JP2004052900A - Metal seal and its mounting and using method - Google Patents

Metal seal and its mounting and using method Download PDF

Info

Publication number
JP2004052900A
JP2004052900A JP2002211097A JP2002211097A JP2004052900A JP 2004052900 A JP2004052900 A JP 2004052900A JP 2002211097 A JP2002211097 A JP 2002211097A JP 2002211097 A JP2002211097 A JP 2002211097A JP 2004052900 A JP2004052900 A JP 2004052900A
Authority
JP
Japan
Prior art keywords
contact
metal seal
intermediate base
flat surfaces
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002211097A
Other languages
Japanese (ja)
Other versions
JP4091373B2 (en
Inventor
Hiroki Oida
笈田 弘紀
Tetsuya Ashida
芦田 哲哉
Takasada Mitsui
三ツ井 孝禎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002211097A priority Critical patent/JP4091373B2/en
Priority to KR1020030048549A priority patent/KR100988202B1/en
Priority to US10/620,372 priority patent/US7004479B2/en
Publication of JP2004052900A publication Critical patent/JP2004052900A/en
Priority to US11/179,485 priority patent/US7083171B2/en
Application granted granted Critical
Publication of JP4091373B2 publication Critical patent/JP4091373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0806Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing characterised by material or surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0887Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing the sealing effect being obtained by elastic deformation of the packing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S277/00Seal for a joint or juncture
    • Y10S277/924Deformation, material removal, or molding for manufacture of seal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S277/00Seal for a joint or juncture
    • Y10S277/935Seal made of a particular material

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gasket Seals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal seal having large amount of restoration with low fastening force. <P>SOLUTION: The metal seal is an annular shape one as a whole which is interposed between a pair of flat surfaces parallel to each other. The metal seal has an intermediate base part 3, a first contact projecting part 11 and a second contact projecting part 12. The first contact projecting part 11 is projected near the inside diameter and the second projecting part is projected near the outside diameter. Elastic twisted deformation is produced around the intermediate base part 3 in a mounted and pressed state. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属シールに関する。
【0002】
【従来の技術】
真空、外圧及び内圧の固定フランジ用のシールとしては、従来、ゴムや樹脂等の様々な材料が使用されてきた。特に、高真空・高圧(外圧・内圧)、高温・低温、及び、腐食性流体への適用等の過酷な条件下では、金属シールが用いられる場合が多い。
【0003】
【発明が解決しようとする課題】
しかしながら、この金属シールには以下のような問題がある。即ち、従来の金属シールは一般的に締付力が高く、そのため、相手部材(シール取付部材)としてのフランジ等の肉厚を、増加せねばならず、装置の重量増加及び容積(スペース)増加等の問題が発生する。また、図4に示した従来例の金属シール31に於て、相互に平行な一対の平坦面32, 33の間に介装された金属シール31が圧接シール部K ,K にて局部的に塑性変形を生じ、平坦面32, 33───つまりフランジ等の相手部材34, 35───に損傷を与え、フランジ等の相手部材34, 35の再使用に関して問題を生じた。当然ながら、保守・点検等の解体時に、高いメンテナンスコストとメンテナンス時間を要していた。
【0004】
図4に示したような従来の金属シール31が圧接シール部K ,K に於て、局部的に塑性変形して平坦面32, 33に損傷を与える理由は、この金属シール31の剛性高さの故に、ほとんど弾性変形することができず、(平坦面32, 32相互が接近しようとする方向の)締付力を、そのまま受けてしまうためである。
【0005】
本発明の目的は、製作が容易で、かつ安価であって、締付力が(金属シールであるにかかわらず)小さく、かつ、復元力が大きく、相手部材(取付部材)としてのフランジ等の肉厚を薄くできて、装置の軽量化とコンパクト化に貢献できる金属シールを提供することにある。
さらに本発明の他の目的とするところは、シールを装着する取付部材(相手部材)の材質が、セラミックス等の脆い材質や、アルミニウム等の柔らかい材質であっても損傷を与えずに長期間使用することが可能な金属シール及びその使用方法を提供することにあり、さらに、シール溝の深さ寸法許容差が大きい場合にもシール性(密封性)にバラツキが生じることなく常に安定したシール性(密封性)を発揮でき、また、シールが使用可能なセット高さ範囲が広く、装着も容易な金属シールを提供することにある。
【0006】
【課題を解決するための手段】
そこで、本発明は、相互に平行な一対の平坦面の間に介装される全体が環状の金属シールに於て、中間基部と、上記平坦面の一方に当接する第1接触凸部と、上記平坦面の他方に当接する第2接触凸部と、を備え、上記第1接触凸部を上記中間基部の内径寄りに突設し、上記第2接触凸部を上記中間基部の外径寄りに突設して、装着圧縮状態にて上記一対の平坦面から受ける押圧力によって、上記中間基部を中心に回転する捩れ弾性変形を生ずるように構成されている。
【0007】
また、中間基部が横断面略矩形であって、第1接触凸部・第2接触凸部が、横断面略半円形乃至略半楕円形である。
また、中間基部が横断面略矩形であって、かつ、上記第1接触凸部が突設された上記中間基部の端面と一方の平坦面との間隙が装着未圧縮状態で外径側へしだいに増加する勾配面に形成され、さらに、上記第2接触凸部が突設された上記中間基部の端面と他方の平坦面との間隙が装着未圧縮状態で内径側へしだいに増加する勾配面に形成されている。
また、上記第2接触凸部が装着圧縮状態でその外周面が当接する規制内周面部を、上記他方の平坦面に連設して、該第2接触凸部が横断面に於て2箇所で接触するように構成した。
【0008】
そして、本発明に係る金属シールの装着使用方法は、全体が環状の金属シールの軸心方向の両端面の一方に内径寄りの第1接触凸部を突設すると共に他方に外径寄りの第2接触凸部を突設し、該金属シールを相互に平行な一対の平坦面の間に、上記第1接触凸部が一方の平坦面に対応した第1組込状態と、上記第2接触凸部が該一方の平坦面に対応した第2組込状態とに、所定使用期間後に、反転して装着する方法である。
【0009】
【発明の実施の形態】
以下、図示の実施の形態に基づき、本発明を詳説する。
図1と図2(A)は、本発明に係る金属シール(メタルシール)Sの実施の一形態を示し、自由状態(未装着状態)の断面正面図であり、図3又は図5(A)は使用状態───装着圧縮状態───を示す要部断面説明図である。
この金属シールSは、ステンレス鋼やばね用鋼やその他の金属から成り、切削や研削等の機械加工にて作製され、又は、塑性加工等で作製される。
【0010】
そして、この金属シールSは相互に平行な一対の平坦面1,2の間に介装されるものであって、全体が円形,楕円,長円,略矩形等の環状である。横断面形状について説明すれば、略矩形(長方形)の中間基部3と、略半円形の第1接触凸部11と第2接触凸部12とから成る。第1接触凸部11は一方の平坦面1に当接し、第2接触凸部12は他方の平坦面2に当接する。図2(A)と図3では2点鎖線によって、中間基部3の断面形状の輪郭を示しており、装着未圧縮状態では、この中間基部3の軸心L方向と直交する端面(長辺)5,6は、相手部材(フランジ等の取付部材)7,8の前記平坦面1,2と、平行状態である。
【0011】
特に、第1接触凸部11は中間基部3の端面(長辺)5の内径寄りに突設され、さらに、第2接触凸部12は中間基部3の端面(長辺)6の外径端寄りに突設されている。
要するに、断面矩形状の中間基部3に対し、内径側と外径側に相互にラジアル方向に位置をずらせ、かつ、軸心方向に相反する方向に第1接触凸部11・第2接触凸部12を突設している。しかも、図例では断面矩形状の中間基部3の(内周面を成す)短辺9と略半円形第1接触凸部11とは(段差の無い)連続状である。また、断面矩形状の中間基部3の(外周面を成す)短辺10と第2接触凸部12とは(段差の無い)連続状である。
【0012】
そして、図3に示す如く、相手部材7の平坦面1と、相手部材8の平坦面2が相互に接近して、装着圧縮状態となると、一対のこの平坦面1,2から受ける押圧力F ,F によって、中間基部3を中心に、図2(A)から図3のように倒れて(回転して)、捩れ弾性変形を生ずる。この捩れ弾性変形は、一対の平坦面1,2が分離すれば、図2(A)の元の状態───自由状態姿勢───に復元する。
【0013】
図4に示した従来例の金属シール31では、一対の平坦面32, 32の接近作動を、ほとんど静止したままの金属シール31の圧縮にて受けようとするが、剛性の高い金属シール31は微小弾性変形した後に、圧接シール部K ,K が局部的に塑性変形し、損傷を受けると同時に、相手部材34,35も損傷を受ける。これに対し、本発明に係る金属シールSでは、相手部材7,8(平坦面1,2)の押圧力F ,F を、巧妙に、中間基部3を中心に回転する───倒れる───捩れ弾性変形によって、柔軟に受け止めることで、第1接触凸部11が一方の平坦面1に接触する圧接シール部K 、及び、第2接触凸部12が他方の平坦面2に接触する圧接シール部K が、塑性変形することを防止し(乃至減少させ)、第1・第2接触凸部11, 12の損傷を防止し、かつ、平坦面1,2の損傷を防止できる。
【0014】
図2(B)(C)(D)は、種々の他の実施の形態を例示する横断面図であって、図2(A)に比較して、図2(B)では(2点鎖線にて周辺の一部を示した)中間基部3の径方向寸法Eが小さく、中間基部3の横断面が正方形に近づいた矩形(長方形)となっている。また、図2(C)では、逆に、中間基部3の径方向寸法Eが大きく、中間基部3の横断面形状が細長状長方形(扁平矩形)に設定されている。また、図2(D)では、中間基部3の軸心方向寸法───短辺長さ───を、図2(A)よりも小さく設定して、細長状長方形(扁平矩形)にしたものである。
図2の(B)(A)(C)の順に、しだいに捩れ弾性変形を生じ易くなり、締付力が減少できる。そして、図2(D)は(A)よりも、捩れ弾性変形し易く、締付力が小さい。
【0015】
次に、図5は金属シールSの装着使用方法を説明するための図である。
この図5(A)に於て、太い短線で示した損傷部(ダメージ部)J ,J が平坦面1,2に発生する場合がある。つまり、金属シールSの第1接触凸部11によって一方の平坦面1に内径寄りの損傷部J が発生し、金属シールSの第2接触凸部12によって他方の平坦面2に外径寄りの損傷部J が発生する場合がある。このように第1接触凸部11が一方の平坦面1に対応(当接)した組立状態を第1組立状態と呼ぶこととする。
【0016】
そのような場合、図5(A)から図5(B)の如く反転して装着する。即ち、金属シールSを一旦分解して取出し、図の上下方向を入れ替える(上下反転させる)ことで、第2接触凸部12が一方の平坦面1に対応した第2組込状態とする。図5(B)で明らかなように、元の損傷部J ,J は、反転した第2・第1接触凸部12, 11とは接触せず、新たな面と接触するので、使用期間は2倍に延長───フランジ等の相手部材7,8を2倍に長寿命化───できる。
本発明の金属シールSでは第1接触凸部11と第2接触凸部12の径方向位置(軸心Lからの距離)が相違している点を利用して、反転させて組込(装着)して、長寿命化を図っている。
【0017】
次に、図6に於て、図3の状態からさらに平坦面1,2の間隔寸法(シール高さ寸法)が減少した場合、丸印M,Nにて囲って示す角部14, 15が平坦面1,2に接触した圧縮状態を示す。このとき略三角形状の空間部16, 17が密室状(エア溜り)となる。このようなエア溜りとしての空間部16,17が形成されると、例えば真空シールとして使用した場合に、規定の真空度に達するまでに時間がかかるという問題を生じ、また、内圧シール又は外圧シールとして、所定の圧力に達するまでに時間がかかるという問題が生ずる。また、種類の相違する密封流体に置換(変更)する際にも、時間がかかるという問題が生じる。あるいは、管内で特殊な流体を使用する場合に、エア溜り内に残留していた(前工程)の流体やエアが混入する。
【0018】
そこで、図6中に点線にて示すように、角部14, 15に小切欠部18, 19を形成して、空間部16, 17内の流体を外方へ逃がすように構成する。なお、中間基部3に小貫孔を形成して、同様に流体を外方へ逃がすようにしても良い(図示省略)。また、角部14, 15が平坦面1,2に当接して平坦面1,2に損傷(ダメージ)を与えることを防止するため、角部14, 15をアール状とする(丸味を持たせる)ことも好ましい。
【0019】
次に、図7及び図13に示す別の実施の形態に於て、この金属シールSは中間基部3が横断面平行四辺形等の略矩形であって、第1接触凸部11が突設された中間基部3の端面5と、一方の平坦面1との間隙20が、図13の装着未圧縮状態で外径側へしだいに増加する勾配面(テーパ面)に上記端面5が形成されている。さらに、第2接触凸部12が突設された中間基部3の他の端面6と、他方の平坦面2との間隙21が、図13の装着未圧縮状態で内径側へしだいに増加する勾配面(テーパ面)に上記他の端面6が形成されている。
【0020】
図13の装着未圧縮状態から順次、図14、図15、図16の如く、一対の平坦面1,2の間隔寸法Hを減少させていた装着圧縮状態に示すように、内周面側の短辺9と端面(長辺)6との角部15が、他方の平坦面2に接触(当接)しにくくなるという利点がある。このようにして他方の平坦面2が(角部15によって)損傷を受けることを防止している。かつ、図13から図15(又は図16)までの間隔寸法───セット高さ又はシール高さ───Hの変化量が増加できるので、金属シールSとしての復元力が大きく───弾性変形領域が広く───次のような利点がある。つまり、最終使用状態の押し潰し代の許容差が大きくなるので、広いセット高さHの範囲での使用が可能となって、フランジ等の取付部材7,8の凹部(凹溝)等の寸法公差にバラツキがあっても、十分なシール性(密封性)を発揮できる。あるいは、圧力(変動)サイクルや温度(変動)サイクル等にも追従して、安定したシール性(密封性)を発揮できる。
【0021】
次に、図8に示したさらに別の実施の形態のように、図7の勾配状(テーパ状)の端面5,6をアール凸状(実線参照)に弯曲形成したり、又は、アール凹状(2点鎖線参照)に弯曲形成するも、好ましい。つまり、相手部材7,8の凹所や凹溝等の形状、及び、寸法公差のバラツキ程度等を勘案して、選択することができる。
なお、図9と図10は他の実施の形態を示し、中間基部3を横断面矩形状とすると共に、第1接触凸部11と第2接触凸部12も小さな断面矩形状とした形状であり、全体横断面形状は角張ったZ字型である。この金属シールSの場合、装着圧縮状態では、図10の如く捩り弾性変形する。つまり、小矩形状の第1接触凸部11の外径寄りの角部23と、第2接触凸部12の内径寄りの角部24が、平坦面1,2に圧接する。このようにすればシャープなエッジ(角部23, 24)が平坦面1,2に食い込んで、高い密封性を発揮する。
【0022】
また、図11はさらに他の実施の形態を示す横断面図であって、第1接触凸部11と第2接触凸部12を、略三角形状とした点が、図2と相違し、他は同様の構成である。なお、略三角形状の第1・第2接触部11, 12の頂部25, 26は、小アール状でも、フラットでも、鋭利なエッジ状とするも自由である。なお、図示省略するが、図9又は図11の中間基部3を、図7や図8のように、勾配状(テーパ状)に配設するも好ましい(図示省略)。
なお、図12に示した別の実施の形態のように、中間基部3自体を勾配状(テーパ状)に形成し、その一対の対応する頂部25A,26Aをもって、第1・第2接触凸部11, 12として、構成することもできる。この頂部25A,26Aは、先端をフラットとしても、小アール状としても、鋭利なエッジ状としても、自由である。
【0023】
ところで、図13〜図16に於て示した独自の構成は、他方の平坦面2に規制内周面部27を連設して、取付部材8に凹部(凹溝)を形成し、図13に示した装着未圧縮状態では微小間隙Qを有しているが、図14〜図16に示す装着圧縮状態では、第2接触凸部12の外周面が、この規制内周面部27に当接し、この第2接触凸部12が、平坦面2及び規制内周面部27の2箇所───2点───で接触するように構成されている。
【0024】
さらに詳しく説明すると、金属シールSとしては、上述の2箇所(2点)の他に、第1接触凸部11は一方の平坦面1と1箇所(1点)で接触しているので、全体では3箇所(3点)接触である、といえる。このように、第2接触凸部12が2箇所(2点)で接触させるように構成したことによって、相互に接近する一対の平坦面1,2の押圧により、金属シールSが大きく倒れ過ぎる(捩れ変形し過ぎる)ことを、防止できる。かつ、このように、大きく倒れ過ぎるのを防止して、捩れによる反発力を有効に発生させて、望ましくは図15の状態を最終セット使用状態として、図16の如く倒れ過ぎて、エア溜り(空間部16, 17)を発生することを防止できる。さらに、第2接触凸部12の2点接触によって、相手部材12に与える押圧力が分散され、平坦面2の損傷を防ぐ作用もある。
【0025】
半導体製造装置等に本発明に係る上記金属シールSが使用される場合、相手部材(取付部材)7,8の一方がステンレス鋼、他方がアルミ等の軟らかい金属であることがあって、そのようなとき、2点接触側───第2接触凸部12が接触する側───を、アルミ等の軟らかい金属側として、その損傷を抑えることが可能である。
【0026】
ところで、図13に於て、自由状態の金属シールSの高さ寸法(図13中のHに相当)を、 1.4mmとし、外径Dを 7.3mmとした小型のシールを、ステンレス鋼───SUS316L ダブルメルト───にて作製し、この試作品について弾性復元性等のテストを行った。図13〜図16はFEM(有限要素法)解析にて、その金属シールSの弾性変形の状態を解析して図示すると共に、上述の3点接触各位置の接触面圧Pについての分析値をグラフ図で併記している。
【0027】
この図13は未圧縮状態として平坦面1,2の間隔寸法(セット高さ又はシール高さ)Hは、1.40mmである。次に、図14では間隔寸法Hが1.32mm、図15ではHが1.22mm、図16ではHが1.12mmの場合であり、このような広い間隔寸法(セット高さ)Hの変動範囲で、略均等で適正な接触面圧Pを維持し、安定したシール性(密封性)を発揮していることが、図13〜図16のFEM解析図から明らかである。
【0028】
言い換えれば、本発明に係る金属シールSは例えば上述の試作品のように極めて小型のシールにも有効であり、締付力が小さく(低荷重で)、大きい復元力を有し、塑性変形するまでの領域───弾性変形領域───が広大である。なお、この金属シールSは、横断面形状が直線部が多く、切削加工も容易かつ安価でありメタルOリングでは加工が難しく高価であるような小さなサイズにも、十分対応できる。
【0029】
また、本金属シールSは横断面形状がブロック型でズングリしているにかかわらず、倒れ(回転)による捩れ弾性変形等を複合的に行わせて、低締付力にて十分な密封性(シール性能)を発揮する。このような低締付力を活用して、従来のゴム製Oリングに代わるシール材として、高温や低温やプラズマ照射やオゾン雰囲気等の従来のOリングでは適用できない過酷な条件下での適用が可能となる。なお、材質として上述のSUS316L ダブルメルトは、カーボンなどの不純物が少なく、清浄度が要求される半導体製造装置として好適である。
【0030】
本金属シールSの表面について説明すると、▲1▼銀、金、銅、すず等のメッキ、▲2▼PTFE、FEP等の各種樹脂被覆(コーティング)、▲3▼各種ゴム材料の被覆(コーティング)、▲4▼超研磨仕上げ、▲5▼切削又は研削加工又はプレス加工のまま、のいずれとするも自由である。また、被密封流体としては、上記表面被覆の有無及び材質にもよるが、真空、各種ガス(CO ,H ,O ,NH ,H O等)、各種液体(H O,H SO ,HCl等)のものに適用できる。いずれにせよ、本金属シールSは、低締付力、及び、大きな弾性的復元量、取扱いの容易性、小部品点数、製作の容易性と安価である点で、優れたシールである。従って、装着される相手部材(フランジ等)7,8がセラミックのように脆い材質やアルミニウム等の軟らかい材質のものにも適用可能であり、また、半導体製造装置のようにプラズマやオゾン等が照射される部位にも適用でき、低温から高温までの広い温度領域にも対応できる。そして、潰しが利いて、広いセット高さHの範囲で十分なシール性(密封性)を発揮するので、装着される相手部材(フランジ等)7,8の寸法精度や公差が粗くとも適用でき、深い溝でも浅い溝でも、共通の金属シールSで対応可能となる場合もある。さらに、弾性的復元量が大きいので、圧力変動や温度変動が激しい箇所にも適用でき、再使用でき、取り扱い(組み込み)が容易であるという利点もある。さらに、上下反転使用によって、長寿命化も図ることが容易である。
【0031】
【発明の効果】
本発明は、上述の構成により次のような著大な効果を奏する。
(請求項1によれば、)装着圧縮状態にて全体に捩れ弾性変形を生ずるように構成したので、弾性的復元量(弾性変形領域)が大きく、広いセット高さ(図14〜図16中の符号H参照)に対応できる。従って、取付部材の凹部(凹溝)等の深さ寸法公差が大きくとも、常に安定して高いシール性(密封性)を発揮できる。また、低締付力で使用できるので、取付部材(フランジ等)が脆い材質や軟らかい材質にも適用できる。
また、金属Oリングでは製作が困難な外形寸法が10mm未満の小型のシールとしても、比較的安価に製作可能なため、実用上優れた金属シールである。また、平坦面1,2の損傷も減少できる。
【0032】
(請求項2によれば、)中間基部3を中心に回転して(倒れて)、捩れ弾性変形する場合、第1・第2接触凸部11, 12は、広いセット高さHの範囲で、常に安定して平坦面1,2に接触しつつ、全体にゆっくりと姿勢を変化させるので、優れた密封性能(シール性能)を備える。しかも、切削等で加工も比較的容易である。
(請求項3によれば、)一層広いセット高さHの範囲で安定した密封性(シール性)を発揮できる。また、角部15(図6と図16参照)等の平坦面2への接触をしにくくして、エア溜り(空間部17)の形成を防止可能となる。
(請求項4によれば、)第2接触凸部12が圧接する相手部材8が軟らかい材質や脆い材質であったとしても、その損傷(ダメージ)を防ぎ得る。
また、押圧力を受けてシール全体が大きく倒れ過ぎることを防止して、捩れによる反発力を有効に発生させ得る。
(請求項5によれば、)第1組込状態と第2組込状態とに反転して使用(図5参照)することで、使用できる期間(寿命)が延長できる。
【図面の簡単な説明】
【図1】本発明の実施の一形態を示す断面正面図である。
【図2】本発明のいろいろの実施の形態を示した断面図である。
【図3】本発明の作用説明図である。
【図4】従来の問題点を説明するための図である。
【図5】本発明の装置使用方法を示す断面図である。
【図6】他の実施の形態を示す断面図である。
【図7】さらに他の実施の形態を示す断面図である。
【図8】別の実施の形態を示す断面図である。
【図9】さらに別の実施の形態を示す断面図である。
【図10】使用状態の説明図である。
【図11】他の実施の形態を示す断面図である。
【図12】さらに他の実施の形態を示す断面図である。
【図13】本発明の金属シールの使用状態を示す要部断面図とFEM解析図とを兼ねた説明図である。
【図14】本発明の金属シールの使用状態を示す要部断面図とFEM解析図とを兼ねた説明図である。
【図15】本発明の金属シールの使用状態を示す要部断面図とFEM解析図とを兼ねた説明図である。
【図16】本発明の金属シールの使用状態を示す要部断面図とFEM解析図とを兼ねた説明図である。
【符号の説明】
1,2 平坦面
3 中間基部
5,6 端面(長辺)
7,8 相手部材(取付部材)
11 第1接触凸部
12 第2接触凸部
20, 21  間隙
27  規制内周面部
S  金属シール
H 間隔寸法(セット高さ)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to metal seals.
[0002]
[Prior art]
Conventionally, various materials such as rubber and resin have been used as seals for fixing flanges for vacuum, external pressure and internal pressure. Particularly, under severe conditions such as high vacuum / high pressure (external / internal pressure), high / low temperature, and application to corrosive fluids, metal seals are often used.
[0003]
[Problems to be solved by the invention]
However, this metal seal has the following problems. That is, the conventional metal seal generally has a high tightening force, and therefore, the thickness of a flange or the like as a mating member (seal mounting member) must be increased, and the weight and volume (space) of the device are increased. And other problems occur. Further, At a metal seal 31 of the conventional example shown in FIG. 4, the local metal seal 31 interposed between the mutual pair of flat surfaces parallel to 32, 33 at pressure seal portion K 1, K 2 Plastic deformation, damaging the flat surfaces 32 and 33 °, that is, the mating members 34 and 35 such as flanges, and causing a problem in reusing the mating members 34 and 35 such as flanges. Naturally, when dismantling such as maintenance and inspection, high maintenance cost and maintenance time were required.
[0004]
The reason that the conventional metal seal 31 as shown in FIG. 4 locally plastically deforms and damages the flat surfaces 32 and 33 at the press-contact seal portions K 1 and K 2 is because of the rigidity of the metal seal 31. Due to the height, it is hardly elastically deformed, and receives the tightening force (in the direction in which the flat surfaces 32, 32 approach each other) as it is.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to make it easy and inexpensive, to have a small tightening force (regardless of whether it is a metal seal), a large restoring force, and to use a flange or the like as a mating member (mounting member). An object of the present invention is to provide a metal seal that can be reduced in thickness and contribute to weight reduction and compactness of the device.
Still another object of the present invention is to use the seal member for a long period of time without damaging it even if the material of the attachment member (partner member) to which the seal is attached is a fragile material such as ceramics or a soft material such as aluminum. The present invention provides a metal seal capable of performing sealing and a method of using the same, and furthermore, even when the depth tolerance of the sealing groove is large, the sealing performance (sealing performance) is always stable without variation. It is an object of the present invention to provide a metal seal that can exhibit (sealability), has a wide set height range in which the seal can be used, and is easy to mount.
[0006]
[Means for Solving the Problems]
In view of the above, the present invention provides an intermediate metal base and a first contact convex portion abutting on one of the flat surfaces in a totally annular metal seal interposed between a pair of flat surfaces parallel to each other. A second contact projection abutting the other of the flat surfaces, wherein the first contact projection protrudes near the inner diameter of the intermediate base, and the second contact projection is closer to the outer diameter of the intermediate base. And a torsion elastic deformation that rotates about the intermediate base portion is generated by a pressing force received from the pair of flat surfaces in the mounted and compressed state.
[0007]
The intermediate base is substantially rectangular in cross section, and the first and second contact projections are substantially semicircular to substantially semielliptical in cross section.
Further, the intermediate base has a substantially rectangular cross section, and the gap between the end surface of the intermediate base, on which the first contact projection is protruded, and one flat surface is gradually increased toward the outer diameter in the uncompressed state. And a gap between the end face of the intermediate base, on which the second contact projection is projected, and the other flat face gradually increases toward the inner diameter side in the uncompressed state. Is formed.
In addition, the regulating inner peripheral surface portion, the outer peripheral surface of which is in contact with the second contact convex portion in the mounted and compressed state, is connected to the other flat surface, and the second contact convex portion has two portions in the cross section. It was constituted so that it might contact.
[0008]
The method of mounting and using the metal seal according to the present invention is such that a first contact convex portion closer to the inner diameter is protruded on one of both end surfaces in the axial direction of the entire annular metal seal, and a second contact protrusion closer to the outer diameter is provided on the other. A first contacting state corresponding to one flat surface between the metal seal and a pair of flat surfaces parallel to each other; This is a method of inverting and mounting after a predetermined use period to a second assembled state in which the convex portion corresponds to the one flat surface.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.
FIG. 1 and FIG. 2A show one embodiment of a metal seal (metal seal) S according to the present invention, and are cross-sectional front views in a free state (unmounted state), and FIG. 3 or FIG. () Is an explanatory sectional view of a main part showing a use state {mounted and compressed state}.
The metal seal S is made of stainless steel, spring steel, or other metal, and is manufactured by machining such as cutting or grinding, or by plastic working.
[0010]
The metal seal S is interposed between a pair of flat surfaces 1 and 2 that are parallel to each other, and is entirely annular, such as a circle, an ellipse, an oval, and a substantially rectangle. Describing the cross-sectional shape, it is composed of a substantially rectangular (rectangular) intermediate base portion 3, and a substantially semicircular first contact convex portion 11 and second contact convex portion 12. The first contact projection 11 contacts one flat surface 1, and the second contact projection 12 contacts the other flat surface 2. In FIGS. 2A and 3, the outline of the cross-sectional shape of the intermediate base 3 is indicated by a two-dot chain line. In a non-compressed state, the end face (long side) of the intermediate base 3 is orthogonal to the axis L direction. Reference numerals 5 and 6 are parallel to the flat surfaces 1 and 2 of mating members (mounting members such as flanges) 7 and 8.
[0011]
In particular, the first contact projection 11 protrudes toward the inner diameter of the end face (long side) 5 of the intermediate base 3, and the second contact projection 12 is the outer diameter end of the end face (long side) 6 of the intermediate base 3. It is protruded closer.
In short, with respect to the intermediate base 3 having a rectangular cross-section, the first and second contact protrusions are shifted from each other in the radial direction on the inner diameter side and the outer diameter side in directions opposite to each other in the axial direction. 12 are protruding. Moreover, in the illustrated example, the short side 9 (forming the inner peripheral surface) of the intermediate base portion 3 having a rectangular cross section and the substantially semicircular first contact convex portion 11 are continuous (without steps). The short side 10 (forming the outer peripheral surface) of the intermediate base 3 having a rectangular cross section and the second contact convex portion 12 are continuous (without steps).
[0012]
Then, as shown in FIG. 3, when the flat surface 1 of the mating member 7 and the flat surface 2 of the mating member 8 come close to each other and come into the mounted compression state, the pressing force F received from the pair of flat surfaces 1 and 2 is obtained. by 1, F 2, mainly in the middle base 3, collapsed as shown in FIG. 3. FIG 2 (a) (rotated), resulting in torsional elastic deformation. This torsional elastic deformation is restored to the original state {free state posture} of FIG. 2A when the pair of flat surfaces 1 and 2 are separated.
[0013]
In the conventional metal seal 31 shown in FIG. 4, the approach of the pair of flat surfaces 32, 32 is tried to be received by the compression of the metal seal 31 which is almost still. After the micro-elastic deformation, the press seal portions K 1 and K 2 are locally plastically deformed and damaged, and at the same time, the mating members 34 and 35 are also damaged. On the other hand, in the metal seal S according to the present invention, the pressing forces F 1 , F 2 of the mating members 7, 8 (flat surfaces 1, 2) are skillfully rotated about the intermediate base 3.柔軟 By receiving flexibly by torsional elastic deformation, the first contact convex portion 11 comes into contact with one flat surface 1 of the pressure contact seal portion K 1 , and the second contact convex portion 12 becomes the other flat surface 2. preventing pressure seal portion K 2 of contact, to prevent the plastic deformation (or decreases), to prevent damage to the first and second contact protrusions 11, 12, and damage to the flat surfaces 1 and 2 it can.
[0014]
FIGS. 2B, 2C, and 2D are cross-sectional views illustrating various other embodiments. Compared to FIG. 2A, FIG. The radial dimension E of the intermediate base 3 is small, and the cross section of the intermediate base 3 is a rectangle (rectangle) approaching a square. In FIG. 2C, conversely, the radial dimension E of the intermediate base 3 is large, and the cross-sectional shape of the intermediate base 3 is set to be an elongated rectangle (flat rectangle). In FIG. 2 (D), the axial dimension {short side length} of the intermediate base 3 is set smaller than that of FIG. 2 (A) to form an elongated rectangle (flat rectangle). Things.
2B, 2A, and 2C, the torsional elastic deformation tends to occur gradually, and the tightening force can be reduced. FIG. 2D is easier to twist and elastically deform than FIG. 2A and has a smaller tightening force.
[0015]
Next, FIG. 5 is a diagram for explaining how to attach and use the metal seal S.
In FIG. 5A, damaged portions (damaged portions) J 1 and J 2 indicated by thick short lines may occur on the flat surfaces 1 and 2. That is, the damaged portion J 1 of the inner diameter closer to the one flat surface 1 by the first convex contact portion 11 of the metal seal S is generated outside the other flat surface 2 by the second convex contact portions 12 of the metal seal S径寄Ri sometimes damaged portion J 2 of occurs. The assembled state in which the first contact protrusion 11 corresponds to (abuts) one of the flat surfaces 1 is referred to as a first assembled state.
[0016]
In such a case, as shown in FIG. 5A to FIG. That is, the metal seal S is once disassembled and taken out, and the vertical direction in the figure is exchanged (vertically inverted), so that the second contact convex portion 12 is brought into the second assembled state corresponding to the one flat surface 1. As apparent from FIG. 5 (B), the original damaged portions J 1 and J 2 do not come into contact with the inverted second and first contact convex portions 12 and 11 but come into contact with a new surface, so that they are used. The period can be extended twice (the life of the mating members 7, 8 such as flanges can be doubled).
In the metal seal S of the present invention, the first contact protrusion 11 and the second contact protrusion 12 are used in a different position in the radial direction (distance from the axis L), and are assembled (mounted) by inversion. ) To extend the service life.
[0017]
Next, in FIG. 6, when the spacing dimension (seal height dimension) of the flat surfaces 1 and 2 is further reduced from the state of FIG. 3, the corners 14 and 15 surrounded by circles M and N are formed. The state of compression which contacted flat surfaces 1 and 2 is shown. At this time, the substantially triangular space portions 16 and 17 have a closed chamber shape (air pool). When the space portions 16 and 17 as such air reservoirs are formed, for example, when used as a vacuum seal, there is a problem that it takes time to reach a specified degree of vacuum, and an internal pressure seal or an external pressure seal is required. As a result, it takes a long time to reach a predetermined pressure. In addition, it takes time to replace (change) a sealed fluid of a different type. Alternatively, when a special fluid is used in the pipe, fluid or air remaining in the air reservoir (previous process) is mixed.
[0018]
Therefore, as shown by the dotted lines in FIG. 6, small notches 18 and 19 are formed in the corners 14 and 15 so that the fluid in the spaces 16 and 17 can escape outward. In addition, a small through hole may be formed in the intermediate base portion 3 to allow the fluid to escape outward similarly (not shown). Further, in order to prevent the corners 14 and 15 from contacting the flat surfaces 1 and 2 and damaging the flat surfaces 1 and 2, the corners 14 and 15 are rounded (have a rounded shape). ) Is also preferred.
[0019]
Next, in another embodiment shown in FIG. 7 and FIG. 13, the metal seal S is such that the intermediate base 3 has a substantially rectangular shape such as a parallelogram having a horizontal cross section, and the first contact convex portion 11 protrudes. The end surface 5 is formed on a slope surface (taper surface) in which the gap 20 between the end surface 5 of the intermediate base portion 3 and one flat surface 1 gradually increases toward the outer diameter side in the uncompressed state in FIG. ing. Further, the gap 21 between the other end surface 6 of the intermediate base 3 on which the second contact protrusion 12 is projected and the other flat surface 2 is gradually increased toward the inner diameter side in the uncompressed state of FIG. The other end surface 6 is formed on a surface (taper surface).
[0020]
As shown in FIGS. 14, 15, and 16, the spacing H between the pair of flat surfaces 1 and 2 is reduced from the uncompressed state to the inner peripheral surface side. There is an advantage that the corner 15 between the short side 9 and the end surface (long side) 6 is less likely to contact (contact) the other flat surface 2. In this way, the other flat surface 2 is prevented from being damaged (by the corners 15). In addition, the interval from FIG. 13 to FIG. 15 (or FIG. 16) {the change in the set height or the seal height ΔH can be increased, so that the restoring force as the metal seal S is large}. The elastic deformation region is wide. There are the following advantages. In other words, since the tolerance of the crushing allowance in the final use state becomes large, it is possible to use in a wide range of the set height H, and the dimensions of the recesses (concave grooves) of the mounting members 7 and 8 such as flanges. Sufficient sealing performance (sealing performance) can be achieved even if the tolerances vary. Alternatively, a stable sealing property (sealing property) can be exhibited by following a pressure (fluctuation) cycle, a temperature (fluctuation) cycle, or the like.
[0021]
Next, as in still another embodiment shown in FIG. 8, the inclined (tapered) end surfaces 5 and 6 of FIG. 7 are formed into a curved shape (see the solid line) or a concave shape. It is also preferable to form a curved shape (see a two-dot chain line). That is, the selection can be made in consideration of the shapes of the recesses and grooves of the mating members 7 and 8 and the degree of variation in the dimensional tolerance.
9 and 10 show another embodiment, in which the intermediate base 3 has a rectangular cross-sectional shape, and the first contact convex portion 11 and the second contact convex portion 12 have a small rectangular cross-sectional shape. Yes, the overall cross-sectional shape is an angular Z-shape. In the case of this metal seal S, in the mounted and compressed state, it undergoes torsional elastic deformation as shown in FIG. That is, the corner 23 of the small rectangular first contact protrusion 11 near the outer diameter and the corner 24 of the second contact protrusion 12 near the inner diameter press against the flat surfaces 1 and 2. In this way, sharp edges (corners 23 and 24) bite into the flat surfaces 1 and 2 and exhibit high sealing performance.
[0022]
FIG. 11 is a cross-sectional view showing still another embodiment, which differs from FIG. 2 in that the first contact protrusion 11 and the second contact protrusion 12 are substantially triangular. Has a similar configuration. The tops 25, 26 of the substantially triangular first and second contact portions 11, 12 can be freely formed into a small round shape, a flat shape, or a sharp edge shape. Although not shown, it is also preferable to arrange the intermediate base portion 3 of FIG. 9 or 11 in a gradient (tapered shape) as shown in FIGS. 7 and 8 (not shown).
As in another embodiment shown in FIG. 12, the intermediate base 3 itself is formed in a gradient (tapered shape), and the pair of corresponding tops 25A, 26A is used to form the first and second contact projections. 11 and 12 can also be configured. The tops 25A and 26A are free to have a flat tip, a small radius, or a sharp edge.
[0023]
By the way, the unique configuration shown in FIGS. 13 to 16 is such that a regulating inner peripheral surface portion 27 is continuously provided on the other flat surface 2 to form a concave portion (a concave groove) in the mounting member 8, and FIG. In the mounted compressed state shown in FIGS. 14 to 16, the outer peripheral surface of the second contact convex portion 12 abuts on the regulated inner peripheral surface portion 27 in the mounted compressed state shown in FIGS. The second contact protrusion 12 is configured to contact at two points {two points} of the flat surface 2 and the regulation inner peripheral surface 27.
[0024]
More specifically, as the metal seal S, in addition to the above-described two places (two points), the first contact convex part 11 is in contact with one flat surface 1 at one place (one point). Then, it can be said that there are three places (three points) of contact. As described above, since the second contact protrusions 12 are configured to be contacted at two places (two points), the metal seal S is overly collapsed by the pressing of the pair of flat surfaces 1 and 2 approaching each other ( It is possible to prevent over-torsion. In addition, it is possible to prevent the device from falling down too much and effectively generate a repulsive force due to torsion. Desirably, the state shown in FIG. The generation of the space portions 16 and 17) can be prevented. Further, the two-point contact of the second contact protrusion 12 disperses the pressing force applied to the mating member 12, and has an effect of preventing the flat surface 2 from being damaged.
[0025]
When the metal seal S according to the present invention is used in a semiconductor manufacturing apparatus or the like, one of the mating members (mounting members) 7 and 8 may be made of stainless steel and the other may be made of a soft metal such as aluminum. In such a case, the two-point contact side (the side with which the second contact convex portion 12 contacts) may be set to a soft metal side such as aluminum to suppress the damage.
[0026]
By the way, in FIG. 13, a small seal having a height dimension (corresponding to H in FIG. 13) of the metal seal S in a free state of 1.4 mm and an outer diameter D of 7.3 mm is made of stainless steel. The test piece was manufactured by using {SUS316L double melt} and tested for elasticity and restorability. FIGS. 13 to 16 show the state of elastic deformation of the metal seal S by FEM (Finite Element Method) analysis, and show the analysis values for the contact surface pressure P at each of the above three-point contact positions. Also shown in the graph.
[0027]
In FIG. 13, the spacing dimension (set height or seal height) H between the flat surfaces 1 and 2 is 1.40 mm in an uncompressed state. Next, FIG. 14 shows a case where the interval dimension H is 1.32 mm, FIG. 15 shows a case where H is 1.22 mm, and FIG. 16 shows a case where H is 1.12 mm. It is apparent from the FEM analysis diagrams of FIGS. 13 to 16 that the contact pressure P is maintained substantially uniform and appropriate within the range and a stable sealing property (sealability) is exhibited.
[0028]
In other words, the metal seal S according to the present invention is also effective for extremely small seals, for example, as in the above-described prototype, has a small tightening force (at a low load), has a large restoring force, and undergoes plastic deformation. The region up to {the elastic deformation region} is very large. The metal seal S has a large number of straight sections in the cross-sectional shape, is easy and inexpensive to cut, and can sufficiently cope with a small size that is difficult and expensive to process with a metal O-ring.
[0029]
In addition, despite the fact that the metal seal S has a block-shaped cross-sectional shape, the torsion elastic deformation and the like due to falling (rotation) are performed in a complex manner, and sufficient sealing performance with low tightening force ( Demonstrates sealing performance). Utilizing such a low tightening force, it can be used as a sealing material to replace conventional rubber O-rings under severe conditions that cannot be applied with conventional O-rings such as high temperature, low temperature, plasma irradiation and ozone atmosphere. It becomes possible. The SUS316L double melt described above as a material is suitable as a semiconductor manufacturing apparatus that has a small amount of impurities such as carbon and requires high cleanliness.
[0030]
The surface of the present metal seal S will be described as follows: (1) plating of silver, gold, copper, tin, etc., (2) coating of various resins such as PTFE and FEP, and (3) coating (coating) of various rubber materials. , (4) super-polishing finish, (5) cutting, grinding or pressing as it is. The sealed fluid may be vacuum, various gases (CO 2 , H 2 , O 2 , NH 3 , H 2 O, etc.), various liquids (H 2 O, H 2 SO 4 , HCl, etc.). In any case, the present metal seal S is an excellent seal in that it has a low tightening force, a large amount of elastic restoration, easy handling, small number of parts, easy manufacturing, and low cost. Accordingly, the mating members (flanges, etc.) 7 and 8 to be mounted can be applied to a brittle material such as ceramic or a soft material such as aluminum, and can be irradiated with plasma or ozone as in a semiconductor manufacturing apparatus. It can be applied to a wide range of temperatures from low to high. Since it is crushable and exhibits sufficient sealing performance (sealing performance) in a wide range of the set height H, it can be applied even if the dimensional accuracy and tolerance of the mating members (flanges, etc.) 7 and 8 to be mounted are rough. In some cases, a common metal seal S can be used for both deep and shallow grooves. Further, since the elastic recovery amount is large, it can be applied to a place where pressure fluctuation and temperature fluctuation are severe, can be reused, and there is an advantage that handling (incorporation) is easy. Further, it is easy to extend the service life by using the upside down.
[0031]
【The invention's effect】
The present invention has the following significant effects by the above configuration.
(According to claim 1) Since it is configured so that torsional elastic deformation is generated as a whole in the mounted and compressed state, the amount of elastic restoration (elastic deformation area) is large, and the wide set height (see FIGS. 14 to 16) (See reference sign H)). Therefore, even if the depth dimension tolerance of the concave portion (concave groove) or the like of the mounting member is large, high sealing performance (sealing performance) can always be exhibited. Further, since it can be used with a low tightening force, it can be applied to a material having a fragile or soft mounting member (flange or the like).
Further, even a small seal having an external dimension of less than 10 mm, which is difficult to manufacture with a metal O-ring, can be manufactured relatively inexpensively, and thus is a practically excellent metal seal. Also, damage to the flat surfaces 1 and 2 can be reduced.
[0032]
In the case where the first and second contact protrusions 11 and 12 rotate (fall down) around the intermediate base 3 and undergo torsional elastic deformation (according to claim 2), the first and second contact protrusions 11 and 12 have a wide set height H. Since the posture is slowly changed as a whole while always stably contacting the flat surfaces 1 and 2, excellent sealing performance (sealing performance) is provided. Moreover, machining by cutting or the like is relatively easy.
(According to claim 3) A stable sealing property (sealability) can be exhibited in a wider range of the set height H. Further, it is difficult to make contact with the flat surface 2 such as the corner portion 15 (see FIGS. 6 and 16), and it is possible to prevent the formation of the air pool (space portion 17).
According to the fourth aspect, even if the mating member 8 to which the second contact projection 12 is pressed against is made of a soft material or a brittle material, the damage can be prevented.
Further, it is possible to prevent the entire seal from falling down too much under the pressing force, and to effectively generate a repulsive force due to torsion.
According to the fifth aspect of the invention, by inverting and using the first installation state and the second installation state (see FIG. 5), the usable period (life) can be extended.
[Brief description of the drawings]
FIG. 1 is a sectional front view showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing various embodiments of the present invention.
FIG. 3 is an operation explanatory view of the present invention.
FIG. 4 is a diagram for explaining a conventional problem.
FIG. 5 is a sectional view showing a method of using the apparatus of the present invention.
FIG. 6 is a cross-sectional view showing another embodiment.
FIG. 7 is a cross-sectional view showing still another embodiment.
FIG. 8 is a cross-sectional view showing another embodiment.
FIG. 9 is a cross-sectional view showing still another embodiment.
FIG. 10 is an explanatory diagram of a use state.
FIG. 11 is a cross-sectional view showing another embodiment.
FIG. 12 is a sectional view showing still another embodiment.
FIG. 13 is an explanatory view which is both a cross-sectional view of a main part and a FEM analysis diagram showing a use state of the metal seal of the present invention.
FIG. 14 is an explanatory view which is both a sectional view of a main part and an FEM analysis diagram showing a use state of the metal seal of the present invention.
FIG. 15 is an explanatory view which is both a cross-sectional view of a main part and an FEM analysis diagram showing a use state of the metal seal of the present invention.
FIG. 16 is an explanatory view showing both a sectional view of a main part and an FEM analysis diagram showing a use state of the metal seal of the present invention.
[Explanation of symbols]
1, 2 Flat surface 3 Intermediate base 5, 6 End surface (long side)
7,8 mating member (mounting member)
11 First contact protrusion 12 Second contact protrusion 20, 21 Gap 27 Regulation inner peripheral surface S Metal seal H Interval (set height)

Claims (5)

相互に平行な一対の平坦面の間に介装される全体が環状の金属シールに於て、中間基部と、上記平坦面の一方に当接する第1接触凸部と、上記平坦面の他方に当接する第2接触凸部と、を備え、上記第1接触凸部を上記中間基部の内径寄りに突設し、上記第2接触凸部を上記中間基部の外径寄りに突設して、装着圧縮状態にて上記一対の平坦面から受ける押圧力によって、上記中間基部を中心に回転する捩れ弾性変形を生ずるように構成されたことを特徴とする金属シール。An intermediate base, a first contact protrusion abutting on one of the flat surfaces, and a second contact surface on the other of the flat surfaces in a generally annular metal seal interposed between a pair of flat surfaces parallel to each other. A second contact protrusion, which comes into contact therewith, the first contact protrusion protrudes near the inner diameter of the intermediate base, and the second contact protrusion protrudes near the outer diameter of the intermediate base, A metal seal configured to generate torsional elastic deformation that rotates about the intermediate base by a pressing force received from the pair of flat surfaces in a mounted and compressed state. 中間基部が横断面略矩形であって、第1接触凸部・第2接触凸部が、横断面略半円形乃至略半楕円形である請求項1記載の金属シール。2. The metal seal according to claim 1, wherein the intermediate base is substantially rectangular in cross section, and the first and second contact projections are substantially semicircular to substantially semielliptical in cross section. 中間基部が横断面略矩形であって、かつ、上記第1接触凸部が突設された上記中間基部の端面と一方の平坦面との間隙が装着未圧縮状態で外径側へしだいに増加する勾配面に形成され、さらに、上記第2接触凸部が突設された上記中間基部の端面と他方の平坦面との間隙が装着未圧縮状態で内径側へしだいに増加する勾配面に形成されている請求項1又は2記載の金属シール。The intermediate base has a substantially rectangular cross section, and the gap between the end surface of the intermediate base, on which the first contact projection is projected, and one flat surface gradually increases toward the outer diameter in the uncompressed state. Further, the gap between the end surface of the intermediate base, on which the second contact projection is projected, and the other flat surface is formed on an inclined surface that gradually increases toward the inner diameter side in a non-compressed state. The metal seal according to claim 1, wherein the metal seal is formed. 上記第2接触凸部が装着圧縮状態でその外周面が当接する規制内周面部を、上記他方の平坦面に連設して、該第2接触凸部が横断面に於て2箇所で接触するように構成した請求項1,2又は3記載の金属シール。The regulating inner peripheral surface portion, the outer peripheral surface of which is in contact with the second contact convex portion in the mounted and compressed state, is connected to the other flat surface so that the second contact convex portion comes into contact at two points in the cross section. The metal seal according to claim 1, wherein the metal seal is formed. 全体が環状の金属シールの軸心方向の両端面の一方に内径寄りの第1接触凸部を突設すると共に他方に外径寄りの第2接触凸部を突設し、該金属シールを相互に平行な一対の平坦面の間に、上記第1接触凸部が一方の平坦面に対応した第1組込状態と、上記第2接触凸部が該一方の平坦面に対応した第2組込状態とに、所定使用期間後に、反転して装着することを特徴とする金属シール装着使用方法。A first contact protrusion protruding toward the inner diameter is protruded on one of both end surfaces in the axial direction of the annular metal seal, and a second contact protrusion protruding on the outer diameter is protruded on the other. A first assembled state in which the first contact projection corresponds to one flat surface, and a second assembly in which the second contact projection corresponds to the one flat surface. A metal seal mounting and use method, wherein the metal seal is mounted in an inverted state after a predetermined use period.
JP2002211097A 2002-07-19 2002-07-19 Metal seal Expired - Lifetime JP4091373B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002211097A JP4091373B2 (en) 2002-07-19 2002-07-19 Metal seal
KR1020030048549A KR100988202B1 (en) 2002-07-19 2003-07-16 Metal seal and manufacturing method for the same and tight-seal construction
US10/620,372 US7004479B2 (en) 2002-07-19 2003-07-17 Metal seal and attachment method for the same and tight-seal construction
US11/179,485 US7083171B2 (en) 2002-07-19 2005-07-13 Metal seal and attachment method for the same and tight-seal construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002211097A JP4091373B2 (en) 2002-07-19 2002-07-19 Metal seal

Publications (2)

Publication Number Publication Date
JP2004052900A true JP2004052900A (en) 2004-02-19
JP4091373B2 JP4091373B2 (en) 2008-05-28

Family

ID=31934428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211097A Expired - Lifetime JP4091373B2 (en) 2002-07-19 2002-07-19 Metal seal

Country Status (2)

Country Link
JP (1) JP4091373B2 (en)
KR (1) KR100988202B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032265A (en) * 2004-07-21 2006-02-02 Mitsubishi Heavy Ind Ltd Pedestal with built-in passage
JPWO2007049339A1 (en) * 2005-10-25 2009-04-30 名川 政人 gasket
JP4567798B1 (en) * 2009-06-04 2010-10-20 三菱電線工業株式会社 Sealing structure
JP4567797B1 (en) * 2009-04-06 2010-10-20 三菱電線工業株式会社 Metal seal
KR20130086315A (en) * 2012-01-24 2013-08-01 가부시키가이샤 호리바 에스텍 Fluid resistance device
JP2016183730A (en) * 2015-03-26 2016-10-20 三菱電線工業株式会社 Metal seal
KR20160140950A (en) * 2014-04-15 2016-12-07 킴 엔곡 부 Ez-seal gasket for joining fluid pathways
JP2019019834A (en) * 2017-07-11 2019-02-07 株式会社ピュアロンジャパン gasket
JP2019167973A (en) * 2018-03-22 2019-10-03 三菱電線工業株式会社 Metal seal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7203491B2 (en) * 2017-11-28 2023-01-13 熊本県 Metal seal and fluid control device
JP7193516B2 (en) 2020-11-17 2022-12-20 三菱電線工業株式会社 metal seal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156951U (en) * 1980-04-21 1981-11-24
JPS5721863U (en) * 1980-07-15 1982-02-04
JPS5759952U (en) * 1980-09-29 1982-04-09
JP3768039B2 (en) * 1999-08-31 2006-04-19 カヤバ工業株式会社 Vane pump seal structure

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032265A (en) * 2004-07-21 2006-02-02 Mitsubishi Heavy Ind Ltd Pedestal with built-in passage
JPWO2007049339A1 (en) * 2005-10-25 2009-04-30 名川 政人 gasket
JP4567797B1 (en) * 2009-04-06 2010-10-20 三菱電線工業株式会社 Metal seal
JP2010242858A (en) * 2009-04-06 2010-10-28 Mitsubishi Cable Ind Ltd Metal seal
JP4567798B1 (en) * 2009-06-04 2010-10-20 三菱電線工業株式会社 Sealing structure
JP2010281385A (en) * 2009-06-04 2010-12-16 Mitsubishi Cable Ind Ltd Sealing structure
US9109736B2 (en) 2012-01-24 2015-08-18 Horiba Stec, Co. Ltd. Fluid resistance device
JP2013151956A (en) * 2012-01-24 2013-08-08 Horiba Stec Co Ltd Fluid resistance device
KR20130086315A (en) * 2012-01-24 2013-08-01 가부시키가이샤 호리바 에스텍 Fluid resistance device
KR101979028B1 (en) * 2012-01-24 2019-05-15 가부시키가이샤 호리바 에스텍 Fluid resistance device
KR20160140950A (en) * 2014-04-15 2016-12-07 킴 엔곡 부 Ez-seal gasket for joining fluid pathways
JP2017514075A (en) * 2014-04-15 2017-06-01 ブ、キム ゴックVU, Kim Ngoc Malleable gasket suitable for high purity fluid transportation system
EP3132161A4 (en) * 2014-04-15 2018-01-10 Kim Ngoc Vu Ez-seal gasket for joining fluid pathways
KR101895828B1 (en) * 2014-04-15 2018-09-07 킴 엔곡 부 Ez-seal gasket for joining fluid pathways
JP2016183730A (en) * 2015-03-26 2016-10-20 三菱電線工業株式会社 Metal seal
JP2019019834A (en) * 2017-07-11 2019-02-07 株式会社ピュアロンジャパン gasket
JP2019167973A (en) * 2018-03-22 2019-10-03 三菱電線工業株式会社 Metal seal

Also Published As

Publication number Publication date
JP4091373B2 (en) 2008-05-28
KR100988202B1 (en) 2010-10-18
KR20040010211A (en) 2004-01-31

Similar Documents

Publication Publication Date Title
US7083171B2 (en) Metal seal and attachment method for the same and tight-seal construction
JP5384542B2 (en) Improved ring seal
JP2004052900A (en) Metal seal and its mounting and using method
JP5514125B2 (en) Dynamic sealing
CN106233047B (en) Ultra dense seal washer for engaging high purity fluid access
JP4440530B2 (en) Shallow S-shaped metal seal
JP4942332B2 (en) Joint structure
KR20040089642A (en) Metal seal and retainer
WO2001004521A1 (en) Magnetic fluid seal
JP2011094667A (en) Gasket and sealing structure
JPWO2004038781A1 (en) Plasma-resistant seal
JP2004527707A (en) Open elastic metal gasket with offset projection
JP4299581B2 (en) Metal seal
JP2004218740A (en) Combination metal gasket and sealing construction
JPH11325259A (en) Seal ring
JP3986301B2 (en) Sealing structure and sealing method using metal gasket
JP2007100900A (en) Sealing material
JP4260496B2 (en) Metal seal
JP2000283296A (en) Packing
JP2004204935A (en) Seal unit
JP2004218737A (en) Metal gasket and sealing structure with it
JP2004218738A (en) Metal gasket of s-shaped section having projection and sealing construction
JP2015194246A (en) shaft sealing structure
JP4331502B2 (en) Sealed structure
JP2004044621A (en) Metal seal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4091373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term