JP2004048877A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2004048877A
JP2004048877A JP2002201084A JP2002201084A JP2004048877A JP 2004048877 A JP2004048877 A JP 2004048877A JP 2002201084 A JP2002201084 A JP 2002201084A JP 2002201084 A JP2002201084 A JP 2002201084A JP 2004048877 A JP2004048877 A JP 2004048877A
Authority
JP
Japan
Prior art keywords
plate
stator
electric machine
rotating electric
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002201084A
Other languages
Japanese (ja)
Inventor
Koichiro Yonekura
米倉 光一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002201084A priority Critical patent/JP2004048877A/en
Publication of JP2004048877A publication Critical patent/JP2004048877A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To supply a rotary electric machine in which a cooling passage can be surely formed. <P>SOLUTION: In a motor 22 in which a stator 23 is disposed at a rotor 21 via a rotary air gap, the stator 23 includes a stator core 1 having a plurality of tees 1a protruding in a direction toward the rotor 21 in the circumferential direction, a coil 2 wound on the tees 1a, and a slot 3 of a space for housing the coil 2 formed between the coil 2 and the tees 1a and opened in a direction toward the rotor 21. Further, the stator 23 also includes a metal plate-like member 4 for forming a cooling water channel 14 by welding the opening of the slot 3 to the tees 1a so as to close the opening of the slot 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、回転電機のステータ構造に関係し、詳しくはコイル周辺部に冷却液路を設け、コイルを冷却する機能を有するコイル直冷式の回転電機の構造に関する。
【0002】
【従来の技術】
近年、回転電機、例えば交流モータの高トルク化、高出力化が顕著である。一方で小型化に対する要求もより高くなってきている。
【0003】
また、最近では永久磁石をロータコア内部に埋没し、なおかつ、コイルを集中巻きとした永久磁石埋め込み同期モータの開発が進んでいる。このようなモータとしては、例えば特開2000−69717号公報に開示されているようなものが知られている。
【0004】
【発明が解決しようとしている問題点】
しかしながら、高トルク、高出力を得ながら小型化するためには、空冷、液冷を問わず何らかの冷却機能が必要となる。特に、ステータのコイル周辺ではコイルに流れる電流による発熱が大きいことから、冷却液を用いて冷却するのが不可欠となる。そのための手段として、例えばステータの突極間を樹脂モールドで塞ぎ、コイル周辺部を冷却液路とする方法がある。しかしこの方法では、特に小型化を狙ったモータでは樹脂を成形するための型を入れられる空間を十分にとるのが難しい。また、樹脂とステータコアとの接合部のシール性が十分に確保できず冷却液が漏れてしまうという問題があった。
【0005】
そこで、本発明は、冷却通路を確実に形成できるステータ構造をもつ回転電機を供給することを目的とする。
【0006】
【問題点を解決するための手段】
ロータに回転空隙を介してステータを配置した回転電機において、前記ステータが、前記ロータ方向に突出したティースを周方向に複数備えたステータコアと、前記ティースに巻装したコイルと、前記ティース間に形成された前記コイルを収容する空間であり、前記ロータ方向に開口したスロットと、を備える。さらに、前記スロットの開口部を閉塞するように前記ティースに溶接することにより冷却流体の流通路を形成する金属の板状部材と、を備える。
【0007】
【作用及び効果】
スロットの開口部を閉塞するようにティースに溶接することにより冷却流体の流通路を形成する板状部材を備えることで、冷却流体を漏らさない流通路を形成することができる。このとき、樹脂を形成するための型を用いることなく流通路を形成することができ、小型の回転電機に対しても漏れを防いだ冷却流体の流通路を形成することができる。
【0008】
【発明の実施の形態】
第1の実施形態では回転電機として、例えばロータ21と、ロータ21の外側に配置したステータ23と、それらを収容するケース7により構成したモータ22を用いる。図1にモータ22の縦断面の構成を示す。
【0009】
ロータ21には、軸方向に貫通して埋め込まれた永久磁石13を備える。ロータ21の外周側には、回転空隙を介してステータ23を配置することによりロータ21が回転可能な構成とする。ステータ23を円筒形状とし、同一形状で打ち抜かれた磁性体の薄板鋼板を軸方向に複数枚積層することにより構成する。
【0010】
ステータ23の軸方向両端部には、ステータ23の内周面1cと同径の内面を持つ円筒形状の部材6を配置する。ステータ23、ここでは後述するステータコア1および板状部材4と、円筒形状部材6とを、それらの接触部分である接合部6aで溶接により接合させて、円筒形状部材6とケース7との間に閉空間8を構成する。この閉空間8をステータ23の両端部にそれぞれ形成し、一方を供給側の閉空間8aとして他方を排出側の閉空間8bとする。供給側の閉空間8aにはケース7を貫通する冷却水取入れ口9を設け、同様に排出側の閉空間8bには冷却水取り出し口10を設ける。ここで、冷却水取り入れ口9と冷却水取り出し口10はモータ22の中心から見て対称となる位置に形成する。
【0011】
このように構成することで、冷却水は冷却水取り入れ口9からモータ22に供給され、供給側の閉空間8aを介して後述するようにステータ23に形成した冷却水流路14を軸方向に流れる。冷却水は、この冷却水流路14を流れる際にステータ23、特にコイル2の冷却を行う。その後、冷却水は排出側の閉空間8bに流れ出し、冷却水取り出し口10からモータ22の外部に排出される。
【0012】
このようなモータ22のステータ23の構成を図2に示す。
【0013】
ステータ23は、周方向に均等に分割した分割コアを並べることにより円筒形状をなすステータコア1と、ステータコア1の一部で、ロータ21に向かって突出するティース1aに巻回したコイル2とから構成する。一つの分割コアに対して一つのティース1aを形成し、周方向に隣り合うティース1a間には、軸方向にのびる空間からなるスロット3が形成される。ティース1aに集中巻きにより巻装したコイル2はこのスロット3に収容される。
【0014】
また、周方向に隣り合うティース1aの先端を連結する板状部材4を備え、その板状部材4を用いてスロット3を径方向について密閉することで冷却水流路14を形成する。ここでは、ティース1aの先端部に周方向に突出する突出部1bを設け、この突出部1b間を板状部材4により連結する。また、板状部材4を金属から構成し、突出部1bと板状部材4とを溶接することで、冷却水漏れを防いだ冷却水流路14を形成することができる。
【0015】
このとき、分割コアを組み合わせることにより構成したステータコア1の内周面1cを円形状に構成するので、ティース1aの先端の断面は円弧を描くように構成する。そのため、板状部材4の周方向の幅が比較的大きい場合には、板状部材4はティース1aの先端が構成する内周面1cと同心、同径となる円弧状になっているのが好ましい。ただし、ティース1a間距離が十分に小さい場合などは直線状であってもよい。
【0016】
次に本実施形態のように回転電機、ここではモータ22を構成した際の効果を説明する。
【0017】
ステータ23が、ティース1aを周方向に複数備えたステータコア1と、ティース1aに巻装したコイル2と、ティース1a間に形成されたコイル2を収容する空間であり、ロータ21方向に開口したスロット3とを備える。さらに、スロット3の開口部を閉塞するようにティース1aに溶接することにより冷却水流路14を形成する金属からなる板状部材4を備える。これにより、冷却水漏れを防いだ冷却水流路14を形成することができ、また構成する際に樹脂充填用の型などを用いないので小型の回転電機22に対しても容易に冷却水流路14を形成することができる。
【0018】
また、ステータ23の軸方向端部の少なくとも一方に、ここでは両端にステータ23と同心で、ティース1aおよび板状部材4に溶接により接合させた円筒状の円筒形状部材6を備える。これにより、閉空間8から冷却水流路14に冷却水が流れる際の冷却水漏れを防ぐことができる。
【0019】
さらに、ティース1aの先端から周方向へ突出する突出部1bを設け、この突出部1bの先端に板状部材4を溶接する。これにより、溶接の作業を容易にすることができるとともに、板状部材4を正確な位置に溶接することができるので、冷却水流路14を冷却に必要な冷却水量を流すことができる流路断面に形成することができる。
【0020】
次に第2の実施形態について説明する。本実施形態のモータ22の全体構造、およびステータ23の構造を第1の実施形態と同様とする。ただし、円筒形状部材6と板状部材4とを一体化した冷却路構成部材11を用いる。
【0021】
図3に、ステータ23の軸方向両端部に配置する円筒形状部材6とスロット3を塞ぐ板状部材4の一部とを、予め一体に構成した冷却路構成部材11の形状を示す。冷却路構成部材11は、前述の円筒形状部材6に当たる部位11aと、同じく板状部材4に当たる部位11bとからなる。本実施形態では、二つの同一形状の冷却路構成部材11をステータ23の軸方向両端からそれぞれ挿入し、軸方向中央付近で部位11bの先端どうしを溶接する。また、ティース1aの先端の突出部1bと部位11bを軸方向に、および、ステータコア1の軸方向端部と部位11aとを周方向に、それぞれ溶接することにより接合させる。
【0022】
ここでは同一形状の二つの冷却液路構成部材11をステータ23の軸方向両端から突き当てる構成を説明したが、部材11は同一形状でなくてもよい。例えば、スロットを塞ぐ板状部材4に相当する部位11bが一方のみにあり、もう一方は円筒形状部材6にあたる部位11aのみというように構成してもよい。このときには、ステータ23の軸方向端部のうち一方で部位11bと11a(円筒形状部材6)を溶接により接合することで冷却水流路14を構成する。
【0023】
次に、本実施形態の効果を説明する。ここでは第1の実施形態の効果に加えて以下のような効果を得ることができる。
【0024】
ステータ23の軸方向両端部に円筒形状部材6を備え、円筒形状部材6と板状部材4の一部を一体化させて冷却液路構成部材11を形成する。二つの冷却液路構成部材11の部材11bを組み合わせることにより板状部材4を構成する。これにより、第1の実施形態と同様の効果を得ることができる構成をより少ない構成部品数で簡素に実現することができる。また、スロット3の軸方向中間部で接触する部材11bを溶接により固定することで、板状部材4の断面形状と円筒形状部材6の形状を整合させる必要がなく、より確実に冷却水流路14のシール性を確保することができる。
【0025】
また、板状部材4を円筒形状部材6の一方と一体に形成し、板状部材4と一体に形成した円筒形状部材6と、他方の円筒形状部材6と、をステータ23の軸方向端部にそれぞれ溶接する。そして、スロット3の軸方向端部で、板状部材4と、板状部材4を一体に形成していない円筒形状部材6とを溶接することによっても、上述したような効果を得ることができる。ただしこのときには、部位11b(板状部材4)の断面形状と部位11a(円筒形状部材6)の形状を整合させる必要がある。
【0026】
第3の実施形態について説明する。ここで用いるステータ23の構成を図4に示す。また、その他の部分は、第1または第2の実施形態と同様の構成とする。
【0027】
スロット3を塞ぐ板状部材4を、ティース1aの内周面1cよりもコイル2側、ここでは突出部1bのコイル2側の基端に設置する。このとき、板状部材4をコイル2側に凸となるように婉曲させて配置する。このときも、第1、2の実施形態と同様に、ティース1aと板状部材4の接触部分を溶接することにより接合する。
【0028】
以下に、本実施形態に特有の効果を説明する。
【0029】
ティース1aの先端から周方向へ突出する突出部1bを設け、突出部1bの基端部のコイル2側に板状部材4を溶接することで、板状部材4と回転する永久磁石13との距離が離れる。その結果、永久磁石13を含むロータ21が高速で回転したときに永久磁石13により発生する磁束が板状部材4を通ることによって生じる渦電流損失を抑制し、モータ22の効率の低減を抑制することができる。
【0030】
次に、第4の実施形態について説明する。ここで用いるモータ22のステータ23の構成を図5に示す。また、その他の部分は、第1または第2の構成と同様とする。
【0031】
ティース1aの先端を、先端部以外の部分より周方向の幅が狭くなるように構成する。つまり、第1、第2の実施形態において突出部1bとして形成した周方向の凸部を反対に凹部となるように構成し、この凹部を引込み部1dとする。ここでは、ティース1aの先端でコイル2の巻装部の幅より一段階狭くした部分を引込み部1dとし、隣り合うティース1aの引込み部1d間を板状部材4により連結する。このときも、第1、2の実施形態と同様に、ティース1aと板状部材4を溶接により接合する。
【0032】
このように、ティース1aの先端の周方向の幅をコイル2の巻装部の幅より小さくし、ティース1aの先端部とコイル2の巻装部との間の段差部に板状部材4を溶接することで、板状部材4をより外周側に溶接する作業性を容易にすることができる。
【0033】
次に、第5の実施形態について図6を用いて説明する。ここでは、モータ22の構成を第1〜4の実施形態のいずれか一つと同様とする。
【0034】
ここでは、ステータコア1の軸方向両端部に、ステータコア1を構成する薄板鋼板より厚い溶接用部材12を設ける。ここで、一般に、積層コアを構成するための薄板鋼板は、渦電流損失を効果的に抑制するため、0.05〜0.5mm程度の厚さのものが使用されていることが多い。このような積層コアの軸方向端部にある一枚の鋼板に、先の実施形態で示したような円筒部材6または冷却液路構成部材11を溶接にて固定すると、端部の一枚の鋼板が変形し、隣の鋼板と隙間を生じる恐れがある。
【0035】
そこで、積層されたステータコア1の軸方向端部に、溶接用の厚い溶接用部材12を設け、円筒部材6または冷却液路構成部材11をこの溶接用部材12に溶接する。また、ここでは、溶接用部材12をステンレス等の非磁性金属により形成する。
【0036】
以下、本実施形態特有の効果を説明する。
【0037】
ステータ23を、軸方向に鋼板を積層することにより構成し、軸方向両端部に鋼板より板厚が大きい溶接用部材12を備える。これにより軸方向端部に円筒部材6または冷却路構成部材11を溶接する際に、積層した鋼板が変形するのを防止し、溶接時の固定を確実なものとすることができる。
【0038】
また、溶接用部材12を非磁性の金属により形成することで、溶接用部材12を通る漏れ磁束を極力抑制し、モータの出力低下、効率悪化を抑制することができる。
【0039】
次に、第6の実施形態について説明する。ここでは、第1〜7のいずれか一つのモータ22の構成と同様とする。ただし、スロット3を塞ぐ板状部材4および円筒形状部材6、またはこれらの機能を一体で実現する冷却液路構成部材11を、ステンレス等の非磁性金属により形成する。板状部材4を非磁性の金属により形成することで、漏れ磁束を抑制し、モータ22の出力低下、効率悪化を抑制することができる。
【0040】
なお、上記実施の形態では回転電機をモータ22としたが、本発明は回転電機としてジェネレータを用いてもよい。
【0041】
このように、本発明は、上記実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術思想の範囲内で様々な変更が成し得ることは言うまでもない。
【図面の簡単な説明】
【図1】第1の実施形態に用いるモータの縦断面図である。
【図2】第1の実施形態に用いるモータのステータの構成図である。
【図3】第2の実施形態に用いる冷却液路構成部材の構成図である。
【図4】第3の実施形態に用いるモータのステータの構成図である。
【図5】第4の実施形態に用いるモータのステータの構成図である。
【図6】第5の実施形態に用いるステータ端部の構成図である。
【符号の説明】
1  ステータコア
1a ティース
1b 突出部
2  コイル
3  スロット
4  板状部材
6  円筒形状部材(円筒部材)
12 溶接用部材(端部板材)
14 冷却水流路(流通路)
21 ロータ
22 モータ(回転電機)
23 ステータ
[0001]
[Industrial applications]
The present invention relates to a stator structure of a rotating electric machine, and more particularly, to a structure of a coil direct cooling type rotating electric machine having a function of cooling a coil by providing a cooling liquid path around a coil.
[0002]
[Prior art]
In recent years, high torque and high output of rotating electric machines, for example, AC motors, have been remarkable. On the other hand, the demand for miniaturization is becoming higher.
[0003]
Recently, synchronous motors with embedded permanent magnets in which permanent magnets are buried inside the rotor core and coils are concentratedly wound are being developed. As such a motor, for example, a motor disclosed in JP-A-2000-69717 is known.
[0004]
[Problems to be solved by the invention]
However, in order to reduce the size while obtaining high torque and high output, some cooling function is required regardless of air cooling or liquid cooling. In particular, since the heat generated by the current flowing through the coil is large around the coil of the stator, it is indispensable to perform cooling using a coolant. As a means for achieving this, for example, there is a method in which the salient poles of the stator are closed with a resin mold, and the periphery of the coil is used as a coolant passage. However, with this method, it is difficult for a motor aimed at miniaturization, especially, to have a sufficient space for a mold for molding resin. In addition, there is a problem that the sealing performance of the joint between the resin and the stator core cannot be sufficiently ensured, and the coolant leaks.
[0005]
Accordingly, an object of the present invention is to provide a rotating electric machine having a stator structure capable of reliably forming a cooling passage.
[0006]
[Means for solving the problem]
In a rotating electric machine in which a stator is arranged on a rotor via a rotating gap, the stator is formed between a stator core having a plurality of teeth projecting in the rotor direction in a circumferential direction, a coil wound around the teeth, and the teeth. And a slot that opens in the direction of the rotor. A metal plate-like member that forms a cooling fluid flow passage by welding to the teeth so as to close the opening of the slot.
[0007]
[Action and effect]
By providing a plate-shaped member that forms a cooling fluid flow passage by welding to the teeth so as to close the opening of the slot, a flow passage that does not leak the cooling fluid can be formed. At this time, the flow path can be formed without using a mold for forming the resin, and the flow path of the cooling fluid that prevents leakage even for a small rotating electric machine can be formed.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the first embodiment, as the rotating electric machine, for example, a motor 22 including a rotor 21, a stator 23 arranged outside the rotor 21, and a case 7 accommodating them is used. FIG. 1 shows a configuration of a longitudinal section of the motor 22.
[0009]
The rotor 21 includes a permanent magnet 13 embedded so as to penetrate in the axial direction. The rotor 21 is configured to be rotatable by arranging the stator 23 on the outer peripheral side of the rotor 21 via a rotation gap. The stator 23 has a cylindrical shape, and is formed by laminating a plurality of magnetic thin steel plates punched in the same shape in the axial direction.
[0010]
A cylindrical member 6 having an inner surface having the same diameter as the inner peripheral surface 1c of the stator 23 is disposed at both axial ends of the stator 23. The stator 23, here the stator core 1 and the plate-shaped member 4 described later, and the cylindrical member 6 are joined by welding at a joint 6a, which is a contact portion between them, and between the cylindrical member 6 and the case 7 The closed space 8 is formed. The closed spaces 8 are formed at both ends of the stator 23, and one is a closed space 8a on the supply side and the other is a closed space 8b on the discharge side. A cooling water intake port 9 penetrating the case 7 is provided in the supply-side closed space 8a, and a cooling water intake port 10 is provided in the discharge-side closed space 8b. Here, the cooling water inlet 9 and the cooling water outlet 10 are formed at symmetrical positions when viewed from the center of the motor 22.
[0011]
With this configuration, the cooling water is supplied from the cooling water intake 9 to the motor 22 and flows in the axial direction through the cooling water flow path 14 formed in the stator 23 through the closed space 8a on the supply side as described later. . The cooling water cools the stator 23, particularly the coil 2, when flowing through the cooling water flow path 14. Thereafter, the cooling water flows into the closed space 8b on the discharge side, and is discharged from the cooling water outlet 10 to the outside of the motor 22.
[0012]
FIG. 2 shows the configuration of the stator 23 of such a motor 22.
[0013]
The stator 23 includes a stator core 1 having a cylindrical shape formed by arranging divided cores evenly divided in a circumferential direction, and a coil 2 wound around a tooth 1 a which is a part of the stator core 1 and protrudes toward the rotor 21. I do. One tooth 1a is formed for one divided core, and a slot 3 formed of a space extending in the axial direction is formed between adjacent teeth 1a in the circumferential direction. The coil 2 wound around the tooth 1a by concentrated winding is accommodated in the slot 3.
[0014]
Further, the cooling water flow path 14 is formed by providing a plate-shaped member 4 for connecting the tips of the teeth 1a adjacent in the circumferential direction, and sealing the slot 3 in the radial direction using the plate-shaped member 4. Here, a protruding portion 1b that protrudes in the circumferential direction is provided at the tip of the tooth 1a, and the protruding portions 1b are connected by the plate-shaped member 4. Further, by forming the plate-shaped member 4 from metal and welding the protruding portion 1b and the plate-shaped member 4, it is possible to form the cooling water flow path 14 in which cooling water leakage is prevented.
[0015]
At this time, since the inner peripheral surface 1c of the stator core 1 formed by combining the divided cores is formed in a circular shape, the cross section of the tip of the tooth 1a is formed so as to draw an arc. Therefore, when the circumferential width of the plate-shaped member 4 is relatively large, the plate-shaped member 4 has an arc shape that is concentric with and has the same diameter as the inner peripheral surface 1c formed by the tip of the tooth 1a. preferable. However, when the distance between the teeth 1a is sufficiently small, the shape may be linear.
[0016]
Next, the effect when the rotating electric machine, here the motor 22, is configured as in the present embodiment will be described.
[0017]
A stator 23 is a space for accommodating a stator core 1 having a plurality of teeth 1a in a circumferential direction, a coil 2 wound around the teeth 1a, and a coil 2 formed between the teeth 1a, and a slot opened toward the rotor 21. 3 is provided. Further, a plate-like member 4 made of metal forming the cooling water flow path 14 by welding to the teeth 1a so as to close the opening of the slot 3 is provided. This makes it possible to form the cooling water flow path 14 in which cooling water leakage is prevented, and to easily form the cooling water flow path 14 even for a small rotating electric machine 22 since a resin filling mold or the like is not used in the configuration. Can be formed.
[0018]
In addition, at least one of the axial ends of the stator 23 is provided with a cylindrical member 6 which is concentric with the stator 23 at both ends and which is joined to the teeth 1a and the plate member 4 by welding. Thereby, it is possible to prevent the cooling water from leaking when the cooling water flows from the closed space 8 to the cooling water flow path 14.
[0019]
Further, a protruding portion 1b that protrudes in the circumferential direction from the tip of the tooth 1a is provided, and the plate-shaped member 4 is welded to the tip of the protruding portion 1b. Thereby, the welding operation can be facilitated, and the plate-shaped member 4 can be welded to an accurate position, so that the cooling water flow path 14 can flow a cooling water amount necessary for cooling. Can be formed.
[0020]
Next, a second embodiment will be described. The overall structure of the motor 22 and the structure of the stator 23 of the present embodiment are the same as those of the first embodiment. However, the cooling path constituting member 11 in which the cylindrical member 6 and the plate member 4 are integrated is used.
[0021]
FIG. 3 shows the shape of the cooling path constituting member 11 in which the cylindrical member 6 arranged at both ends in the axial direction of the stator 23 and a part of the plate member 4 for closing the slot 3 are integrated in advance. The cooling path constituting member 11 includes a portion 11a corresponding to the above-mentioned cylindrical member 6 and a portion 11b corresponding to the plate-like member 4 similarly. In the present embodiment, two cooling path components 11 having the same shape are inserted from both ends in the axial direction of the stator 23, and the tips of the portions 11b are welded near the center in the axial direction. Further, the protrusion 1b at the tip of the tooth 1a and the portion 11b are joined by welding in the axial direction, and the axial end of the stator core 1 and the portion 11a are joined by welding in the circumferential direction.
[0022]
Here, a configuration has been described in which two cooling liquid path constituting members 11 having the same shape are abutted from both ends in the axial direction of the stator 23, but the members 11 need not be the same shape. For example, only one part 11b corresponding to the plate-shaped member 4 for closing the slot may be provided, and the other part may be provided only as the part 11a corresponding to the cylindrical member 6. At this time, the cooling water flow path 14 is formed by joining the portions 11b and 11a (cylindrical member 6) of one of the axial ends of the stator 23 by welding.
[0023]
Next, effects of the present embodiment will be described. Here, the following effects can be obtained in addition to the effects of the first embodiment.
[0024]
The cylindrical member 6 is provided at both ends in the axial direction of the stator 23, and the cylindrical member 6 and a part of the plate member 4 are integrated to form the cooling liquid path constituting member 11. The plate-like member 4 is formed by combining the two members 11b of the cooling liquid path forming member 11. Accordingly, a configuration that can obtain the same effect as that of the first embodiment can be simply realized with a smaller number of components. Further, by fixing the member 11b that comes into contact at the axial middle portion of the slot 3 by welding, it is not necessary to match the cross-sectional shape of the plate-shaped member 4 with the shape of the cylindrical member 6, and the cooling water flow path 14 Sealability can be ensured.
[0025]
Further, the plate-shaped member 4 is formed integrally with one of the cylindrical members 6, and the cylindrical member 6 formed integrally with the plate-shaped member 4 and the other cylindrical member 6 are connected to the axial end of the stator 23. To each other. The above-described effects can also be obtained by welding the plate-shaped member 4 and the cylindrical member 6 not integrally formed with the plate-shaped member 4 at the axial end of the slot 3. . However, at this time, it is necessary to match the cross-sectional shape of the portion 11b (plate-like member 4) with the shape of the portion 11a (cylindrical member 6).
[0026]
A third embodiment will be described. FIG. 4 shows the configuration of the stator 23 used here. The other parts have the same configuration as the first or second embodiment.
[0027]
The plate-like member 4 that closes the slot 3 is installed on the coil 2 side of the inner peripheral surface 1c of the tooth 1a, here, at the base end of the protrusion 1b on the coil 2 side. At this time, the plate-shaped member 4 is disposed in a curved shape so as to protrude toward the coil 2 side. Also at this time, as in the first and second embodiments, the contact portions of the teeth 1a and the plate-like members 4 are joined by welding.
[0028]
Hereinafter, effects specific to the present embodiment will be described.
[0029]
By providing a projection 1b that protrudes in the circumferential direction from the tip of the tooth 1a, and welding the plate-shaped member 4 to the coil 2 side of the base end of the projection 1b, the plate-shaped member 4 and the rotating permanent magnet 13 are connected. The distance increases. As a result, when the rotor 21 including the permanent magnets 13 rotates at high speed, the magnetic flux generated by the permanent magnets 13 suppresses the eddy current loss caused by passing through the plate-shaped member 4, thereby suppressing the reduction in the efficiency of the motor 22. be able to.
[0030]
Next, a fourth embodiment will be described. FIG. 5 shows the configuration of the stator 23 of the motor 22 used here. Other parts are the same as in the first or second configuration.
[0031]
The distal end of the tooth 1a is configured to have a smaller width in the circumferential direction than portions other than the distal end. That is, in the first and second embodiments, the circumferential protrusion formed as the protruding portion 1b is configured to be a concave portion, and this concave portion is referred to as a retracted portion 1d. Here, a portion which is one step narrower than the width of the winding portion of the coil 2 at the tip of the tooth 1a is defined as a retraction portion 1d, and the retraction portions 1d of the adjacent teeth 1a are connected by the plate member 4. Also at this time, similarly to the first and second embodiments, the teeth 1a and the plate-like member 4 are joined by welding.
[0032]
In this way, the width of the tip of the tooth 1a in the circumferential direction is made smaller than the width of the winding part of the coil 2, and the plate member 4 is attached to the step between the tip of the tooth 1a and the winding part of the coil 2. By welding, workability of welding the plate-shaped member 4 to the outer peripheral side can be facilitated.
[0033]
Next, a fifth embodiment will be described with reference to FIG. Here, the configuration of the motor 22 is the same as any one of the first to fourth embodiments.
[0034]
Here, a welding member 12 thicker than a thin steel plate constituting the stator core 1 is provided at both axial end portions of the stator core 1. Here, generally, in order to effectively suppress eddy current loss, a thin steel plate for constituting a laminated core is often used having a thickness of about 0.05 to 0.5 mm. When the cylindrical member 6 or the cooling fluid path component member 11 as described in the above embodiment is fixed to one steel plate at the axial end portion of such a laminated core by welding, one end portion of the steel plate is welded. The steel sheet may be deformed, and a gap may be formed between the steel sheet and an adjacent steel sheet.
[0035]
Therefore, a thick welding member 12 for welding is provided at the axial end of the stacked stator cores 1, and the cylindrical member 6 or the cooling fluid path component member 11 is welded to the welding member 12. Here, the welding member 12 is formed of a non-magnetic metal such as stainless steel.
[0036]
Hereinafter, effects specific to the present embodiment will be described.
[0037]
The stator 23 is formed by laminating steel plates in the axial direction, and includes welding members 12 having a greater thickness than the steel plates at both axial ends. Thereby, when welding the cylindrical member 6 or the cooling path constituting member 11 to the axial end, the laminated steel plate is prevented from being deformed, and the fixing at the time of welding can be ensured.
[0038]
Further, by forming the welding member 12 from a non-magnetic metal, it is possible to suppress the leakage magnetic flux passing through the welding member 12 as much as possible, and to suppress a decrease in the output of the motor and a decrease in efficiency.
[0039]
Next, a sixth embodiment will be described. Here, the configuration is the same as that of any one of the first to seventh motors 22. However, the plate-like member 4 and the cylindrical member 6 that close the slot 3, or the cooling-fluid-path constituting member 11 that integrally realizes these functions, are formed of a nonmagnetic metal such as stainless steel. By forming the plate-shaped member 4 from a non-magnetic metal, it is possible to suppress a leakage magnetic flux and to suppress a decrease in output of the motor 22 and a decrease in efficiency.
[0040]
In the above embodiment, the rotating electric machine is the motor 22, but the present invention may use a generator as the rotating electric machine.
[0041]
As described above, the present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a motor used in a first embodiment.
FIG. 2 is a configuration diagram of a stator of the motor used in the first embodiment.
FIG. 3 is a configuration diagram of a cooling liquid path constituting member used in a second embodiment.
FIG. 4 is a configuration diagram of a stator of a motor used in a third embodiment.
FIG. 5 is a configuration diagram of a stator of a motor used in a fourth embodiment.
FIG. 6 is a configuration diagram of a stator end used in a fifth embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stator core 1a Teeth 1b Projection part 2 Coil 3 Slot 4 Plate member 6 Cylindrical member (cylindrical member)
12 Welding members (end plate)
14 cooling water channel (flow channel)
21 rotor 22 motor (rotary electric machine)
23 Stator

Claims (10)

ロータに回転空隙を介してステータを配置した回転電機において、
前記ステータが、前記ロータ方向に突出したティースを周方向に複数備えたステータコアと、
前記ティースに巻装したコイルと、
前記ティース間に形成された前記コイルを収容する空間であり、前記ロータ方向に開口したスロットと、
前記スロットの開口部を閉塞するように前記ティースに溶接することにより、冷却流体の流通路を形成する金属の板状部材と、を備えたことを特徴とする回転電機。
In a rotating electrical machine in which a stator is arranged on a rotor via a rotating gap,
A stator core in which the stator includes a plurality of teeth protruding in the rotor direction in a circumferential direction;
A coil wound around the teeth,
A space for accommodating the coil formed between the teeth, and a slot opened in the rotor direction;
A metal plate-shaped member that forms a cooling fluid flow passage by welding to the teeth so as to close the opening of the slot.
前記ステータの軸方向端部の少なくとも一方に、前記ステータと同心で、前記ティースおよび前記板状部材に溶接により接合させる略円筒形状の円筒部材を備える請求項1に記載の回転電機。The rotating electric machine according to claim 1, further comprising a substantially cylindrical member concentric with the stator and joined to the teeth and the plate-like member by welding at least one of axial ends of the stator. 前記ステータの軸方向両端部に前記円筒部材を備え、
前記円筒部材の一方と前記板状部材とを一体に形成し、
前記板状部材を一体に形成した前記円筒部材と、他方の前記円筒部材と、を前記ステータの軸方向端部にそれぞれ溶接するとともに、前記スロットの軸方向端部で、前記板状部材と前記他方の円筒部材とを溶接により接合させる請求項2に記載の回転電機。
The cylindrical member is provided at both ends in the axial direction of the stator,
One of the cylindrical member and the plate-shaped member are integrally formed,
The cylindrical member integrally formed with the plate member, and the other cylindrical member are welded to the axial end of the stator, respectively, and at the axial end of the slot, the plate member and the The rotating electric machine according to claim 2, wherein the other cylindrical member is joined by welding.
前記ステータの軸方向両端部に前記円筒部材を備え、
前記円筒部材それぞれに前記板状部材の一部を一体化させて形成し、
前記円筒部材を前記ステータの軸方向端部にそれぞれ溶接するとともに、二つの前記円筒部材を組み合わせることにより前記板状部材を構成し、前記スロットの軸方向中間部で前記板状部材どうしを溶接により接合させる請求項2に記載の回転電機。
The cylindrical member is provided at both ends in the axial direction of the stator,
A part of the plate-shaped member is formed integrally with each of the cylindrical members,
The cylindrical member is welded to the axial end of the stator, and the plate-like member is formed by combining the two cylindrical members, and the plate-like members are welded to each other at the axial intermediate portion of the slot. The rotating electric machine according to claim 2, wherein the rotating electric machine is joined.
前記ティースの先端から周方向へ突出する突出部を設け、この突出部の先端に前記板状部材を溶接により接合させる請求項1に記載の回転電機。The rotating electric machine according to claim 1, wherein a protruding portion that protrudes in a circumferential direction from a tip of the tooth is provided, and the plate-shaped member is joined to the tip of the protruding portion by welding. 前記ティースの先端から周方向へ突出する突出部を設け、前記突出部の前記コイル側の基端部に前記板状部材を溶接により接合させる請求項1に記載の回転電機。The rotating electric machine according to claim 1, wherein a protrusion protruding in a circumferential direction from a tip end of the tooth is provided, and the plate-shaped member is joined to a base end of the protrusion on the coil side by welding. 前記ティースの先端の周方向の幅を前記コイルの巻装部の幅より小さくし、前記ティースの先端部と前記コイルの巻装部との間の段差部に前記板状部材を溶接により接合させる請求項1に記載の回転電機。The width of the tip of the tooth in the circumferential direction is made smaller than the width of the winding part of the coil, and the plate-shaped member is welded to a step between the tip of the tooth and the winding part of the coil. The rotating electric machine according to claim 1. 前記ステータコアを、軸方向に鋼板を積層することにより構成し、
軸方向両端部に前記鋼板より板厚が大きい端部板材を備えた請求項1に記載の回転電機。
The stator core is constituted by laminating steel plates in the axial direction,
The rotating electric machine according to claim 1, further comprising an end plate having a thickness greater than that of the steel plate at both ends in the axial direction.
前記端部板材を非磁性の金属により形成する請求項8に記載の回転電機。The rotating electric machine according to claim 8, wherein the end plate is formed of a nonmagnetic metal. 前記板状部材を非磁性の金属により形成する請求項1に記載の回転電機。The rotating electric machine according to claim 1, wherein the plate-shaped member is formed of a non-magnetic metal.
JP2002201084A 2002-07-10 2002-07-10 Rotary electric machine Pending JP2004048877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201084A JP2004048877A (en) 2002-07-10 2002-07-10 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201084A JP2004048877A (en) 2002-07-10 2002-07-10 Rotary electric machine

Publications (1)

Publication Number Publication Date
JP2004048877A true JP2004048877A (en) 2004-02-12

Family

ID=31707721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201084A Pending JP2004048877A (en) 2002-07-10 2002-07-10 Rotary electric machine

Country Status (1)

Country Link
JP (1) JP2004048877A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197772A (en) * 2005-01-17 2006-07-27 Toyota Motor Corp Rotary electric machine
JP2010124657A (en) * 2008-11-21 2010-06-03 Toyota Motor Corp Rotating electric machine
JP2018093715A (en) * 2016-11-30 2018-06-14 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Rotary electric machine and method specially adapted for manufacturing rotary electric machine
WO2019189493A1 (en) * 2018-03-28 2019-10-03 日本電産株式会社 Motor
WO2021018706A1 (en) * 2019-07-26 2021-02-04 Thyssenkrupp Presta Ag Stator and frame device for a stator of this kind
WO2022078548A1 (en) * 2020-10-13 2022-04-21 Schaeffler Technologies AG & Co. KG Tube with slot closure wedges for sealing the winding head regions in electric machines with a direct slot cooling function

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197772A (en) * 2005-01-17 2006-07-27 Toyota Motor Corp Rotary electric machine
WO2006085429A1 (en) * 2005-01-17 2006-08-17 Toyota Jidosha Kabushiki Kaisha Rotating electric machine
JP4586542B2 (en) * 2005-01-17 2010-11-24 トヨタ自動車株式会社 Rotating electric machine
US7919890B2 (en) 2005-01-17 2011-04-05 Toyota Jidosha Kabushiki Kaisha Rotating electric machine
JP2010124657A (en) * 2008-11-21 2010-06-03 Toyota Motor Corp Rotating electric machine
JP2018093715A (en) * 2016-11-30 2018-06-14 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Rotary electric machine and method specially adapted for manufacturing rotary electric machine
US10622858B2 (en) 2016-11-30 2020-04-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotating electrical machine and specially adapted method for producing said rotating electrical machine
WO2019189493A1 (en) * 2018-03-28 2019-10-03 日本電産株式会社 Motor
CN111919368A (en) * 2018-03-28 2020-11-10 日本电产株式会社 Motor with a stator having a stator core
WO2021018706A1 (en) * 2019-07-26 2021-02-04 Thyssenkrupp Presta Ag Stator and frame device for a stator of this kind
WO2022078548A1 (en) * 2020-10-13 2022-04-21 Schaeffler Technologies AG & Co. KG Tube with slot closure wedges for sealing the winding head regions in electric machines with a direct slot cooling function

Similar Documents

Publication Publication Date Title
JP4389918B2 (en) Rotating electric machine and AC generator
US10361597B2 (en) Electric machine for a motor vehicle, coil carrier for an electric machine, and motor vehicle
JP4715028B2 (en) Rotating electric machine
EP1701428A1 (en) Motor
JP2012161227A (en) Rotor for rotary electric machine
KR20130037373A (en) Rotor of a motor and connecting pin for rotor
TW201828576A (en) Axial gap-type rotary electric machine and method for producing same
JP5096756B2 (en) Rotating electric machine
JP2007205246A (en) Water pump and hybrid vehicle
JP4687687B2 (en) Axial gap type rotating electric machine and field element
JP5359112B2 (en) Axial gap type rotating electrical machine and compressor using the same
JP5772415B2 (en) Rotor structure of rotating electrical machine
JP2004048877A (en) Rotary electric machine
CN110176822B (en) Cooling structure of rotating electrical machine and rotating electrical machine
CN110176837B (en) Cooling structure of rotating electrical machine and rotating electrical machine
JP2006050752A (en) Stator cooling structure of disk rotary electric machine
JP2008025455A (en) Motor pump
JP2008172918A (en) Axial gap type motor and compressor
US20230216376A1 (en) Electric motor
JP2010110096A (en) Rotor, rotating electric machine and method for manufacturing the rotor
JP2011193623A (en) Rotary electric machine
JP6672741B2 (en) Motor and electric supercharger having the same
JP2006340507A (en) Stator of rotary electric machine
JP2005198463A (en) Housing of dynamo-electric machine
JP2001359263A (en) Synchronous machine serving both as magnet