JP2004044236A - Wooden bridge employing outer cable-based prestressed laminated lumber bridge girder, wooden bridge overhanging erection method based on outer cable system, and wooden bridge girder constructed according to the overhanging erection method - Google Patents

Wooden bridge employing outer cable-based prestressed laminated lumber bridge girder, wooden bridge overhanging erection method based on outer cable system, and wooden bridge girder constructed according to the overhanging erection method Download PDF

Info

Publication number
JP2004044236A
JP2004044236A JP2002203226A JP2002203226A JP2004044236A JP 2004044236 A JP2004044236 A JP 2004044236A JP 2002203226 A JP2002203226 A JP 2002203226A JP 2002203226 A JP2002203226 A JP 2002203226A JP 2004044236 A JP2004044236 A JP 2004044236A
Authority
JP
Japan
Prior art keywords
girder
bridge
laminated
wooden
outer cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002203226A
Other languages
Japanese (ja)
Inventor
Seiroku Miyama
深山 清六
Kazuyoshi Nishina
仁科 一義
Hiroshi Watanabe
渡辺 浩志
Hiroshi Tatematsu
立松 博
Shinya Saiki
齋木 真也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PC Bridge Co Ltd
Original Assignee
PC Bridge Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PC Bridge Co Ltd filed Critical PC Bridge Co Ltd
Priority to JP2002203226A priority Critical patent/JP2004044236A/en
Publication of JP2004044236A publication Critical patent/JP2004044236A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a laminated lumber bridge girder which is enhanced in resistance to deflection, and to construct a long-span wooden bridge by employing the laminated lumber bridge girder. <P>SOLUTION: In the wooden bridge which employs long beams made of laminated lumber as the main girder, prestress is applied to the laminated lumber main girder according to an outer cable system, by attaching angle-type anchorage fixtures and wooden anchorage blocks to the main laminated lumber girder. To implement an overhanging erection method, the laminated lumber long beams to which prestress has been applied according to an inner cable system are piled up on bridge piers while the number of the beams to be connected is progressively increased. Further, whenever a new upper stage is piled up, outer cables are attached to the connected beams which are set in the new upper stage, to thereby apply prestress to the connected beams, and at the same time the long beams in the upper- and lower-stages are fixed to each other by a plurality of deviation inhibiting fixtures. In this manner the bridge girder is overhangingly erected. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明は、集成材からなる木橋の橋桁において、外ケーブル方式によってプレストレスを導入するための外ケーブル定着部の構造、及び外ケーブル方式によりプレストレスを導入しつつ木橋の橋桁を構築する張り出し架設工法並びに同張り出し架設工法による木橋の橋桁に関する。
【0002】
【従来の技術】一般に、橋梁は、道路、鉄道、水路等の輸送路において、輸送の障害となる河川、渓谷、湖沼、海峡、あるいは他の道路、鉄道、水路等の上方にこれらを横断するために建設される構造物であり、輸送路を直接支える、いわゆる橋桁の部分に使用される材料により、(1)鉄筋コンクリート、プレストレストコンクリート、鉄骨鉄筋コンクリート、無筋コンクリート等を主要材料とするコンクリート橋、(2)鋼材を主要材料とする鋼橋、(3)石・煉瓦等を主要材料とする石工橋、(4)木材を主要材料とする木橋などに分類されている。
近年は、強度や耐久性の面から、鋼主桁と鉄筋コンクリート床版とを一体化させた合成桁や、H形鋼をコンクリートで包んで一体化させた桁など、鋼材やプレストレストコンクリートが主として使用されている。
しかし、最近は、地球環境、自然環境に対する社会的意識の高まりと相まって、木材を主要材料とする木橋が注目されている。
また、木橋が注目されてきている背景として、近年の集成材の製作・加工技術の向上、防腐技術の向上、また各種接合技術の向上などによって、主桁等の製造に必要な長さの角材が容易に供給されるようになったことがあげられる。
しかし橋梁には、その使用目的を満たすのに必要な強度と耐久性、環境への適合性、維持管理の容易性などが求められるので、必要とされる強度と耐久性を備えた木橋、特に支間の長い木橋を構築するのは非常に困難であった。
【0003】
【発明が解決しようとしている課題】上記従来技術に記述したように、最近は、地球環境、自然環境に対する社会的意識の高まりと相まって、地方自治体を中心に木橋が見直され、より大きい路面荷重に耐え得る木橋、又はより長い支間の木橋への要望も強まりつつある。しかし、路面荷重が大きくなり又は支間が長くなると路面荷重による主桁の撓みに対する耐性が問題になる。また、主桁に使用する集成材の長さには、製造や運送上からある程度の制限を受ける。したがって、必要な長さの集成材製主桁を得るためには複数本の集成材長梁を強固に接合する必要がある。
この問題の解決策の一つとして、木橋に使用する集成材製主桁にプレストレストコンクリート(PC)桁に倣ってプレストレスを導入して撓みに対する耐性を高めることが考えられる。また、本出願人は先に内ケーブル方式によって集成材の接合を強化する方式を考案した(特開2000−226811「プレストレス木床版を採用した木橋」参照)。しかし、この内ケーブル方式では木橋の長支間化に伴って内ケーブルの本数が増加し、大容量のPC鋼材を要するばかりでなく、施工に困難が伴うことにもなる。また、内ケーブルによりプレストレスが導入された複数の集成材同士の接合も容易でなく、さらにはメンテナンス面での困難性も伴う。
本発明が解決しようとしている課題は、上記内ケーブル方式によるプレストレス導入の問題点を、外ケーブル方式によるプレストレス導入によって解決し、撓みに対する耐性を高めた集成材製橋桁を構成し、あるいはこの集成材製橋桁を橋脚上に順次積み重ねて張り出すことによって、より長い支間木橋を実現することにある。
【0004】
【課題を解決するための手段】本発明者は鋭意研究の結果、上記発明しようとしている課題を、下記に示す手段により解決した。
(1)集成材からなる長梁を橋桁の主桁に用いて構成した木橋において、該集成材製主桁に外ケーブルが配設され、プレストレスが導入されてなることを特徴とする外ケーブル方式プレストレスト集成材製橋桁を採用してなる木橋。
(2)前記外ケーブルが、集成材製主桁の両端部に巻着される鋼製の桁端補強材に被着又は溶着された鋼製の定着板と同定着板が前記桁端補強材から張り出した部分をプレストレス力に耐え得るように補強するリブとから構成されてなるアングル方式定着金具に定着されてなることを特徴とする前記(1)に記載の外ケーブル方式プレストレスト集成材製橋桁を採用してなる木橋。
(3)前記外ケーブルが、前記集成材製主桁の両端部付近の側面に固着された木製の定着ブロックに定着されてなることを特徴とする前記(1)に記載の外ケーブル方式プレストレスト集成材製橋桁を採用してなる木橋。
【0005】
(4)前記集成材製主桁が、集成材製の長梁複数本が角筒形の接合補助具を介して接合された接合梁からなることを特徴とする前記(1)〜(3)のいずれか1項に記載の外ケーブル方式プレストレスト集成材製橋桁を採用してなる木橋。
(5)前記集成材製主桁が、集成材製の長梁複数本が内部中央に仕切壁を有する角筒形の接合補助具を介して接合されてなることを特徴とする前記(1)〜(3)のいずれか1項に記載の外ケーブル方式プレストレスト集成材製橋桁を採用してなる木橋。
(6)前記集成材製主桁が、その長さ方向に貫通孔が穿設され、かつ前記貫通孔に貫挿されたPC鋼材と、前記PC鋼材の両端に配設された定着具とにより、前記主桁にプレストレスが導入される内ケーブル方式を併用してなることを特徴とする前記(1)〜(5)のいずれか1項に記載の外ケーブル方式プレストレスト集成材製橋桁を採用してなる木橋。
【0006】
(7)内ケーブル方式によりプレストレスが導入された集成材製長梁を、橋脚上に順次その接合本数を増やしながら積み重ね、1段積み重ねる度ごとに上段に設置した前記内ケーブル方式によりプレストレスが導入された長梁を接合した接合梁に、外ケーブルを配設してプレストレスを加えつつ上下の集成材製長梁を複数のずれ止め金具等にて固定して木橋の橋桁を張り出し架設することを特徴とする外ケーブル方式を用いた木橋の橋桁の張り出し架設工法。
(8)内ケーブル方式によりプレストレスが導入された集成材製長梁を、橋脚上に順次その接合本数を増やしながら積み重ね、1段積み重ねる度ごとに上段に設置した前記内ケーブル方式によりプレストレスが導入された長梁を接合した接合梁に外ケーブルを配設してプレストレスを加えつつ上下の集成材製長梁を複数のずれ止め金具等にて固定して構成されてなることを特徴とする外ケーブル方式を用いた張り出し架設工法による木橋の橋桁。
【0007】
【発明の実施の形態】本発明の実施の形態を実施例の図によって説明する。
図1はプレストレスト集成材製橋桁の説明図、図2はアングル方式定着金具を使用した外ケーブル方式プレストレスト集成材製橋桁の定着部実施例の構造図、図3は定着ブロックを使用した外ケーブル方式プレストレスト集成材製橋桁の定着部実施例の構造図、図4は定着ブロック固着部分の拡大図、図5は張り出し架設工法による外ケーブル方式プレストレスト集成材製橋桁実施例の構造図、図6は張り出し架設工法による外ケーブル方式プレストレスト集成材製橋桁の施工手順を示す図である。
図において、1は集成材製主桁、1a、1bは集成材製長梁、2は内ケーブル(PC鋼材)、3は外ケーブル(PC鋼材)、4、4’は桁端補強材(鋼製)、5はアングル方式定着金具、6は定着具、7a、7bは支圧板、8は床版、9は定着ブロック、10は定着板、11は堅結用PC鋼材、12はナット、13は接合補助具、14は橋脚、15はずれ止め金具、Pは外ケーブル緊張力、Pは堅結用PC鋼材緊張力である。
【0008】
集成材製主桁の長さ方向にプレストレスを導入する方法としては、現在コンクリート桁橋で採用されている内ケーブル方式と外ケーブル方式とが考えられる。
内ケーブル方式は、図1(a)、(b)に実施例を示すように、集成材製主桁1の長さ方向に穿設された貫通孔にPC鋼材(以後内ケーブルと記す)2が貫挿され、前記集成材製主桁1の両端部に前記内ケーブル2からのプレストレスを前記集成材製主桁1に伝達するための定着具6及び支圧板7aが配設されてなるものであり、1本の集成材長梁では対応できない長い支間の木橋の場合には、2本の集成材を接合する接合部に後述の接合補助具13が設けられる。また、集成材製主桁の両端に加わるプレストレス力によって前記集成材主桁端部が膨張するのを防止するため集成材製主桁の端部付近の外周に鋼製の桁端補強材4,4’が巻着されている。なお、図において8は床版を示す。
【0009】
一方、外ケーブル方式は、図1(a)、(c)に実施例を示すように、集成材製主桁1の両側面に沿って配設されたPC鋼材(以後外ケーブルと記す)3と、前記集成材製主桁1の端部に配設された鋼製のアングル方式定着金具5(図2参照)、又は前記集成材製主桁1の端部付近の側面に固着された木製の定着ブロック9、及び前記外ケーブル3を前記アングル式定着金具5又は前記定着ブロック9に定着させる定着具6,支圧板7a、定着板10等によって構成されてなるものである。
また、1本の集成材長梁では対応できない長い支間の木橋の場合に2本の集成材を接合する接合部に接合補助具13が設けられ、集成材製主桁の両端に加わるプレストレス力によって前記集成材主桁端部が膨張するのを防止するために集成材製主桁の端部付近の外周に桁端補強材4,4’が巻着されるのは、内ケーブル方式の場合と同様である。
図1(d)の実施例は、上記内ケーブル方式と外ケーブル方式とを併用した場合を示している。
【0010】
ここで、集成材とは、ひき板又は小角材等をその繊維方向に互いに平行にして長さ、幅及び厚さの方向に接着されたものであり、任意の大断面材が得られ、単一材と同等あるいはそれ以上の強度が期待できる材料である。本発明では、主桁1に前記集成材製の長梁を用い、かつ、この主桁1にプレストレスを加えて木橋の使用目的を満たすのに必要な強度と耐久性、及び優れた自然景観性を備えた木橋構造を実現している。
【0011】
次に外ケーブル3の定着構造について説明する。外ケーブルの定着構造体としては、図2に示すアングル方式と、図3に示す定着ブロック方式とが考えられる。なお、図2、図3とも内ケーブルと外ケーブルを併用した場合の実施例を示してある。
(アングル方式)
アングル方式は、図2に示すように、集成材製主桁1の端末付近の外周に巻着される角筒形の桁端補強材4の幅より大きな幅を有する定着用鋼板5aと、前記定着用鋼板5aを前記桁端補強材4の一方の開口部に接合させた場合に桁端補強材4から左右に張り出す部分5bに溶着された複数の補強用リブ5cとで構成されたアングル方式定着金具5(図5参照)を使用して外ケーブル3を定着するものである。
このアングル方式定着金具5は、前記桁端補強材4が巻着された集成材製主桁1の両端に被着させて使用することにより複数の補強用リブ5cが前記桁端補強材4の側面に密着し、前記定着用鋼板の5aの張り出し部分5bに穿設された貫通孔に外ケーブル3が挿通され、前記外ケーブル3への緊張力導入によって定着用鋼板5aの張り出し部分5bを変形させようとする力に、前記リブ5cと桁端補強材4の側面とで対応して、前記集成材主桁1へのプレストレス導入を可能にしている。
また、前記桁端補強材4が鋼製の場合には、前記アングル方式定着金具5と前記桁端補強材4とを溶着により一体化しておき(図2(d)参照)、集成材製主桁1の両端部に被着させて使用すれば、より堅牢な定着板となり有効である。
さらに、内ケーブル方式と外ケーブル方式を併用する場合には、アングル方式定着板5の集成材製主桁1の端面に接する部分に内ケーブル用の貫通孔を穿設すればアングル方式定着板5だけでPC鋼材(内ケーブル)2とPC鋼材(外ケーブル)3の両者を定着できる。
なお図において2は内ケーブル、6は定着具、7aは支圧板、8は床版を示す。
【0012】
(定着ブロック方式)
定着ブロック方式は、図3に示すように、集成材製主桁1の端末付近の側面に木製の定着ブロックを固着し、集成材製主桁1と定着ブロック9との摩擦により外ケーブル3の緊張力を集成材製主桁1にプレストレスとして伝達するものである。
なお、前記定着ブロック9は、主桁が多数の集成材製長梁を接合させてなる接合桁の場合には、必要に応じて主桁1の任意な場所の側面に配設固着して、前記接合桁をある間隔で分割し、端末付近に固着された定着ブロック及び集成材製主桁1の任意な場所に配設された定着ブロックの相互間に個別に外ケーブル3を配設して橋桁全体にプレストレスを導入することも可能である。
この木製定着ブロック9の集成材製主桁1への固着は、前記定着ブロック9の側面及び集成材製主桁1の側面に穿設された貫通孔に、定着ブロック9と集成材製主桁1とを固着するための堅結用PC鋼材11を挿通し、前記堅結用PC鋼材11の両端に配設された支圧板7bを介してナット12によって締め付けることで行われる。
【0013】
木製定着ブロック9と集成材製主桁1との固着部を拡大して図4に示す。図においてPは外ケーブル3の緊張力(kN)、Pは堅結用PC鋼材11の緊張力(kN)を示す。ここで堅結用PC鋼材11の緊張力Pは、木製定着ブロック9と集成材製主桁1との摩擦係数をμとすると、次式により求められる。
=P/μ
いま前記摩擦係数μを0.5程度とすると、上式から堅結用PC鋼材11の緊張力Pは、外ケーブル3の緊張力の2倍程度必要となる。このため堅結用PC鋼材11の緊張により、木製の定着ブロック9や集成材製主桁1に変形を起こすおそれがある。これを防止するには、木材の物理的な耐圧縮強度が繊維方向に大きいことを利用して、図3に示すように、木製定着ブロックの繊維方向が集成材主桁1との接合面に垂直になるように配置する必要がある。
なお、外ケーブル3のプレストレス力導入は、本出願人考案の木製定着板を介した定着構造(特開2000−226811「プレストレス木床版を採用した木橋」参照)を用いて行う。
【0014】
図5(a)に、橋脚14の上に、内ケーブル方式によりプレストレスが導入された集成材製長梁を、順次長さ方向に外ケーブル方式により接合する本数を増やしながら積み重ねてゆき、3対の外ケーブル3よってプレストレスが導入された張り出し架設工法による橋桁の実施例の側面図を、図5(b)に同橋桁の上面図を示す。
図5(b)に見られるように、本実施例では橋桁の最上段に設置された集成材製長梁複数本を接合してなる接合主桁1を、同主桁の両端に配設されたアングル方式定着金具5と同主桁の途中に配設された2対の定着ブロック9とで3つの区画に分割し、それぞれの区画に1対の外ケーブルを配設してプレストレスを加えることにより、長尺の橋桁全体に効果的にプレストレスを導入している。これにより中央径間が100mという木橋の架設も可能になる。
【0015】
図5に示した張り出し架設工法による外ケーブル方式プレストレスト集成材製橋桁の施工手順を図6により説明する。
(a)まず橋脚14の上に、内ケーブル2によってプレストレスが導入された集成材製長梁1aを設置固定する。
(b)上記集成材製長梁1aの上に、同じ形状の集成材製長梁1b、1cを接合補助具13(図1参照)で接合して積み重ねる。
(c)上記集成材製長梁1b、1cの結合梁の両端末にアングル方式定着金具を装着し、その間に外ケーブル3を配設して緊張する。
(d)上記集成材製長梁1b、1cの結合梁に外ケーブルの緊張力によってプレストレスを与えた状態で集成材製長梁1aと1b、1aと1cをそれぞれずれ止め金具15を使って固着する。
(e)上記集成材製長梁1b、1cの結合梁の上に、上記集成材製長梁1aと同じ形状の集成材製長梁1d、1e、1fを接合補助具13(図1参照)で接合して重ね、前記集成材製長梁1d、1e、1fの結合梁の両端末に、上記(c)で記述したのと同様にアングル方式定着金具を装着し、その間に外ケーブルを配設してプレストレスを導入しつつ、上記(d)で記述したのと同様にずれ止め金具により1b、1cの結合梁と1d、1e、1fの結合梁を固定する。
(f)以後この操作を必要回数繰り返して集成材製長梁による張り出しを完了させる。
(g)前記集成材製長梁による張り出し部間を、橋長と等しい長さ分集成材製主桁1を並べることにより閉合し、該主桁1の側面に定着ブロックを固着するなどして外ケーブルを配設緊張するとともに、前記集成材主桁1とその直下に位置する集成材製の結合梁とをずれ止め金具15によって固定して外ケーブル方式プレストレスト集成材製橋桁を用いた張り出し架設工法による橋桁を完成させる。
【0016】
【発明の効果】本発明によれば次のような効果が実現できる。
▲1▼ 従来25m程度であった木橋の径間を100m程度にまで拡げられるので、広い川幅の河川でも橋脚の少ない木橋が架設でき、洪水による木橋の流失の機会を減らすことができる。
▲2▼ プレストレスを導入するPC鋼材が橋桁の側面に沿って配設されるため、、維持管理及び補修が容易になる。
▲3▼ 架設工法の拡大(張り出し架設工法)が可能になる。
【図面の簡単な説明】
【図1】プレストレスト集成材橋桁の説明図。
【図2】アングル方式定着金具を使用した外ケーブル方式プレストレスト集成材製橋桁の定着部実施例の構造図。
【図3】定着ブロックを使用した外ケーブル方式プレストレスト集成材製橋桁の定着部実施例の構造図。
【図4】定着ブロック固着部分の拡大図。
【図5】張り出し架設工法による外ケーブル方式プレストレスト集成材製橋桁実施例の構造図。
【図6】張り出し架設工法による外ケーブル方式プレストレスト集成材製橋桁の施工手順の説明図。
【符号の説明】
1:集成材製橋桁                    1a〜1f:集成材製長梁
2:内ケーブルPC鋼材              3:外ケーブルPC鋼材
4:桁端補強材                      5:アングル方式定着金具
5a:定着用鋼板                    5b:定着板の張り出し部
5c:定着板のリブ                  6:定着具
7a、7b:支圧板                   8:床版
9:定着ブロック                    10:定着板
11:堅結用PC鋼材                12:ナット
13:接合補助具               14:橋脚
15:ずれ止め金具
:外ケーブル緊張力               P:堅結用PC鋼材緊張力
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an outer cable anchoring portion for introducing a prestress by an outer cable system in a bridge girder of a wooden bridge made of laminated wood, and a wooden bridge while introducing a prestress by an outer cable system. The present invention relates to an overhang erection method for constructing a bridge girder and a bridge girder of a wooden bridge by the overhang erection method.
[0002]
2. Description of the Related Art Generally, bridges cross roads, valleys, lakes, straits, or other roads, railways, waterways, etc., which are obstacles to transportation, on roads, railroads, waterways, etc. Concrete bridges that are mainly constructed of reinforced concrete, prestressed concrete, steel reinforced concrete, unreinforced concrete, etc. They are classified into (2) steel bridges mainly made of steel, (3) masonry bridges mainly made of stone and brick, and (4) wooden bridges mainly made of wood.
In recent years, steel and prestressed concrete are mainly used, such as composite girder integrating steel main girder and reinforced concrete floor slab, and girder integrating H-shaped steel in concrete for integration of strength and durability. Have been.
Recently, however, a wood bridge made mainly of wood has been attracting attention, in conjunction with increasing social awareness of the global environment and the natural environment.
In addition, wooden bridges have been attracting attention because of the recent improvements in the manufacturing and processing techniques of glued laminated timber, antiseptic techniques, and various joining techniques. Is easily supplied.
However, bridges are required to have the strength and durability required to satisfy their intended use, suitability for the environment, and ease of maintenance and management.Therefore, wooden bridges with the required strength and durability, especially It was very difficult to build a long span wooden bridge.
[0003]
As described in the above-mentioned prior art, recently, with the increase in social awareness of the global environment and the natural environment, wooden bridges have been reviewed mainly by local governments, and the load on the road surface has increased. There is also a growing demand for a sustainable wooden bridge or a longer span wooden bridge. However, if the road surface load becomes large or the span becomes long, resistance to the deflection of the main girder due to the road surface load becomes a problem. In addition, the length of the glued laminated lumber used for the main girder is limited to some extent from manufacturing and transportation. Therefore, in order to obtain the required length of the main girder made of glulam, it is necessary to firmly join a plurality of glulam timber beams.
As one of the solutions to this problem, it is conceivable to increase the resistance to bending by introducing prestress into the main girder made of laminated wood used for wooden bridges in accordance with a prestressed concrete (PC) girder. In addition, the present applicant has previously devised a method of strengthening the bonding of the glued laminated lumber by the inner cable method (refer to Japanese Patent Application Laid-Open No. 2000-226811 "Kibashi using prestressed wooden deck"). However, in the inner cable system, the number of inner cables increases with the length of the wooden bridge, which not only requires a large-capacity PC steel material, but also complicates construction. In addition, it is not easy to join a plurality of laminated materials to which the prestress has been introduced by the inner cable, and there is also a difficulty in maintenance.
The problem to be solved by the present invention is to solve the problem of the introduction of prestress by the inner cable system by introducing the prestress by the outer cable system, and to construct a glued-girder bridge girder having improved resistance to bending, or The purpose of the present invention is to realize a longer span bridge by stacking and gluing laminated timbers on a pier.
[0004]
As a result of intensive studies, the present inventor has solved the above-mentioned problem to be solved by the following means.
(1) In a wooden bridge formed by using a long beam made of laminated wood as a main girder of a bridge girder, an external cable is provided on the main girder made of laminated wood and prestress is introduced. A wooden bridge using prestressed glued-girder girder.
(2) The steel fixing plate and the identification attaching plate, in which the outer cable is attached or welded to a steel girder end reinforcing material wound around both ends of a laminated girder main girder, are the girder end reinforcing material. (1) an outer cable type prestressed laminated material according to the above (1), which is fixed to an angle type fixing bracket composed of a rib that reinforces a portion that protrudes from the prestressing force. A wooden bridge using bridge girders.
(3) The outer cable type prestressed assembly according to (1), wherein the outer cable is fixed to a wooden fixing block fixed to a side surface near both ends of the glued main girder. A wooden bridge using timber bridge girders.
[0005]
(4) The above-mentioned (1) to (3), wherein the laminated girder main girder is formed of a joining beam in which a plurality of laminated beam long beams are joined via a rectangular cylindrical joining aid. A wooden bridge using the external cable type prestressed glued laminated girder according to any one of the above.
(5) The laminated girder main girder is characterized in that a plurality of laminated beam long beams are joined via a rectangular cylindrical joining auxiliary tool having a partition wall in the center of the inside. A wooden bridge using the external cable type prestressed glued laminated girder according to any one of (3) to (3).
(6) The main girder made of laminated wood includes a PC steel material having a through hole formed in a length direction thereof, and a PC steel material inserted through the through hole, and fixing tools provided at both ends of the PC steel material. The outer cable type prestressed laminated timber bridge girder according to any one of (1) to (5), wherein an inner cable type in which prestress is introduced into the main girder is used in combination. A wooden bridge.
[0006]
(7) Laminated timber beams that have been prestressed by the internal cable method are stacked on the piers while increasing the number of joints sequentially, and the prestress is reduced by the internal cable method that is installed in the upper stage every time one stage is stacked. An outer cable is applied to the joint beam that joins the introduced long beams, prestressing is applied, and the upper and lower glued laminated timber beams are fixed with multiple slip stoppers, etc., and the bridge girder of the wooden bridge is extended and erected. A method of overhanging a bridge girder of a wooden bridge using an external cable method.
(8) Laminated timber beams with prestress introduced by the inner cable method are stacked on the piers while increasing the number of joints sequentially, and the prestress is reduced by the inner cable method installed at the upper stage every time one stage is stacked. An outer cable is arranged on the joint beam that joins the introduced long beams, and the upper and lower laminated wood long beams are fixed with a plurality of slip stoppers while applying prestress. Bridge girder of wooden bridge by overhanging construction method using external cable method.
[0007]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view of a bridge girder made of prestressed glued laminated lumber, FIG. 2 is an external cable system using an angle type fixing bracket, and FIG. FIG. 4 is an enlarged view of the anchoring portion of the fixing block of the prestressed glued laminated timber, FIG. 4 is an enlarged view of the fixing block fixing portion, FIG. It is a figure which shows the construction procedure of the bridge girder made of an external cable system prestressed laminated wood by the construction method.
In the figure, 1 is a main girder made of laminated wood, 1a and 1b are long beams made of laminated wood, 2 is an inner cable (PC steel), 3 is an outer cable (PC steel), and 4 and 4 'are girder reinforcements (steel). 5) Angle fixing bracket, 6: Fixing tool, 7a, 7b: Support plate, 8: Floor slab, 9: Fixing block, 10: Fixing plate, 11: PC steel material for fastening, 12: Nut, 13 the bonding aid, 14 piers, 15 out studs, the P O outer cable tension, P b is a PC steel tension for consistency formation.
[0008]
As the method of introducing prestress in the length direction of the main girder made of glulam, the inner cable system and the outer cable system currently used for concrete girder bridges can be considered.
As shown in FIGS. 1 (a) and 1 (b), the inner cable system uses a PC steel material (hereinafter referred to as an inner cable) 2 in a through hole formed in the longitudinal direction of the main girder 1 made of laminated wood. The fixing tool 6 and the supporting plate 7a for transmitting the prestress from the inner cable 2 to the main girder 1 made of laminated wood are disposed at both ends of the main girder 1 made of laminated wood. In the case of a long span wooden bridge that cannot be accommodated by one glued laminated timber beam, a joining aid 13 to be described later is provided at a joint that joins the two glued laminated timbers. Further, in order to prevent the end portion of the main girder made of laminated wood from expanding due to the prestressing force applied to both ends of the main girder made of laminated wood, a steel girder reinforcing member 4 is provided on the outer periphery near the end of the main girder made of laminated wood. , 4 'are wound. In the drawing, reference numeral 8 denotes a floor slab.
[0009]
On the other hand, as shown in FIGS. 1 (a) and 1 (c), the outer cable system is a PC steel material (hereinafter referred to as an outer cable) 3 arranged along both side surfaces of a main girder 1 made of laminated wood. And a steel angle-type fixing bracket 5 (see FIG. 2) disposed at an end of the glued wood main girder 1 or a wooden fixed to a side surface near an end of the glued wood main girder 1. The fixing block 9 and the fixing tool 6 for fixing the outer cable 3 to the angle type fixing bracket 5 or the fixing block 9, the supporting plate 7 a, the fixing plate 10, and the like.
In the case of a long span wooden bridge that cannot be handled by a single glulam timber beam, a joining aid 13 is provided at a joint for joining two glulams, and a prestressing force applied to both ends of the glulam main girder is provided. In order to prevent the main girder end of the laminated wood from expanding, the girder end reinforcements 4 and 4 'are wound around the outer periphery near the end of the main girder made of laminated wood in the case of the inner cable system. Is the same as
The embodiment shown in FIG. 1D shows a case where the above-mentioned inner cable system and outer cable system are used together.
[0010]
Here, the glued laminated wood is a laminated board or small square wood or the like which is adhered in the length, width and thickness directions in parallel with each other in the fiber direction. It is a material that can be expected to have a strength equal to or higher than one material. In the present invention, the main girder 1 uses the long beam made of the laminated wood, and the prestress is applied to the main girder 1 to meet the intended use of the wooden bridge. It realizes a wooden bridge structure with character.
[0011]
Next, the fixing structure of the outer cable 3 will be described. As the fixing structure of the outer cable, an angle type shown in FIG. 2 and a fixing block type shown in FIG. 3 can be considered. 2 and 3 show an embodiment in which an inner cable and an outer cable are used together.
(Angle method)
In the angle method, as shown in FIG. 2, the fixing steel plate 5a having a width larger than the width of the square tubular girder end reinforcing material 4 wound around the outer periphery of the vicinity of the end of the glued main girder 1; An angle constituted by a plurality of reinforcing ribs 5c welded to a portion 5b projecting right and left from the girder end reinforcing member 4 when the fixing steel plate 5a is joined to one opening of the girder end reinforcing member 4. The external cable 3 is fixed by using a system fixing metal fitting 5 (see FIG. 5).
This angle fixing metal fitting 5 is used by being attached to both ends of a main girder 1 made of glued wood on which the girder end reinforcing material 4 is wound, so that a plurality of reinforcing ribs 5 c are formed on the girder end reinforcing material 4. The outer cable 3 is inserted into a through hole formed in the overhanging portion 5b of the fixing steel plate 5a in close contact with the side surface, and the overhanging portion 5b of the fixing steel plate 5a is deformed by the introduction of tension to the outer cable 3. The rib 5c and the side surface of the girder end reinforcing member 4 correspond to the force to be made to allow the prestress to be introduced into the main glue 1 of the laminated wood.
When the girder end reinforcing member 4 is made of steel, the angle type fixing bracket 5 and the girder end reinforcing member 4 are integrated by welding (see FIG. 2D), and the main body made of laminated wood is used. If it is used by attaching it to both ends of the beam 1, a more robust fixing plate is obtained, which is effective.
Further, when both the inner cable system and the outer cable system are used, a through hole for the inner cable may be formed in a portion of the angle system fixing plate 5 which is in contact with the end surface of the main girder 1 made of laminated wood. Only the PC steel material (inner cable) 2 and the PC steel material (outer cable) 3 can be fixed.
In the drawing, reference numeral 2 denotes an inner cable, 6 denotes a fixing device, 7a denotes a supporting plate, and 8 denotes a floor slab.
[0012]
(Fixing block method)
In the fixing block method, as shown in FIG. 3, a wooden fixing block is fixed to the side surface near the terminal of the main glue 1 made of laminated wood, and friction of the main girder 1 made of laminated wood and the fixing block 9 causes the outer cable 3 to be fixed. The tension is transmitted to the main beam 1 made of laminated wood as prestress.
In the case where the main girder is a joint girder formed by joining a number of glued laminated lumber beams, the fixing block 9 is disposed and fixed to an arbitrary side surface of the main girder 1 as necessary. The joining girder is divided at a certain interval, and an outer cable 3 is separately arranged between the fixing block fixed near the terminal and the fixing block disposed at an arbitrary position of the main laminated girder 1. It is also possible to introduce prestress throughout the bridge girder.
The wooden fixing block 9 is fixed to the glued main girder 1 by fixing the fixing block 9 and the glued main girder to through holes formed in the side surfaces of the fixing block 9 and the glued main girder 1. 1 is fastened by nuts 12 through supporting plates 7b provided at both ends of the PC steel material 11 for fixing.
[0013]
FIG. 4 is an enlarged view of a fixing portion between the wooden fixing block 9 and the main girder 1 made of laminated wood. P 0 In figure tension of the outer cable 3 (kN), P b denotes tension stiffness consolidating PC steel member 11 (kN). Here tension P b firmness consolidating PC steel member 11, the friction coefficient of the wooden fixing block 9 and the laminated wood made main beam 1 and mu, is obtained by the following expression.
P b = P 0 / μ
When now the friction coefficient μ of 0.5, tension P b firmness consolidating PC steel member 11 from the above equation, it is necessary approximately twice the tension of the outer cable 3. For this reason, there is a possibility that the wooden fixing block 9 and the main girder 1 made of laminated wood may be deformed due to the tension of the PC steel material 11 for fastening. In order to prevent this, utilizing the fact that the physical compressive strength of wood is large in the fiber direction, as shown in FIG. It must be placed vertically.
The prestressing force of the outer cable 3 is introduced using a fixing structure via a wooden fixing plate invented by the present applicant (see Japanese Patent Application Laid-Open No. 2000-226811 "Kibashi using a prestressed wooden deck").
[0014]
FIG. 5 (a) shows that the laminated beams with prestress introduced by the inner cable method are sequentially stacked on the pier 14 in the length direction while increasing the number of joints by the outer cable method. FIG. 5B shows a side view of an embodiment of a bridge girder by an overhanging erection method in which prestress is introduced by a pair of outer cables 3, and FIG. 5B shows a top view of the bridge girder.
As shown in FIG. 5 (b), in this embodiment, the joining main girder 1 which is formed by joining a plurality of glued laminated long beams installed on the uppermost stage of the bridge girder is disposed at both ends of the main girder. The angle type fixing bracket 5 and two pairs of fixing blocks 9 disposed in the middle of the main girder are divided into three sections, and a pair of external cables are disposed in each section to apply prestress. This effectively introduces prestress to the entire long bridge girder. This makes it possible to build a wooden bridge with a central span of 100 m.
[0015]
The construction procedure of the external cable type prestressed glued laminated girder by the overhang construction method shown in FIG. 5 will be described with reference to FIG.
(A) First, a glued laminated lumber beam 1a into which prestress has been introduced by the inner cable 2 is installed and fixed on the pier 14.
(B) The laminated beams 1b and 1c having the same shape are joined and stacked on the laminated beam 1a with the joining aid 13 (see FIG. 1).
(C) An angle fixing metal fitting is attached to both ends of the connecting beams of the laminated beams 1b and 1c, and the outer cable 3 is disposed between the fixing beams and tensioned.
(D) The laminated beams 1a and 1b, 1a and 1c are respectively attached to the connecting beams of the laminated beams 1b and 1c using pre-stresses by the tension of the external cable by using the slip stoppers 15. Stick.
(E) Glued-lambda long beams 1d, 1e, 1f having the same shape as the glued-lambda long beam 1a are joined to the joining beams of the glued-lambda long beams 1b, 1c, by means of a joining aid 13 (see FIG. 1). In the same manner as described in (c), an angle type fixing bracket is attached to both ends of the glued laminated beams 1d, 1e, and 1f, and an outer cable is disposed therebetween. Then, while introducing the prestress, the connecting beams 1b and 1c and the connecting beams 1d, 1e and 1f are fixed by the stoppers in the same manner as described in (d) above.
(F) Thereafter, this operation is repeated as many times as necessary to complete the overhang by the laminated timber long beams.
(G) The overhanging portions of the glued laminated beam are closed by arranging the glued laminated main girder 1 by the same length as the bridge length, and fixing the fixing block to the side surface of the main girder 1. While laying the cables and tensioning them, an overhanging construction method using an external cable type prestressed laminated girder bridge girder by fixing the glued lumber main girder 1 and the glued lumber connecting beam located immediately below it with a slip stopper 15 is provided. To complete the bridge girder.
[0016]
According to the present invention, the following effects can be realized.
{Circle around (1)} Since the span of a wooden bridge, which was about 25 m in the past, can be expanded to about 100 m, a wooden bridge with few piers can be constructed even in a river having a wide river width, and the chance of the wooden bridge being washed away due to flooding can be reduced.
(2) Since the PC steel material that introduces prestress is arranged along the side of the bridge girder, maintenance and repair are easy.
(3) Expansion of the erection method (overhang erection method) becomes possible.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a prestressed glulam timber girder.
FIG. 2 is a structural diagram of an embodiment of a fixing part of a bridge girder made of an external cable type prestressed laminated wood using an angle type fixing metal.
FIG. 3 is a structural diagram of an embodiment of a fixing part of a bridge girder made of an external cable type prestressed laminated wood using a fixing block.
FIG. 4 is an enlarged view of a fixing block fixing portion.
FIG. 5 is a structural view of an embodiment of an external cable type prestressed laminated timber bridge girder by an overhanging erection method.
FIG. 6 is an explanatory view of a construction procedure of an external cable type prestressed glued laminated girder by an overhanging erection method.
[Explanation of symbols]
1: Bridge girder made of laminated wood 1a to 1f: Long beam made of laminated wood 2: Inner cable PC steel 3: Outer cable PC steel 4: Girder end reinforcement 5: Angle type fixing bracket 5a: Fixing steel plate 5b: Overhang of fixing plate Part 5c: rib of fixing plate 6: fixing device 7a, 7b: support plate 8: floor slab 9: fixing block 10: fixing plate 11: PC steel material for fastening 12: nut 13: joining aid 14: bridge pier 15: misalignment Clasp P o : Tension of outer cable P b : Tension of PC steel for fastening

Claims (8)

集成材からなる長梁を橋桁の主桁に用いて構成した木橋において、該集成材製主桁に外ケーブルが配設され、プレストレスが導入されてなることを特徴とする外ケーブル方式プレストレスト集成材製橋桁を採用してなる木橋。An outer cable type prestressed assembly, wherein an outer cable is arranged on the main girder made of the glued lumber and prestress is introduced in a wooden bridge using long beams made of glued lumber as a main girder of the bridge girder. A wooden bridge that uses timber bridge girders. 前記外ケーブルが、集成材製主桁の両端部に巻着される鋼製の桁端補強材に被着又は溶着された鋼製の定着板と同定着板が前記桁端補強材から張り出した部分をプレストレス力に耐え得るように補強するリブとから構成されてなるアングル方式定着金具に定着されてなることを特徴とする請求項1に記載の外ケーブル方式プレストレスト集成材製橋桁を採用してなる木橋。The outer cable is a steel fixing plate and an identification attaching plate adhered or welded to a steel girder end reinforcement material wound around both ends of a laminated girder main girder protruding from the girder end reinforcement material. 2. A bridge girder made of an outer cable type prestressed glued laminated lumber according to claim 1, wherein the bridge girder is fixed to an angle type fixing bracket comprising a rib for reinforcing a portion to withstand a prestressing force. A wooden bridge. 前記外ケーブルが、前記集成材製主桁の両端部付近の側面に固着された木製の定着ブロックに定着されてなることを特徴とする請求項1に記載の外ケーブル方式プレストレスト集成材製橋桁を採用してなる木橋。The outer cable type prestressed laminated timber bridge girder according to claim 1, wherein the outer cable is fixed to a wooden anchoring block fixed to a side surface near both ends of the glued main girder. A wooden bridge that has been adopted. 前記集成材製主桁が、集成材製の長梁複数本が角筒形の接合補助具を介して接合された接合梁からなることを特徴とする請求項1〜3のいずれか1項に記載の外ケーブル方式プレストレスト集成材製橋桁を採用してなる木橋。The said main body girder made of laminated wood consists of the joining beam which several long beams made of laminated wood were joined through the joining aid of a square-tube shape, The laminated girder main girder of any one of Claims 1-3 characterized by the above-mentioned. A wooden bridge that adopts the pre-stressed glued laminated girder girder described above. 前記集成材製主桁が、集成材製の長梁複数本が内部中央に仕切壁を有する角筒形の接合補助具を介して接合されてなることを特徴とする請求項1〜3のいずれか1項に記載の外ケーブル方式プレストレスト集成材製橋桁を採用してなる木橋。The main body girder made of laminated wood, wherein a plurality of long beams made of laminated wood are joined via a rectangular cylindrical joining aid having a partition wall at the center of the inside. A wooden bridge using the external cable type prestressed glued laminated girder according to item 1. 前記集成材製主桁が、その長さ方向に貫通孔が穿設され、かつ前記貫通孔に貫挿されたPC鋼材と、前記PC鋼材の両端に配設された定着具とにより、前記主桁にプレストレスが導入される内ケーブル方式を併用してなることを特徴とする請求項1〜5のいずれか1項に記載の外ケーブル方式プレストレスト集成材製橋桁を採用してなる木橋。The main girder made of laminated wood is provided with a through-hole in the longitudinal direction thereof, and a PC steel material penetrated through the through-hole, and fixing devices provided at both ends of the PC steel material, and the main girder is provided with the main girder. 6. A wooden bridge using an external cable type prestressed laminated timber girder according to any one of claims 1 to 5, wherein an internal cable type in which prestress is introduced into the girder is used together. 内ケーブル方式によりプレストレスが導入された集成材製長梁を、橋脚上に順次その接合本数を増やしながら積み重ね、1段積み重ねる度ごとに上段に設置した前記内ケーブル方式によりプレストレスが導入された長梁を接合した接合梁に、外ケーブルを配設してプレストレスを加えつつ上下の集成材製長梁を複数のずれ止め金具等にて固定して木橋の橋桁を張り出し架設することを特徴とする外ケーブル方式を用いた木橋の橋桁の張り出し架設工法。Prestress was introduced by the inner cable method in which prelaminated long beams with prestress introduced by the inner cable method were sequentially stacked on the piers while increasing the number of joints. An outer cable is placed on the joint beam that joins the long beams, prestressing is applied, and the upper and lower glued laminated timber beams are fixed with multiple stoppers etc., and the bridge girder of the wooden bridge is extended and installed. A method of overhanging the bridge girder of a wooden bridge using an external cable method. 内ケーブル方式によりプレストレスが導入された集成材製長梁を、橋脚上に順次その接合本数を増やしながら積み重ね、1段積み重ねる度ごとに上段に設置した前記内ケーブル方式によりプレストレスが導入された長梁を接合した接合梁に外ケーブルを配設してプレストレスを加えつつ上下の集成材製長梁を複数のずれ止め金具等にて固定して構成されてなることを特徴とする外ケーブル方式を用いた張り出し架設工法による木橋の橋桁。Prestress was introduced by the inner cable method in which prelaminated long beams with prestress introduced by the inner cable method were sequentially stacked on the piers while increasing the number of joints. An outer cable, comprising an outer cable arranged on a joint beam joined with a long beam and applying prestress while fixing the upper and lower laminated beam beams with a plurality of slip stoppers or the like. Bridge girder of wooden bridge by overhanging erection method.
JP2002203226A 2002-07-11 2002-07-11 Wooden bridge employing outer cable-based prestressed laminated lumber bridge girder, wooden bridge overhanging erection method based on outer cable system, and wooden bridge girder constructed according to the overhanging erection method Pending JP2004044236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203226A JP2004044236A (en) 2002-07-11 2002-07-11 Wooden bridge employing outer cable-based prestressed laminated lumber bridge girder, wooden bridge overhanging erection method based on outer cable system, and wooden bridge girder constructed according to the overhanging erection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203226A JP2004044236A (en) 2002-07-11 2002-07-11 Wooden bridge employing outer cable-based prestressed laminated lumber bridge girder, wooden bridge overhanging erection method based on outer cable system, and wooden bridge girder constructed according to the overhanging erection method

Publications (1)

Publication Number Publication Date
JP2004044236A true JP2004044236A (en) 2004-02-12

Family

ID=31709176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203226A Pending JP2004044236A (en) 2002-07-11 2002-07-11 Wooden bridge employing outer cable-based prestressed laminated lumber bridge girder, wooden bridge overhanging erection method based on outer cable system, and wooden bridge girder constructed according to the overhanging erection method

Country Status (1)

Country Link
JP (1) JP2004044236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536825A (en) * 2014-06-30 2017-03-22 株式会社高知丸高 Bridge construction method and bridge structure
CN111472282A (en) * 2020-04-23 2020-07-31 乔磊 Prestressed anchorage utensil is used in road bridge construction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536825A (en) * 2014-06-30 2017-03-22 株式会社高知丸高 Bridge construction method and bridge structure
CN111472282A (en) * 2020-04-23 2020-07-31 乔磊 Prestressed anchorage utensil is used in road bridge construction

Similar Documents

Publication Publication Date Title
KR100609304B1 (en) Precast Composition I-Beam with Concrete Panel and Corrugated Steel Web Girder
JP4834197B2 (en) Construction method of continuous girder bridge, composite floor slab and continuous girder bridge
JP2006316580A (en) Corrugated steel plate web pc composite beam and construction method of bridge using corrugated steel plate web pc composite beam
CA2202193A1 (en) Reusable composite bridge structure
CN110846996A (en) Construction method of continuous composite beam bridge and continuous composite beam bridge
JP2003268719A (en) Steel-concrete composite beam and its installation method
Cook Composite construction methods
JP2001027005A (en) Connection structure of steel member and concrete in a composite structure
JPH08333714A (en) Constructing method of columnar structure used with hybrid prefabricated segments
JP2003119718A (en) Bridge
JP2001182016A (en) Construction method of truss structure bridge
JP2005226246A (en) Joining structure for members
KR101583401B1 (en) The continuous hybrid girder consist of concrete block and steel block which is can add prestress by gap difference between top and bottom of connection face of blocks
JP4928341B2 (en) Construction method of truss bridge
JP2004044236A (en) Wooden bridge employing outer cable-based prestressed laminated lumber bridge girder, wooden bridge overhanging erection method based on outer cable system, and wooden bridge girder constructed according to the overhanging erection method
KR100622452B1 (en) Multi-H section steel girder compounded part
KR101426155B1 (en) The hybrid rahmen structure which can add prestress on steel girder of horizontal member by gap difference of connection face between vertical member and steel girder of horizontal member
JPH05340031A (en) Prestressed concrete girder and its manufacture
JP2007046277A (en) Bridge girder installing method
JP2000064222A (en) Elevated bridge
JP2007009517A (en) Continuous girder structure of multispan girder bridge
JP3931635B2 (en) Composite box girder and its construction method
JP2004011300A (en) Pc composite structure, pc bridge and prestressing method
JPH023843B2 (en)
CN108252215A (en) Connection structure of the board-like Suo-tower of trepanning and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071203