JP2004044917A - Cooling device, electric appliance, and manufacturing method for cooling device - Google Patents

Cooling device, electric appliance, and manufacturing method for cooling device Download PDF

Info

Publication number
JP2004044917A
JP2004044917A JP2002203335A JP2002203335A JP2004044917A JP 2004044917 A JP2004044917 A JP 2004044917A JP 2002203335 A JP2002203335 A JP 2002203335A JP 2002203335 A JP2002203335 A JP 2002203335A JP 2004044917 A JP2004044917 A JP 2004044917A
Authority
JP
Japan
Prior art keywords
working fluid
cooling device
substrate
flow path
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002203335A
Other languages
Japanese (ja)
Other versions
JP4178855B2 (en
Inventor
Gousaku Katou
加藤 豪作
Minehiro Sotozaki
外崎 峰広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002203335A priority Critical patent/JP4178855B2/en
Publication of JP2004044917A publication Critical patent/JP2004044917A/en
Application granted granted Critical
Publication of JP4178855B2 publication Critical patent/JP4178855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device easily manufacturable in a small and thin construction, having a wide degree of freedom in the design of heat radiation, and excellent in the heat transporting ability. <P>SOLUTION: The cooling device 1 is structured so that grooves 6 of flow passage patterns constituting heat pipes are formed at one of the surfaces of each of an upper base board 2 and a lower base board 3, in which the surfaces where the passage patterns are formed facing each other, and that a wick 4 and a condenser 5 made of a material having a higher thermal conductivity are installed between the base boards and joined together. The upper and lower boards 2 and 3 are furnished with a wick outer frame hole 17 and a condenser outer frame hole 18 to admit fitting-in of the outer frames of the wick 4 and the condenser 5 for exposing their end faces at the board surfaces. Heat emitting devices 61 and 62 as objects to be cooled are contacted with the end face of the outer frame of the wick 4 exposed at the board surface, and thereby the heat of the heat emitting devices is conducted directly to the wick 4, and an efficient heat transport can be accomplished. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、発熱デバイスを冷却する冷却装置とその製造方法、さらにはコンピュータ、ディジタルカメラなどの発熱デバイスを搭載した電子機器装置に関する。
【0002】
【従来の技術】
近年、パーソナルコンピュータなどに搭載されるCPU(Central Processing Unit)、ビデオ・アクセレレータなどのLSI(Large Scale Integration)の高速化をはじめ、フラットパネル・ディスプレイなどの大面積化、さらにはパーソナルコンピュータのみならずディジタルカメラやディジタルオーディオ機器など、その利用の範囲が近年急速に広がりつつあるメモリスティック、スマートメディア、コンパクトフラッシュ(登録商標)などに代表される、記憶素子としてフラッシュメモリを利用した記憶媒体の大容量化などに起因して、電子機器装置の全体の発熱量の増大が著しい。
【0003】
そこで、これら発熱デバイスを冷却する冷却装置の重要度が増してきている。冷却装置としては、一般に冷却ファン、ペルチェ素子、ヒートパイプなどがある。ここでは特にヒートパイプについて述べることとする。
【0004】
通常、ヒートパイプは内壁に毛細管構造を設けた金属性の管体からなり、密閉された管体内部には水や代替フロンなどの作動流体が封入されている。このヒートパイプでは以下のように熱輸送が行われる。
【0005】
ヒートパイプの一端を熱源となるデバイスに接触させると、この熱によって管体内部の作動流体が蒸発して気化する。気化された作動流体は凝縮部へ高速に移動し、そこで凝縮されて液体に戻り、このとき熱を放出する。液体に戻った作動流体は、この後毛細管構造を通って元の場所へ戻る。このようにして連続的に効率よく熱輸送が行われる。
【0006】
【発明が解決しようとする課題】
しかしながら、従来のヒートパイプは管状であり、空間的に大掛かりな装置となるので、小型薄型が求められるパーソナルコンピュータやディジタルカメラなどの電子機器装置への利用には設計の自由度が乏しく、不向きである。
【0007】
そこで、シリコン基板やガラス基板などの基板材の中にヒートパイプ構造を作り込む方法が提案されている。
【0008】
しかしながら、シリコン基板を用いてヒートパイプを構成すると、シリコン自体の熱伝導性がよいため、冷却対象物からの熱がシリコン基板表面で拡散し、内部の作動流体の気化が十分行われず、ヒートパイプとしての機能が十分発揮されないという問題があった。
【0009】
また、ガラス基板を用いた場合、冷却対象デバイスとの熱伝導におけるカップリング効率の悪さから、要求する温度まで冷却対象デバイスを冷却できないという問題もあった。
【0010】
本発明は、このような事情を鑑みて、小型薄型化が容易で、放熱設計の自由度が高く、熱輸送能力に優れた冷却装置とその製造方法、ならびに内部発熱デバイスの発熱に対して回路の安定動作を高い信頼性で確保し得る電子機器装置を提供することを目的としている。
【0011】
【課題を解決するための手段】
本発明の主たる観点に係る冷却装置は、上記課題を解決するための手段として、ヒートパイプを構成する作動流体の流路が層間に設けられた二層の基板と、二層の基板の間に挟まれ、該二層の基板の少なくとも一方の面に表出する表出部を有し、作動流体の流路において毛細管力によって液相の作動流体を吸引し保持する、基板よりも熱伝導率の高い材料からなる液体吸引保持部材とを具備する。
【0012】
この発明の冷却装置は、二層の基板の層間にヒートパイプを構成する作動流体の流路が形成されているので、小型薄型化が容易である。また、基板への流路のパターン形成によって、高い自由度でヒートパイプを設計することができる。また、基板よりも熱伝導率の高い材料からなる液体吸引保持部材が基板の少なくとも一方の面に表出しているので、冷却対象である発熱デバイスの熱が液体吸引保持部材に直接伝わり、効率的な熱輸送を実現することができる。さらに、このことにより基板の材料として熱伝導率の低い材料の使用が可能となり、基板での熱拡散に起因した熱輸送効率の低減を抑制できる。
【0013】
また、本発明の冷却装置において、液体吸引保持部材は、二層の基板の表裏両面に表出する複数の表出部を有する形態をとるものであってよい。
【0014】
これにより二層の基板の表裏各面にCPU、グラフィックチップ、ドライバICなどの発熱デバイスを各々搭載した形態を採ることができるなど、電子機器装置の放熱設計の自由度が向上する。
【0015】
さらに、本発明の冷却装置において、作動流体の流路において気相の作動流体のもつ潜熱を放出する潜熱放出部材をさらに有し、該潜熱放出部材が、二層の基板の間に挟まれ、かつ二層の基板の少なくとも一方の面に表出する表出部を有するとしてもよい。
【0016】
これにより、潜熱放出部材を冷却装置の外部の放熱部材に接触させることができ、ヒートパイプにおける凝縮部での冷却能力が向上し、冷却装置の熱輸送効率をさらに改善することができる。
【0017】
また、本発明の冷却装置において、液体吸引保持部材は、一方の基板に設けられた作動流体の流路に対応する毛細管力発生用の第一のチャンネル部と、他方の基板に設けられた作動流体の流路に対応する毛細管力発生用の第二のチャンネル部とを有するものであってもよい。
【0018】
このように液体吸引保持部材の両面に毛細管力発生用のチャンネル部を形成することによって、液体吸引保持部材全体として液相の作動流体との接触面積をより広く確保することができ、熱輸送効率がさらに向上する。
【0019】
さらに、本発明の冷却装置において、二層の基板が、それぞれ作動流体の流路のパターンが一方の面に形成された基板どうしを接合したものからなり、各々の基板には、互いに異なる形態の、作動流体の流路パターンが形成されたものであってもよい。
【0020】
これにより冷却装置の熱輸送特性の選択の自由度がより一層向上する。
【0021】
さらに、本発明の冷却装置において、二層の基板が接着層を介して互いに接合され、該接着層の厚さを1.5nm以上かつ1μm未満の範囲とすることで、熱伝導性が高い材料を接着層に用いる場合に、この接着層での熱伝導に起因する冷却装置の効率低下を低減できるとともに、基板接合に求められる接着強度が得られる。
【0022】
本発明の別の観点に係る電子機器装置は、発熱源であるデバイスと、このデバイスを冷却する冷却装置とを備え、冷却装置が、ヒートパイプを構成する作動流体の流路が層間に設けられた二層の基板と、二層の基板の間に挟まれ、該二層の基板の少なくとも一方の面に表出する表出部を有し、作動流体の流路において毛細管力によって液相の作動流体を吸引し保持する、基板よりも熱伝導率の高い材料からなる液体吸引保持部材とを有し、液体吸引保持部材の表出部とデバイスとが接触して構成される。
【0023】
この発明によれば、基板よりも熱伝導率の高い材料からなる液体吸引保持部材が基板の少なくとも一方の面に表出しているので、冷却対象であるデバイスの熱が液体吸引保持部材に直接伝わり、冷却装置において効率的な熱輸送が行われることで、デバイスが効率的に冷却され、デバイスの発熱に起因する動作不良を防止することができる。
【0024】
さらに、この発明の電子機器装置において、液体吸引保持部材は、二層の基板の表裏両面に表出する複数の表出部を有し、これらの表出部に発熱源であるデバイスを個々に接触させた形態をとるものであってよい。
【0025】
これにより二層の基板の表裏各面にCPU、グラフィックチップ、ドライバICなどの発熱デバイスを各々搭載した形態や、一方の面にはヒートシンクを取り付けることができるなど、電子機器装置の放熱設計の自由度が向上する。
【0026】
また、この発明の別の観点に係る冷却装置の製造方法は、2枚の基板の少なくとも一方に開口を形成する工程と、2枚の基板それぞれの一つの面にヒートパイプを構成する作動流体の流路のパターンを形成する工程と、基板に設けられた開口に適合する突出部を有し、作動流体の流路において毛細管力によって液相の作動流体を吸引し保持する液体吸引保持部材を作製する工程と、作動流体の流路において気相の作動流体のもつ潜熱を放出する潜熱放出部材を作製する工程と、2枚の基板の流路パターンの形成面どうしを液体吸引保持部材および潜熱放出部材を挟んで接合する工程と有するものである。
【0027】
この製造方法によれば、小型薄型化が容易であるとともに、放熱設計の自由度が高く、熱輸送能力に優れた冷却装置を簡単に製造できる。
【0028】
また、この発明の冷却装置の製造方法において、潜熱放出部材の作製で、基板に設けられた開口に適合する突出部を形成するようにしてもよい。
【0029】
この発明によれば、潜熱放出部材を冷却装置の外部の放熱部材に接触させることで、ヒートパイプにおける凝縮部での冷却能力が高く、熱輸送効率の高い冷却装置を製造することができる。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0031】
図1は本発明の実施の一形態である冷却装置の分解斜視図、図2はこの冷却装置を組み立てた状態の断面図である。
【0032】
これらの図に示すように、この冷却装置1は、二層の基板を構成する上側基板2および下側基板3と、液体吸引保持部材であるウィック4と、潜熱放出部材としてのコンデンサ5とで構成される。
【0033】
上側基板2および下側基板3の各々の一つの面には、ヒートパイプを構成する流路パターンの溝6が設けられている。
【0034】
上側基板2と下側基板3とは、それぞれの流路パターン形成面を向かい合わせ、その間にウィック4およびコンデンサ5を配置して互いに接合されている。
【0035】
図3に流路パターンの平面レイアウトを、図4にはさらにウィック4およびコンデンサ5を配置した流路パターンの平面レイアウトを示す。
【0036】
上下の各基板2,3を接合することによって、各基板2,3の流路パターンの溝6は、作動流体である冷媒を蒸発させる蒸発器11、気相ライン12、凝縮器13、液相ライン14、リザーバエリア15、冷媒封入口16、気液相分離溝19、ウィック外枠口17、コンデンサ外枠口18を構成する。
【0037】
蒸発器11、気相ライン12、凝縮器13、液相ライン14およびリザーバエリア15には冷媒が封入され、これによってヒートパイプが構成されている。
【0038】
蒸発器11は、これに充填されている液相の冷媒にて、毛細管構造を有するウィック4からの熱を奪い、液相の冷媒を蒸発させて気相ライン12へ気相の冷媒を移動させる部分である。
【0039】
気相ライン12は、蒸発器11にて蒸発した気相の冷媒を凝縮器13へ伝達する流路である。
【0040】
凝縮器13は、蒸気の持つ潜熱をコンデンサ5に吸収させ、気相の冷媒を凝縮して液化する部分である。
【0041】
液相ライン14は、凝縮器13にて液化された冷媒を蒸発器11に移動させる流路である。
【0042】
リザーバエリア15は、液相の冷媒を貯蔵したエリアであり、蒸発器11内の液体の量を一定に保つようにリザーバエリア15から蒸発器11へ冷媒の補充が可能となっている。
【0043】
さらに、各基板2,3には、基板どうしの接合後に冷媒を注入するための入り口である冷媒封入口16、気相ライン12と液相ライン14とを分離して相互間の熱干渉を抑制する気液相分離溝19、そして後述のウィック4の外枠部を嵌め込んで基板表面にウィック4の外枠部の表裏各先端面を表出させるウィック外枠口17、コンデンサ5の外枠部を嵌め込んで基板表面にコンデンサ5の外枠部の表裏各先端面を表出させるコンデンサ外枠口18などが設けられている。
【0044】
基板2,3の材料としては、熱伝導率があまり高いと、基板での熱拡散によってヒートパイプの熱輸送効率に悪影響を及ぼし得るので、たとえば、ガラスや、ポリイミド、テフロン(登録商標)、PDMS(polydimethylsiloxane)などの有機系プラスティックなどが用いられる。
【0045】
冷媒には、たとえば、水、エタノール、メタノール、プロパノール(異性体を含む。)、エチルエーテル、エチレングリコール、フロリナートなど、冷却・熱輸送装置の設計を満足する沸点、熱伝導率、耐抗菌性を有する流体が利用される。
【0046】
ウィック4およびコンデンサ5の材料には熱伝導性の高いもの、たとえば熱伝導率が0.17W/mK以上のものが使用される。具体的には、Si、Cu、Al、Ni、Ti、Au、Ag、Ptなどのうち少なくとも一種を含む材料をはじめ、導電性ポリマー、セラミックなどであって、かつ金属と同等の熱伝導率をもつ材料が使用される。より好ましくは、基板材より2倍以上の熱伝導率を有する材料を用いることが望ましい。
【0047】
図5にウィック4の構造の詳細を示す。同図において(a)は側面図、(b)は平面図である。
【0048】
同図に示すように、ウィック4は、チャンネル部21と、その両端に設けられた外枠部22とで構成される。チャンネル部21の上下両面には毛細管力を発生するためのマイクロチャンネル23,23がそれぞれ設けられている。
【0049】
図2に示したように、ウィック4が各基板2,3と組み合わされた状態で、ウィック4の外枠部22の上端面22aおよび下端面22bはそれぞれ、二層の基板2,3の表裏各々の面2a,2bに表出させてある。すなわち、ウィック4の外枠部22の上端面22aおよび下端面22bは、二層の基板2,3の表裏各々の面2a,2bと高さが一致するように、もしくは二層の基板2,3の表裏各々の面2a,2bより僅かに突出するようにそれぞれの高さが設定されている。そして、この二層の基板2,3から表出したウィック4の外枠部22の上端面22aおよび/または下端面22bには、たとえば冷却対象である発熱デバイスなどが接触・接合されるようになっている。
【0050】
コンデンサ5も同様にチャンネル部31と外枠部32とで構成される。このコンデンサ5のチャンネル部31は、放熱性を高めるために、その上下両面にフィンとして機能するマイクロチャンネル33が設けられている。また、このコンデンサ5にはウィック4と同様に外枠部32が設けられており、この外枠部32の上端面32aおよび下端面32bは、二層の基板2,3の表裏各々の面2a,2bに表出させてある。すなわち、コンデンサ5の外枠部32の上端面32aおよび下端面32bは、二層の基板2,3の表裏各々の面2a,2bと高さが一致するように、もしくは二層の基板2,3の表裏各々の面2a,2bより僅かに突出するようにそれぞれの高さが設定されている。そしてこのコンデンサ5の外枠部32の上端面32aおよび/または下端面32bには、冷却装置1の外部の放熱性または熱伝導率の高い部材が接触・接合されるようになっている。
【0051】
以上のように、この実施形態の冷却装置1は、ヒートパイプのための流路パターンの溝6が一方の面に設けられた上下の各基板2,3を、それぞれの流路パターンの溝6が設けられた面どうしを向かい合わせ、その間にウィック4とコンデンサ5とを配置し、互いに接合して作製され、そして冷却装置1の内部は所定の減圧状態とされている。
【0052】
この冷却装置1における熱輸送は以下のように行われる。
【0053】
蒸発器11内に充填されている液相の冷媒は、二層の基板2,3の外でウィック4と接触している発熱デバイスの熱を吸収し、この熱で蒸発する。すると蒸気圧差によって蒸気(気相の冷媒)が気相ライン12に移動する。気相の冷媒は気相ライン12を通じて凝縮器13に移動し、凝縮器13で気相の冷媒は、コンデンサ5により潜熱を奪われて液体に戻る。液化された冷媒は液相ライン14を通じて蒸発器11に移動する。このようなサイクルによって熱輸送が行われる。
【0054】
次に、この冷却装置1の製造方法を説明する。
【0055】
まず、図6に示すように、上下の各基板2,3に冷媒封入口16、ウィック外枠口17、コンデンサ外枠口18などの開口を形成する。
【0056】
続いて、図7に示すように、各基板2,3の一方の面にヒートパイプを構成する流路パターンの溝6を形成する。これら開口と溝6の形成方法には、サンドブラスト、RIE(ドライエッチング)、ウエットエッチング、UV光エッチング、レーザーエッチング、プロトン光エッチング、電子線描画エッチング、マイクロモールディングなどがある。
【0057】
次に、各基板2,3内にウィック4が嵌る領域を確保するために、図8に示すように、各基板2,3の流路パターン形成面のウィック嵌め込み予定の領域40を、同領域に対応する開口41を有するメタルマスク42を用いたエッチングなどによって均一な深さで除去し、図9に示すように、除去された面に流路パターンが存在するウィック嵌め込み凹部43を形成する。
【0058】
次に、図1に示したように、各基板2,3の流路パターンの形成面どうしを向き合わせ、ウィック4およびコンデンサ5を、それぞれの外枠部22,32をウィック外枠口17およびコンデンサ外枠口18に嵌め込んで基板2,3間に挟み込み、基板2,3どうしを接合する。これにより図10に示すような外観の冷却装置1が完成する。
【0059】
基板2,3どうしを接合する方法には、たとえば、陽極接合、加圧・熱融着、超音波接合、化学結合による接合(基板材がポリミイドの場合など)、自己接着性材料どうしの接合(基板材がSiゴムの場合など)、などの方法がある。
【0060】
この際、一方もしくは両方の基板の流路パターン形成面に接着層(図2および図10の符号34)を形成して接合するようにしてもよい。また、この場合、たとえば、各基板の材料中にイオンインプランテーションを用いて金属を打ち込んだり、蒸着装置により銅などの薄膜を形成したり、プラズマ照射により表面活性を高めておいてから接合することが好ましい。
【0061】
ここで、接着層34の厚さは、熱伝導性が高い材料を接着層34に用いる場合には薄いほうが好ましい。なぜなら、接着層34に起因する熱伝導を低減し、冷却装置1の効率低下を防ぐためである。その一方、接着層34の厚さが薄すぎると接着層としての十分な機能が期待できない。
【0062】
たとえば、接着層34の厚さは少なくとも1.5nm以上、1μm未満がよく、好ましくは3nm以上かつ1μm未満、さらに好ましくは10nm以上かつ200nm未満である。
【0063】
続いて、ウィック4、コンデンサ5の作製方法を図11により説明する。
【0064】
ウィック4、コンデンサ5の幅、長さ、高さを満足する、前述した材料からなる板材51を用意する(a)。この板材51からたとえば機械加工などにより、上下いずれか一方の側の外枠部52とチャンネル部53を形成する(b)。次に、チャンネル部53の一方の面に、ウィック4、コンデンサ5に適した形状、サイズのマイクロチャンネル54をたとえば機械加工などにより形成する(c)。そして、板材51の他方の側についても同様に、外枠部52、チャンネル部53およびマイクロチャンネル54の形成を機械加工などによって行う。
【0065】
なお、ウィック4、コンデンサ5のその他の製造方法としては、RIE(ドライエッチング)、ウエットエッチング、UV−LIGA、電気鋳造などが挙げられる。
【0066】
以上のように構成された冷却装置1では、図10に示したように、ウィック4の外枠部22が二層の基板2,3の表裏各面2a,3aに表出しているから、電子機器装置において多様な形態で組み込むことが可能となる。
【0067】
たとえば、図12に示すように、電子機器装置60の中のたとえばCPU、グラフィックチップ、ドライバICなどの発熱デバイス61,62を、冷却装置1の表裏各面2a,3aに表出させたウィック4の外枠22に接触させて搭載した形態を採ることができる。
【0068】
また、図13に示すように、冷却装置1の表裏いずれか一方の面側にウィック4の外枠22に接触させるようにしてヒートシンク63を搭載することで、冷却装置1の熱輸送量の上限を向上させることができ、電子機器装置60の放熱設計の自由度が向上する。
【0069】
さらに、図14に示すように、冷却装置1を縦横に複数組み合わせてアレイ化し、LCD(Liquid Crystal Display)、FED(Field Emission Display)、PDP(Plasma Display Panel)などのフラットパネル・ディスプレイ71と背面シャーシ73との間に介在させた形態を採ることもできる。
【0070】
さらに、図12、図13に示したように、コンデンサ5の外枠部32を二層の基板2,3の表裏各面2a,3aに表出させることで、このコンデンサ5の表出部を冷却装置1の外部の、放熱性または熱伝導性の高い部材64、たとえば電子機器装置60のシャーシ64などに接触させることで、凝縮器13の冷却能力を高めることができる。
【0071】
したがって、本実施形態の冷却装置1は、パーソナルコンピュータ、ディジタルカメラなど、発熱デバイスを搭載した様々な電子機器装置60に高い自由度で組み込むことができ、電子機器装置60内の発熱デバイスを効率的に冷却することができる。
【0072】
次に、本発明に係る冷却装置1の他の実施形態を説明する。
【0073】
前記の実施形態では、各基板内にウィック4が嵌る領域を確保するために、図8、図9に示したように、各基板2,3の流路パターン形成面のウィック嵌め込み領域40をエッチングなどにより均一な深さで除去し、除去された面に流路パターンが存在するウィック嵌め込み凹部43を形成した。この方法によれば、ウィック4のチャンネル部21の厚みを稼ぐことができ、ウィック4の加工が容易になるとともに、ウィック4での熱吸収量を高めることができる。
【0074】
ただし、本発明はこれに限定されるものではなく、ウィック嵌め込み凹部の形成を省略し、図15に示すように、流路6Aの高さHの範囲内にウィック4のチャンネル部21Aを収めるような構成を採っても構わない。
【0075】
また、前記の実施形態では、図2に示したように、ウィック4、コンデンサ5とも、その外枠部22,32の上下端面22a,22b,32a,32bの高さを、二層の基板2,3の表裏各々の面2a,2bの高さ以上となるように設定したが、図16に示すように、ウィック4、コンデンサ5とも、その外枠部22,32の上下のいずれか一方の端面22a,32aの高さだけを、基板2,3の面2aの高さ以上となるように設定してもよい。
【0076】
また、前記の実施形態では、上下の各基板2,3に共通の流路パターンを形成し、これら流路パターン形成面どうしを向い合わせて接合したが、図17に示すように、たとえば気相ライン12および液相ライン14など、熱輸送の特性に変化を及ぼし得る流路部分のパターンを上下重ならないようにずらして配置することによって、熱輸送特性の選択の自由度が向上し、高効率化を図ることができる。
【0077】
ここで、上側基板2には気相ライン12aを形成する溝が、下側基板3には気相ライン12bを形成する溝がそれぞれ設けられ、各気相ライン12a,12bは重ならないように位置が設定されている。同様に、上側基板2には液相ライン14aを形成する溝が、下側基板3には液相ライン14bを形成する溝がそれぞれ設けられ、各液相ライン14a,14bは重ならないように位置が設定されている。
【0078】
【発明の効果】
以上説明したように、本発明によれば、小型薄型の冷却装置を提供することができ、また、基板への流路のパターン形成により高い自由度でヒートパイプを設計することができる。また、基板よりも熱伝導率の高い材料からなる液体吸引保持部材が基板の少なくとも一方の面に表出しているので、冷却対象である発熱デバイスの熱が液体吸引保持部材に直接伝わり、効率的な熱輸送を実現することができる。さらに、このことにより基板の材料として熱伝導率の低い材料の使用が可能となり、基板での熱拡散に起因した熱輸送効率の低減を抑制できる。
【図面の簡単な説明】
【図1】本発明の実施の一形態である冷却装置の分解斜視図である。
【図2】図1の冷却装置の断面図である。
【図3】この冷却装置の流路パターンの平面レイアウトを示す図である。
【図4】図3の流路パターン、ウィックおよびコンデンサの平面レイアウトを示す図である。
【図5】ウィックの構造の詳細を示す側面図と平面図である。
【図6】基板に冷媒封入口、ウィック外枠口、コンデンサ外枠口などの開口を形成する工程を示す斜視図である。
【図7】基板にヒートパイプを構成する流路パターンの溝を形成する工程を示す斜視図である。
【図8】基板のウィック嵌め込み領域のエッチング工程を示す斜視図である。
【図9】基板のウィック嵌め込み領域のエッチング後の状態を示す斜視図である。
【図10】完成した冷却装置の外観を示す斜視図である。
【図11】ウィックおよびコンデンサの作製方法を示す図である。
【図12】冷却装置の電子機器装置への組み込み形態の例を示す側面図である。
【図13】冷却装置の電子機器装置への別の組み込み形態の例を示す側面図である。
【図14】多数の冷却装置をアレイ化してフラットパネル・ディスプレイの冷却用途に用いた形態を示す斜視図である。
【図15】冷却装置の他の実施形態を示す断面図である。
【図16】冷却装置におけるウィックおよびコンデンサの変形例を示す断面図である。
【図17】上下各基板に異なる流路パターンを形成した場合の冷却装置を示す平面図である。
【符号の説明】
1   冷却装置
2   上側基板
3   下側基板
4   ウィック
5   コンデンサ
6   流路パターンの溝
11   蒸発器
12   気相ライン
13   凝縮器
14   液相ライン
15   リザーバエリア
17   ウィック外枠口
18   コンデンサ外枠口
21,31   チャンネル部
22,32   外枠部
23,33   マイクロチャンネル
34   接着層
60   電子機器装置
61,62   発熱デバイス
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooling device that cools a heat-generating device and a method of manufacturing the same, and further relates to an electronic apparatus equipped with a heat-generating device such as a computer and a digital camera.
[0002]
[Prior art]
In recent years, high-speed LSIs (Large Scale Integration) such as CPUs (Central Processing Units) and video accelerators mounted on personal computers and the like, large-area flat panel displays and the like, as well as large areas such as personal computers, Large-capacity storage media that use flash memory as a storage element, such as digital cameras and digital audio devices, such as memory sticks, smart media, and compact flash (registered trademark), whose use is rapidly expanding in recent years. As a result, the amount of heat generated by the entire electronic device has been significantly increased.
[0003]
Therefore, the importance of a cooling device for cooling these heat generating devices is increasing. The cooling device generally includes a cooling fan, a Peltier device, a heat pipe, and the like. Here, the heat pipe will be particularly described.
[0004]
Normally, the heat pipe is formed of a metal tube having a capillary structure on the inner wall, and a working fluid such as water or CFC substitute is sealed in the sealed tube. Heat transfer is performed in this heat pipe as follows.
[0005]
When one end of the heat pipe is brought into contact with a device serving as a heat source, the heat causes the working fluid inside the tube to evaporate and evaporate. The vaporized working fluid moves at a high speed to the condensing section, where it is condensed and returns to a liquid, at which time heat is released. The working fluid that has returned to the liquid then returns to its original location through the capillary structure. In this way, heat transport is performed continuously and efficiently.
[0006]
[Problems to be solved by the invention]
However, since conventional heat pipes are tubular and are large-scale devices in space, they are not suitable for use in electronic devices such as personal computers and digital cameras that require small size and thinness, and are not suitable for use. is there.
[0007]
Therefore, a method has been proposed in which a heat pipe structure is formed in a substrate material such as a silicon substrate or a glass substrate.
[0008]
However, when a heat pipe is formed using a silicon substrate, heat from the object to be cooled diffuses on the surface of the silicon substrate because the heat conductivity of the silicon itself is good, and the internal working fluid is not sufficiently vaporized. However, there was a problem that the function as a function was not sufficiently exhibited.
[0009]
Further, when a glass substrate is used, there is a problem that the cooling target device cannot be cooled to a required temperature due to poor coupling efficiency in heat conduction with the cooling target device.
[0010]
In view of such circumstances, the present invention provides a cooling device and a method of manufacturing the same, which can be easily reduced in size and thickness, have a high degree of freedom in heat radiation design, and have excellent heat transport capability, and a circuit for preventing heat generated by an internal heat generating device. It is an object of the present invention to provide an electronic device capable of ensuring the stable operation of the electronic device with high reliability.
[0011]
[Means for Solving the Problems]
The cooling device according to the main aspect of the present invention, as means for solving the above problems, a two-layer substrate provided with a flow path of a working fluid constituting a heat pipe between layers, between the two-layer substrate Having an exposed portion sandwiched and exposed on at least one surface of the two-layered substrate, sucking and holding a liquid-phase working fluid by a capillary force in a working fluid flow path, and having a higher thermal conductivity than the substrate. A liquid suction holding member made of a material having a high
[0012]
In the cooling device according to the present invention, since the flow path of the working fluid constituting the heat pipe is formed between the two layers of the substrates, it is easy to reduce the size and thickness. Further, the heat pipe can be designed with a high degree of freedom by forming a flow path pattern on the substrate. In addition, since the liquid suction holding member made of a material having a higher thermal conductivity than the substrate is exposed on at least one surface of the substrate, the heat of the heat generating device to be cooled is directly transmitted to the liquid suction holding member, and the efficiency is improved. Heat transfer can be realized. Further, this makes it possible to use a material having a low thermal conductivity as a material for the substrate, thereby suppressing a decrease in heat transport efficiency due to heat diffusion in the substrate.
[0013]
In the cooling device of the present invention, the liquid suction holding member may have a form having a plurality of exposed portions exposed on both front and back surfaces of the two-layer substrate.
[0014]
As a result, it is possible to adopt a mode in which a heating device such as a CPU, a graphic chip, and a driver IC is mounted on each of the front and back surfaces of the two-layer board.
[0015]
Further, in the cooling device of the present invention, the cooling device further includes a latent heat emitting member that emits latent heat of the gas phase working fluid in the working fluid flow path, wherein the latent heat emitting member is sandwiched between the two layers of substrates, In addition, it may have an exposed portion that is exposed on at least one surface of the two-layer substrate.
[0016]
Thereby, the latent heat releasing member can be brought into contact with the heat radiating member outside the cooling device, the cooling capacity in the condensing portion of the heat pipe can be improved, and the heat transport efficiency of the cooling device can be further improved.
[0017]
Further, in the cooling device of the present invention, the liquid suction holding member includes a first channel portion for generating a capillary force corresponding to a flow path of a working fluid provided on one substrate, and an operation provided on the other substrate. And a second channel portion for generating a capillary force corresponding to the flow path of the fluid.
[0018]
By forming the channel portion for generating the capillary force on both surfaces of the liquid suction and holding member in this manner, it is possible to secure a wider contact area between the liquid suction and holding member and the working fluid in the liquid phase as a whole, and to improve the heat transport efficiency. Is further improved.
[0019]
Furthermore, in the cooling device of the present invention, the two-layer substrate is formed by joining substrates each having a pattern of a working fluid flow path formed on one surface, and each substrate has a different form. Alternatively, a flow path pattern of a working fluid may be formed.
[0020]
This further improves the degree of freedom in selecting the heat transport characteristics of the cooling device.
[0021]
Furthermore, in the cooling device of the present invention, the two-layered substrate is bonded to each other via the adhesive layer, and the thickness of the adhesive layer is set to be 1.5 nm or more and less than 1 μm, so that a material having high heat conductivity When is used for the adhesive layer, the decrease in efficiency of the cooling device caused by heat conduction in the adhesive layer can be reduced, and the adhesive strength required for bonding the substrates can be obtained.
[0022]
An electronic apparatus according to another aspect of the present invention includes a device that is a heat source and a cooling device that cools the device, wherein the cooling device is provided with a flow path of a working fluid forming a heat pipe between layers. A two-layered substrate, having an exposed portion sandwiched between the two-layered substrate and exposed on at least one surface of the two-layered substrate. A liquid suction and holding member made of a material having a higher thermal conductivity than the substrate for sucking and holding the working fluid, wherein the exposed portion of the liquid suction and holding member is in contact with the device;
[0023]
According to the present invention, since the liquid suction holding member made of a material having higher thermal conductivity than the substrate is exposed on at least one surface of the substrate, the heat of the device to be cooled is directly transmitted to the liquid suction holding member. By performing efficient heat transport in the cooling device, the device is efficiently cooled, and operation failure due to heat generation of the device can be prevented.
[0024]
Further, in the electronic apparatus of the present invention, the liquid suction holding member has a plurality of exposed portions that are exposed on both front and back surfaces of the two-layer substrate, and the devices that are heat sources are individually provided on these exposed portions. It may take the form of contact.
[0025]
This allows freedom of heat radiation design of electronic equipment, such as a form in which heat generating devices such as a CPU, a graphic chip, and a driver IC are mounted on each of the front and back surfaces of a two-layer substrate, and a heat sink can be attached to one surface. The degree improves.
[0026]
A method of manufacturing a cooling device according to another aspect of the present invention includes a step of forming an opening in at least one of the two substrates, and a method of forming a heat pipe on one surface of each of the two substrates. A step of forming a pattern of a flow path, and a liquid suction holding member having a protrusion adapted to an opening provided in the substrate and sucking and holding a liquid-phase working fluid by a capillary force in the working fluid flow path; Forming a latent heat releasing member for releasing the latent heat of the gas-phase working fluid in the working fluid flow path; and forming the liquid suction holding member and the latent heat release between the two flow path pattern forming surfaces of the substrates. And a step of joining by sandwiching the members.
[0027]
According to this manufacturing method, it is easy to reduce the size and thickness, and it is possible to easily manufacture a cooling device having a high degree of freedom in heat radiation design and excellent heat transport capability.
[0028]
Further, in the method of manufacturing a cooling device according to the present invention, in the production of the latent heat releasing member, a protrusion may be formed so as to fit the opening provided in the substrate.
[0029]
According to the present invention, by contacting the latent heat releasing member with the heat radiating member outside the cooling device, it is possible to manufacture a cooling device having a high cooling capacity in the condensing portion of the heat pipe and a high heat transport efficiency.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0031]
FIG. 1 is an exploded perspective view of a cooling device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a state where the cooling device is assembled.
[0032]
As shown in these figures, the cooling device 1 includes an upper substrate 2 and a lower substrate 3 that constitute a two-layer substrate, a wick 4 that is a liquid suction holding member, and a condenser 5 that is a latent heat releasing member. Be composed.
[0033]
On one surface of each of the upper substrate 2 and the lower substrate 3, a groove 6 of a flow path pattern constituting a heat pipe is provided.
[0034]
The upper substrate 2 and the lower substrate 3 face each other with the flow path pattern forming surfaces therebetween, and the wick 4 and the capacitor 5 are arranged therebetween and joined to each other.
[0035]
FIG. 3 shows a plan layout of the flow path pattern, and FIG. 4 shows a plan layout of the flow path pattern in which the wick 4 and the condenser 5 are further arranged.
[0036]
By joining the upper and lower substrates 2 and 3, the groove 6 of the flow path pattern of each substrate 2 and 3 forms an evaporator 11, a vapor line 12, a condenser 13, and a liquid phase for evaporating a refrigerant as a working fluid. A line 14, a reservoir area 15, a refrigerant inlet 16, a gas-liquid phase separation groove 19, a wick outer frame opening 17, and a condenser outer frame opening 18 are formed.
[0037]
A refrigerant is sealed in the evaporator 11, the gas phase line 12, the condenser 13, the liquid phase line 14, and the reservoir area 15, thereby constituting a heat pipe.
[0038]
The evaporator 11 removes heat from the wick 4 having a capillary structure with the liquid-phase refrigerant filled therein, evaporates the liquid-phase refrigerant, and moves the gas-phase refrigerant to the gas-phase line 12. Part.
[0039]
The gas phase line 12 is a flow path for transmitting the gas phase refrigerant evaporated in the evaporator 11 to the condenser 13.
[0040]
The condenser 13 absorbs the latent heat of the vapor into the condenser 5 and condenses and liquefies the gas-phase refrigerant.
[0041]
The liquid phase line 14 is a flow path for moving the refrigerant liquefied in the condenser 13 to the evaporator 11.
[0042]
The reservoir area 15 is an area storing a liquid-phase refrigerant, and the refrigerant can be replenished from the reservoir area 15 to the evaporator 11 so that the amount of liquid in the evaporator 11 is kept constant.
[0043]
Further, each of the substrates 2 and 3 is provided with a refrigerant charging port 16, which is an inlet for injecting a refrigerant after the substrates are joined together, and a gas-phase line 12 and a liquid-phase line 14 are separated to suppress thermal interference therebetween. A wick outer frame opening 17 for fitting a gas-liquid phase separation groove 19 to be formed, and an outer frame portion of the wick 4 to be described later to expose the front and back end surfaces of the outer frame portion of the wick 4 on the substrate surface, and an outer frame of the capacitor 5. A capacitor outer frame opening 18 and the like are provided for fitting the parts and exposing the front and rear end surfaces of the outer frame part of the capacitor 5 on the surface of the substrate.
[0044]
As a material for the substrates 2 and 3, if the thermal conductivity is too high, heat diffusion on the substrate may adversely affect the heat transport efficiency of the heat pipe. For example, glass, polyimide, Teflon (registered trademark), PDMS For example, an organic plastic such as (polydimethylsiloxane) is used.
[0045]
Refrigerants such as water, ethanol, methanol, propanol (including isomers), ethyl ether, ethylene glycol, and florinate have a boiling point, thermal conductivity, and antimicrobial resistance that satisfy the design of the cooling and heat transport device. Fluids are used.
[0046]
The material of the wick 4 and the capacitor 5 has a high thermal conductivity, for example, a material having a thermal conductivity of 0.17 W / mK or more. Specifically, a material including at least one of Si, Cu, Al, Ni, Ti, Au, Ag, and Pt, a conductive polymer, a ceramic, and the like, have a thermal conductivity equivalent to that of a metal. Is used. More preferably, it is desirable to use a material having a thermal conductivity twice or more that of the substrate material.
[0047]
FIG. 5 shows the structure of the wick 4 in detail. In the figure, (a) is a side view, and (b) is a plan view.
[0048]
As shown in the figure, the wick 4 includes a channel portion 21 and outer frame portions 22 provided at both ends thereof. Microchannels 23 for generating a capillary force are provided on both upper and lower surfaces of the channel portion 21, respectively.
[0049]
As shown in FIG. 2, in a state where the wick 4 is combined with each of the substrates 2 and 3, the upper end surface 22 a and the lower end surface 22 b of the outer frame portion 22 of the wick 4 are front and back of the two-layer substrates 2 and 3, respectively. It is exposed on each surface 2a, 2b. That is, the upper end surface 22a and the lower end surface 22b of the outer frame portion 22 of the wick 4 have the same height as the front and back surfaces 2a and 2b of the two-layer substrates 2 and 3 or the two-layer substrates 2 and The respective heights are set so as to slightly protrude from the surfaces 2a and 2b of the front and back surfaces of No. 3 respectively. The upper end surface 22a and / or the lower end surface 22b of the outer frame portion 22 of the wick 4 exposed from the two layers of the substrates 2 and 3 are contacted or joined with, for example, a heating device to be cooled. Has become.
[0050]
Similarly, the capacitor 5 includes a channel portion 31 and an outer frame portion 32. The channel portion 31 of the capacitor 5 is provided with microchannels 33 functioning as fins on both upper and lower surfaces in order to enhance heat dissipation. An outer frame portion 32 is provided on the capacitor 5 similarly to the wick 4. The upper end surface 32 a and the lower end surface 32 b of the outer frame portion 32 are formed on the front and back surfaces 2 a of the two-layer boards 2 and 3. , 2b. In other words, the upper end surface 32a and the lower end surface 32b of the outer frame portion 32 of the capacitor 5 have the same height as the front and back surfaces 2a and 2b of the two-layer substrates 2 and 3 or the two-layer substrates 2 and The respective heights are set so as to slightly protrude from the surfaces 2a and 2b of the front and back surfaces of No. 3 respectively. A member having high heat dissipation or high heat conductivity outside the cooling device 1 is brought into contact with and joined to the upper end surface 32a and / or the lower end surface 32b of the outer frame portion 32 of the capacitor 5.
[0051]
As described above, the cooling device 1 of the present embodiment is configured such that the upper and lower substrates 2 and 3 having the flow path pattern grooves 6 for the heat pipes provided on one surface thereof are separated from the respective flow path pattern grooves 6. The wick 4 and the condenser 5 are arranged therebetween, and the wick 4 and the condenser 5 are arranged and bonded to each other. The inside of the cooling device 1 is in a predetermined reduced pressure state.
[0052]
The heat transport in the cooling device 1 is performed as follows.
[0053]
The liquid-phase refrigerant filled in the evaporator 11 absorbs the heat of the heat generating device that is in contact with the wick 4 outside the two-layer substrates 2 and 3 and evaporates with this heat. Then, the vapor (vapor-phase refrigerant) moves to the vapor-phase line 12 due to the vapor pressure difference. The gas-phase refrigerant moves to the condenser 13 through the gas-phase line 12, where the gas-phase refrigerant loses latent heat by the condenser 5 and returns to liquid. The liquefied refrigerant moves to the evaporator 11 through the liquid phase line 14. Heat transfer is performed by such a cycle.
[0054]
Next, a method of manufacturing the cooling device 1 will be described.
[0055]
First, as shown in FIG. 6, openings such as a refrigerant charging port 16, a wick outer frame port 17, and a condenser outer frame port 18 are formed in the upper and lower substrates 2 and 3, respectively.
[0056]
Subsequently, as shown in FIG. 7, grooves 6 of a flow path pattern constituting a heat pipe are formed on one surface of each of the substrates 2 and 3. Methods for forming these openings and grooves 6 include sandblasting, RIE (dry etching), wet etching, UV light etching, laser etching, proton light etching, electron beam drawing etching, micromolding, and the like.
[0057]
Next, in order to secure an area where the wick 4 fits in each of the substrates 2 and 3, as shown in FIG. 9 is removed at a uniform depth by etching or the like using a metal mask 42 having an opening 41 corresponding to the above, and as shown in FIG. 9, a wick fitting concave portion 43 having a flow path pattern on the removed surface is formed.
[0058]
Next, as shown in FIG. 1, the surfaces on which the flow path patterns of the substrates 2 and 3 are formed face each other, and the wick 4 and the capacitor 5 are connected to the outer frame portions 22 and 32 and the wick outer frame opening 17 and The substrates 2 and 3 are fitted into the capacitor frame 18 and sandwiched between the substrates 2 and 3 to join the substrates 2 and 3 together. Thereby, the cooling device 1 having the appearance as shown in FIG. 10 is completed.
[0059]
Methods for bonding the substrates 2 and 3 include, for example, anodic bonding, pressure / heat fusion, ultrasonic bonding, bonding by chemical bonding (for example, when the substrate material is polyimide), bonding of self-adhesive materials ( For example, when the substrate material is Si rubber).
[0060]
At this time, an adhesive layer (reference numeral 34 in FIG. 2 and FIG. 10) may be formed on the flow path pattern forming surface of one or both substrates and joined. In this case, for example, metal is implanted into the material of each substrate using ion implantation, a thin film such as copper is formed by a vapor deposition device, or the surface activity is increased by plasma irradiation before joining. Is preferred.
[0061]
Here, the thickness of the adhesive layer 34 is preferably smaller when a material having high thermal conductivity is used for the adhesive layer 34. This is because the heat conduction caused by the adhesive layer 34 is reduced, and the efficiency of the cooling device 1 is prevented from lowering. On the other hand, if the thickness of the adhesive layer 34 is too small, a sufficient function as the adhesive layer cannot be expected.
[0062]
For example, the thickness of the adhesive layer 34 is at least 1.5 nm or more and less than 1 μm, preferably 3 nm or more and less than 1 μm, and more preferably 10 nm or more and less than 200 nm.
[0063]
Subsequently, a method of manufacturing the wick 4 and the capacitor 5 will be described with reference to FIG.
[0064]
A plate 51 made of the above-mentioned material, which satisfies the width, length, and height of the wick 4 and the capacitor 5, is prepared (a). An outer frame portion 52 and a channel portion 53 on one of the upper and lower sides are formed from the plate material 51 by, for example, machining (b). Next, a microchannel 54 having a shape and size suitable for the wick 4 and the capacitor 5 is formed on one surface of the channel portion 53 by, for example, machining (c). Then, on the other side of the plate member 51, similarly, the outer frame portion 52, the channel portion 53, and the microchannel 54 are formed by machining or the like.
[0065]
Other methods for manufacturing the wick 4 and the capacitor 5 include RIE (dry etching), wet etching, UV-LIGA, and electroforming.
[0066]
In the cooling device 1 configured as described above, since the outer frame portion 22 of the wick 4 is exposed on the front and back surfaces 2a and 3a of the two-layer substrates 2 and 3, as shown in FIG. It can be incorporated in various forms in the device.
[0067]
For example, as shown in FIG. 12, a wick 4 in which heat generating devices 61 and 62 such as a CPU, a graphic chip, and a driver IC in an electronic device 60 are exposed on front and back surfaces 2 a and 3 a of the cooling device 1. Can be taken in contact with the outer frame 22.
[0068]
As shown in FIG. 13, by mounting the heat sink 63 on one of the front and back surfaces of the cooling device 1 so as to be in contact with the outer frame 22 of the wick 4, the upper limit of the heat transport amount of the cooling device 1 is obtained. And the degree of freedom of the heat radiation design of the electronic device 60 is improved.
[0069]
Further, as shown in FIG. 14, a plurality of cooling devices 1 are vertically and horizontally combined to form an array, and a flat panel display 71 such as an LCD (Liquid Crystal Display), a FED (Field Emission Display), a PDP (Plasma Display Panel), and a back surface. A form interposed between the chassis 73 can be adopted.
[0070]
Further, as shown in FIGS. 12 and 13, the outer frame portion 32 of the capacitor 5 is exposed on each of the front and back surfaces 2a and 3a of the two-layer boards 2 and 3, so that the exposed portion of the capacitor 5 is formed. The cooling capability of the condenser 13 can be increased by contacting a member 64 having high heat dissipation or heat conductivity outside the cooling device 1, for example, the chassis 64 of the electronic device 60.
[0071]
Therefore, the cooling device 1 according to the present embodiment can be incorporated with a high degree of freedom into various electronic device devices 60, such as a personal computer and a digital camera, on which a heating device is mounted, so that the heating device in the electronic device device 60 can be efficiently used. Can be cooled.
[0072]
Next, another embodiment of the cooling device 1 according to the present invention will be described.
[0073]
In the above-described embodiment, as shown in FIGS. 8 and 9, the wick fitting region 40 on the flow path pattern forming surface of each of the substrates 2 and 3 is etched to secure a region where the wick 4 fits in each substrate. The wick-fitting concave portion 43 in which the flow path pattern exists was formed on the removed surface with a uniform depth. According to this method, the thickness of the channel portion 21 of the wick 4 can be increased, the processing of the wick 4 can be facilitated, and the amount of heat absorbed by the wick 4 can be increased.
[0074]
However, the present invention is not limited to this, and the formation of the wick fitting recess is omitted, and as shown in FIG. 15, the channel portion 21A of the wick 4 is set within the range of the height H of the flow path 6A. Any configuration may be adopted.
[0075]
Further, in the above-described embodiment, as shown in FIG. 2, the heights of the upper and lower end surfaces 22a, 22b, 32a, 32b of the outer frame portions 22, 32 of both the wick 4 and the capacitor 5 are changed to the two-layer substrate 2 , 3 are set to be equal to or higher than the height of each of the front and back surfaces 2a, 2b. However, as shown in FIG. 16, both the wick 4 and the capacitor 5 have one of the upper and lower sides of the outer frame portions 22, 32. Only the height of the end faces 22a and 32a may be set to be equal to or higher than the height of the face 2a of the substrates 2 and 3.
[0076]
Further, in the above-described embodiment, a common flow path pattern is formed on each of the upper and lower substrates 2 and 3 and these flow path pattern forming surfaces are joined to face each other. However, as shown in FIG. By arranging the patterns of the flow path portions such as the line 12 and the liquid phase line 14 which can change the heat transport characteristics so as not to be vertically overlapped, the degree of freedom in selecting the heat transport characteristics is improved, and high efficiency is achieved. Can be achieved.
[0077]
Here, the upper substrate 2 is provided with a groove for forming the vapor line 12a, and the lower substrate 3 is provided with a groove for forming the vapor line 12b. The vapor lines 12a and 12b are positioned so as not to overlap. Is set. Similarly, the upper substrate 2 is provided with a groove forming the liquid phase line 14a, and the lower substrate 3 is provided with a groove forming the liquid phase line 14b. The liquid phase lines 14a and 14b are positioned so as not to overlap. Is set.
[0078]
【The invention's effect】
As described above, according to the present invention, a small and thin cooling device can be provided, and a heat pipe can be designed with a high degree of freedom by forming a flow path pattern on a substrate. In addition, since the liquid suction holding member made of a material having a higher thermal conductivity than the substrate is exposed on at least one surface of the substrate, the heat of the heat generating device to be cooled is directly transmitted to the liquid suction holding member, and the efficiency is improved. Heat transfer can be realized. Further, this makes it possible to use a material having a low thermal conductivity as a material for the substrate, thereby suppressing a decrease in heat transport efficiency due to heat diffusion in the substrate.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a cooling device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the cooling device of FIG.
FIG. 3 is a diagram showing a planar layout of a flow path pattern of the cooling device.
FIG. 4 is a diagram showing a planar layout of a flow path pattern, a wick and a capacitor in FIG. 3;
FIG. 5 is a side view and a plan view showing details of a wick structure.
FIG. 6 is a perspective view showing a process of forming openings such as a refrigerant charging port, a wick outer frame port, and a capacitor outer frame port on a substrate.
FIG. 7 is a perspective view showing a step of forming a groove of a flow path pattern constituting a heat pipe on a substrate.
FIG. 8 is a perspective view showing an etching step of a wick fitting region of the substrate.
FIG. 9 is a perspective view showing a state after etching a wick fitting region of the substrate.
FIG. 10 is a perspective view showing an appearance of a completed cooling device.
FIG. 11 is a diagram illustrating a method of manufacturing a wick and a capacitor.
FIG. 12 is a side view showing an example of a form in which the cooling device is incorporated into an electronic device.
FIG. 13 is a side view showing an example of another mode of incorporating the cooling device into the electronic apparatus.
FIG. 14 is a perspective view showing an embodiment in which a number of cooling devices are arrayed and used for cooling a flat panel display.
FIG. 15 is a sectional view showing another embodiment of the cooling device.
FIG. 16 is a sectional view showing a modified example of the wick and the condenser in the cooling device.
FIG. 17 is a plan view showing a cooling device when different flow path patterns are formed on upper and lower substrates.
[Explanation of symbols]
1 Cooling device
2 Upper substrate
3 Lower board
4 Wick
5 Capacitor
6 Channel pattern grooves
11 Evaporator
12 Gas phase line
13 Condenser
14 Liquid phase line
15 reservoir area
17 Wick outer frame entrance
18 Capacitor outer frame
21, 31 channel section
22, 32 Outer frame
23,33 micro channel
34 adhesive layer
60 Electronic equipment
61,62 Heating device

Claims (11)

ヒートパイプを構成する作動流体の流路が層間に設けられた二層の基板と、
前記二層の基板の間に挟まれ、該二層の基板の少なくとも一方の面に表出する表出部を有し、前記作動流体の流路において毛細管力によって液相の作動流体を吸引し保持する、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材と
を具備することを特徴とする冷却装置。
A two-layer substrate in which the flow path of the working fluid constituting the heat pipe is provided between the layers,
An exposed portion sandwiched between the two-layered substrate and exposed on at least one surface of the two-layered substrate, sucks a liquid-phase working fluid by a capillary force in the working fluid flow path. And a liquid suction holding member made of a material having a higher thermal conductivity than the substrate.
前記液体吸引保持部材が、前記二層の基板の表裏両面に表出する複数の表出部を有することを特徴とする請求項1に記載の冷却装置。The cooling device according to claim 1, wherein the liquid suction holding member has a plurality of exposed portions that are exposed on both front and back surfaces of the two-layer substrate. 前記作動流体の流路において気相の作動流体のもつ潜熱を放出する潜熱放出部材をさらに有し、該潜熱放出部材が、前記二層の基板の間に挟まれ、かつ前記二層の基板の少なくとも一方の面に表出する表出部を有することを特徴とする請求項1に記載の冷却装置。A latent heat release member that releases latent heat of the gaseous working fluid in the flow path of the working fluid, wherein the latent heat release member is sandwiched between the two layers of the substrate; The cooling device according to claim 1, further comprising an exposed portion that is exposed on at least one surface. 前記液体吸引保持部材が、一方の前記基板に設けられた前記作動流体の流路に対応する毛細管力発生用の第一のチャンネル部と、他方の前記基板に設けられた前記作動流体の流路に対応する毛細管力発生用の第二のチャンネル部とを有することを特徴とする請求項1に記載の冷却装置。A first channel portion for generating a capillary force corresponding to a flow path of the working fluid provided on one of the substrates, and a flow path of the working fluid provided on the other substrate; The cooling device according to claim 1, further comprising a second channel portion for generating a capillary force corresponding to the above. 前記二層の基板が、それぞれ前記作動流体の流路のパターンが一方の面に形成された基板どうしを接合したものからなり、各々の前記基板に設けられた前記作動流体の流路のパターンが互いに異なることを特徴とする請求項1に記載の冷却装置。The two-layered substrate is formed by joining substrates each having the flow pattern of the working fluid formed on one surface, and the pattern of the flow path of the working fluid provided on each of the substrates is The cooling device according to claim 1, wherein the cooling devices are different from each other. 前記二層の基板が接着層を介して互いに接合され、該接着層の厚さが1.5nm以上かつ1μm未満の範囲であることを特徴とする請求項1に記載の冷却装置。The cooling device according to claim 1, wherein the two substrates are bonded to each other via an adhesive layer, and the thickness of the adhesive layer is in a range of 1.5 nm or more and less than 1 μm. 発熱源であるデバイスと、
このデバイスを冷却する冷却装置とを備え、
前記冷却装置が、ヒートパイプを構成する作動流体の流路が層間に設けられた二層の基板と、前記二層の基板の間に挟まれ、該二層の基板の少なくとも一方の面に表出する表出部を有し、前記作動流体の流路において毛細管力によって液相の作動流体を吸引し保持する、前記基板よりも熱伝導率の高い材料からなる液体吸引保持部材とを有し、前記液体吸引保持部材の前記表出部と前記デバイスとが接触してなることを特徴とする電子機器装置。
A device that is a source of heat,
A cooling device for cooling the device,
The cooling device is sandwiched between a two-layer substrate in which a flow path of a working fluid constituting a heat pipe is provided between layers, and a surface is provided on at least one surface of the two-layer substrate. A liquid suction holding member made of a material having a higher thermal conductivity than the substrate, having an exposed portion that emerges and sucking and holding a liquid-phase working fluid by capillary force in the flow path of the working fluid. An electronic apparatus, wherein the exposed portion of the liquid suction and holding member is in contact with the device.
前記液体吸引保持部材が、前記二層の基板の表裏両面に表出する複数の表出部を有し、これらの表出部に発熱源であるデバイスが個々の接触してなることを特徴とする請求項7に記載の電子機器装置。The liquid suction holding member has a plurality of exposed portions that are exposed on both front and back surfaces of the two-layer substrate, and a device that is a heat source is individually contacted with these exposed portions. The electronic device according to claim 7. 前記冷却装置が、前記作動流体の流路において気相の作動流体のもつ潜熱を放出する潜熱放出部材をさらに有し、該潜熱放出部材が、前記二層の基板の間に挟まれ、かつ前記二層の基板の少なくとも一方の面に表出する表出部を有し、この表出部が前記冷却装置の外部の放熱部材と接触させてなることを特徴とする請求項7に記載の電子機器装置。The cooling device further includes a latent heat emitting member that emits latent heat of a gas-phase working fluid in the flow path of the working fluid, the latent heat emitting member being sandwiched between the two-layered substrates, and 8. The electronic device according to claim 7, further comprising an exposed portion exposed on at least one surface of the two-layer substrate, wherein the exposed portion is brought into contact with a heat radiation member outside the cooling device. Equipment and devices. 2枚の基板の少なくとも一方に開口を形成する工程と、
2枚の基板それぞれの一つの面にヒートパイプを構成する作動流体の流路のパターンを形成する工程と、
前記基板に設けられた前記開口に適合する突出部を有し、前記作動流体の流路において毛細管力によって液相の作動流体を吸引し保持する液体吸引保持部材を作製する工程と、
前記作動流体の流路において気相の作動流体のもつ潜熱を放出する潜熱放出部材を作製する工程と、
前記2枚の基板の前記流路パターンの形成面どうしを前記液体吸引保持部材および前記潜熱放出部材を挟んで接合する工程と
を有することを特徴とする冷却装置の製造方法。
Forming an opening in at least one of the two substrates;
Forming a pattern of a working fluid flow path constituting a heat pipe on one surface of each of the two substrates;
A step of producing a liquid suction holding member that has a protrusion that fits the opening provided in the substrate and that sucks and holds a liquid-phase working fluid by capillary force in the working fluid flow path;
A step of producing a latent heat releasing member that releases latent heat of a gas-phase working fluid in the working fluid flow path,
Joining the surfaces of the two substrates on which the flow path patterns are formed with the liquid suction holding member and the latent heat releasing member interposed therebetween.
潜熱放出部材の作製において、前記基板に設けられた前記開口に適合する突出部を形成することを特徴とする請求項10に記載の冷却装置の製造方法。The method of manufacturing a cooling device according to claim 10, wherein in producing the latent heat releasing member, a protruding portion that fits into the opening provided in the substrate is formed.
JP2002203335A 2002-07-11 2002-07-11 COOLING DEVICE, ELECTRIC DEVICE, AND COOLING DEVICE MANUFACTURING METHOD Expired - Fee Related JP4178855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203335A JP4178855B2 (en) 2002-07-11 2002-07-11 COOLING DEVICE, ELECTRIC DEVICE, AND COOLING DEVICE MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203335A JP4178855B2 (en) 2002-07-11 2002-07-11 COOLING DEVICE, ELECTRIC DEVICE, AND COOLING DEVICE MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2004044917A true JP2004044917A (en) 2004-02-12
JP4178855B2 JP4178855B2 (en) 2008-11-12

Family

ID=31709219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203335A Expired - Fee Related JP4178855B2 (en) 2002-07-11 2002-07-11 COOLING DEVICE, ELECTRIC DEVICE, AND COOLING DEVICE MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP4178855B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250455A (en) * 2005-03-11 2006-09-21 Sony Corp Heat transport device and electronic equipment
US7190582B2 (en) * 2001-12-13 2007-03-13 Sony Corporation Cooling device, electronic equipment device, and method of manufacturing cooling device
WO2010084717A1 (en) * 2009-01-23 2010-07-29 日本電気株式会社 Cooling device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190582B2 (en) * 2001-12-13 2007-03-13 Sony Corporation Cooling device, electronic equipment device, and method of manufacturing cooling device
JP2006250455A (en) * 2005-03-11 2006-09-21 Sony Corp Heat transport device and electronic equipment
WO2010084717A1 (en) * 2009-01-23 2010-07-29 日本電気株式会社 Cooling device
US8593810B2 (en) 2009-01-23 2013-11-26 Nec Corporation Cooling device

Also Published As

Publication number Publication date
JP4178855B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
US7000686B2 (en) Heat transport device and electronic device
JP3651790B2 (en) High density chip mounting equipment
US8256501B2 (en) Plate-type heat transport device and electronic instrument
US6490160B2 (en) Vapor chamber with integrated pin array
US7304842B2 (en) Apparatuses and methods for cooling electronic devices in computer systems
US6533029B1 (en) Non-inverted meniscus loop heat pipe/capillary pumped loop evaporator
JP2006503436A (en) Plate heat transfer device and manufacturing method thereof
JP2004037039A (en) Cooling device, electronic equipment device and display device, and cooling device manufacturing method
JP2007113864A (en) Heat transport apparatus and electronic instrument
JP2004077120A (en) Flat-plate type heat transfer device and its manufacturing method
JP2003042670A (en) Flat plate type gasifier
JPH05264182A (en) Integrated heat pipe, assembly for heat exchanger and clamping as well as obtaining method thereof
WO2003050466A1 (en) Cooling device, electronic equipment device, and method of manufacturing cooling device
JP4496999B2 (en) Heat transport device and electronic equipment
JP4380250B2 (en) Heat transport device, electronic device and heat transport device manufacturing method
JP2007263427A (en) Loop type heat pipe
JP2004077051A (en) Heat transport device and its manufacturing method
JP2010216676A (en) Cooling substrate
JP4178850B2 (en) COOLING DEVICE, ELECTRONIC DEVICE DEVICE, COOLING DEVICE MANUFACTURING METHOD, AND Evaporator
JP4178855B2 (en) COOLING DEVICE, ELECTRIC DEVICE, AND COOLING DEVICE MANUFACTURING METHOD
JP5938865B2 (en) Loop heat pipe and electronic device
JP4178843B2 (en) COOLING DEVICE, ELECTRONIC DEVICE DEVICE, AND COOLING DEVICE MANUFACTURING METHOD
KR102457713B1 (en) Vapor chamber with clad material and manufacturing method thereof
JP4178859B2 (en) COOLING DEVICE, ELECTRONIC DEVICE DEVICE, AND COOLING DEVICE MANUFACTURING METHOD
JPH10267573A (en) Flat surface type heat pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees