JP2004044621A - Metal seal - Google Patents

Metal seal Download PDF

Info

Publication number
JP2004044621A
JP2004044621A JP2002199363A JP2002199363A JP2004044621A JP 2004044621 A JP2004044621 A JP 2004044621A JP 2002199363 A JP2002199363 A JP 2002199363A JP 2002199363 A JP2002199363 A JP 2002199363A JP 2004044621 A JP2004044621 A JP 2004044621A
Authority
JP
Japan
Prior art keywords
flat surface
contact portion
metal seal
contact
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002199363A
Other languages
Japanese (ja)
Inventor
Tetsuya Ashida
芦田 哲哉
Takasada Mitsui
三ツ井 孝禎
Hiroki Oida
笈田 弘紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002199363A priority Critical patent/JP2004044621A/en
Publication of JP2004044621A publication Critical patent/JP2004044621A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gasket Seals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal seal having low fastening force and large restoration amount, substituting for a conventional rubber-made O-ring. <P>SOLUTION: The metal seal S is inserted between a first flat surface and a second flat surface in parallel each other. The metal seal is provided with a first contact part 11 of projecting cross section, a second contact part 12 of projecting cross section, and an intermediate wall part 13 in diameter-enlarging tapered shape for interconnecting the both contact parts. A curvature radius of the second contact part 12 is larger than that of the first contact part 11. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属シールに関する。
【0002】
【従来の技術】
従来からシール材としてゴム製Oリングが広く使用されているが、高温、低温、ゴム腐食ガス環境等では使用できない場合がある。そこで、従来から以下の▲1▼〜▲4▼のような金属製のシールが用いられている。即ち、▲1▼メタルOリング、▲2▼メタルCリング、▲3▼バネ入りCリング、▲4▼レジェントシール等が使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、各々の金属シールには以下のような問題がある。
▲1▼メタルOリング
最も一般的で実績のある金属シールであり、安定したシール性能が得られるが、締付力が大きく、かつ、復元量が0.05mm程度と小さい等の欠点がある。
▲2▼メタルCリング
メタルOリングに比べて締付力は小さく、かつ復元量も比較的大きく、0.05mm〜0.15mm程度である。しかしながら、用途(使用条件)によっては、依然、締付力の値が大きく、復元量も不足する。
▲3▼バネ入りCリング
復元量は0.1 〜0.15mmと大きい。しかしながら、用途(使用条件)によっては復元量が不足する。さらに、コイルバネを包み込むようにCリング本体内に入れるので、製作が面倒で構造が複雑化すると共に、締付力が大きく、コストも高くなる欠点がある。
▲4▼レジリエントシール
他のメタルシールに比べて締付力が小さく、かつ復元量も0.1 〜0.2 mmと大きい。しかし、切削加工であるため、製作が面倒で、非常に高価である。
【0004】
要するに、従来の金属シールでは、製作が容易で、締付力が小さく、かつ、復元力が大きくて、安価であるという全ての条件(要望)を満足させ得るものが、なかった。
特に、シールを装着する取付部材の材質が、セラミックス等の脆い材質や、アルミニウム等の柔らかい材質に、不適当であったり、シール溝の深さ寸法公差が大きい場合に、シール性(密封性)にバラツキを生じ易かったり、シールが使用可能なセット高さ範囲が狭い等の問題やシールの取り付けに注意を要するという問題もあった。
【0005】
【課題を解決するための手段】
本発明は、相互に平行な第1平坦面と第2平坦面の間に介装される全体が環状の金属シールに於て、上記第1平坦面に当接する内周寄りの断面凸型第1接触部と、上記第2平坦面に当接する外周寄りの断面凸型第2接触部と、上記第1接触部から上記第2接触部へしだいに拡径テーパ状に連結する中間壁部と、を備え、上記断面凸型第1接触部の曲率半径よりも上記断面凸型第2接触部の曲率半径を大きく設定したものである。
また、上記第1接触部と中間壁部と第2接触部が、緩やかに弯曲した断面S字状としたものである。
また、全体が薄板材からプレス加工にて形成されているものである。
【0006】
【発明の実施の形態】
以下、図示の実施の形態に基づき、本発明を詳説する。
図1は自由状態(未装着状態)の断面正面図であり、図2はその要部拡大図であり、図3と図4は使用状態を示す要部断面説明図である。
【0007】
この図1〜図4に於て、Sは本発明に係る金属シール(メタルシール)を示し、ばね用鋼やステンレス鋼やその他の金属から成り、薄板材からプレス加工(塑性加工)により形成するのが、製作の容易性とコスト面から好ましい。なお、切削や研削等にて作製することも可能である。また、本シールSの表面に、銀,金,銅,すず等のメッキ被膜や、PTFE,FEP等の各種樹脂被膜や、各種ゴム材料の被膜を、被覆することも、好ましい場合がある。
【0008】
そして、この金属シールSは、相互に平行な第1平坦面1と第2平坦面2の間に介装されるものであって、全体が環状である。さらに、この金属シールSは、上記第1平坦面1に当接する内周寄りの断面凸型第1接触部11と、上記第2平坦面2に当接する外周寄りの断面凸型第2接触部12と、この第1接触部11から第2接触部12へしだいに拡径テーパ状に連結する圧縮弾性変形可能な中間壁部13と、を備えており、この第1接触部11と中間壁部13と第2接触部12が、緩やかに弯曲した断面S字状である。なお、本発明で、S字状とは、反転S字状───Z字状───をも含むものと定義する。
【0009】
このように、この金属シールSは、緩やかに弯曲面にて構成された略円錐台形皿バネ状であるということができる。このようにして、第1接触部11の存在する内周縁にて、孔部3が形成されている。
そして、図2に於て、断面凸型第1接触部11の曲率半径Raよりも、断面凸型第2接触部12の曲率半径Rbを、大きく設定する。つまり、Rb>Raとなるように設定する。
【0010】
図3と図4に於て、2点鎖線は、第1平坦面1と第2平坦面2の間隔寸法が十分に大きく(開いて)、金属シールSが圧縮力(締付力)零にて、軽く接触した初期状態(位置)を示し、この初期状態(位置)での第1接触部11と第1平坦面1との接触位置をA とし、第2接触部12と第2平坦面2との接触位置をB とする。
【0011】
次に、しだいに第1平坦面1を第2平坦面2に接近させて、両者の間隔(寸法)を狭めてゆく───金属シールSを押圧してゆく───と、図3に示す如く、第1接触部11と第1平坦面1との接触位置はA となり、ΔHaだけ外径方向へ移動し、かつ、第2接触部12と第2平坦面2との接触位置はB となり、ΔHbだけ内径方向へ移動する。その際の第2接触部12の移動量ΔHbは、第1接触部11の移動量ΔHaよりも大きい。つまり、ΔHb>ΔHaである。このことは、図4で一層明瞭となる。
【0012】
図4は、図3からさらに第1平坦面1を第2平坦面2に接近させて、両者の間隔を最も減少させて、金属シールSを押し潰した状態である。この図4に於て、第1接触部11と第1平坦面1との接触位置はA となり、初期状態(2点鎖線)からΔHaだけ外径方向へ移動し、かつ、第2接触部12と第2平坦面2との接触位置はB となり、初期状態(2点鎖線)からΔHbだけ内方向へ移動する。この図4から、ΔHb>ΔHaであることが明らかである。
【0013】
この図3と図4は、FEM(有限要素法)解析、及び、現物(試作品)のテストでも、確認された金属シールSの弾性変形を示す図である。なお、第1接触部11と第2接触部12の各弾性変形状態(各押圧状態)での接触面圧Pも、同時にFEM解析にて分析した値を併記するが、本発明に於て、断面凸型第2接触部12の曲率半径Rbを、断面凸型第1接触部11の曲率半径Raよりも大きく設定したことにより、第2接触部12の接触面圧が十分に小さく抑制できて、(ΔHb>ΔHaであるにかかわらず、)この第2接触部12の摩耗───金属粉の発生やコーティング層の剥離等───を有効防止できる。例えば、金属粉や樹脂粉等の発生が極端に嫌われる半導体製造装置や超精密機器等の分野のシールとして、好適である。
【0014】
なお、図4又は図3に示したように、第1接触部11の面圧Pは十分に高くシール性(密封性)に関して問題はない。他方、第2接触部12は面圧Pが低くなりシール性(密封性)には不利と考えられるが、曲率半径Rbを十分に大きく設定したので、接地面積が増加し、(第2平坦面2に接触した)シール面が広範囲となり、総合的なシール性(密封性)は、第1接触部11と同等となる。
【0015】
図3と図4に於て、第2平坦面2は上方及び内径側に開口する凹部(凹溝)の底面が相当する場合を例示したが、この凹部(凹溝)は第1平坦面1側に形成して、第1平坦面1を凹部(凹溝)の底面をもって構成しても良い。あるいは、第1平坦面1と第2平坦面2の両方を、凹部(凹溝)の底面をもって構成しても自由である。
【0016】
また、図3の状態でも、本金属シールSは十分に弾性変形しているので、この図3の状態にて最終押し潰し状態(使用状態)としても良い。言い換えれば、本金属シールSは、最終使用状態の押し潰し代の許容差が大きく、広いセット高さ範囲でのシールが可能であり、図3と図4に於て、第1平坦面1と第2平坦面2の間隔寸法(セット高さ)Hが大きい値から小さい値までの広い範囲に対応できるという利点を有する。従って、フランジ等の被取付部材の凹部(凹溝)等の寸法公差にバラツキがあっても、十分なシール性(密封性)を発揮できる。あるいは、復元量が大きいということもでき、圧力サイクルや温度サイクル等にも確実に追従して、安定したシール性(密封性)を発揮し、また、(傷等が付いていなければ)再使用も可能である。
【0017】
また、図3と図4のように、本金属シールSは圧縮弾性変形及び捩り弾性変形等を複合的に行うことで、低締付力───第1平坦面1と第2平坦面2を相互に接近させる方向に締付ける力が低いこと───にて十分な密封性能(シール性能)を発揮する。このような低締付力を活かして、従来のゴム製Oリングに代わるシール材として適用でき、特に、ゴム製Oリングでは適用できない環境(高温や低温やプラズマ照射やオゾン雰囲気等)にも適用できて、その応用範囲は広大である。
【0018】
本金属シールSの表面について説明すると、▲1▼銀、金、銅、すず等のメッキ、▲2▼PTFE、FEP等の各種樹脂被覆(コーティング)、▲3▼各種ゴム材料の被覆(コーティング)、▲4▼超研磨仕上げ、▲5▼プレス加工のまま又は、切削又は研削加工のまま、のいずれとするも自由である。また、被密封流体としては、上記表面被覆の有無及び材質にもよるが、真空、各種ガス(CO ,H ,O ,NH ,H O等)、各種液体(H O,H SO ,HCl等)のものに適用できる。いずれにせよ、本金属シールSは、低締付力、及び、大きな弾性的復元量、取扱いの容易性、小部品点数、製作の容易性と安価である点で、優れたシールである。従って、装着される相手部材(フランジ等)がセラミックのように脆い材質やアルミニウム等の軟らかい材質のものにも適用可能であり、また、半導体製造装置のようにプラズマやオゾン等が照射される部位にも適用でき、低温から高温までの広い温度領域にも対応できる。そして、潰しが利いて、広いセット高さHの範囲で十分なシール性(密封性)を発揮するので、装着される相手部材(フランジ等)の寸法精度や公差が粗くとも適用でき、深い溝でも浅い溝でも、共通の金属シールSで対応可能となる場合もある。さらに、弾性的復元量が大きいので、圧力変動や温度変動が激しい箇所にも適用でき、再使用でき、取り扱い(組み込み)が容易であるという利点もある。
なお、本金属シールSの全体(平面視)形状は、円形環状に限らず、例えば、図5(a)に示したレーストラック型の環状や、図5(b)に示した矩形型の環状等でも良い。
【0019】
【発明の効果】
本発明は、上述の構成により次のような著大な効果を奏する。
(請求項1によれば、)シール装着時に、断面凸型第2接触部12が第2平坦面2に当接(圧接)する接触位置(図4中のB ,B 参照)が移動する際に、コーティング粉や金属粉等の摩耗粉塵を生ずることを、有効に防止できる。従って、半導体製造装置や超精密機器用に好適なシールである。
【0020】
また、低締付力で使用できるので、取手部材(フランジ等)が脆い材質や軟らかい材質にも適用できる。さらに、弾発的復元量が大きいので、広いセット高さ(図3と図4の符号H参照)に対応でき、凹部(凹溝)等の深さ寸法公差が大きくとも、高いシール性(密封性)を発揮できる。また、弾性的復元量が大きいので、大きな圧力変動や温度変動にも対応でき、再利用も可能であり、組み込み作業等の取り扱いも容易であり、例えば、プラズマ照射やオゾン雰囲気の半導体関連装置等に好適であり、安価に提供できる。
【0021】
(請求項2によれば、)図3と図4に例示したように、第1平坦面1と第2平坦面2の間隔寸法(セット高さH)の大小にかかわらず、常に安定して、第1接触部11と第2接触部12が、密に圧接する。しかも、単なる圧縮弾性変形ではなく、これに、捩り弾性変形等がプラスされて、一層低い締付力を実現し、かつ、復元量も一層増加できる。
(請求項3によれば、)安価に、かつ、大量に、能率的に作製が可能となる。
【図面の簡単な説明】
【図1】本発明の実施の一形態を示す断面正面図である。
【図2】図1の要部拡大図である。
【図3】使用状態を示す要部拡大断面説明図である。
【図4】使用状態を示す要部拡大断面説明図である。
【図5】変形例を示す平面図である。
【符号の説明】
1 第1平坦面
2 第2平坦面
11 第1接触部
12 第2接触部
13  中間壁部
S  金属シール
Ra 曲率半曲
Rb 曲率半曲
P  接触面圧
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to metal seals.
[0002]
[Prior art]
Conventionally, rubber O-rings have been widely used as seal materials, but may not be used in high temperature, low temperature, rubber corrosive gas environments, and the like. Therefore, metal seals such as the following (1) to (4) have conventionally been used. That is, (1) metal O-ring, (2) metal C-ring, (3) spring-loaded C-ring, (4) legend seal and the like are used.
[0003]
[Problems to be solved by the invention]
However, each metal seal has the following problems.
{Circle around (1)} Metal O-rings These are the most common and proven metal seals and provide stable sealing performance, but have drawbacks such as a large clamping force and a small restoration amount of about 0.05 mm.
{Circle around (2)} Metal C-ring The tightening force is smaller than the metal O-ring, and the restoration amount is relatively large, about 0.05 mm to 0.15 mm. However, depending on the application (use conditions), the value of the tightening force is still large and the amount of restoration is insufficient.
{Circle around (3)} The spring-loaded C-ring restoration amount is as large as 0.1 to 0.15 mm. However, the restoration amount is insufficient depending on the use (use condition). Furthermore, since the coil spring is inserted into the C-ring body so as to enclose it, there is a drawback that the production is troublesome and the structure is complicated, and the tightening force is large and the cost is high.
{Circle around (4)} Resilient seal The fastening force is smaller than other metal seals, and the restoration amount is as large as 0.1 to 0.2 mm. However, since it is a cutting process, the production is troublesome and very expensive.
[0004]
In short, none of the conventional metal seals can satisfy all the conditions (requests) of being easy to manufacture, having a small fastening force, having a large restoring force, and being inexpensive.
In particular, if the material of the mounting member to which the seal is attached is inappropriate for a brittle material such as ceramics or a soft material such as aluminum, or if the depth dimension tolerance of the seal groove is large, the sealing performance (sealing performance) There is also a problem that the seal tends to vary, a set height range in which the seal can be used is narrow, and attention must be paid to the installation of the seal.
[0005]
[Means for Solving the Problems]
According to the present invention, there is provided a metal seal which is interposed between a first flat surface and a second flat surface which are parallel to each other, and has a convex cross-section near an inner periphery which is in contact with the first flat surface. A first contact portion, a second contact portion having a convex section in the vicinity of the outer periphery abutting on the second flat surface, and an intermediate wall portion gradually increasing in diameter from the first contact portion to the second contact portion; Wherein the radius of curvature of the second convex contact section is set larger than the radius of curvature of the first convex contact section.
Further, the first contact portion, the intermediate wall portion, and the second contact portion have a moderately curved S-shaped cross section.
Further, the whole is formed by pressing from a thin plate material.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.
1 is a sectional front view of a free state (unmounted state), FIG. 2 is an enlarged view of a main part thereof, and FIGS. 3 and 4 are cross-sectional explanatory views of a main part showing a use state.
[0007]
1 to 4, S denotes a metal seal (metal seal) according to the present invention, which is made of spring steel, stainless steel, or other metal, and is formed from a thin plate material by press working (plastic working). This is preferable from the viewpoint of ease of production and cost. In addition, it is also possible to produce by cutting, grinding, etc. It may also be preferable to coat the surface of the seal S with a plating film of silver, gold, copper, tin, etc., a resin film such as PTFE or FEP, or a film of various rubber materials.
[0008]
The metal seal S is interposed between the first flat surface 1 and the second flat surface 2 that are parallel to each other, and is entirely annular. Further, the metal seal S has a first convex contact portion 11 near the inner periphery contacting the first flat surface 1 and a second convex contact portion near the outer periphery contacting the second flat surface 2. 12 and a compression elastically deformable intermediate wall portion 13 which is gradually connected to the second contact portion 12 from the first contact portion 11 in a tapered shape. The portion 13 and the second contact portion 12 have an S-shaped section that is gently curved. In the present invention, the S-shape is defined to include an inverted S-shape {Z-shape}.
[0009]
Thus, it can be said that the metal seal S is in the shape of a substantially truncated conical disc spring formed of a gently curved surface. Thus, the hole 3 is formed at the inner peripheral edge where the first contact portion 11 exists.
Then, in FIG. 2, the radius of curvature Rb of the second convex contact section 12 is set to be larger than the radius of curvature Ra of the first convex contact section 11. That is, it is set so that Rb> Ra.
[0010]
In FIGS. 3 and 4, the two-dot chain line indicates that the distance between the first flat surface 1 and the second flat surface 2 is sufficiently large (open) and the metal seal S has no compression force (clamping force). Te, lightly contacted shows an initial state (position), the contact position between the first contact portion 11 and the first flat surface 1 in the initial state (position) and a 0, a second contact portion 12 and the second flat a contact position between the surface 2 and B 0.
[0011]
Next, as the first flat surface 1 gradually approaches the second flat surface 2 to reduce the gap (dimension) between them {pressing the metal seal S}, FIG. as shown, a first contact portion 11 contacting position a 1 next to the first flat surface 1, moves ΔHa only radially outward, and a second contact portion 12 contact positions between the second flat surface 2 B 1, and the move ΔHb only radially inward. At this time, the movement amount ΔHb of the second contact portion 12 is larger than the movement amount ΔHa of the first contact portion 11. That is, ΔHb> ΔHa. This is made clearer in FIG.
[0012]
FIG. 4 shows a state in which the first flat surface 1 is further approached to the second flat surface 2 from FIG. 3 to minimize the distance between the two, and the metal seal S is crushed. This 4 Te at a first contact portion 11 contact position of the first flat surface 1 is moved next to A 2, from the initial state (two-dot chain line) DerutaHa only radially outward, and the second contact portion 12 and the contact position between the second flat surface 2 moves B 2 becomes, from the initial state (two-dot chain line) .DELTA.Hb inward only. It is clear from FIG. 4 that ΔHb> ΔHa.
[0013]
FIGS. 3 and 4 are diagrams showing the elastic deformation of the metal seal S that has been confirmed in the FEM (finite element method) analysis and the test of the actual product (prototype). In addition, the contact surface pressure P in each elastic deformation state (each pressing state) of the first contact portion 11 and the second contact portion 12 is also indicated by a value analyzed by FEM analysis at the same time. By setting the radius of curvature Rb of the second convex contact section 12 to be larger than the radius of curvature Ra of the first convex contact section 11, the contact surface pressure of the second contact section 12 can be sufficiently suppressed. , (Irrespective of ΔHb> ΔHa), it is possible to effectively prevent the abrasion of the second contact portion 12 {generation of metal powder, peeling of the coating layer, etc.}. For example, it is suitable as a seal in the fields of semiconductor manufacturing equipment and ultra-precision equipment in which generation of metal powder and resin powder is extremely disliked.
[0014]
In addition, as shown in FIG. 4 or FIG. 3, the surface pressure P of the first contact portion 11 is sufficiently high, and there is no problem regarding the sealing property (sealing property). On the other hand, the contact pressure of the second contact portion 12 is considered to be low, which is considered to be disadvantageous to the sealing performance (sealing performance). However, since the radius of curvature Rb is set to be sufficiently large, the contact area increases, and the (second flat surface) The contact surface (in contact with 2) becomes wide, and the overall sealing performance (sealing performance) is equivalent to that of the first contact portion 11.
[0015]
3 and 4, the second flat surface 2 is exemplified by a case where the bottom surface of a concave portion (concave groove) opening upward and on the inner diameter side corresponds to the first flat surface 1. The first flat surface 1 may be formed with a bottom surface of a concave portion (concave groove). Alternatively, both the first flat surface 1 and the second flat surface 2 may be configured with the bottom surfaces of the concave portions (grooves).
[0016]
Also, in the state shown in FIG. 3, since the metal seal S is sufficiently elastically deformed, the state shown in FIG. 3 may be a final crushed state (used state). In other words, the present metal seal S has a large tolerance for the crushing allowance in the final use state, and can be sealed in a wide set height range. In FIG. 3 and FIG. There is an advantage that the interval dimension (set height) H of the second flat surface 2 can correspond to a wide range from a large value to a small value. Therefore, even if the dimensional tolerance of the concave portion (concave groove) of the member to be mounted such as the flange is uneven, sufficient sealing performance (sealing performance) can be exhibited. Alternatively, it can be said that the restoration amount is large, and it reliably follows pressure cycles and temperature cycles, etc., exhibits stable sealing properties (sealability), and is reused (if there is no scratch etc.) Is also possible.
[0017]
Further, as shown in FIGS. 3 and 4, the metal seal S performs a compression elastic deformation and a torsional elastic deformation in a combined manner, so that a low fastening force───the first flat surface 1 and the second flat surface 2 The sealing force (seal performance) is sufficiently exhibited due to the low tightening force in the direction in which the pieces are brought close to each other. Utilizing such a low tightening force, it can be applied as a seal material in place of the conventional rubber O-ring, and in particular, can be applied to environments (high-temperature, low-temperature, plasma irradiation, ozone atmosphere, etc.) that cannot be applied with a rubber O-ring. If possible, its application range is vast.
[0018]
The surface of the present metal seal S will be described as follows: (1) plating of silver, gold, copper, tin, etc., (2) coating of various resins such as PTFE and FEP, and (3) coating (coating) of various rubber materials. , (4) super-polishing finish, (5) press working, or cutting or grinding working. The sealed fluid may be vacuum, various gases (CO 2 , H 2 , O 2 , NH 3 , H 2 O, etc.), various liquids (H 2 O, H 2 SO 4 , HCl, etc.). In any case, the present metal seal S is an excellent seal in that it has a low tightening force, a large amount of elastic restoration, easy handling, small number of parts, easy manufacturing, and low cost. Therefore, the mating member (flange or the like) to be mounted can be applied to a brittle material such as ceramic or a soft material such as aluminum, or a portion irradiated with plasma or ozone such as a semiconductor manufacturing apparatus. It can be applied to a wide temperature range from low temperature to high temperature. Since it is crushable and exhibits a sufficient sealing property (sealing property) in a wide range of the set height H, it can be applied even if the dimensional accuracy and tolerance of the mating member (flange or the like) to be mounted are rough, and a deep groove can be applied. However, even a shallow groove can sometimes be handled by the common metal seal S. Further, since the elastic recovery amount is large, it can be applied to a place where pressure fluctuation and temperature fluctuation are severe, can be reused, and there is an advantage that handling (incorporation) is easy.
The overall shape (in plan view) of the present metal seal S is not limited to a circular ring shape. For example, a race track type ring shape shown in FIG. 5A or a rectangular type ring shape shown in FIG. And so on.
[0019]
【The invention's effect】
The present invention has the following significant effects by the above configuration.
According to the first aspect, when the seal is mounted, the contact position (see B 0 and B 2 in FIG. 4) at which the second contact portion 12 having a convex cross section abuts (presses) on the second flat surface 2 moves. In this case, generation of wear dust such as coating powder and metal powder can be effectively prevented. Therefore, the seal is suitable for semiconductor manufacturing equipment and ultra-precision equipment.
[0020]
Further, since it can be used with a low tightening force, it can be applied to a material whose handle member (flange or the like) is fragile or soft. Furthermore, since the amount of resilient restoration is large, it is possible to cope with a wide set height (see reference numeral H in FIGS. 3 and 4). Sex). In addition, since the amount of elastic restoration is large, it can cope with large pressure fluctuations and temperature fluctuations, can be reused, and can easily handle assembling work. For example, plasma irradiation or semiconductor-related devices in an ozone atmosphere And can be provided at low cost.
[0021]
(According to claim 2) As shown in FIGS. 3 and 4, the distance between the first flat surface 1 and the second flat surface 2 (set height H) is always stable regardless of the size. The first contact portion 11 and the second contact portion 12 are pressed tightly. In addition, not only mere compression elastic deformation but also torsional elastic deformation is added, thereby realizing a lower tightening force and further increasing the amount of restoration.
(According to claim 3), it is possible to efficiently and inexpensively produce a large amount.
[Brief description of the drawings]
FIG. 1 is a sectional front view showing an embodiment of the present invention.
FIG. 2 is an enlarged view of a main part of FIG.
FIG. 3 is an enlarged sectional explanatory view of a main part showing a use state.
FIG. 4 is an enlarged sectional explanatory view of a main part showing a use state.
FIG. 5 is a plan view showing a modification.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st flat surface 2 2nd flat surface 11 1st contact part 12 2nd contact part 13 Intermediate wall part S Metal seal Ra Half curvature Rb Half curvature P Contact surface pressure

Claims (3)

相互に平行な第1平坦面と第2平坦面の間に介装される全体が環状の金属シールに於て、上記第1平坦面に当接する内周寄りの断面凸型第1接触部と、上記第2平坦面に当接する外周寄りの断面凸型第2接触部と、上記第1接触部から上記第2接触部へしだいに拡径テーパ状に連結する中間壁部と、を備え、上記断面凸型第1接触部の曲率半径よりも上記断面凸型第2接触部の曲率半径を大きく設定したことを特徴とする金属シール。A first convex portion having a cross section convex toward the inner periphery and abutting on the first flat surface, which is entirely interposed between the first flat surface and the second flat surface which are parallel to each other; A second contact portion having a convex section in the vicinity of the outer periphery in contact with the second flat surface, and an intermediate wall portion gradually increasing in diameter from the first contact portion to the second contact portion, and A metal seal, wherein a radius of curvature of the second contact portion is set larger than a radius of curvature of the first contact portion. 上記第1接触部と中間壁部と第2接触部が、緩やかに弯曲した断面S字状である請求項1記載の金属シール。The metal seal according to claim 1, wherein the first contact portion, the intermediate wall portion, and the second contact portion have a gently curved S-shaped cross section. 全体が薄板材からプレス加工にて形成されている請求項1又は2記載の金属シール。3. The metal seal according to claim 1, wherein the entirety is formed by pressing from a thin plate material.
JP2002199363A 2002-07-09 2002-07-09 Metal seal Pending JP2004044621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199363A JP2004044621A (en) 2002-07-09 2002-07-09 Metal seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199363A JP2004044621A (en) 2002-07-09 2002-07-09 Metal seal

Publications (1)

Publication Number Publication Date
JP2004044621A true JP2004044621A (en) 2004-02-12

Family

ID=31706520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199363A Pending JP2004044621A (en) 2002-07-09 2002-07-09 Metal seal

Country Status (1)

Country Link
JP (1) JP2004044621A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101536587B1 (en) * 2009-04-06 2015-07-14 미츠비시 덴센 고교 가부시키가이샤 Metal seal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101536587B1 (en) * 2009-04-06 2015-07-14 미츠비시 덴센 고교 가부시키가이샤 Metal seal

Similar Documents

Publication Publication Date Title
WO2010032722A1 (en) Seal plate, seal member used in seal plate, and methods for manufacturing same
EP1470351B1 (en) Gate valve seal assembly
US10113651B2 (en) Slit valve assembly having a spacer for maintaining a gap
WO2007026576A1 (en) Sealing structure
KR20080025742A (en) Seal arrangement with corrosion barrier and method
JP5065388B2 (en) sticker
US7004479B2 (en) Metal seal and attachment method for the same and tight-seal construction
JP4091373B2 (en) Metal seal
KR101536588B1 (en) Tight seal construction
JP2004044621A (en) Metal seal
JP2004340315A (en) Metal seal
JP2007263199A (en) Rotating shaft seal
RU2437015C2 (en) Packing
JP2009024838A (en) Sealing structure
JP2006064030A (en) Seal member
JP2602312Y2 (en) Metal gasket
JP4260496B2 (en) Metal seal
JP4260524B2 (en) Metal seal assembly structure and assembly method
JP2004308802A (en) Sealing structure
JP2004218737A (en) Metal gasket and sealing structure with it
JP2004218781A (en) Sealing structure body
JP6309284B2 (en) Metal seal
JPH0280863A (en) High-rigidity seal ring
JP2001021041A (en) Plane surface fixing seal
US20080303222A1 (en) Face seal and method of making

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Effective date: 20061019

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070717