JPS63176876A - Laminated metal ring - Google Patents

Laminated metal ring

Info

Publication number
JPS63176876A
JPS63176876A JP615287A JP615287A JPS63176876A JP S63176876 A JPS63176876 A JP S63176876A JP 615287 A JP615287 A JP 615287A JP 615287 A JP615287 A JP 615287A JP S63176876 A JPS63176876 A JP S63176876A
Authority
JP
Japan
Prior art keywords
ring
thermal expansion
alpha
laminated
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP615287A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Shimomura
知義 下村
Masahide Hara
正秀 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP615287A priority Critical patent/JPS63176876A/en
Publication of JPS63176876A publication Critical patent/JPS63176876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gasket Seals (AREA)

Abstract

PURPOSE:To aim at enhancing the sealing characteristic and reliability of a laminated metal ring for sealing a flange or the like by arranging metal materials in such a joint configuration that their pressing forces against the associated contact surface are increased due to a difference in thermal expansion therebetween. CONSTITUTION:A metal material 1'A having a thermal expansion coefficient alpha'A is obliquely jointed to a metal material 1'B having a thermal expansion coefficient alpha'B(alpha'A>alpha'B) at the joint surface 1'ab, so as to form an integrally formed laminated ring 1' which is fitted in a flange groove 6. Further, a cover 7 is applied on the flange of a container body 5 by means of several bolts 8 and nuts 9 so as to give press-in deformation delta to the laminated ring 1' which is therefore fastened, and therefore the laminated ring 1' may be used as a seal ring. In this condition when a temperature rise DELTAT is effected, the metal materials 1'A, 1'B having a diameter R thermally expand by alpha'AXDELTATXR, alpha'BXDELTATXR, respectively, and then to be deformed by deltat in the thicknesswise direction so that the pressing force against the associated contact surface is increased. Thus, it is possible to enhance the sealing characteristic and reliability of the metal ring.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、原子力・火力用機器、その他一般産業機械等
の容器、配管のフランジ等における大きい己度変動の箇
所に適用され、シールリング、皿ばね等として広く適用
される積層金属リングに関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is applied to locations where there are large fluctuations in self-temperature in containers, piping flanges, etc. of nuclear/thermal power equipment, other general industrial machinery, etc. This invention relates to laminated metal rings that are widely used as disc springs and the like.

(従来の技術) 従来のシールリング、皿ばね等は、単一材料の構成部材
により製造されており、温度変動などに伴って生ずる対
接面(シール面)ぺの押付力(シール力)の低下は、ボ
ルト、ナツト等による締付力の調整や、複数個を併設す
ることなどの手段により対処されている。
(Prior art) Conventional seal rings, disc springs, etc. are manufactured from components made of a single material, and the pressing force (sealing force) of the contact surface (sealing surface) that occurs due to temperature fluctuations, etc. The reduction is dealt with by adjusting the tightening force using bolts, nuts, etc., or by installing multiple bolts in parallel.

なお、表面に施されたメッキ層や柔軟な金属層は、防錆
、摩耗防止、対接面(シール面)へのなじみを良くする
ための構造であって、温度変動などに伴って生ずる押付
力低下の補償としては期待できない。
The plating layer and flexible metal layer applied to the surface are designed to prevent rust, prevent wear, and improve conformity to the contact surface (sealing surface). It cannot be expected to compensate for the decrease in power.

(発明が解決しようとする問題点) 一般に金属材料は、温度上昇とともに弾性係数が低下し
てばね定数が低下するため、従来のシールリングは、温
度上昇とともに対接面への押付力、即ち接触圧が低下し
てシール性能低下の一因となり、該低下を見込んでボル
トによる締付力を予め高める必要があって、ボルトの設
計、施工性が厳しく要求され、従来の皿ばねは、温度変
動とともに押付力が変化するため、温度変動がありかつ
一定の押付力が要求される場合には使用できず、また、
複数個を併設しても、総合的なシール性能および信頼性
を高めるのには自ら限界があって構造が著しく複雑にな
るなどの問題点がある。
(Problem to be Solved by the Invention) Generally, as the temperature rises, the elastic modulus of metal materials decreases and the spring constant decreases. The pressure decreases, contributing to a decrease in sealing performance, and in anticipation of this decrease, it is necessary to increase the tightening force of the bolt in advance, which requires strict bolt design and workability. Since the pressing force changes with the temperature, it cannot be used when there is temperature fluctuation and a constant pressing force is required.
Even if a plurality of sealing units are installed together, there is a limit to improving the overall sealing performance and reliability, and there are problems such as the structure becoming extremely complicated.

(問題点の解決手段) 本発明は、前記のような問題点に対処するために開発さ
れた積層金属リングであって、熱膨張率の異なる複数の
金属材料の重ね合せ接合による一体化によって積層リン
グに形成されているとともに、前記各金属材料の相互を
温度変動に伴って生ずる熱膨張量の差によりリング断面
に回転力が生じ、て対接面への押付力が増加する接合配
置にしたことにより、温度変動に伴って生ずる弾性係数
(ばね定数)の低下によるシール性能低下をリング断面
の自動的な回転変形による押付力増加により補償してシ
ール性能、信頼性を向上させて前記のような問題点を解
消している。
(Means for Solving Problems) The present invention is a laminated metal ring developed in order to solve the above-mentioned problems, and is a laminated metal ring in which a plurality of metal materials having different coefficients of thermal expansion are integrated by overlapping and bonding. In addition to being formed into a ring, the metal materials have a joining arrangement in which rotational force is generated in the cross section of the ring due to the difference in thermal expansion caused by temperature fluctuations, thereby increasing the pressing force against the opposing surface. This improves sealing performance and reliability by compensating for the decrease in sealing performance due to a decrease in the elastic coefficient (spring constant) that occurs due to temperature fluctuations by increasing the pressing force due to automatic rotational deformation of the ring cross section. Problems have been resolved.

(作用) 設置雰囲気の温度が上昇あるいは下降すると、重ね合せ
接合により一体化された積層リングの熱膨張率の異なる
複数の金属材料に前記温度変動に伴う熱膨張量の差が生
じ、前記積層リングのりング断面に回転力が生じ対接面
への押付力増加方向に回転変形して、温度変動に伴って
生ずる金属材料の一般的な弾性係数の低下即ちシール性
能低下が前記回転変形による押付力の増加により補償さ
れ少なくとも所定の押付力が確保される。
(Function) When the temperature of the installation atmosphere rises or falls, a difference in the amount of thermal expansion occurs in the plurality of metal materials having different coefficients of thermal expansion of the laminated ring integrated by overlapping and bonding due to the temperature fluctuation, and the laminated ring A rotational force is generated on the cross section of the ring, causing rotational deformation in the direction of increasing the pressing force on the contact surface, and the general decrease in the elastic modulus of metal materials that occurs with temperature fluctuations, that is, a decrease in sealing performance, is the pressing force due to the rotational deformation. is compensated for by the increase in the amount of pressure, and at least a predetermined pressing force is ensured.

(実施例) 第1図および第2図に本発明の基本的な実施例を示し、
図中(IA)は熱膨張率(αA)の金属材料、(IB)
は熱膨張率(αB)の金属材料であって、熱膨張率(α
A)に対しくαB)が程よく小さく(αA ) a13
 )に、あるいは大きく(αA〈αB)なるように金属
材料(IA)と(IB)が異なる適宜の材質に選択して
使用され、熱膨張率(dXd)の異なる複数の金属材料
(IA)と(IB)  (それぞれリング状)の重ね合
せ接合による一体化によって積層リング(1)に形成さ
れているとともに、各金属材料(IA)(IB)の相互
を温度変動に伴って生ずる熱膨張量の差によリリング断
面に回転力が生じて対接面(シール面、図示省略)への
押付力が増加する接合配置にした構成になっている。図
中(1す(1b)は金属材料(IA)と(IB)の一体
化された接合面であり、接合による一体化は、周知の適
宜手段による。
(Example) A basic example of the present invention is shown in FIGS. 1 and 2,
In the figure, (IA) is a metal material with a coefficient of thermal expansion (αA), (IB)
is a metal material with a coefficient of thermal expansion (αB), and a coefficient of thermal expansion (α
αB) for A) is moderately small (αA ) a13
) or large (αA<αB), the metal materials (IA) and (IB) are selected as different appropriate materials and used, and multiple metal materials (IA) with different coefficients of thermal expansion (dXd) are used. (IB) (each ring-shaped) is formed into a laminated ring (1) by overlapping and joining them, and the amount of thermal expansion that occurs between each metal material (IA) and (IB) due to temperature fluctuations. The joint arrangement is such that rotational force is generated in the rilling cross section due to the difference, and the pressing force against the opposing surface (sealing surface, not shown) increases. In the figure, (1b) is a bonding surface where the metal materials (IA) and (IB) are integrated, and the integration by bonding is performed by appropriate well-known means.

本発明の基本的な実施例は、前記のような構成になって
おり作用について説明する。熱膨張率αA〉αBの場合
は、第2図に実線で示す自由な状態から押込み変形δさ
せて溝内などに配設して使用される。
The basic embodiment of the present invention has the above-mentioned configuration, and its operation will be explained below. When the coefficient of thermal expansion is αA>αB, it is used by being deformed by pushing δ from the free state shown by the solid line in FIG. 2 and disposed in a groove or the like.

積層リング(1)のばね定数をkとすると、押付力P=
δkが生ずる。この状態で設置雰囲気の温度上昇ΔTに
より縦弾性係数がα(<1.0)  倍になったとする
と、押付力はδk(1−α)だけ低下したことになるが
、該積層リング(1)は、自由な状態から温度上昇ΔT
すると金属材料(IA)が金属材料(IB)よりも大き
く伸びようとし、全体としてリング断面が起き上るよう
な回転力が生じ回転変形(図示右回転)して高さがδを
高くなり、押し込み変形δによって配設された状態で温
度上昇ΔTすると、押付力がΔP=δt・α・k−δ(
l−α)kだげ増加し、ΔP〉0になるように異なる適
宜の金属材料(IA)と(IB)を選択して一体的に組
み合せることにより、少なくとも温度上昇に伴って生ず
る弾性係数の低下に基づく押付力の低下が補償される。
If the spring constant of the laminated ring (1) is k, then the pressing force P=
δk is generated. In this state, if the longitudinal elastic modulus increases by α (<1.0) times due to the temperature rise ΔT in the installation atmosphere, the pressing force will decrease by δk (1 - α), but the laminated ring (1) is the temperature rise ΔT from the free state
Then, the metal material (IA) tries to stretch more than the metal material (IB), and a rotational force is generated that lifts up the ring cross section as a whole, causing rotational deformation (clockwise rotation in the figure), increasing the height by δ, and pushing it in. When the temperature rises ΔT in a state where it is arranged by deformation δ, the pressing force becomes ΔP=δt・α・k−δ(
By selecting and integrally combining different appropriate metal materials (IA) and (IB) so that l−α)k increases and ΔP>0, the elastic modulus that occurs at least as the temperature increases The decrease in pressing force due to the decrease in is compensated for.

雰囲気の温度下降の場合は、熱膨張率αA〈αBになる
ように金属材料(IA)と(IB)を選択するとともに
、金属材料(IA)と(IB)の温度下降に伴って生ず
る熱膨張量の差を程よく確保することにより、リング断
面の回転変形が生じて押付力が十分に補足され、同様な
作用効果が得られる。
In the case of a decrease in the temperature of the atmosphere, select the metal materials (IA) and (IB) so that the coefficient of thermal expansion is αA<αB, and also select the thermal expansion that occurs as the temperature of the metal materials (IA) and (IB) decreases. By ensuring a suitable amount difference, rotational deformation of the ring cross section occurs to sufficiently supplement the pressing force, and similar effects can be obtained.

(他の実施例) 第3,4図に皿はね型の積層全域リングの実施例を示し
ており、熱膨張率<a ’A+の金属材料(1r)に熱
膨張率(α’B)の金属材料(1’B)を接合面(1’
(!、A)で重ね合せ接合により一体化した積層リング
(1′)に形成されているとともに、例えば、熱膨張率
α′A〉α色とし、容器本体(5)の端面に設けたリン
グ状のフランジ溝(6)内に装入し、容器本体(5)の
フランジ上に複数のボルト(8)、ナツト(9)などに
より蓋(力を施し、ボルト(8)による締付力により蓋
(力を介し積層リング(1)に前記押し込み変形δを与
えて配設され、容器本体(5)のフランジ部におけるシ
ールリングとして使用される。
(Other Examples) Figures 3 and 4 show an example of a laminated full-area ring in the shape of a countersunk. metal material (1'B) to the joint surface (1'
(!, A) is formed into a laminated ring (1') integrated by overlapping bonding, and the ring is, for example, colored with a coefficient of thermal expansion α'A>α, and is provided on the end face of the container body (5). The lid is placed on the flange of the container body (5) with a plurality of bolts (8), nuts (9), etc., and the tightening force of the bolts (8) is applied to the lid. The lid is disposed by applying the above-mentioned indentation deformation δ to the laminated ring (1) through force, and is used as a seal ring at the flange portion of the container body (5).

該積層金属リングにおいて、温度上昇ΔTされると、金
属材料(IA)の熱膨張率(αr)が金属材料(1’B
)の熱膨張率(α知よりも大きくなっており、金属材料
(1’A)が(1’E)に対して内側になるように接合
面(1′α、りで一体的に接合されているため、温度上
昇ΔTによって金属材料(1’A)はα’A、R・ΔT
、金属材料(1’B)はα’B、R・ΔTだけ平均半径
Rが大きくなろうとし、それぞれの金属材料の自由延び
の差R・ΔT2(α′A−α’B)の分だけ、金属材料
(五)が(1沁に対して相対的に外側へ伸びようとして
、リング断面に図示右回転の回転力が生じて、それを拘
束するために対接面(シール面)への押付力が増加しシ
ール性能が向上される。
In the laminated metal ring, when the temperature rises ΔT, the coefficient of thermal expansion (αr) of the metal material (IA) becomes lower than that of the metal material (1'B
) is larger than the coefficient of thermal expansion (α), and the metal material (1'A) is integrally joined at the joint surface (1'α, Therefore, due to the temperature rise ΔT, the metal material (1'A) becomes α'A, R・ΔT
, the average radius R of the metal material (1'B) will increase by α'B, R・ΔT, and the difference in free elongation of each metal material R・ΔT2 (α′A − α′B) , when the metal material (5) tries to expand outward relative to 1 cm, a rotational force of clockwise rotation as shown in the diagram is generated on the ring cross section, and in order to restrain it, a force is applied to the contact surface (seal surface). Pressing force is increased and sealing performance is improved.

また、第5図に示す他の実施例は、対接面側に膨出部を
設けた断面形状に形成され熱膨張率の異なる金属材料(
IOA)と(IOB)の重ね合せ接合による一体化によ
って形成された積層リングαC1さらに、第6図に示す
他の実施例のように、熱膨張係数の異なる金属材料(2
0A) 、 (20B)および(20C)(αA、αB
、αC)の重ね合せ接合による一体化によって形成され
た例は、前記のように温度下降の場合の設計にすること
も可能である。
In addition, another embodiment shown in FIG. 5 is made of a metal material having a different coefficient of thermal expansion (
Furthermore, as in another embodiment shown in FIG.
0A), (20B) and (20C) (αA, αB
, αC) formed by overlapping bonding can also be designed for temperature reduction as described above.

前記各実施例における各金属材料相互の接合面間の一体
化接合は、公知の各種手段によることができ、金属材料
の組み合せ選択によって、温度変動で縦弾性係数が変化
しても、常にほぼ一定の押付力が付与されるように設計
できる。
In each of the above embodiments, the joint surfaces of the metal materials can be integrally joined by various known means, and even if the longitudinal elastic modulus changes due to temperature fluctuations, the longitudinal elastic modulus remains almost constant even if the longitudinal elastic modulus changes due to temperature fluctuations. It can be designed to apply a pressing force of .

(発明の効果) 本発明は、前述のような構成になっており、配設された
雰囲気の温度が変動すると、重ね合せ接合により一体化
された各金属材料の熱膨張量差によりリング断面に回転
力が生じて対接面への押付力増加方向へ回転変形され、
縦弾性係数の増または減による押付力の低下が前記回転
変形による自動的な押圧力増加により十分に補われて補
償されシール性能、信頼性が著しく向上されているとと
もに、簡単な構造にてコストが著しく節減され信頼性が
高められている。
(Effects of the Invention) The present invention has the above-described configuration, and when the temperature of the atmosphere in which it is installed changes, the cross section of the ring changes due to the difference in thermal expansion of each metal material integrated by overlapping. Rotational force is generated and rotational deformation occurs in the direction of increasing the pressing force on the contact surface,
The decrease in pressing force caused by an increase or decrease in the modulus of longitudinal elasticity is fully compensated for by the automatic increase in pressing force caused by the rotational deformation, and the sealing performance and reliability are significantly improved, and the simple structure reduces costs. This results in significant savings and improved reliability.

以上本発明を実施例について説明したが、勿論本発明は
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で種種の設計の改変を施し
うるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and that various design modifications can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的な一実施例を示す部分横断面図
、第2図は第1図の作動原理を説明する部分横断面図、
第3図は他の実施例および配設状態を示す縦断面図、第
4図は第3図の要部拡大断面図、第5図は他の実施例を
示す横断面図、第6図は他の実施例を示す横断面図であ
る。 1.1,10,20:積層リング IA、 IB、 xh、 1’E3. IOA、 IO
B、 20A、 20B、 200 :金属材料1α、
b、1戸、b:接合面
FIG. 1 is a partial cross-sectional view showing a basic embodiment of the present invention, FIG. 2 is a partial cross-sectional view explaining the operating principle of FIG. 1,
FIG. 3 is a longitudinal sectional view showing another embodiment and its arrangement state, FIG. 4 is an enlarged sectional view of the main part of FIG. 3, FIG. 5 is a cross sectional view showing another embodiment, and FIG. FIG. 7 is a cross-sectional view showing another example. 1.1, 10, 20: Laminated rings IA, IB, xh, 1'E3. IOA, IO
B, 20A, 20B, 200: Metal material 1α,
b, 1 unit, b: joint surface

Claims (1)

【特許請求の範囲】[Claims] 熱膨張率の異なる複数の金属材料の重ね合せ接合による
一体化によつて積層リングに形成されているとともに、
前記各金属材料の相互を温度変動に伴つて生ずる熱膨張
量の差によりリング断面に回転力が生じて対接面への押
付力が増加する接合配置にしたことを特徴とする積層金
属リング。
It is formed into a laminated ring by integrating multiple metal materials with different coefficients of thermal expansion by overlapping and bonding, and
A laminated metal ring characterized in that the metal materials are joined to each other so that a rotational force is generated in the cross section of the ring due to a difference in the amount of thermal expansion caused by temperature fluctuation, thereby increasing the pressing force against the opposing surface.
JP615287A 1987-01-16 1987-01-16 Laminated metal ring Pending JPS63176876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP615287A JPS63176876A (en) 1987-01-16 1987-01-16 Laminated metal ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP615287A JPS63176876A (en) 1987-01-16 1987-01-16 Laminated metal ring

Publications (1)

Publication Number Publication Date
JPS63176876A true JPS63176876A (en) 1988-07-21

Family

ID=11630556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP615287A Pending JPS63176876A (en) 1987-01-16 1987-01-16 Laminated metal ring

Country Status (1)

Country Link
JP (1) JPS63176876A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181192A (en) * 2000-12-19 2002-06-26 Ishino Gasket Kogyo Kk Torsion ring gasket
DE102014108131A1 (en) * 2014-06-10 2015-12-17 Elringklinger Ag Cylinder head gasket
JP2019167973A (en) * 2018-03-22 2019-10-03 三菱電線工業株式会社 Metal seal
JP2019206984A (en) * 2018-05-28 2019-12-05 三菱重工業株式会社 Seal mechanism

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181192A (en) * 2000-12-19 2002-06-26 Ishino Gasket Kogyo Kk Torsion ring gasket
DE102014108131A1 (en) * 2014-06-10 2015-12-17 Elringklinger Ag Cylinder head gasket
JP2019167973A (en) * 2018-03-22 2019-10-03 三菱電線工業株式会社 Metal seal
JP2019206984A (en) * 2018-05-28 2019-12-05 三菱重工業株式会社 Seal mechanism

Similar Documents

Publication Publication Date Title
JP4156526B2 (en) Metal gasket
JP4231554B2 (en) Seal for fluid pressure assembly and fluid pressure assembly using the seal
EP1777377B1 (en) Flange assembly and corresponding gas turbine engine
US4655463A (en) Gasket assembly for oil pan valve covers and the like
JP4440530B2 (en) Shallow S-shaped metal seal
JP2556825B2 (en) Metal sealing element
EP1128099A2 (en) Cylinder head gasket
US5230521A (en) Metallic laminate gasket with plates of different bead widths fixed together
US4571112A (en) Joint assembly
JPS63176876A (en) Laminated metal ring
US6322084B1 (en) Metal gasket with bore ring
US6231049B1 (en) Composite gasket with load stabilizer rib
US6702297B2 (en) Metal gasket for use in engine with chain case
EP0965778B1 (en) Metal gasket with two half beads
JP3846821B2 (en) Eccentric valve
US4550921A (en) Ring joint gasket
JP3342409B2 (en) Eccentric valve
JPH09177976A (en) Metal hollow o-ring
JP4852281B2 (en) gasket
JP2597905Y2 (en) Rubber packing structure
JPH0972431A (en) Condensation preventive butterfly valve
JPH08151955A (en) Seal structure for cylinder head
JPH0142696Y2 (en)
JP2001032938A (en) Metal gasket
JPH09269009A (en) Creep preventing roller bearing