が解決しようとしている課題】
そこで本発明の目的は、ウエット成膜方法および真空蒸着法により形成された有機発光層を有する有機EL表示体等の有機発光デバイスにおいて、コストダウンしかつ寿命の長い高性能の有機発光デバイス製造方法を提供することにある。
【0009】
【課題を解決するための手段】
よって本発明は、一対の対向電極と前記一対の対向電極の間に設けられる有機層とを有する有機発光デバイスの製造方法であって、
酸素濃度1000ppm以下の不活性ガス雰囲気下で前記有機層材料を含む液を塗布し成膜する工程を有することを特徴とする有機発光デバイスの製造方法を提供する。
【0010】
【発明の実施の形態】
以下、本発明の好適な実施形態について図面を参照して説明する。
【0011】
本発明の有機発光デバイスの構成例を図1に示す。ここでの積層構造体は基板1上にITO透明電極による陽電極2、正孔注入および輸送材料3、有機電子輸送性発光層4、電子注入輸送層5、陰電極6を順次積層させる。そしてさらにこの有機積層構造体を密閉する箱形の封止缶7を有している。上記封止缶7はガラス、金属、セラミックス、低透湿性高分子材料等で形成されたものである。また接着剤8についてはUV硬化タイプを使用している。
【0012】
また本発明の有機発光デバイスの製造方法は、図2に示したような製造装置でウエット成膜用の第1の作業室101と真空蒸着での成膜および基板封止作業用の第2の作業室102、さらには素子基板を密閉雰囲気のまま移動可能なパスボックス103で装置構成されており、すべて酸素濃度1000PPM以下の不活性ガス雰囲気に制御された空間になっている。ここで素子環境を酸素濃度1000PPM以下の不活性ガス雰囲気にすることにより、素子膜形成途中あるいは封止前の素子が酸化劣化してダークスポットが発生する等の品質や寿命に与える影響を防止できる。作業室101、102およびパスボックス103、105はアクリルあるいは塩化ビニル製のグローブボックスで製作しており、多少の正圧に耐えられるようにSUSあるいはアルミの枠組みや補強をしてもよい。
【0013】
ここで不活性ガスは通常窒素ガスが望ましく、窒素純度99.999%程度のガス流量70L/分であればウエット成膜用に必要な1mの作業室は1時間以内に酸素濃度は初期大気状態の18%から所定の1000PPM以下に到達するので、作業中はこの雰囲気を維持できるだけの微少流量の窒素ガスを流しておけばよい。
【0014】
ここで、ITO透明電極をスパッタリング法で形成した基板に対して、スピンコート法等のウエット成膜で有機薄膜形成すれば、ITO膜の膜突起等もカバーし平滑で欠陥の無いさらに密着性の強い有機薄膜が得られるため素子膜の性能向上が期待できる。またウエット成膜方法に関しては高分子材料に限らず低分子材料でもスピンコート法での成膜が使用されるが、素子形成のためには不要部除去(配線部形成)が必要で、拭き取り、テープマスクなど工程が増えるため、印刷法(オフセット印刷)による膜形成も有効である。またウエット成膜法による正孔注入および輸送材料としては、可溶性のフタロシアニン化合物、トリアリールアミン化合物、導電性高分子、ペリレン系化合物、Eu錯体等が使用できるが、これにかぎられるものではない。
【0015】
次にウエット成膜した基板をさらに真空蒸着をおこなう作業室へ搬送する必要があり、この時も形成膜面に酸素、水分が付着するのを防止しなくてはならない。ここで作業室101から作業室102へ移動にはパスボックス103を設けてあり、この空間の雰囲気も酸素濃度を1000PPM以下に保持されており、素子基板を雰囲気保持のまま移動可能である。第2の作業室は蒸着用の真空チャンバー104を囲い込んだ形のグローブボックス構造で、雰囲気を酸素濃度1000PPM以下の不活性ガス雰囲気に制御された空間に保持した状態にしておく。さらに素子基板をボックス内の真空チャンバー104内にセッティングし、真空引きを行い真空チャンバー内圧力は1×10―4Pa程度に準備し、その後有機電子輸送性発光層を真空蒸着法で成膜し、最後に陰電極を真空蒸着法で成膜する。
【0016】
この後チャンバーをリークし積層した素子基板を取り出す際には、第2の作業室雰囲気は依然として酸素濃度1000PPM以下の不活性ガス雰囲気に制御された空間になっており、この中で封止缶の接着作業を行うことで、一貫環境制御の雰囲気下で作成された有機発光デバイスが完成する。
【0017】
以上の説明においては第1の作業室101と第2の作業室102がパスボックス103で連結している場合であったが、作業室が完全独立している場合は、素子搬送用に雰囲気保持用の気密ケースを用いて素子をパッキングして搬送することで、酸素濃度1000PPM以下の不活性ガス雰囲気に制御して素子基板を移動が可能である。
【0018】
【実施例】
以下、本発明の具体的実施例を示し、本発明をさらに詳細に説明する。
【0019】
(実施例1)
この実施例では図2の製造装置を用いた。
【0020】
厚さ0.7mmのガラス基板にITO透明電極をスパッタ法で形成した。次にIPAを用いて超音波洗浄し、IPAベーパーにて引き上げて乾燥仕上げをおこなった。(装置図示せず)この後図2の製造装置のパスボックス105より基板を投入した。この前処理室106は乾燥空気の循環雰囲気になっており、ここでITO電極表面をUV/O3洗浄を行って表面濡れ性を向上一定化する。
【0021】
次にパスボックス103に基板を移動し、窒素ガスを封入パージした後パスボックスの第1の作業室101側のドアを開けて基板を移動させる。第1の作業室101は事前に窒素ガスパージをしておき、酸素濃度1000PPM以下の雰囲気に保持されている。ここで正孔注入材料としてトリフェニルアミン6量体(TPA−6:分子量1461、融点277℃、Tg156℃)をスピンコート法によりコーティングした。
加熱乾燥することで厚さ0.05μmの正孔注入層が形成された。
【0022】
次いで基板はパスボックスを通過させて第2の作業室102へ移動させるが、ここも事前に窒素ガスパージをしておき、酸素濃度1000PPM以下の雰囲気に保持されている。第2の作業室102内に設置してある真空チャンバー104内の基板ホルダー(図示せず)に基板セットし、真空チャンバー内圧力を1×10―4Paに減圧した。次いで有機電子輸送性発光層として9―ジオクチルフルオレンの5量体(DOFL−5:分子量1945、融点210℃、Tg123℃)を厚さ0.05μm真空蒸着した。最後に陰電極として厚さ0.1〜0.2μmのMgAg反射電極を真空蒸着した。
【0023】
この後チャンバーをリークし積層した素子基板を取り出したが、第2の作業室雰囲気は依然として酸素濃度1000PPM以下の不活性ガス雰囲気に保持されている。ここでUV硬化剤を塗布してSUS製の封止缶を素子に貼りあわせて、最後にUV照射で完全硬化させ有機発光デバイスを製作した。
【0024】
(実施例2)
洗浄後に第1の作業室内を酸素濃度1500PPM近傍の不活性ガス雰囲気に制御してスピンコート成膜作業を行い、その後は実施例1と同様に第2の作業室内を酸素濃度1000PPM以下の不活性ガス雰囲気に制御して蒸着および封止作業を行い有機発光デバイスを製作した。
【0025】
(実施例3)
実施例1と同様に洗浄後に第1の作業室内で酸素濃度1000PPM以下の不活性ガス雰囲気下でスピンコート成膜作業を行い、その後は第2の作業室内を酸素濃度1500PPM近傍の不活性ガス雰囲気に制御して蒸着および封止作業を行い有機発光デバイスを製作した。
【0026】
(比較例1)
洗浄後のスピンコート成膜蒸着および封止作業をすべて大気中で行い有機発光デバイスを製作した。
【0027】
(比較例2)
洗浄後に第1の作業室内を酸素濃度1500PPM近傍の不活性ガス雰囲気に制御してスピンコート成膜作業を行い、その後は第2の作業室内で酸素濃度1500PPM近傍の不活性ガス雰囲気に制御して蒸着および封止作業を行い有機発光デバイスを製作した。
【0028】
以上作製した実施例1、2、3、の有機発光デバイスを大気中で直流電圧10mA/cmで連続駆動させて素子性能の評価を行った。その結果を表1に示す。なおダークスポットの発生状態についての評価は、◎は3000時間経過しても直径100μm以上のダークスポットは発生せず良好であった。○は2000時間経過まで直径100μm以上のダークスポットは発生しなかった。△は1000時間経過まで直径100μm以上のダークスポットは発生しなかった。×は初期状態から微少ダークスポットが観察され、さらに700時間で直径100μm以上のダークスポットに成長し素子性能耐久が非常に悪かった。
【0029】
【表1】

Figure 2004055452
【0030】
【発明の効果】
以上説明したように、本発明によればダークスポットの発生抑制された長寿命の有機発光デバイスが容易に作製することができる。
【図面の簡単な説明】
【図1】本発明の有機発光デバイスの構成例を示す垂直断面図である。
【図2】本発明の有機発光デバイスの製造に用いられる製造装置であり製造方法を説明するための説明図である。
【符号の説明】
1 基板
2 陽電極
3 正孔注入および輸送材料
4 有機電子輸送性発光層
5 電子注入輸送層
6 陰電極
7 封止缶
8 接着剤
101 第1作業室
102 第2作業室
103 第1パスボックス
104 真空チャンバー
105 第2パスボックス
106 前処理室[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an organic light emitting device such as an organic EL display having an organic light emitting layer formed by a wet film forming method and a vacuum evaporation method.
[0002]
[Prior art]
An organic light emitting device (organic EL element) has a configuration in which a thin film containing a fluorescent organic compound is sandwiched between a cathode and an anode, and is excited by injecting electrons and holes into the thin film and recombining them. This is an element that generates electrons (excitons) and emits light by utilizing light emission (fluorescence and phosphorescence) when the excitons are deactivated.
[0003]
The feature of this organic light emitting device is that it can emit high-intensity surface light of about 100 to 100000 cd / m 2 at a low voltage of 10 V or less, and can emit light from blue to red by selecting the type of fluorescent substance. That is what.
[0004]
Here, the organic thin film is formed by a vacuum evaporation method for a low molecular (monomer) organic EL material, and a vacuum evaporation method for forming an electrode, and the element space is sealed with a metal or glass sealing can. It is common to form a stop.
[0005]
In addition, thin film formation using a printing method or an ink-jet method is also performed for a high molecular weight (organic) organic EL material, and even for a low molecular weight organic EL material, the spin method and the printing method are superior in terms of performance and cost. A thin film formation process is being studied.
[0006]
Here, the organic light-emitting device is a current-driven light-emitting device, and the device generates heat when emitting high current, so that when there is oxygen or moisture around each of the laminated films or the device, the oxidation of the device constituent material is promoted, There is a problem in that light emission failure, that is, a so-called dark spot is generated and grows due to deterioration of constituent materials. Therefore, it is necessary to minimize the contact of the element with the atmosphere between the film forming steps and between the steps to minimize damage to the element film due to the adhesion of oxygen and moisture, and to perform element sealing.
[0007]
Here, in JP-A-10-233283, JP-A-10-241858 and JP-A-2000-133446, the organic EL is defined by defining the film forming operation and the transport region in an inert gas atmosphere having a water content of 100 PPM or less. By producing the element, the generation of dark spots is suppressed. However, regarding the generation of dark spots, the amount of oxygen around the element is largely present, and control of the atmosphere is insufficient only by suppressing the amount of moisture. In Japanese Patent Application Laid-Open No. 8-78159, the peripheral space of a stacked organic EL element is sealed with an inert liquid layer having a dissolved oxygen concentration of 1 PPM or less, thereby suppressing oxidation of the element film and suppressing generation of dark spots. I have. However, filling the sealing region with the liquid layer complicates the process and increases the cost.
[0008]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a method for manufacturing a high-performance organic light-emitting device having a long life and a low cost in an organic light-emitting device such as an organic EL display having an organic light-emitting layer formed by a wet film forming method and a vacuum evaporation method. Is to provide.
[0009]
[Means for Solving the Problems]
Therefore, the present invention is a method for manufacturing an organic light-emitting device having a pair of counter electrodes and an organic layer provided between the pair of counter electrodes,
A method for manufacturing an organic light-emitting device, comprising a step of applying a liquid containing the organic layer material under an inert gas atmosphere having an oxygen concentration of 1000 ppm or less to form a film.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0011]
FIG. 1 shows a configuration example of the organic light emitting device of the present invention. In this laminated structure, a positive electrode 2, a hole injecting and transporting material 3, an organic electron transporting light emitting layer 4, an electron injecting and transporting layer 5, and a negative electrode 6 are sequentially laminated on a substrate 1 by using an ITO transparent electrode. Further, a box-shaped sealing can 7 for sealing the organic laminated structure is provided. The sealing can 7 is made of glass, metal, ceramics, a low moisture permeable polymer material, or the like. The adhesive 8 is of a UV curing type.
[0012]
The method for manufacturing an organic light-emitting device according to the present invention includes a first work chamber 101 for wet film formation and a second work chamber for vacuum deposition and substrate sealing work in a manufacturing apparatus as shown in FIG. The apparatus is composed of a work chamber 102 and a pass box 103 in which the element substrate can be moved in a sealed atmosphere, all of which are spaces controlled under an inert gas atmosphere having an oxygen concentration of 1000 PPM or less. Here, by setting the element environment to an inert gas atmosphere having an oxygen concentration of 1000 PPM or less, it is possible to prevent influences on quality and life, such as generation of dark spots due to oxidation deterioration of the element during element film formation or before sealing. . The work chambers 101 and 102 and the pass boxes 103 and 105 are made of glove boxes made of acrylic or vinyl chloride, and may be made of SUS or aluminum so as to withstand some positive pressure or reinforced.
[0013]
Here, the inert gas is usually desirably nitrogen gas, and if the gas flow rate is 70 L / min with a nitrogen purity of about 99.999%, the 1 m 3 working chamber required for wet film formation has an oxygen concentration within one hour within the initial atmosphere. Since 18% of the state reaches a predetermined value of 1000 PPM or less, it is sufficient to flow a nitrogen gas at a very small flow rate capable of maintaining this atmosphere during the operation.
[0014]
Here, if an organic thin film is formed on a substrate on which an ITO transparent electrode is formed by a sputtering method by wet film formation such as a spin coating method, the film protrusions of the ITO film are covered, and the adhesion is smooth and defect-free. Since a strong organic thin film can be obtained, improvement in the performance of the element film can be expected. Regarding the wet film forming method, spin coating is used not only for the polymer material but also for the low molecular material, but it is necessary to remove unnecessary portions (wiring portion formation) for element formation. Since the number of processes such as a tape mask increases, it is also effective to form a film by a printing method (offset printing). As a hole injecting and transporting material by a wet film formation method, a soluble phthalocyanine compound, a triarylamine compound, a conductive polymer, a perylene compound, an Eu complex, or the like can be used, but is not limited thereto.
[0015]
Next, the substrate on which the wet film has been formed needs to be further transferred to a work chamber where vacuum deposition is performed. At this time, it is necessary to prevent oxygen and moisture from adhering to the surface of the formed film. Here, a pass box 103 is provided for moving from the work chamber 101 to the work chamber 102, and the atmosphere in this space is also maintained at an oxygen concentration of 1000 PPM or less, and the element substrate can be moved while maintaining the atmosphere. The second working chamber has a glove box structure surrounding the vacuum chamber 104 for vapor deposition, and the atmosphere is kept in a controlled space of an inert gas atmosphere having an oxygen concentration of 1000 PPM or less. Further, the element substrate is set in the vacuum chamber 104 in the box, and the chamber is evacuated to prepare a pressure in the vacuum chamber of about 1 × 10 −4 Pa. Thereafter, an organic electron transporting light emitting layer is formed by a vacuum evaporation method. Finally, a negative electrode is formed by a vacuum deposition method.
[0016]
Thereafter, when the chamber is leaked and the stacked element substrate is taken out, the atmosphere in the second working chamber is still a space controlled to an inert gas atmosphere having an oxygen concentration of 1000 PPM or less. By performing the bonding operation, an organic light-emitting device manufactured under an atmosphere of consistent environmental control is completed.
[0017]
In the above description, the first working chamber 101 and the second working chamber 102 are connected by the pass box 103. However, when the working chambers are completely independent, the atmosphere is maintained for transporting the elements. By packing and transporting the device using a hermetic case, the device substrate can be moved while controlling the atmosphere to an inert gas atmosphere having an oxygen concentration of 1000 PPM or less.
[0018]
【Example】
Hereinafter, specific examples of the present invention will be shown, and the present invention will be described in more detail.
[0019]
(Example 1)
In this embodiment, the manufacturing apparatus shown in FIG. 2 was used.
[0020]
An ITO transparent electrode was formed on a glass substrate having a thickness of 0.7 mm by a sputtering method. Next, the substrate was subjected to ultrasonic cleaning using IPA, pulled up with IPA vapor, and dried and finished. (Apparatus not shown) Thereafter, a substrate was loaded from the pass box 105 of the manufacturing apparatus of FIG. The pretreatment chamber 106 has a circulating atmosphere of dry air. Here, the surface of the ITO electrode is subjected to UV / O3 cleaning to improve and maintain the surface wettability.
[0021]
Next, the substrate is moved to the pass box 103, and after purging with nitrogen gas, the door on the first work chamber 101 side of the pass box is opened to move the substrate. The first working chamber 101 is purged with nitrogen gas in advance, and is kept in an atmosphere having an oxygen concentration of 1000 PPM or less. Here, triphenylamine hexamer (TPA-6: molecular weight 1461, melting point 277 ° C., Tg 156 ° C.) was coated by a spin coating method as a hole injection material.
By heating and drying, a hole injection layer having a thickness of 0.05 μm was formed.
[0022]
Next, the substrate is passed through the pass box and moved to the second working chamber 102, which is also purged with nitrogen gas in advance and kept in an atmosphere having an oxygen concentration of 1000 PPM or less. The substrate was set on a substrate holder (not shown) in a vacuum chamber 104 installed in the second working chamber 102, and the pressure in the vacuum chamber was reduced to 1 × 10 −4 Pa. Next, a pentamer of 9-dioctylfluorene (DOFL-5: molecular weight: 1945, melting point: 210 ° C., Tg: 123 ° C.) as an organic electron transporting light emitting layer was vacuum-deposited with a thickness of 0.05 μm. Finally, a MgAg reflective electrode having a thickness of 0.1 to 0.2 μm was vacuum-deposited as a negative electrode.
[0023]
Thereafter, the chamber was leaked, and the stacked element substrates were taken out. However, the atmosphere in the second working chamber was still maintained in an inert gas atmosphere having an oxygen concentration of 1000 PPM or less. Here, a UV curing agent was applied, a SUS sealing can was attached to the element, and finally, the element was completely cured by UV irradiation to produce an organic light emitting device.
[0024]
(Example 2)
After the cleaning, the first working chamber is controlled to an inert gas atmosphere near an oxygen concentration of 1500 PPM to perform a spin coating film forming operation. Thereafter, as in the first embodiment, the second working chamber is inerted with an oxygen concentration of 1000 PPM or less. An organic light emitting device was manufactured by performing vapor deposition and sealing operations under control of a gas atmosphere.
[0025]
(Example 3)
After the cleaning, spin coating is performed in an inert gas atmosphere having an oxygen concentration of 1000 PPM or less in a first working chamber after cleaning as in Example 1. Thereafter, an inert gas atmosphere having an oxygen concentration of about 1500 PPM is formed in a second working chamber. The organic light-emitting device was manufactured by performing the vapor deposition and sealing operations under the control described above.
[0026]
(Comparative Example 1)
After the washing, spin coating film deposition and sealing were all performed in the air to produce an organic light emitting device.
[0027]
(Comparative Example 2)
After the cleaning, the first working chamber is controlled to an inert gas atmosphere near an oxygen concentration of 1500 PPM to perform spin coating film forming work, and thereafter, the second working chamber is controlled to an inert gas atmosphere near an oxygen concentration of 1500 PPM. An organic light-emitting device was manufactured by performing vapor deposition and sealing operations.
[0028]
The organic light-emitting devices of Examples 1, 2, and 3 manufactured as described above were continuously driven at a direct current voltage of 10 mA / cm 2 in the atmosphere to evaluate element performance. Table 1 shows the results. In addition, the evaluation of the state of occurrence of dark spots was good because no dark spots having a diameter of 100 μm or more were generated even after 3000 hours. In the case of ス ポ ッ ト, no dark spot having a diameter of 100 μm or more was generated until 2000 hours. Δ indicates that no dark spot having a diameter of 100 μm or more was generated until 1000 hours. In the case of ×, a minute dark spot was observed from the initial state, and further grown to a dark spot having a diameter of 100 μm or more in 700 hours, and the element performance durability was extremely poor.
[0029]
[Table 1]
Figure 2004055452
[0030]
【The invention's effect】
As described above, according to the present invention, a long-life organic light-emitting device in which the generation of dark spots is suppressed can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view showing a configuration example of an organic light emitting device of the present invention.
FIG. 2 is a diagram illustrating a manufacturing apparatus used for manufacturing the organic light emitting device of the present invention and illustrating a manufacturing method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Positive electrode 3 Hole injection and transport material 4 Organic electron transporting light emitting layer 5 Electron injection transport layer 6 Negative electrode 7 Sealing can 8 Adhesive 101 First working room 102 Second working room 103 First pass box 104 Vacuum chamber 105 Second pass box 106 Pretreatment chamber

Claims (1)

一対の対向電極と前記一対の対向電極の間に設けられる有機層とを有する有機発光デバイスの製造方法であって、
酸素濃度1000ppm以下の不活性ガス雰囲気下で前記有機層材料を含む液を塗布し成膜する工程を有することを特徴とする有機発光デバイスの製造方法。
A method for manufacturing an organic light-emitting device having a pair of counter electrodes and an organic layer provided between the pair of counter electrodes,
A method for manufacturing an organic light-emitting device, comprising a step of applying a liquid containing the organic layer material under an inert gas atmosphere having an oxygen concentration of 1000 ppm or less to form a film.
JP2002214131A 2002-07-23 2002-07-23 Manufacturing method of organic light emitting device Withdrawn JP2004055452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002214131A JP2004055452A (en) 2002-07-23 2002-07-23 Manufacturing method of organic light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002214131A JP2004055452A (en) 2002-07-23 2002-07-23 Manufacturing method of organic light emitting device

Publications (1)

Publication Number Publication Date
JP2004055452A true JP2004055452A (en) 2004-02-19

Family

ID=31936538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002214131A Withdrawn JP2004055452A (en) 2002-07-23 2002-07-23 Manufacturing method of organic light emitting device

Country Status (1)

Country Link
JP (1) JP2004055452A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1841291A1 (en) * 2004-12-28 2007-10-03 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and method for manufacturing same
JP2008192433A (en) * 2007-02-02 2008-08-21 Mitsubishi Chemicals Corp Manufacturing method of organic electroluminescent element
JP2012079594A (en) * 2010-10-04 2012-04-19 Kaneka Corp Organic el device and manufacturing method therefor
JP2012212784A (en) * 2011-03-31 2012-11-01 Konica Minolta Ij Technologies Inc Conductive pattern member formation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1841291A1 (en) * 2004-12-28 2007-10-03 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and method for manufacturing same
EP1841291A4 (en) * 2004-12-28 2009-06-03 Idemitsu Kosan Co Organic electroluminescent device and method for manufacturing same
JP2008192433A (en) * 2007-02-02 2008-08-21 Mitsubishi Chemicals Corp Manufacturing method of organic electroluminescent element
JP2012079594A (en) * 2010-10-04 2012-04-19 Kaneka Corp Organic el device and manufacturing method therefor
JP2012212784A (en) * 2011-03-31 2012-11-01 Konica Minolta Ij Technologies Inc Conductive pattern member formation method

Similar Documents

Publication Publication Date Title
JP4526776B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
CN103022364B (en) Electroluminescent cell and adopt its luminescent device
JP4881789B2 (en) Organic electroluminescence device manufacturing method and organic electroluminescence device manufacturing apparatus
US20120068169A1 (en) Organic el display device and method for manufacturing the same
JPH1161386A (en) Film forming device of organic thin film light emitting element
WO2001058222A1 (en) Organic electroluminescent element and method of manufacture thereof
JP2001345172A (en) Organic el element and method of manufacturing thereof
EP2257126A1 (en) Method for treating surface of electrode, electrode, and process for producing organic electroluminescent element
JPH11185956A (en) Manufacture of organic el element and organic el element
JP3288242B2 (en) Organic electroluminescence display device and method of manufacturing the same
JPH10241858A (en) Manufacture of organic electroluminescent display device and device therefor
JP2000030857A (en) Organic el element and its manufacture
JPH09132774A (en) Organic thin-film luminescent element
JPWO2008023626A1 (en) Organic electroluminescence device and method for producing the same
JP2002237382A (en) Organic led element and its manufacturing method
JPH11176571A (en) Manufacture of organic el element
JP4494126B2 (en) Film forming apparatus and manufacturing apparatus
JP2004055452A (en) Manufacturing method of organic light emitting device
JP2000311784A (en) Manufacture for organic electroluminescent element
JPH10335061A (en) Method and device for manufacturing organic electroluminescent element
JP2008078181A (en) Organic el light emitting material and method of manufacturing organic el device
JP2003229269A (en) Organic el element
JP2000123971A (en) Manufacture of organic el
US20060182878A1 (en) Method of producing electronic device
JP4696832B2 (en) Method for manufacturing organic electroluminescence panel

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004