JP2019167973A - Metal seal - Google Patents

Metal seal Download PDF

Info

Publication number
JP2019167973A
JP2019167973A JP2018053948A JP2018053948A JP2019167973A JP 2019167973 A JP2019167973 A JP 2019167973A JP 2018053948 A JP2018053948 A JP 2018053948A JP 2018053948 A JP2018053948 A JP 2018053948A JP 2019167973 A JP2019167973 A JP 2019167973A
Authority
JP
Japan
Prior art keywords
metal seal
flat surface
inclined side
state
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018053948A
Other languages
Japanese (ja)
Other versions
JP6757760B2 (en
Inventor
聡 藤堂
Satoshi Todo
聡 藤堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2018053948A priority Critical patent/JP6757760B2/en
Publication of JP2019167973A publication Critical patent/JP2019167973A/en
Application granted granted Critical
Publication of JP6757760B2 publication Critical patent/JP6757760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasket Seals (AREA)

Abstract

To provide a metal seal interposed between a first flat surface and a second flat surface, which prevents scratches from occurring on the first flat surface and the second flat surface, and maintain sealability excellently.SOLUTION: An intermediate base 3 has a substantially parallelogram in a cross section, and has a first inclined side 4 in which an interval gradually decreases in a radial outer direction Rin an uncompressed state of installation, and a second inclined side 5 in which an interval gradually increases in the radial outward direction R. A first contact convex part 11 and a second contact convex part 12 are disposed on the first inclined side 4 and the second inclined side 5 at positions where the interval is large.SELECTED DRAWING: Figure 2

Description

本発明は、金属シールに関する。   The present invention relates to a metal seal.

従来、高真空・高圧(外圧・内圧)、高温・低温、腐食性環境等の苛酷な使用条件下で金属シールが用いられてきた。
例えば、図12に示すような金属シールY10が公知であって、長方形の中間基部33と、半円形の第1接触凸部34・第2接触凸部35と、から成る。相互に平行な第1・第2平坦面31,32の間に介装される(特許文献1参照)。
Conventionally, metal seals have been used under severe use conditions such as high vacuum / high pressure (external pressure / internal pressure), high temperature / low temperature, and corrosive environment.
For example, a known metal seal Y 10 as shown in FIG. 12, a rectangular intermediate base 33, the first contact protrusion 34, the second convex contact portions 35 of semi-circular, made of. It is interposed between the first and second flat surfaces 31 and 32 parallel to each other (see Patent Document 1).

特許第4091373号公報Japanese Patent No. 4091373

図12(A)に於て、第1平坦面31が実線から2点鎖線の位置まで少し下降して、第1接触凸部34に接触した装着未圧縮状態から、さらに、第1平坦面31が下降してゆくと、第1・第2接触凸部34,35が、第1・第2平坦面31,32から押圧力(圧縮力)を受けて、中間基部33を中心に回転する回転弾性変形(矢印M参照)を生じつつ、図12(B)に例示したような所定回転状態となる。
矢印M方向への弾性変形を生じさせるために、第1・第2平坦面31,32を相互に接近させる力F―――ボルト等による締付力(荷重)―――は比較的に小さくて済む利点がある。
In FIG. 12A, the first flat surface 31 is slightly lowered from the solid line to the position of the two-dot chain line, and from the uncompressed state where the first flat surface 31 is in contact with the first contact convex portion 34, the first flat surface 31 is further removed. The first and second contact protrusions 34 and 35 receive a pressing force (compression force) from the first and second flat surfaces 31 and 32 and rotate about the intermediate base 33 as the angle descends. While undergoing elastic deformation (see arrow M), a predetermined rotational state as illustrated in FIG.
In order to cause elastic deformation in the direction of the arrow M, the force F that makes the first and second flat surfaces 31 and 32 approach each other--the tightening force (load) with bolts, etc .-- is relatively small. There is an advantage that can be done.

しかしながら、第1・第2平坦面31,32を相互に接近させるための上記ボルト等の長さ寸法が大きくなり、金属シールY10が使用される装置のコンパクト化を図るうえで障害となり、また、(螺進)作業の能率が低下するという問題がある(図5に於て、詳しく後述する)。
さらに、半円形の凸部34,35の円弧状接触面34C,35Cは、各々、第1・第2平坦面31,32に対して、上記矢印M方向の回転弾性変形時に、滑りZを生ずる。
このような滑りZによって、シール面に傷が発生し、シール性に悪影響を及ぼす虞があることが、判明した。
しかも、上記滑りZは、第1・第2平坦面31,32の表面粗さ等の状態によって、その滑り抵抗が変化し、かつ、回転弾性変形であるために、圧縮荷重特性が(上記滑り抵抗の大小の変化に伴って、)不安定となる場合もある。
However, the length of the bolt or the like for approximating the first and second planar surfaces 31 and 32 to each other is increased, an obstacle in achieving a compact apparatus in which the metal seal Y 10 are used, also There is a problem that the efficiency of the (screwing) operation is lowered (described later in detail in FIG. 5).
Further, the arc-shaped contact surfaces 34C and 35C of the semicircular convex portions 34 and 35 cause a slip Z during the rotational elastic deformation in the direction of the arrow M with respect to the first and second flat surfaces 31 and 32, respectively. .
It has been found that such a slip Z may cause a scratch on the sealing surface and adversely affect the sealing performance.
Moreover, the slip Z has a sliding resistance that varies depending on the surface roughness of the first and second flat surfaces 31 and 32 and is rotationally elastically deformed. It may become unstable (with changes in resistance).

そこで、本発明に係る金属シールは、相互に平行な第1・第2平坦面の間に介装され、全体が環状であり、中間基部と、上記第1平坦面に当接する円弧状第1接触凸部と、上記第2平坦面に当接する円弧状第2接触凸部と、を備え;上記中間基部は、横断面略平行四辺形であって、上記第1平坦面に対して装着未圧縮状態でラジアル外方にしだいに間隙が減少する第1傾斜辺と、上記第2平坦面に対して装着未圧縮状態でラジアル外方にしだいに間隙が増加する第2傾斜辺とを、有し;上記第1傾斜辺の内径寄りに上記第1接触凸部を突設すると共に、上記第1平坦面に所定回転状態で当接する小平坦部を上記第1傾斜辺の外径寄りに切欠形成し;上記第2傾斜辺の外径寄りに上記第2接触凸部を突設すると共に、上記第2平坦面に上記所定回転状態で当接する小平坦部を上記第2傾斜辺の内径寄りに切欠形成した。   Therefore, the metal seal according to the present invention is interposed between the first and second flat surfaces parallel to each other, is entirely annular, and has an arcuate first contact with the intermediate base portion and the first flat surface. A contact convex portion and an arcuate second contact convex portion that contacts the second flat surface; and the intermediate base portion has a substantially parallelogram in cross section and is not attached to the first flat surface. A first inclined side where the gap gradually decreases outward in the compressed state and a second inclined side where the gap increases gradually outward in the uncompressed state with respect to the second flat surface are provided. And projecting the first contact convex portion closer to the inner diameter of the first inclined side and notching a small flat portion contacting the first flat surface in a predetermined rotational state toward the outer diameter of the first inclined side. Forming the second contact convex portion near the outer diameter of the second inclined side and projecting the predetermined on the second flat surface Contacting a small flat portion in a converter state and notches formed on the inner diameter side of the said second inclined side.

また、装着未圧縮状態から上記小平坦部が第1・第2平坦面に当接する上記所定回転状態までの高さ減少量をS1 とすると共に;装着未圧縮状態から圧縮完了状態までの高さ減少量をS0 とした場合、次式が成立する。
0.1・S0 ≦S1 ≦ 0.5・S0
The amount of decrease in height from the uncompressed state to the predetermined rotation state where the small flat portion abuts against the first and second flat surfaces is S 1 ; When the amount of decrease is S 0 , the following equation is established.
0.1 ・ S 0 ≦ S 1 ≦ 0.5 ・ S 0

本発明によれば、第1・第2平坦面を相互に接近させるためのボルト等の長さを短くできて、装置のコンパクト化を可能とし、作業性も改善できる。また、第1・第2平坦面(シール面)に擦り傷が発生することを防止できる。それによって、シール性(密封性能)が安定して良好となる。さらに、装着未圧縮状態から、押圧力(圧縮力)が作用して回転弾性変形をおこし、圧縮完了状態となるまでの回転弾性変形量(回転角度)が十分に減少し、金属シールの滑り量が減ることによって、第1・第2平坦面(シール面)の擦り傷の発生を防ぎ、かつ、圧縮荷重特性が常に安定し、シール性(密封性能)が一層改善できる。   According to the present invention, the length of a bolt or the like for bringing the first and second flat surfaces closer to each other can be shortened, the apparatus can be made compact, and workability can be improved. In addition, it is possible to prevent the first and second flat surfaces (seal surfaces) from being scratched. As a result, the sealing performance (sealing performance) is stable and good. Furthermore, the amount of rotational elastic deformation (rotational angle) from the uncompressed state to the rotationally elastic deformation due to the pressing force (compressive force) acting and the compression completion state is sufficiently reduced, and the slip amount of the metal seal As a result, the occurrence of scratches on the first and second flat surfaces (sealing surfaces) can be prevented, the compressive load characteristics can always be stabilized, and the sealing performance (sealing performance) can be further improved.

未装着状態(自由状態)を示した本発明の実施の一形態の断面図である。It is sectional drawing of one Embodiment of this invention which showed the non-wearing state (free state). 拡大断面図である。It is an expanded sectional view. 他の実施の形態を示す拡大断面図である。It is an expanded sectional view showing other embodiments. 図3に示した横断面形状についての説明図である。It is explanatory drawing about the cross-sectional shape shown in FIG. 金属シールの高さ(2平面間の距離)に対して、圧縮方向の荷重がいかに変化するかを、本発明と従来例について、実測した結果を示すグラフ図であって、(A)は本発明の実施品についての実測グラフ図、(B)は従来品についての実測グラフ図である。It is a graph which shows the result of having actually measured about the present invention and the conventional example how the load of a compression direction changes with respect to the height (distance between two planes) of a metal seal, and (A) is this FIG. 5B is an actual measurement graph for an embodiment of the invention, and FIG. 本発明の金属シールの一例の自由状態の要部断面図である。It is principal part sectional drawing of the free state of an example of the metal seal of this invention. 本発明の金属シールの一例の圧縮完了状態を示す要部断面図とFEM解析図とを兼ねた説明図である。It is explanatory drawing which served as the principal part sectional drawing which shows the compression completion state of an example of the metal seal of this invention, and the FEM analysis figure. 従来例の金属シールの自由状態の要部断面図である。It is principal part sectional drawing of the free state of the metal seal of a prior art example. 従来例の金属シールの圧縮完了状態を示す要部断面図とFEM解析図とを兼ねた説明図である。It is explanatory drawing which served as the principal part sectional drawing which shows the compression completion state of the metal seal of a prior art example, and the FEM analysis figure. 図7と図9における第1平坦面に対する接触面圧を縦軸に示し、金属シールの半径(位置)を横軸に示したFEM解析グラフ図である。FIG. 10 is an FEM analysis graph showing the contact surface pressure with respect to the first flat surface in FIGS. 7 and 9 on the vertical axis and the radius (position) of the metal seal on the horizontal axis. 図7と図9における第2平坦面に対する接触面圧を縦軸に示し、金属シールの半径(位置)を横軸に示したFEM解析グラフ図である。FIG. 10 is an FEM analysis graph showing the contact surface pressure on the second flat surface in FIGS. 7 and 9 on the vertical axis and the radius (position) of the metal seal on the horizontal axis. 従来例を示した要部断面図であって、(A)は自由状態を示す要部断面図、(B)は圧縮完了状態を示す要部断面図である。It is principal part sectional drawing which showed the prior art example, Comprising: (A) is principal part sectional drawing which shows a free state, (B) is principal part sectional drawing which shows a compression completion state.

以下、図示の実施の形態に基づき本発明を詳説する。
図1,図2,図6,図7に示す本発明の実施の一形態に於て、図1と図6は自由状態、図2は装着未圧縮状態、図7は圧縮完了状態を示し、この金属シール(メタルシール)Yは、ステンレス鋼やばね鋼やその他の金属から成り、切削や研削等の機械加工、又は、塑性加工等で作製される。
そして、この金属シールYは、相互に平行な一対の第1平坦面1と第2平坦面2の間に介装されるものであって、全体が円形,楕円形,長円形,略矩形等の閉じた環状である。
横断面形状について説明すれば、中間基部3と、第1平坦面1に当接する円弧状第1接触凸部11と、第2平坦面2に当接する円弧状第2接触凸部12とを、備えている。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
In the embodiment of the present invention shown in FIGS. 1, 2, 6, and 7, FIGS. 1 and 6 are in a free state, FIG. 2 is in an uncompressed state, FIG. 7 is in a compressed state, The metal seal (metal seal) Y is made of stainless steel, spring steel, or other metal, and is manufactured by machining such as cutting or grinding, or plastic processing.
The metal seal Y is interposed between a pair of first flat surface 1 and second flat surface 2 that are parallel to each other, and is entirely circular, elliptical, oval, substantially rectangular, or the like. The closed ring.
The cross-sectional shape will be described. The intermediate base 3, the arc-shaped first contact convex portion 11 that abuts the first flat surface 1, and the arc-shaped second contact convex portion 12 that abuts the second flat surface 2. I have.

図1,図2,図6,図7に於て、2点鎖線によって、中間基部3の断面形状の輪郭を示し、自由状態、及び、装着未圧縮状態では、この中間基部3は、略平行四辺形であって、第1平坦面1に対して装着未圧縮状態でラジアル外方R0 にしだいに間隙が減少する第1傾斜辺4と、第2平坦面2に対して装着未圧縮状態でラジアル外方R0 にしだいに間隙が増加する第2傾斜辺5と、軸心Ls に平行な内周辺6・外周辺7とから成る。
そして、第1傾斜辺4の内径寄りに第1接触凸部11を突設し、かつ、第1平坦面1に対して、所定回転状態で当接する小平坦部8を、上記第1傾斜辺4の外径寄りに切欠形成する。
さらに、第2傾斜辺5の外径寄りに第2接触凸部12を突設すると共に、第2平坦面2に所定回転状態で当接する小平坦部9を、第2傾斜辺5の内径寄りに切欠形成する。
1, 2, 6, and 7, the outline of the cross-sectional shape of the intermediate base portion 3 is indicated by a two-dot chain line, and the intermediate base portion 3 is substantially parallel in a free state and an uncompressed state. The first inclined side 4 which is a quadrangle and in which the gap gradually decreases toward the radially outward R 0 in the uncompressed state with respect to the first flat surface 1, and the uncompressed state with respect to the second flat surface 2 The second outer peripheral edge 5 includes a second inclined side 5 in which the gap gradually increases in the radial outward direction R 0 , and an inner periphery 6 and an outer periphery 7 parallel to the axis Ls.
And the 1st contact convex part 11 is provided near the inner diameter of the 1st inclination side 4, and the small flat part 8 which contact | abuts to the 1st flat surface 1 in a predetermined rotation state is said 1st inclination side. A notch is formed near the outer diameter of 4.
Further, the second contact convex portion 12 protrudes near the outer diameter of the second inclined side 5, and the small flat portion 9 that comes into contact with the second flat surface 2 in a predetermined rotation state is closer to the inner diameter of the second inclined side 5. Notch formation.

図2に示した装着未圧縮状態(自由状態)に於て、さらに追加説明すると、中間基部3は、2点鎖線で示した平行四辺形10の外周辺7と第1傾斜辺4とが交わる角部13を勾配線14にて面取り(除去)し、さらに、第1平坦面1と平行な直線で、勾配線14と第1傾斜辺4との角部を、小さく面取りして上記小平坦部8を形成する。
他方、図2に於て、2点鎖線で示した上記平行四辺形10の内周辺6と第2傾斜辺5とが交わる角部15を勾配線16にて面取り(除去)し、さらに、第2平坦面2と平行な直線で、勾配線16と第2傾斜辺5との角部を、小さく面取りして上記小平坦部9を形成する。
In the uncompressed state (free state) shown in FIG. 2, the intermediate base portion 3 intersects the outer periphery 7 of the parallelogram 10 indicated by a two-dot chain line and the first inclined side 4. The corner portion 13 is chamfered (removed) by the gradient line 14, and the corner portion between the gradient line 14 and the first inclined side 4 is chamfered by a straight line parallel to the first flat surface 1 to make the small flat surface. Part 8 is formed.
On the other hand, in FIG. 2, the corner 15 where the inner periphery 6 of the parallelogram 10 and the second inclined side 5 intersect with each other indicated by a two-dot chain line is chamfered (removed) by a gradient line 16, and 2 The small flat portion 9 is formed by chamfering the corners of the gradient line 16 and the second inclined side 5 with a straight line parallel to the flat surface 2.

なお、第1接触凸部11は低い丘型として第1傾斜辺4のラジアル内方端寄りに配設されているが、内周辺6によって、その低い丘型の内端部位は切断(除去)された低い丘型である。また、第2接触凸部12は低い丘型として第2傾斜辺5のラジアル外方端寄りに配設されているが、外周辺7によって、その低い丘型の外端部位は切断(除去)された低い丘型である。
なお、図2に於て、Rは第1・第2接触凸部11,12の曲率半径を示す。
図2の平行四辺形の第1・第2傾斜辺4,5の第1,第2平坦面1,2に対する(自由状態の)傾き角度θは約8°の場合を例示したが、図3と図4に示す他の実施形態では、その傾き角度θは約21°の場合を示す。このように、平行四辺形10の傾き角度θは、5°〜25°の範囲で選定可能である。
The first contact protrusion 11 is disposed as a low hill shape near the radial inner end of the first inclined side 4, but the inner end portion of the low hill shape is cut (removed) by the inner periphery 6. Is a low hill type. In addition, the second contact convex portion 12 is disposed as a low hill shape near the radial outer end of the second inclined side 5, but the outer end portion of the low hill shape is cut (removed) by the outer periphery 7. Is a low hill type.
In FIG. 2, R indicates the radius of curvature of the first and second contact protrusions 11 and 12.
In the example shown in FIG. 3, the inclination angle θ (in the free state) of the first and second inclined sides 4 and 5 of the parallelogram of FIG. 2 with respect to the first and second flat surfaces 1 and 2 is about 8 °. In the other embodiment shown in FIG. 4, the inclination angle θ is about 21 °. Thus, the inclination angle θ of the parallelogram 10 can be selected in the range of 5 ° to 25 °.

ところで、金属シールYの断面形状は、以上説明した通りではあるが、これを別の観点から説明することもできる。即ち、図12に於て、横断面長方形の中間基部33と、半円形の第1・第2接触凸部34,35と、から成る従来の金属シールY10を、所定の傾き角度だけ回転させて、図12(B)に示す姿勢となったときの断面形状を、図4に於て実線をもって示すが、この図4の実線の横断面形状を自由状態の基本形状として、破線(a1 −a1 )(a2 −a2 )(b1 −b1 )(b2 −b2 )にて切欠けば、図3に示した実施形態の断面形状となる。 By the way, although the cross-sectional shape of the metal seal | sticker Y is as having demonstrated above, this can also be demonstrated from another viewpoint. That is, At a 12, an intermediate base 33 cross section rectangular, the first and second contact protrusions 34 and 35 of semi-circular, a conventional metal seal Y 10 made of, is rotated by a predetermined angle of inclination Te, the cross-sectional shape when a posture shown in FIG. 12 (B), shows with solid lines at a 4, a solid line cross-sectional shape in FIG. 4 as the basic shape of the free state, the broken line (a 1 -A 1 ) (a 2 -a 2 ) (b 1 -b 1 ) (b 2 -b 2 ), the cross-sectional shape of the embodiment shown in FIG. 3 is obtained.

(a1 −a1 )(a2 −a2 )は、軸心Ls と平行な直線であって、回転姿勢の従来の金属シールY10を(内部応力を有さない)自由状態の基本形状(実線)として、その内周端縁部と外周端縁部を、上記直線(a1 −a1 )(a2 −a2 )にて切断除去する。斜線部N1 ,N2 は切断除去される部位である。
(b1 −b1 )(b2 −b2 )は、第1・第2平坦面1,2に平行な面を示す直線であって、回転姿勢の従来の金属シールY10を自由状態の基本形状(実線)として、上記直線(b1 −b1 )(b2 −b2 )にて切断除去する。三角形状の斜線部N3 ,N4 は、切断除去される部位である。
このように、4箇所の斜線部N1 ,N2 ,N3 ,N4 を切断除去すれば、図3に示した実施形態の金属シールが構成される。
(A 1 -a 1 ) and (a 2 -a 2 ) are straight lines parallel to the axis Ls, and the conventional metal seal Y 10 in a rotating posture is in a basic shape in a free state (without internal stress). As (solid line), the inner peripheral edge and the outer peripheral edge are cut and removed by the straight line (a 1 -a 1 ) (a 2 -a 2 ). The hatched portions N 1 and N 2 are parts to be cut and removed.
(B 1 -b 1 ) and (b 2 -b 2 ) are straight lines indicating planes parallel to the first and second flat surfaces 1 and 2, and the conventional metal seal Y 10 in a rotating posture is in a free state. The basic shape (solid line) is cut and removed by the straight line (b 1 -b 1 ) (b 2 -b 2 ). Triangular hatched portions N 3 and N 4 are portions to be cut and removed.
As described above, when the four shaded portions N 1 , N 2 , N 3 , and N 4 are cut and removed, the metal seal of the embodiment shown in FIG. 3 is configured.

そして、図5(A)(B)は、本発明の実施品(2個)と、従来品(2個)の各々の圧縮荷重特性について実測した結果を示すグラフ図である。
図5(A)(B)のグラフ図は、横軸に金属シールY,Y10の高さH(mm)―――2平面間の距離―――を採り、縦軸に、2平面を接近させる力F(kN)―――荷重(締付力,押圧力)―――を採っている。
本発明の金属シールの実施品1,2は、図1,図2に示す金属シールYであって、自由状態における外径と高さと幅の各寸法は、17.6mm,0.82mm,0.96mmである。また、従来品1,2は、図12に示す金属シールY10であって、自由状態における外径と高さと幅の各寸法は、 17.65mm,1mm,0.95mmである。
5A and 5B are graphs showing the results of actual measurement of the compression load characteristics of the product (two pieces) of the present invention and the conventional product (two pieces).
Graph of FIG. 5 (A) (B) is a metal sealing Y on the horizontal axis, the distance between the height H (mm) --- 2 plane Y 10 --- take, on the vertical axis, the two planes The approaching force F (kN) --- load (clamping force, pressing force) --- is used.
Examples 1 and 2 of the metal seal according to the present invention are the metal seal Y shown in FIGS. 1 and 2, and the dimensions of the outer diameter, the height, and the width in the free state are 17.6 mm, 0.82 mm, and 0.96 mm, respectively. is there. Further, the conventional product 1, a metal seal Y 10 shown in FIG. 12, the dimensions of the outer diameter and the height and width at the free state, 17.65Mm, 1 mm, is 0.95 mm.

本発明の金属シールYの実施品1,2の測定結果を示す図5(A)と、従来の金属シールY10―――従来品1,2―――の測定結果を示す図5(B)とを、比較すれば、以下の点が明らかとなる。
即ち、図5(A)に於て、本発明に係る金属シールYの特性を示しており、装着未圧縮状態(図2参照)から、第1・第2平坦面1,2の相対的接近に伴って押圧力(荷重,締付力)Fを受け、回転を生じて、小平坦部8,9が第1・第2平坦面1,2に当接する所定回転状態までの高さ減少量をS1 とする。つまり、図5(A)にあっては、U0 点からU1 点までの、横軸の寸法がS1 となる。
これに対して、装着未圧縮状態(図2参照)から、圧縮完了状態(図7参照)までの高さ減少量をS0 とした場合、次式が成立するように、金属シールYの断面形状及び寸法等が設定されている。
0.1・S0 ≦S1 ≦ 0.5・S0
FIG. 5 (A) showing the measurement results of the practical products 1 and 2 of the metal seal Y of the present invention, and FIG. 5 (B) showing the measurement results of the conventional metal seal Y 10 --- conventional products 1 and 2—. ) And the following points become clear.
That is, FIG. 5A shows the characteristics of the metal seal Y according to the present invention, and the relative approach of the first and second flat surfaces 1 and 2 from the uncompressed state (see FIG. 2). In response to the pressing force (load, tightening force) F, the rotation is caused and the amount of height reduction until the predetermined flat state where the small flat portions 8 and 9 abut against the first and second flat surfaces 1 and 2 is brought about. Is S 1 . That is, in FIG. 5A, the dimension on the horizontal axis from point U 0 to point U 1 is S 1 .
On the other hand, when the amount of height reduction from the uncompressed state (see FIG. 2) to the compression completed state (see FIG. 7) is S 0 , the cross section of the metal seal Y so that the following equation is satisfied. The shape and dimensions are set.
0.1 ・ S 0 ≦ S 1 ≦ 0.5 ・ S 0

図1,図2,図6から明らかなように、装着未圧縮状態に於て、小平坦部8,9と、第1・第2平坦面1,2との間隙は、微小に設定されており、荷重(押圧力,締付力)が付加されれば、図5(A)に於て、U0 点から始まって、僅かの荷重(締付力)でもって、小平坦部8,9が第1・第2平坦面1,2に当接する(U1 点に到達する)。
また、所定回転状態(U1 点)から圧縮完了状態(U2 点参照)までは、金属シールYは、弾塑性圧縮変形を起こしつつ、安定した曲線を描いている。そのときは荷重(締付力)はF0 であり、(実施品1と実施品2との間の)バラツキが少ない。なお、高さS2 は、前述の弾塑性圧縮変形に伴う高さ減少量を示す。
なお、本発明に於て、高さ減少量(S0 ,S1 ,S2 等)は、全て、絶対値(プラス)を示す。
As is apparent from FIGS. 1, 2 and 6, the gap between the small flat portions 8 and 9 and the first and second flat surfaces 1 and 2 is set to be very small in the uncompressed state. If a load (pressing force, tightening force) is applied, the small flat portions 8, 9 are started with a slight load (tightening force) starting from the point U 0 in FIG. 5 (A). Comes into contact with the first and second flat surfaces 1 and 2 (reaches the point U 1 ).
Further, from the predetermined rotation state (U 1 point) to the compression completion state (see U 2 point), the metal seal Y draws a stable curve while causing elastic-plastic compression deformation. At that time, the load (clamping force) is F 0 and there is little variation (between the working product 1 and the working product 2). Note that the height S 2 indicates a height reduction amount accompanying the above-described elastic-plastic compression deformation.
In the present invention, the height reduction amounts (S 0 , S 1 , S 2 etc.) all indicate absolute values (plus).

これに対し、図12(図8,図9)に示した従来の金属シールY10について説明すると、図5(B)に於て、従来品1と従来品2は略同じ曲線を示しており、圧縮開始点U100 から点U101 まで、第1・第2平坦面31,32を相互に接近させる締付力Fは小さいままで済んでいる。
そして、点U101 に於て、図12(B)に示すように、角部30,30が第1・第2平坦面31,32に当接し、点U101 からは、圧縮弾塑性変形を生じて急に荷重が上昇し、点U103 の圧縮完了状態に至る。
従来品1,2のこのような曲線結果に於て、回転弾性変形のみを示す、点U100 から点U101 までの高さ減少量を、S11とすると共に、装着未圧縮状態(点U100 )から、圧縮完了状態(点U103 )までの高さ減少量をS10とすれば、図5(B)では、S11=0.73・S10となっている。
In contrast, the conventional metal seal Y 10 shown in FIG. 12 (FIGS. 8 and 9) will be described. In FIG. 5B, the conventional product 1 and the conventional product 2 show substantially the same curve. , from the compression starting point U 100 to the point U 101, clamping force to close the first and second planar surfaces 31 and 32 to each other F lives remain small.
Then, at the point U 101 , as shown in FIG. 12 (B), the corners 30, 30 abut against the first and second flat surfaces 31, 32, and from the point U 101 , compression elasto-plastic deformation occurs. resulting load suddenly rises and leads to the completion of compression state of point U 103.
In these curve results of the conventional products 1 and 2, the amount of decrease in height from point U 100 to point U 101 , which shows only rotational elastic deformation, is S 11, and the uncompressed state (point U 100 ) to the compression completion state (point U 103 ) is S 10 , S 11 = 0.73 · S 10 in FIG. 5B.

本発明に係る金属シールYでは、 0.1・S0 ≦S1 ≦ 0.5・S0 として、回転弾性変形のための高さ減少量S1 を、従来例の回転弾性変形の高さ減少量S11よりも、十に小さく設定していることが、図5の(A)と(B)とを比較すれば、明らかとなる。
図5の(A)と(B)とを比較すれば、圧縮弾塑性変形開始点U1 ,U101 から、圧縮完了状態点U2 ,U103 までの勾配が同様の急角度上昇を示し、かつ、最終締付力F0 ,F0 ´を比較すると、本発明の金属シールYの最終締付力F0 が、従来例の最終締付力F0 ´よりも、僅かに小さくなっていることが判る。
In the metal seal Y according to the present invention, 0.1 · S 0 ≦ S 1 ≦ 0.5 · S 0 , the height reduction amount S 1 for rotational elastic deformation is set as the height reduction amount S 11 of rotational elastic deformation in the conventional example. Compared with (A) and (B) of FIG.
Comparing (A) and (B) of FIG. 5, the gradient from the compression elasto-plastic deformation start points U 1 and U 101 to the compression completion state points U 2 and U 103 shows a similar sudden increase, and, 'when compared, final fastening force F 0 for the metal seal Y of the present invention, conventional final fastening force of F 0' final fastening force F 0, F 0 than is slightly smaller I understand that.

従来の金属シールY10の回転に伴う高さ減少量S11が、本発明の金属シールYの回転に伴う高さ減少量S1 よりも、著しく大であったので、従来の金属シールY10が、無駄な回転を行っていたということも、できる。
これに対し、本発明に係る金属シールYは、(前記無駄な回転を省略した)極めて小さな回転をもって、第1・第2平坦面1,2に対する、(後述する)図10,図11に示したような最終的接触面圧A1 ,A2 ,A3 ,A4 を発生して、従来と同等の密封性能を発揮できる。
The height decrease S 11 accompanying the rotation of the conventional metal seal Y 10 is than the height reduction amount S 1 due to the rotation of the metal seal Y of the present invention, since a significantly large, conventional metal seal Y 10 However, it can also be said that it was performing useless rotation.
On the other hand, the metal seal Y according to the present invention is shown in FIGS. 10 and 11 (described later) with respect to the first and second flat surfaces 1 and 2 with a very small rotation (omitting the unnecessary rotation). The final contact surface pressures A 1 , A 2 , A 3 , and A 4 as described above can be generated and the sealing performance equivalent to the conventional one can be exhibited.

次に、本発明に係る金属シールYと、従来の金属シールY10について、接触面圧Pについて、比較する。
図7は、本発明の金属シールYについて、圧縮完了状態における各部の接触面圧Pを、FEM解析による分析値をもってグラフ図として併記している。A1 は上側の小平坦部8の面圧分布波形であり、A2 は第1接触凸部11の面圧分布波形である。また、A3 ,A4 は、各々、第2接触凸部12・小平坦部9の面圧分布波形である。
また、図9は、従来の金属シールY10について、圧縮完了状態における各部の接触面圧Pを、FEM解析による分析値をもってグラフ図として併記している。G1 は上側の角部30の面圧分布波形であり、G2 は上側の第1接触凸部34の面圧分布波形である。また、G3 ,G4 は、各々、第2接触凸部35・下側角部30の面圧分布波形である。
Next, the contact surface pressure P is compared between the metal seal Y according to the present invention and the conventional metal seal Y 10 .
FIG. 7 is a graph showing the contact surface pressure P of each part in the compression completed state for the metal seal Y of the present invention, with analysis values obtained by FEM analysis. A 1 is a surface pressure distribution waveform of the upper small flat portion 8, and A 2 is a surface pressure distribution waveform of the first contact convex portion 11. A 3 and A 4 are surface pressure distribution waveforms of the second contact convex portion 12 and the small flat portion 9, respectively.
Further, FIG. 9, a conventional metal seal Y 10, the contact pressure P of the respective parts in the compression completion status is also shown as a graph with the analysis by the FEM analysis. G 1 is a surface pressure distribution waveform of the upper corner portion 30, and G 2 is a surface pressure distribution waveform of the upper first contact convex portion 34. G 3 and G 4 are surface pressure distribution waveforms of the second contact convex portion 35 and the lower corner portion 30, respectively.

図10に、本発明の金属シールYと、従来の金属シールY10について、軸心Ls からの距離(半径位置)を横軸に採り、接触面圧Pを縦軸に採って、FEM解析による分布値をグラフ化して示す。A1 ,A2 ,G1 ,G2 は、図7と図9に示すA1 ,A2 ,G1 ,G2 に各々対応している。
図11に、本発明の金属シールYと、従来の金属シールY10について、軸心Ls からの距離(半径位置)を横軸に採り、接触面圧Pを縦軸に採って、示す。A3 ,A4 ,G3 ,G4 は、図7と図9に示すA3 ,A4 ,G3 ,G4 に各々対応している。
10, a metal seal Y of the present invention, a conventional metal seal Y 10, taken the distance from the axis Ls of the (radial position) on the horizontal axis and the contact surface pressure P on the vertical axis, by FEM analysis Distribution values are shown in graph form. A 1 , A 2 , G 1 , and G 2 correspond to A 1 , A 2 , G 1 , and G 2 shown in FIGS. 7 and 9, respectively.
11, a metal seal Y of the present invention, a conventional metal seal Y 10, taken the distance from the axis Ls of the (radial position) on the horizontal axis and the contact surface pressure P on the vertical axis, shown. A 3 , A 4 , G 3 , and G 4 correspond to A 3 , A 4 , G 3 , and G 4 shown in FIGS. 7 and 9, respectively.

図10と図11から判断すれば、図6と図8に示す如く、横断面形状が大きく相違し、かつ、捩り回転弾(塑)性変形領域―――つまり、図5で説明した高さ減少量S1 ,S11―――も大きく相違するにかかわらず、面圧分布波形・半径位置・最大面圧値に大差がないことを、示す。このように大差がないということは、シール性能に関して、本発明の金属シールYと従来の金属シールY10とを比較して、シール性能が同等(良好)であることを、示している。なお、締付力F0 ,F0 ´は、(図5に示したように)本発明の金属シールYの方が従来の金属シールY10よりも小さくて済むが、上述のように面圧分布波形・最大面圧値については大差がなく、本発明の金属シールYのシール性能は良好であるといえる。 Judging from FIGS. 10 and 11, as shown in FIGS. 6 and 8, the cross-sectional shape is greatly different and the torsional rotational (plastic) deformation region--that is, the height described in FIG. Although the reduction amounts S 1 and S 11 are largely different, it indicates that there is no great difference in the surface pressure distribution waveform, the radial position, and the maximum surface pressure value. It thus there is no great difference with respect to the sealing performance, by comparing the metal seal Y and conventional metal seal Y 10 of the present invention, the sealing performance is comparable (good) it shows. The tightening forces F 0 and F 0 ′ may be smaller in the metal seal Y of the present invention than in the conventional metal seal Y 10 (as shown in FIG. 5). There is no great difference in the distribution waveform and the maximum surface pressure value, and it can be said that the sealing performance of the metal seal Y of the present invention is good.

ところで、図2と図7に示すように、第1・第2平坦面1,2の両方に、浅い凹所(凹溝)26,27の底面をもって、構成される場合がある。26A,27Aはそのような浅い凹所(凹溝)26,27の内周面を示し、本発明の金属シールYでは、この内周面26A,27Aに常に非接触状態とする。即ち、図7の圧縮完了状態に於ても、金属シールYの外周辺7は、内周面26A,27Aに対して間隙を有して非接触状態とする。このように構成することによって、金属シールYを分解して取出す作業時に、苦労なく、スムーズに取外すことが可能となる。なお、本発明では、装着未圧縮状態(図2参照)から、圧縮完了状態(図7参照)までの回転角度は、従来例(図9参照)よりも十分に小さいので、上述の間隙を有した非接触状態とすることは、容易に設計可能である。   By the way, as shown in FIG. 2 and FIG. 7, there are cases where both the first and second flat surfaces 1 and 2 are formed with the bottom surfaces of shallow recesses (concave grooves) 26 and 27. 26A and 27A show the inner peripheral surfaces of such shallow recesses (concave grooves) 26 and 27. In the metal seal Y of the present invention, the inner peripheral surfaces 26A and 27A are always in a non-contact state. That is, even in the compression completion state of FIG. 7, the outer periphery 7 of the metal seal Y is in a non-contact state with a gap with respect to the inner peripheral surfaces 26A and 27A. By comprising in this way, at the time of the operation | work which disassembles and takes out the metal seal | sticker Y, it becomes possible to remove smoothly without a trouble. In the present invention, the rotation angle from the uncompressed state (see FIG. 2) to the compression completed state (see FIG. 7) is sufficiently smaller than that in the conventional example (see FIG. 9). The non-contact state can be easily designed.

本発明に係る金属シールYは、図5,図10,図11における横軸の目盛からも判るように、極めて小型のシールにも応用自在である。また、この金属シールYは、横断面形状が直線部が多く、切削加工も容易かつ安価であり、メタルOリングでは加工が難しく高価であるような小さなサイズにも、十分対応できる。   The metal seal Y according to the present invention can be applied to extremely small seals as can be seen from the scales of the horizontal axes in FIGS. Further, the metal seal Y has a large cross-sectional shape with a straight portion, is easy and inexpensive to cut, and can sufficiently cope with a small size that is difficult and expensive to process with a metal O-ring.

本発明は、以上述べたように、相互に平行な第1・第2平坦面1,2の間に介装され、全体が環状であり、中間基部3と、上記第1平坦面1に当接する円弧状第1接触凸部11と、上記第2平坦面2に当接する円弧状第2接触凸部12と、を備え;上記中間基部3は、横断面略平行四辺形であって、上記第1平坦面1に対して装着未圧縮状態でラジアル外方R0 にしだいに間隙が減少する第1傾斜辺4と、上記第2平坦面2に対して装着未圧縮状態でラジアル外方R0 にしだいに間隙が増加する第2傾斜辺5とを、有し;上記第1傾斜辺4の内径寄りに上記第1接触凸部11を突設すると共に、上記第1平坦面1に所定回転状態で当接する小平坦部8を上記第1傾斜辺4の外径寄りに切欠形成し;上記第2傾斜辺5の外径寄りに上記第2接触凸部12を突設すると共に、上記第2平坦面2に上記所定回転状態で当接する小平坦部9を上記第2傾斜辺5の内径寄りに切欠形成したので、シールの潰し量が減少でき、回転量・摺り量も低減できる。これによって、第1・第2平坦面1,2に傷(摺り傷)が発生することを防止できて、優れたシール性(密封性能)を発揮する。また、第1・第2平坦面1,2の表面粗さ等の影響を受けずに、安定して良好なシール性(密封性能)を発揮できる。
さらに、装着未圧縮状態から圧縮完了状態までの回転弾性変形量(回転角度)が小さく、圧縮荷重特性が安定して、シール性(密封性能)がさらに向上する。
As described above, the present invention is interposed between the first and second flat surfaces 1 and 2 that are parallel to each other, and is entirely annular, and contacts the intermediate base 3 and the first flat surface 1. An arc-shaped first contact convex portion 11 in contact with the arc-shaped second contact convex portion 12 in contact with the second flat surface 2; the intermediate base portion 3 having a substantially parallelogram in cross section, and The first inclined side 4 in which the gap gradually decreases toward the radial outer direction R 0 in the uncompressed state with respect to the first flat surface 1, and the radial outward R in the uncompressed state with respect to the second flat surface 2. A second inclined side 5 having a gap gradually increasing to 0 ; and projecting the first contact convex portion 11 closer to the inner diameter of the first inclined side 4, and a predetermined amount on the first flat surface 1. A small flat portion 8 that abuts in a rotating state is cut out near the outer diameter of the first inclined side 4; the second contact convex portion 12 protrudes near the outer diameter of the second inclined side 5. In addition, since the small flat portion 9 that is in contact with the second flat surface 2 in the predetermined rotational state is cut out near the inner diameter of the second inclined side 5, the amount of crushing of the seal can be reduced, and the rotation amount / sliding amount Can also be reduced. As a result, the first and second flat surfaces 1 and 2 can be prevented from being scratched (scratched), and excellent sealing performance (sealing performance) is exhibited. Further, it is possible to stably exhibit good sealing performance (sealing performance) without being affected by the surface roughness of the first and second flat surfaces 1 and 2.
Furthermore, the amount of rotational elastic deformation (rotation angle) from the uncompressed state to the compressed state is small, the compression load characteristic is stabilized, and the sealing performance (sealing performance) is further improved.

また、本発明は、装着未圧縮状態から上記小平坦部8,9が第1・第2平坦面1,2に当接する上記所定回転状態までの高さ減少量をS1 とすると共に;装着未圧縮状態から圧縮完了状態までの高さ減少量をS0 とした場合、次式が成立する。
0.1・S0 ≦S1 ≦ 0.5・S0
このように、従来の金属シールY10の高さ減少量S11(図5(B)参照)に比較して、本発明の金属シールYの高さ減少量S1 (図5(A)参照)を十分小さく設定したので、圧縮荷重特性が(図5(A)のように)安定して、シール性(密封性能)が常に良好に維持でき、かつ、第1・第2平坦面1,2に摺り傷が生ずることも防止できて、一層優れたシール性(密封性能)が得られる。
しかも、本発明では、全体の高さ減少量S0 も従来の全体の高さ減少量S10よりも十分に小さくできる。即ち、第1・第2平坦面1,2をボルト等にて締付ける移動量も小さくでき、金属シールを使用する装置のコンパクト化にも貢献できる。また、上記ボルト等を締付ける作業も迅速に行い得る。
それにもかかわらず、本願発明の金属シールYは、図10,図11に示したように、面圧分布波形A1 ,A2 ,A3 ,A4 は従来の金属シールY10の面圧分布波形G1 ,G2 ,G3 ,G4 と同等の接触面圧Pをもって、第1・第2平坦面1,2に圧接して、シール性(密封性能)は良好なままに維持される(図7と図9も参照)。
Further, according to the present invention, the amount of height reduction from the uncompressed state to the predetermined rotational state in which the small flat portions 8 and 9 are in contact with the first and second flat surfaces 1 and 2 is set as S 1 ; When the amount of height reduction from the uncompressed state to the compression completed state is S 0 , the following equation is established.
0.1 ・ S 0 ≦ S 1 ≦ 0.5 ・ S 0
As described above, the height reduction amount S 1 of the metal seal Y of the present invention (see FIG. 5A) is compared with the height reduction amount S 11 of the conventional metal seal Y 10 (see FIG. 5B). ) Is set sufficiently small, the compression load characteristics are stable (as shown in FIG. 5A), the sealing performance (sealing performance) can always be kept good, and the first and second flat surfaces 1, 2 can be prevented from being scratched, and more excellent sealing performance (sealing performance) can be obtained.
Moreover, in the present invention, the overall height reduction amount S 0 can be made sufficiently smaller than the conventional overall height reduction amount S 10 . That is, the amount of movement for tightening the first and second flat surfaces 1 and 2 with a bolt or the like can be reduced, which can contribute to the compactness of the apparatus using the metal seal. Moreover, the operation | work which fastens the said volt | bolt etc. can also be performed rapidly.
Nevertheless, as shown in FIGS. 10 and 11, the metal seal Y of the present invention has the surface pressure distribution waveforms A 1 , A 2 , A 3 and A 4 which are the surface pressure distributions of the conventional metal seal Y 10. The contact surface pressure P equivalent to the waveforms G 1 , G 2 , G 3 , and G 4 is pressed against the first and second flat surfaces 1 and 2, and the sealing performance (sealing performance) is kept good. (See also FIGS. 7 and 9).

1 第1平坦面
2 第2平坦面
3 中間基部
4 第1傾斜辺
5 第2傾斜辺
8 小平坦部
9 小平坦部
11 第1接触凸部
12 第2接触凸部
0 ラジアル外方
0 高さ減少量
1 高さ減少量
DESCRIPTION OF SYMBOLS 1 1st flat surface 2 2nd flat surface 3 Intermediate base 4 1st inclination side 5 2nd inclination side 8 Small flat part 9 Small flat part
11 First contact protrusion
12 Second contact projection R 0 Radial outward S 0 Height reduction S 1 Height reduction

Claims (2)

相互に平行な第1・第2平坦面(1)(2)の間に介装され、全体が環状であり、中間基部(3)と、上記第1平坦面(1)に当接する円弧状第1接触凸部(11)と、上記第2平坦面(2)に当接する円弧状第2接触凸部(12)と、を備え、
上記中間基部(3)は、横断面略平行四辺形であって、上記第1平坦面(1)に対して装着未圧縮状態でラジアル外方(R0 )にしだいに間隙が減少する第1傾斜辺(4)と、上記第2平坦面(2)に対して装着未圧縮状態でラジアル外方(R0 )にしだいに間隙が増加する第2傾斜辺(5)とを、有し、
上記第1傾斜辺(4)の内径寄りに上記第1接触凸部(11)を突設すると共に、上記第1平坦面(1)に所定回転状態で当接する小平坦部(8)を上記第1傾斜辺(4)の外径寄りに切欠形成し、
上記第2傾斜辺(5)の外径寄りに上記第2接触凸部(12)を突設すると共に、上記第2平坦面(2)に上記所定回転状態で当接する小平坦部(9)を上記第2傾斜辺(5)の内径寄りに切欠形成したことを特徴とする金属シール。
An arc shape that is interposed between the first and second flat surfaces (1) and (2) that are parallel to each other, is annular in its entirety, and is in contact with the intermediate base (3) and the first flat surface (1). A first contact protrusion (11) and an arcuate second contact protrusion (12) that contacts the second flat surface (2);
The intermediate base (3) has a substantially parallelogram in cross section, and the gap gradually decreases toward the radially outer side (R 0 ) in an uncompressed state with respect to the first flat surface (1). An inclined side (4), and a second inclined side (5) whose gap gradually increases radially outward (R 0 ) in an uncompressed state with respect to the second flat surface (2),
The first contact convex portion (11) protrudes toward the inner diameter of the first inclined side (4), and the small flat portion (8) that contacts the first flat surface (1) in a predetermined rotation state is provided above. Forming a notch near the outer diameter of the first inclined side (4),
The second contact convex portion (12) protrudes near the outer diameter of the second inclined side (5), and the small flat portion (9) contacts the second flat surface (2) in the predetermined rotational state. A metal seal characterized in that a notch is formed near the inner diameter of the second inclined side (5).
装着未圧縮状態から上記小平坦部(8)(9)が第1・第2平坦面(1)(2)に当接する上記所定回転状態までの高さ減少量を(S1 )とすると共に、
装着未圧縮状態から圧縮完了状態までの高さ減少量を(S0 )とした場合、次式が成立するように構成された請求項1記載の金属シール。
0.1・S0 ≦S1 ≦ 0.5・S0
The amount of height reduction from the uncompressed state to the predetermined rotational state in which the small flat portions (8) and (9) are in contact with the first and second flat surfaces (1) and (2) is defined as (S 1 ). ,
2. The metal seal according to claim 1, wherein the following equation is established when the amount of height reduction from the uncompressed state of installation to the state of completion of compression is (S 0 ):
0.1 ・ S 0 ≦ S 1 ≦ 0.5 ・ S 0
JP2018053948A 2018-03-22 2018-03-22 Metal seal Active JP6757760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018053948A JP6757760B2 (en) 2018-03-22 2018-03-22 Metal seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018053948A JP6757760B2 (en) 2018-03-22 2018-03-22 Metal seal

Publications (2)

Publication Number Publication Date
JP2019167973A true JP2019167973A (en) 2019-10-03
JP6757760B2 JP6757760B2 (en) 2020-09-23

Family

ID=68106469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018053948A Active JP6757760B2 (en) 2018-03-22 2018-03-22 Metal seal

Country Status (1)

Country Link
JP (1) JP6757760B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038835A (en) * 2019-09-05 2021-03-11 三菱電線工業株式会社 Metal seal

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119048A (en) * 1973-03-20 1974-11-14
JPS543648A (en) * 1977-06-09 1979-01-11 Mitsubishi Heavy Ind Ltd Metal gasket manufacturing process
JPS63176876A (en) * 1987-01-16 1988-07-21 Mitsubishi Heavy Ind Ltd Laminated metal ring
JP2001082609A (en) * 1999-09-09 2001-03-30 Motoyama Eng Works Ltd Seal gasket
JP2002257239A (en) * 2000-12-26 2002-09-11 Toyota Motor Corp Gas seal and combustion gas seal for injector
JP2004052900A (en) * 2002-07-19 2004-02-19 Mitsubishi Cable Ind Ltd Metal seal and its mounting and using method
JP2004340315A (en) * 2003-05-19 2004-12-02 Mitsubishi Cable Ind Ltd Metal seal
JP2010281385A (en) * 2009-06-04 2010-12-16 Mitsubishi Cable Ind Ltd Sealing structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119048A (en) * 1973-03-20 1974-11-14
JPS543648A (en) * 1977-06-09 1979-01-11 Mitsubishi Heavy Ind Ltd Metal gasket manufacturing process
JPS63176876A (en) * 1987-01-16 1988-07-21 Mitsubishi Heavy Ind Ltd Laminated metal ring
JP2001082609A (en) * 1999-09-09 2001-03-30 Motoyama Eng Works Ltd Seal gasket
JP2002257239A (en) * 2000-12-26 2002-09-11 Toyota Motor Corp Gas seal and combustion gas seal for injector
JP2004052900A (en) * 2002-07-19 2004-02-19 Mitsubishi Cable Ind Ltd Metal seal and its mounting and using method
JP2004340315A (en) * 2003-05-19 2004-12-02 Mitsubishi Cable Ind Ltd Metal seal
JP2010281385A (en) * 2009-06-04 2010-12-16 Mitsubishi Cable Ind Ltd Sealing structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038835A (en) * 2019-09-05 2021-03-11 三菱電線工業株式会社 Metal seal
JP6994485B2 (en) 2019-09-05 2022-02-04 三菱電線工業株式会社 Metal seal

Also Published As

Publication number Publication date
JP6757760B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
EP2589841B1 (en) Squeeze gasket
JP5591896B2 (en) Sealing device
JP5252878B2 (en) Rotating shaft seal
JP6555901B2 (en) Metal gasket
KR102014695B1 (en) Tolerance ring
JPWO2019230394A1 (en) Disc brake
JP2011094667A (en) Gasket and sealing structure
JP2019167973A (en) Metal seal
JP5638401B2 (en) Metal gasket
JP4299581B2 (en) Metal seal
JP2003247646A (en) Resin-made seal
JP4716828B2 (en) Metal seal
JP6994485B2 (en) Metal seal
JP7193516B2 (en) metal seal
JP2016183729A (en) Metal seal
JP2018173089A (en) Arrangement structure for sealant
JP6752069B2 (en) Arrangement structure of sealing material
JP6309284B2 (en) Metal seal
JP6257277B2 (en) Metal seal
JP2007009970A (en) Crank-shaped metallic gasket
JP2004218737A (en) Metal gasket and sealing structure with it
JP2017160978A (en) Metal seal
WO2018008520A1 (en) Structure for arranging seal material
JP2004218738A (en) Metal gasket of s-shaped section having projection and sealing construction
JP2018031398A (en) Metal gasket

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R150 Certificate of patent or registration of utility model

Ref document number: 6757760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250