JP2004044138A - Pump gate - Google Patents

Pump gate Download PDF

Info

Publication number
JP2004044138A
JP2004044138A JP2002200311A JP2002200311A JP2004044138A JP 2004044138 A JP2004044138 A JP 2004044138A JP 2002200311 A JP2002200311 A JP 2002200311A JP 2002200311 A JP2002200311 A JP 2002200311A JP 2004044138 A JP2004044138 A JP 2004044138A
Authority
JP
Japan
Prior art keywords
pump
suction
ceiling surface
suction port
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002200311A
Other languages
Japanese (ja)
Inventor
Kenji Nakano
中野 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002200311A priority Critical patent/JP2004044138A/en
Publication of JP2004044138A publication Critical patent/JP2004044138A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Barrages (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To lower the lowest operatable water level of a pump. <P>SOLUTION: A gate door 3 is installed openably/closably in the middle position of a waterway 2 reaching a river stream 1. An intake passage 9a communicating with a suction opening 10 of the upstream side face of the gate door 3 and delivery opening 11 of the downstream side face are formed. A horizontal pump 4 is connected to the delivery opening to constitute a pump gate. The opening 10 is formed in a rectangular shape to give a ceiling extending in the right and left horizontal direction in a low position near to the axial center of the pump 4. The corners 19 at the right and left ends of the ceiling are rounded and the sharp corners are eliminated. The ceiling face 18 of the passage 9a is constituted of a ceiling face 18c rising while smoothly curving from the ceiling face 18a of the opening 10 to the ceiling face 18b of the opening 11. The upstream side end of the face 18a is formed horizontally or somewhat downward of the horizon and connected to the opening 10. When the operatable water level is reached after closure of the waterway by the door 3, the pump 4 is operated to forcibly drain from the waterway 2 to the river. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は本川(比較的大規模な河川)につながる水路(小河川を含む)の途中に設置して、水路下流側の外水位が上昇してゲートを閉じたときに水路上流側から水路下流側へ強制排水するためのポンプをゲートに一体に取り付けてなるポンプゲートに関するものである。
【0002】
【従来の技術】
本川となる比較的大規模な河川につながっている雨水排水路や農業用水路の如き水路(小河川を含む)には、通常、上流側から下流側へ流れる水量を調節して本川への排水量を調節するための排水ゲートが設置されているが、台風又は集中豪雨時等、本川及び水路への水の流入量が一時的に増大して水位が急激に上昇する場合には、排水ゲートを全開にしても水路の水(内水)を充分に排水できなくなるだけでなく、本川の水(外水)が水路へ逆流すると、水路から水が溢れることにより周囲が冠水して大きな災害が起こることになる。そのため、このような災害を防ぐための一手段として、水路上流側から水路下流側へ水を強制排水できて、本川の水位が上昇しても本川から水路への水の逆流を防止できるようにした排水設備としてのポンプゲートが水路の途中に設置される場合がある。
【0003】
従来、この種のポンプゲートの1つとしては、図6にその一例の概略を示す如き川表タイプのものがある。これは、本川1につながる水路2の途中の所要個所、たとえば、図6に示す如く本川1との合流部付近に、ローラーゲート扉体の如きゲート扉体3を昇降可能に配置し、且つ該ゲート扉体3の水路上下流方向の下流側面部に横軸ポンプ4を一体的に取り付けてポンプゲート5とし、上方の操作台6上に設置したゲート昇降機7の操作で上記ポンプゲート5を昇降(開閉)できるようにしてあり、水路2の水位(内水位)よりも本川1の水位(外水位)が低いときには、ポンプゲート5のゲート扉体3を図6に二点鎖線で示す如く引き上げて水路2を開放させることにより、水路2の水を本川1側へ自然流下により排水させるようにし、一方、内水位よりも外水位の方が高くなるときには、逆流を防ぐために、図6に実線で示す如くポンプゲート5を下降させてゲート扉体3で水路2を閉鎖し、ポンプ運転に備えるようにし、内水位が上昇してポンプ運転可能水位に達すると、横軸ポンプ4を運転し、これにより内水を強制的に本川側へ排出させるようにしている。なお、8は上記横軸ポンプ4の給電ケーブルを示す。
【0004】
上記横軸ポンプゲートを構成しているゲート扉体3と横軸ポンプ4との具体的な構成は、図7(イ)(ロ)にその一例を拡大して示す如く、ゲート扉体3の下部所要位置の1ヶ所又は2ヶ所に、水路2の上流側に吸込口10を開口させ、又、水路2の下流側に吹出口11を開口させるようにポンプ用の吸込み流路9を貫通させて設け、該吸込み流路9は、全長に亘りポンプ口径と対応する内径を有し且つ水路2の上下流方向にほぼ水平に形成してある。一方、上記横軸ポンプ4は、一端側を吸入口12aとし且つ他端側を吐出口12bとした横向きのポンプケーシング12内の軸心位置に、水中電動機13を配置して支持部材14にてポンプケーシング12の内面に固定すると共に、該水中電動機13の出力軸(図示せず)に軸流のポンプ翼15を一体に連結し、更に、上記ポンプケーシング12の吐出口12bに、ポンプ運転停止時における逆流を防止するためのフラップ弁16を備えてなる構成として、上記ポンプケーシング12の吸入口12a側を、上記ゲート扉体3の吸込み流路9の吹出口11の周辺部に取り付けて、吹出口11に連通させるようにしてある。
【0005】
ところで、一般に、ポンプゲート5は、運転可能な吸込水位を低く設定することができれば、ポンプの起動及び停止回数を減少させることができるため、市場では、吸込側の運転可能最低水位をより低くすることが望まれている。
【0006】
【発明が解決しようとする課題】
ところが、低水位運転時には、吸込側水面W.L.に空気吸込渦17が発生して横軸ポンプ4が空気を吸込み易くなり、このようにして横軸ポンプ4に空気が吸込まれるようになると、該横軸ポンプ4に振動が発生したり、損傷したりする虞が生じるという問題がある。この対策としては、吸込み側に、空気吸込渦発生防止用の吸込みスロート等の部品を取り付けることが考えられるが、上述した如き川表タイプのポンプゲート5では、吸込み流路9の吸込口10側に、上記空気吸込渦発生防止用の吸込スロート等の部品を取り付けると、ゲート扉体3の上流側面より突出することになり、ゲート開閉の妨げになるため採用し得ない。
【0007】
そのため、現状では、横軸ポンプ4の回転数を下げて流量を低下させることにより、水面からの空気吸込を防ぐようにすることが行われているが、この場合には、上記横軸ポンプ4の回転数制御器が必要になるため、製造コストが嵩むという問題がある。
【0008】
更に、上記従来のゲート扉体3の吸込み流路9は、全長に亘りポンプ口径に対応した内径を有するように形成されているため、吸込口10も円形となるが、吸込口10の断面形状が円形の場合、水面側(上方)から流れ込む水流が吸込口10の上端部に集中し易く、又、流れの旋回が発生し易いことから空気吸込渦17が形成されやすいという問題もある。
【0009】
そこで、本発明は、ゲート扉体の上流側面部に何ら部品を取り付けることなくポンプ運転可能最低水位を低く設定することができ、更に、空気吸込渦の発生を抑えることができて低水位運転時においても水面からの空気吸込の発生を抑制することができるようにするポンプゲートを提供しようとするものである。
【0010】
【課題を解決するための手段】
本発明は、上記課題を解決するために、水路を開閉するゲート扉体の所要位置に、該ゲート扉体の水路上流側面に開口した吸込口と水路下流側面に開口した吹出口とを連通するポンプ用の吸込み流路を設け、該吸込み流路の吹出口に、ポンプの吸入側を一致させて取り付けて、上記ゲート扉体により水路を閉じて上記ポンプを駆動することにより上流側から下流側へ強制排水できるようにしてあるポンプゲートにおいて、上記吸込み流路の吸込口側の天井面を、吹出口側の天井面よりも低くなるように形成してなる構成とし、更に、上記吸込み流路の吸込口側の天井面と吹出口側の天井面を、平面の天井面で連続させた構成とする。
【0011】
水路から、河川への強制排水を行う場合は、ゲート扉体により水路を閉塞させた状態としてポンプを駆動させる。この際、吸込み流路の吸込口は天井面が低く設定されていて水面から離されるようになるため、従来に比して水路内の水位が低くても運転可能になる。
【0012】
又、上記吸込み流路の天井面を、吸込口側から吹出口側に向けて滑らかに湾曲して上昇する構成とすることにより、吸込口側の天井面と吹出口側の天井面に大きい高低差があっても上記吸込み流路を流通する水流の向きが急に変化することはなく、このため水流が天井面より剥離して流路抵抗が増加し、ポンプの吸入抵抗が増加する虞を未然に防止することができる。
【0013】
更に又、吸込み流路の吸込口側の天井面の上流側端部が、水平若しくは水平よりもやや下向きとなるようにした構成とすることにより、ゲート扉体上流側の吸込側水面付近における下向き流れを弱めることができ、吸込側水面が波立ったときにも、水面から空気を吸込む虞を防止できる。
【0014】
更に又、吸込み流路の吸込口を、天井面が水面と平行になるよう水平に延びる角型形状とした構成とすることにより、水面側から流れ込む水流が吸込口の天井面の1個所に集中する虞を防止できると共に、流れの旋回が発生することを抑止できて、空気吸込渦の発生をより効果的に抑制できる。
【0015】
更に又、吸込口の天井部の左右両端の角部を角のない円弧形状もしくは角部を段階的に曲げて角部の角度を広げた形状とした構成とすることにより、吸込口の天井部の角部における圧力低下現象を防止して、該角部における空気吸込現象の発生を抑制できる。
【0016】
更に又、吸込み流路の吸込口を左右幅広に形成するようにした構成とすることにより、吸込み流路の吸込口の面積を広げることができるため、該吸込口部分を通過する水流の単位面積当りの流速を遅くすることができて、空気吸込渦の発生を更に抑制できる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0018】
図1は本発明のポンプゲートの実施の一形態を示すもので、図6及び図7(イ)(ロ)に示した川表タイプのポンプゲート5と同様に、本川1につながる水路2の途中の所要個所に、ゲート扉体3をゲート昇降機7により昇降可能に備え且つ該ゲート扉体3に、水路上流側の吸込口10と水路下流側の吹出口11を連通する吸込み流路9を設け、該吸込み流路9の吹出口11に、横軸ポンプ4の吸入口12a側を一致させてポンプケーシング12を取り付けた構成としてあるポンプゲートにおいて、図6、図7(イ)(ロ)に示すゲート扉体3内に形成する吸込み流路9の如き、吸込口10から吹出口11に至る吸込み流路9の天井面を水平状態に形成した構成に代えて、吸込み流路9の天井面18を、吸込口10側から滑らかに湾曲して吹出口11側へ上向きとなるような形状とする。すなわち、吸込口10の天井面18aの位置を、吹出口11の天井面18bの位置よりも低い位置、たとえば、吹出口11に一致させて取り付けた横軸ポンプ4の軸心部付近にまで下がった位置となるような低い位置まで下げると共に、該吸込口10の天井面18aと吹出口11の天井面18bとの間の天井面18cを滑らかに湾曲しながら上昇するように形成してなる吸込み流路9aとする。
【0019】
又、上記吸込み流路9aの天井面18における吸込口10側の天井面18aの端部は、上流側に向けて水平若しくは水平よりもやや下向きの角度で吸込口10に連なるようにする。
【0020】
更に、上記吸込み流路9aの吸込口10は、天井面18aが水面と平行となるように少なくとも上半部が左右幅方向に水平に延びるようにして角型形状となるようにし、吸込口10の断面形状を矩形となるようにする。又、上記矩形とした吸込口10の天井面18aの左右両端の角部19は、角を落として丸みをつけるようにする。
【0021】
更に又、上記矩形とした吸込口10は、該吸込口10部分を流通する水流の単位面積当りの流速を低下させることができるように、左右方向へ幅広に形成するようにする。
【0022】
その他、図7(イ)(ロ)に示したものと同一のものには同一符号が付してある。
【0023】
上記本発明のポンプゲートを使用する場合は、従来のポンプゲート5と同様に、内水位よりも外水位が低いときには、ゲート昇降機7によりゲート扉体3を引き上げて水路2を開放させる。これにより、水路2の水は本川側へ自然流下により排水される。
【0024】
一方、内水位よりも外水位が高くなる時には、図1に実線で示す如く、開閉装置によりゲート扉体3を下降させ、水路2を閉鎖した状態としてポンプ運転に備え、内水位が増水してポンプ運転水位に達したら、横軸ポンプ4を運転させることにより、内水は、吸込み流路9aを通して横軸ポンプ4に導かれた後、強制的に本川側となる下流側へ排水されるようになる。この際、上記吸込み流路9aの吸込口10の天井面18aの位置が、横軸ポンプ4の軸心位置付近の低位置となるように形成してあるため、上記横軸ポンプ4は、図7(イ)(ロ)に示した如き従来の吸込み流路9に接続した場合に比して、より低い水位で運転が可能になり、本発明のポンプゲートによれば、横軸ポンプ4の運転可能最低水位を低く設定することができる。又、上記吸込み流路9aの天井面18は吸込口10の天井面18aから吹出口11の天井面18bまで滑らかに湾曲させた天井面18cで連続させてあるため、上記吸込口10の天井面18aと吹出口11の天井面18bとの高低差が大きくても上記吸込み流路9aを流通する水流の向きが急に変化することはなく、このため水流が天井面18より剥離して流路抵抗が増加する虞を未然に防止することができる。
【0025】
又、吸込み流路9aの天井面18における吸込口10の天井面18aの上流側端部が水平若しくは水平よりもやや下向きの角度で吸込口10に連なるようにしてあるため、該吸込口10に流入する水流の下向き流れを弱めることができ、たとえば、図2に示す如く、吸込み流路9aの吸込口10の天井面18aの上流側端部を、上向きの角度で吸込口10に連なるように形成した場合には、上記吸込口10に流入する水流の下向き流速が大となるため、ポンプ4による強制排水を行うときにゲート扉体3の上流側の吸込側水面が波立つと、波の打ち込みに伴い図2に矢印lで示す如く吸込口10の天井面18aの上流側端部に沿って空気の吸い込みが生じる虞がある。この点、本発明のポンプゲートではゲート扉体3の上流側の水面が波立った場合でも空気を吸込む虞を未然に防止できる。
【0026】
一方、図3に示す如く、吸込み流路9aの吸込口10の天井面18aの上流側端部が下向きの急な角度で吸込口10に連なるようにした場合には、該吸込口10の位置にて、上方から流入する水流に急な方向転換が生じるようになるため、図3に矢印mで示す如く、吸込口10の天井面18aから水流が剥離して流路抵抗が増える虞があるが、本発明のポンプゲートにおける吸込み流路9aの吸込口10の天井面18aの上流側端部は、水平又は水平よりもやや下向きの角度で吸込口10に連なるようにさせてあるため、水流が天井面18aから18c,18bへ沿い流れて天井面18から剥離する虞を解消することができる。
【0027】
更に、上記吸込み流路9aの吸込口10を、天井部が左右方向へ水平に延びる矩形状となるように形成しておくと、従来のポンプゲート5の吸込み流路9の如く吸込口10を円形としていた場合に比して、流れの旋回を減少させることができ、しかも、上方からの流れが一部に集中することはなくなるため、空気吸込渦の発生を更に抑制することができる。又、図4に示す如く、矩形に形成した吸込口10の天井面18における左右両端部の角部19の角が落とされてなくて直角に形成されている場合には、該角部19における圧力低下現象が生じて、図4に矢印nで示す如く、該角部19に向けて水面からの空気の吸込が発生する虞があるが、本発明のポンプゲートにおける吸込み流路9aの吸込口10の如く、天井面18の両端部の角部19を、角をおとして丸みをつけた形状としてあると、角部19における圧力低下現象の発生を抑えることができ、水面からの空気の吸込が発生する虞を抑止できる。
【0028】
更に又、上記矩形とした吸込口10を、幅広に形成して、吸込口10の面積を拡大した構成とすると、該吸込口10を流通する水流の流速を低下させることができ、これにより空気が水流に伴って横軸ポンプ4へ搬送される虞をより確実に防止することができる。
【0029】
なお、本発明は上記実施の形態のみに限定されるものではなく、横軸ポンプ4としては、ポンプケーシング12の軸心位置に配した水中電動機13によりポンプ翼15を駆動する形式のものを示したが、ポンプケーシング12の中心部にはポンプ15翼のみを回転可能に支持させ、該ポンプ翼15をポンプケーシング12の外部に設けた水中電動機或いは電動機により駆動する形式のものを用いてもよいこと、ゲート扉体3に設ける吸込み流路9aの吸込口10は、その上半部が、左右水平方向に延びる天井部を備えた角型に形成してあれば、下半部は半円状や半楕円状等、角型以外の形状を採用してもよいこと、図1では、吸込み流路9aの天井面18を、吸込口10の天井面18aと吹出口11の天井面18bとの間を、滑らかに湾曲しながら上昇する天井面18cにより連続させた形状として示したが、吸込口10の天井面18aと吹出口11の天井面18bとの高低差が少ない場合には、平面の天井面により連続させるようにしてもよいこと、吸込口10の天井面18aの左右両端の角部19は、角を落として丸みをつけた形状として示したが、図5に示す如く、角部19を段階的に曲げて角部の角度を広げた形状としてもよいこと、その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0030】
【発明の効果】
以上述べた如く、本発明のポンプゲートによれば、以下の如き優れた効果を発揮する。
(1)水路を開閉するゲート扉体の所要位置に、該ゲート扉体の水路上流側面に開口した吸込口と水路下流側面に開口した吹出口とを連通するポンプ用の吸込み流路を設け、該吸込み流路の吹出口に、ポンプの吸入側を一致させて取り付けて、上記ゲート扉体により水路を閉じて上記ポンプを駆動することにより上流側から下流側へ強制排水できるようにしてあるポンプゲートにおいて、上記吸込み流路の吸込口側の天井面を、吹出口側の天井面よりも低くなるように形成してなる構成とし、更に、上記吸込み流路の吸込口側の天井面と吹出口側の天井面を、平面の天井面で連続させた構成としてあるので、ポンプの運転可能最低水位を低く設定することができる。
(2)吸込み流路の吸込口側の天井面と吹出口側の天井面を、滑らかに湾曲した曲面の天井面で連続させた構成とすることにより、吸込口側の天井面と吹出口側の天井面に大きい高低差があっても吸込み流路を流通する水流の向きが急に変化することはなく、このため水流が天井面より剥離して流路抵抗が増加し、ポンプの吸込抵抗が増加する虞を未然に防止することができる。
(3)吸込み流路の吸込口側の天井面の上流側端部が、水平若しくは水平よりもやや下向きとなるようにした構成とすることにより、ゲート扉体上流側の吸込側水面付近における下向き流れを弱めることができ、吸込側水面が波立った場合であっても、水面から空気を吸込む虞を抑制できる。
(4)吸込み流路の吸込口を、天井面が水面と平行になるよう水平に延びる角型形状とした構成とすることにより、水面側から流れ込む水流が吸込口の天井面の1個所に集中する虞を防止できると共に、流れの旋回が発生することを抑止できて、空気吸込渦の発生をより効果的に抑制できる。
(5)吸込口の天井部の左右両端の角部を角のない円弧形状もしくは角部を段階的に曲げて角部の角度を広げた形状とした構成とすることにより、吸込口の天井部の角部における圧力低下現象を防止して、該角部における空気吸込現象の発生を抑制できる。
(6)吸込み流路の吸込口を左右幅広に形成するようにした構成とすることにより、吸込み流路の吸込口の面積を広げることができるため、該吸込口部分を通過する水流の単位面積当りの流速を遅くすることができて、空気吸込渦の発生を更に抑制することができる。
【図面の簡単な説明】
【図1】本発明のポンプゲートの実施の一形態を示すもので、(イ)は概略切断側面図、(ロ)は概略正面図である。
【図2】図1のポンプゲートの比較として、吸込み流路の天井面の上流側端部を上向きにして吸込口に連なるようにした場合に生じる空気の吸込現象を示す図である。
【図3】図1のポンプゲートの比較として、吸込み流路の天井面の上流側端部を急角度の下向き状態で吸込口に連なるようにした場合に生じる水流の天井面からの剥離現象を示す図である。
【図4】図1のポンプゲートの比較として、角型形状に形成した吸込口の天井部の角部に角がある場合に生じる水面からの空気の吸込現象を示す図である。
【図5】本発明における吸込口の天井部の左右両端の角部の他の形状を示す概略正面図である。
【図6】従来用いられているポンプゲートの一例の概略を示す切断側面図である。
【図7】図6のポンプゲートを拡大して示すもので、(イ)は切断側面図、(ロ)は正面図である。
【符号の説明】
2 水路
3 ゲート扉体
4 横軸ポンプ(ポンプ)
9,9a 吸込み流路
10 吸込口
11 吹出口
18,18a,18b,18c 天井面
19 角部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is installed in the middle of a waterway (including a small river) leading to the main river (a relatively large river), and when the outside water level on the downstream side of the waterway rises and the gate is closed, the waterway from the upstream of the waterway is The present invention relates to a pump gate in which a pump for forcibly draining water downstream is integrally attached to a gate.
[0002]
[Prior art]
Waterways (including small rivers), such as rainwater drains and agricultural waterways, that lead to relatively large rivers that become the main river, usually regulate the amount of water flowing from upstream to downstream, and Drainage gates are provided to control the amount of drainage.However, when the inflow of water into the main river and waterway increases temporarily and the water level rises rapidly, such as during a typhoon or heavy rain, Even if the gate is fully opened, not only the water in the waterway (inland water) cannot be drained sufficiently, but also when the water of the main river (outside water) flows back to the waterway, the water overflows from the waterway and the surrounding area is flooded. A disaster will occur. Therefore, as one way to prevent such disasters, water can be forcibly drained from the upstream of the water channel to the downstream of the water channel, and even if the water level of the main river rises, the backflow of water from the main river to the water channel can be prevented. There is a case where a pump gate as the drainage facility is installed in the middle of the waterway.
[0003]
Conventionally, as one of such pump gates, there is a river table type as schematically shown in FIG. This means that a gate door body 3 such as a roller gate door body is arranged to be able to ascend and descend at a required point in the middle of a waterway 2 leading to the main river 1, for example, near a junction with the main river 1 as shown in FIG. Further, a horizontal shaft pump 4 is integrally attached to the downstream side surface of the gate door body 3 in the water channel downstream direction to form a pump gate 5, and the pump gate 5 is operated by operating a gate elevator 7 installed on an upper operation table 6. When the water level (outside water level) of the main river 1 is lower than the water level (inner water level) of the water channel 2, the gate door 3 of the pump gate 5 is indicated by a two-dot chain line in FIG. By pulling up and opening the waterway 2 as shown, the water in the waterway 2 is drained by natural flow to the main river 1 side. On the other hand, when the external water level is higher than the internal water level, to prevent backflow, As shown by the solid line in FIG. 5 is lowered to close the water channel 2 with the gate door body 3 so as to prepare for the pump operation. When the internal water level rises and reaches the pump operable water level, the horizontal axis pump 4 is operated, thereby discharging the internal water. It is forcibly discharged to the Honkawa side. Reference numeral 8 denotes a power supply cable for the horizontal shaft pump 4.
[0004]
The specific configuration of the gate door 3 and the horizontal pump 4 constituting the horizontal axis pump gate is shown in FIG. 7A and FIG. At one or two lower required positions, a suction port 10 is opened at the upstream side of the water channel 2, and a suction channel 9 for a pump is penetrated so as to open an air outlet 11 at the downstream side of the water channel 2. The suction flow path 9 has an inner diameter corresponding to the diameter of the pump over the entire length, and is formed substantially horizontally in the upstream and downstream directions of the water channel 2. On the other hand, the horizontal shaft pump 4 is provided with a submersible motor 13 at an axial center position in a horizontal pump casing 12 having one end serving as a suction port 12a and the other end serving as a discharge port 12b. While being fixed to the inner surface of the pump casing 12, an axial pump blade 15 is integrally connected to an output shaft (not shown) of the underwater motor 13, and a pump operation is stopped at a discharge port 12b of the pump casing 12. As a configuration including a flap valve 16 for preventing backflow at the time, the suction port 12a side of the pump casing 12 is attached to the periphery of the outlet 11 of the suction passage 9 of the gate door body 3, It is designed to communicate with the outlet 11.
[0005]
By the way, in general, if the operable suction water level of the pump gate 5 can be set low, the number of times of starting and stopping the pump can be reduced, so that the lowest operable water level on the suction side is lowered in the market. It is desired.
[0006]
[Problems to be solved by the invention]
However, at the time of low water level operation, the suction side water surface W.W. L. When the air suction vortex 17 is generated and the horizontal axis pump 4 easily sucks air, and the air is sucked into the horizontal axis pump 4 in this way, vibration occurs in the horizontal axis pump 4, There is a problem that damage may occur. As a countermeasure, it is conceivable to attach a component such as a suction throat for preventing the generation of an air suction vortex on the suction side. If a component such as a suction throat for preventing the generation of the air suction vortex is attached to the gate door 3, the component protrudes from the upstream side surface of the gate door body 3 and hinders the opening and closing of the gate.
[0007]
Therefore, at present, it has been practiced to reduce the flow rate by lowering the rotation speed of the horizontal shaft pump 4 so as to prevent air suction from the water surface. However, there is a problem that the manufacturing cost increases because the rotation speed controller is required.
[0008]
Further, since the suction passage 9 of the conventional gate door body 3 is formed so as to have an inner diameter corresponding to the pump diameter over the entire length, the suction port 10 also has a circular shape. Is circular, there is a problem that the water flow flowing from the water surface side (above) tends to concentrate on the upper end portion of the suction port 10 and that the air is easily swirled, so that the air suction vortex 17 is easily formed.
[0009]
Therefore, the present invention can set the minimum water level at which the pump can be operated low without attaching any parts to the upstream side surface of the gate door body, and can further suppress the occurrence of air suction vortex, and operate at low water level operation. It is another object of the present invention to provide a pump gate capable of suppressing the occurrence of air suction from the water surface.
[0010]
[Means for Solving the Problems]
The present invention, in order to solve the above-mentioned problem, communicates a suction port opened on the upstream side of the channel and an outlet opened on the downstream side of the channel at a required position of the gate door that opens and closes the channel. A suction passage for the pump is provided, and the suction side of the pump is attached to the outlet of the suction passage so that the suction side of the pump coincides with the suction passage. In the pump gate configured to be capable of forcibly draining water, the ceiling surface of the suction channel on the suction port side is formed to be lower than the ceiling surface on the air outlet side, and further, the suction channel The ceiling surface on the suction port side and the ceiling surface on the air outlet side are continuous with a flat ceiling surface.
[0011]
When forcibly draining water from a channel to a river, the pump is driven with the channel closed by the gate door. At this time, the suction opening of the suction flow passage has a ceiling surface set low and is separated from the water surface, so that operation is possible even if the water level in the water channel is lower than in the past.
[0012]
Also, the ceiling surface of the suction flow path is smoothly curved and rises from the suction port side to the air outlet side, so that the ceiling surface on the air inlet side and the ceiling surface on the air outlet side have a large height. Even if there is a difference, the direction of the water flow flowing through the suction flow path does not suddenly change, and therefore, the water flow separates from the ceiling surface, the flow path resistance increases, and the suction resistance of the pump may increase. It can be prevented before it happens.
[0013]
Furthermore, the upstream end of the ceiling surface on the suction port side of the suction flow path is configured so as to be horizontal or slightly lower than horizontal, so that the upstream side of the gate door body faces downward on the suction side water surface near the suction side. The flow can be weakened, and even when the suction-side water surface is wavy, the risk of sucking air from the water surface can be prevented.
[0014]
Further, the suction port of the suction channel is formed in a rectangular shape that extends horizontally so that the ceiling surface is parallel to the water surface, so that the water flow flowing from the water surface side is concentrated at one location on the ceiling surface of the suction port. It is possible to prevent the occurrence of swirling of the flow and to suppress the occurrence of the air suction vortex more effectively.
[0015]
Furthermore, the ceiling at the left and right ends of the ceiling of the suction port is formed in a circular arc shape having no corners or a configuration in which the corners are bent stepwise so as to widen the angle of the corner, so that the ceiling of the suction port Can be prevented from occurring at the corners, and the occurrence of the air suction phenomenon at the corners can be suppressed.
[0016]
Furthermore, since the suction port of the suction channel is formed to have a wide left and right width, the area of the suction port of the suction channel can be increased, so that the unit area of the water flow passing through the suction port portion can be increased. The flow velocity per contact can be reduced, and the generation of the air suction vortex can be further suppressed.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 1 shows an embodiment of a pump gate according to the present invention. Like the river table type pump gate 5 shown in FIGS. 6 and 7 (a) and (b), a water channel 2 connected to the main river 1 is shown. A gate passage 3 is provided at a required position in the middle of the passage so as to be able to move up and down by a gate elevator 7, and the gate passage 3 communicates a suction port 10 on the upstream side of the waterway and an outlet 11 on the downstream side of the waterway. 6 and 7 (a) and (b) in a pump gate having a configuration in which the pump casing 12 is mounted so that the suction port 12a side of the horizontal axis pump 4 is aligned with the outlet 11 of the suction flow path 9. ), Instead of a configuration in which the ceiling surface of the suction passage 9 from the suction port 10 to the outlet 11 is formed in a horizontal state, such as the suction passage 9 formed in the gate door body 3 shown in FIG. The ceiling surface 18 is smoothly curved and blown from the suction port 10 side. A shape such that upwards to the mouth 11 side. That is, the position of the ceiling surface 18 a of the suction port 10 is lowered to a position lower than the position of the ceiling surface 18 b of the outlet 11, for example, to the vicinity of the axis of the horizontal shaft pump 4 attached to the outlet 11. The suction surface formed so that the ceiling surface 18c between the ceiling surface 18a of the suction port 10 and the ceiling surface 18b of the outlet 11 is smoothly curved and rises. Let it be a flow path 9a.
[0019]
The end of the ceiling surface 18a on the suction port 10 side of the ceiling surface 18 of the suction flow path 9a is connected to the suction port 10 at a horizontal angle or a slightly lower angle than the horizontal toward the upstream side.
[0020]
Further, the suction port 10 of the suction channel 9a has a square shape with at least an upper half extending horizontally in the left-right width direction so that the ceiling surface 18a is parallel to the water surface. Is made rectangular in cross section. The corners 19 at both left and right ends of the ceiling surface 18a of the rectangular suction port 10 are rounded by dropping corners.
[0021]
Further, the rectangular suction port 10 is formed to be wide in the left-right direction so that the flow rate of the water flowing through the suction port 10 per unit area can be reduced.
[0022]
In addition, the same components as those shown in FIGS. 7A and 7B are denoted by the same reference numerals.
[0023]
When the pump gate of the present invention is used, similarly to the conventional pump gate 5, when the external water level is lower than the internal water level, the gate door 3 is pulled up by the gate elevator 7 to open the water passage 2. Thereby, the water in the water channel 2 is drained to the main river side by natural flow.
[0024]
On the other hand, when the outside water level becomes higher than the inside water level, as shown by a solid line in FIG. 1, the gate door body 3 is lowered by the opening / closing device, and the water passage 2 is closed to prepare for the pump operation. When the pump operation water level is reached, the horizontal water pump 4 is operated, so that the internal water is guided to the horizontal water pump 4 through the suction passage 9a and then is forcibly discharged to the downstream side on the main river side. Become like At this time, since the position of the ceiling surface 18a of the suction port 10 of the suction flow passage 9a is formed at a low position near the axial center position of the horizontal shaft pump 4, the horizontal shaft pump 4 is 7 (a) and (b), it is possible to operate at a lower water level than when connected to the conventional suction passage 9 as shown in FIG. 7 (b). The lowest operable water level can be set low. Further, since the ceiling surface 18 of the suction passage 9a is continuously formed by a smoothly curved ceiling surface 18c from the ceiling surface 18a of the suction port 10 to the ceiling surface 18b of the air outlet 11, the ceiling surface of the suction port 10 is formed. Even if the height difference between the ceiling 18a and the ceiling surface 18b of the outlet 11 is large, the direction of the water flow flowing through the suction flow passage 9a does not suddenly change. It is possible to prevent the resistance from increasing.
[0025]
Further, since the upstream end of the ceiling surface 18a of the suction port 10 in the ceiling surface 18 of the suction flow path 9a is connected to the suction port 10 at a horizontal angle or at a slightly lower angle than the horizontal, the suction port 10 The downward flow of the inflowing water flow can be weakened. For example, as shown in FIG. 2, the upstream end of the ceiling surface 18a of the suction port 10 of the suction flow path 9a is connected to the suction port 10 at an upward angle. When formed, the downward flow velocity of the water flowing into the suction port 10 becomes large, and when the suction-side water surface on the upstream side of the gate door body 3 undulates when forced drainage is performed by the pump 4, the wave With the driving, there is a possibility that air is sucked along the upstream end of the ceiling surface 18a of the suction port 10 as shown by an arrow l in FIG. In this regard, in the pump gate of the present invention, even when the water surface on the upstream side of the gate door body 3 is wavy, it is possible to prevent the possibility of inhaling air beforehand.
[0026]
On the other hand, as shown in FIG. 3, when the upstream end of the ceiling surface 18a of the suction port 10 of the suction channel 9a is connected to the suction port 10 at a steep downward angle, the position of the suction port 10 is determined. At this time, since a sudden change of direction occurs in the water flow flowing from above, there is a possibility that the water flow separates from the ceiling surface 18a of the suction port 10 as shown by the arrow m in FIG. However, since the upstream end of the ceiling surface 18a of the suction port 10 of the suction flow passage 9a in the pump gate of the present invention is connected to the suction port 10 at a horizontal angle or at a slightly lower angle than the horizontal, the water flow Can flow along the ceiling surface 18a from the ceiling surface 18c to 18c and 18b, and can be separated from the ceiling surface 18.
[0027]
Further, when the suction port 10 of the suction flow path 9a is formed so that the ceiling portion has a rectangular shape extending horizontally in the left-right direction, the suction port 10 is formed like the suction flow path 9 of the conventional pump gate 5. The swirling of the flow can be reduced as compared with the case of the circular shape, and the flow from above does not concentrate on a part, so that the generation of the air suction vortex can be further suppressed. As shown in FIG. 4, when the corners 19 at the left and right end portions of the ceiling surface 18 of the rectangular suction port 10 are not dropped and are formed at right angles, the corner 19 A pressure drop may occur, and air may be sucked from the water surface toward the corner 19 as shown by an arrow n in FIG. 4, but the suction port of the suction flow passage 9a in the pump gate of the present invention. When the corners 19 at both ends of the ceiling surface 18 are rounded with rounded corners as in 10, the occurrence of a pressure drop phenomenon at the corners 19 can be suppressed, and air is sucked from the water surface. Can be suppressed.
[0028]
Further, if the rectangular suction port 10 is formed to be wide and the area of the suction port 10 is enlarged, the flow velocity of the water flow flowing through the suction port 10 can be reduced, whereby the air Can be more reliably prevented from being transported to the horizontal pump 4 with the water flow.
[0029]
Note that the present invention is not limited to the above embodiment, and the horizontal shaft pump 4 is of a type in which a pump blade 15 is driven by a submersible electric motor 13 disposed at an axial position of a pump casing 12. However, only the pump 15 blades may be rotatably supported at the center of the pump casing 12, and the pump blades 15 may be driven by a submersible electric motor or an electric motor provided outside the pump casing 12. That is, if the suction port 10 of the suction channel 9a provided in the gate door body 3 has an upper half formed in a square shape having a ceiling extending horizontally in the left-right direction, the lower half has a semicircular shape. In FIG. 1, the ceiling surface 18 of the suction passage 9 a is formed by connecting the ceiling surface 18 a of the suction port 10 and the ceiling surface 18 b of the air outlet 11 to each other. Between, smoothly curved Although the shape is shown as being continuous by the rising ceiling surface 18c, when the height difference between the ceiling surface 18a of the suction port 10 and the ceiling surface 18b of the outlet 11 is small, the shape is made to be continuous by the flat ceiling surface. Although the corners 19 at the left and right ends of the ceiling surface 18a of the suction port 10 may be rounded by dropping corners, the corners 19 may be bent stepwise as shown in FIG. Needless to say, the shape of the corner may be widened, and various changes may be made without departing from the scope of the present invention.
[0030]
【The invention's effect】
As described above, according to the pump gate of the present invention, the following excellent effects are exhibited.
(1) At a required position of a gate door body that opens and closes a water channel, a suction channel for a pump is provided that communicates a suction port opened on an upstream side surface of the water channel with an air outlet opened on a downstream side surface of the water channel of the gate door body, A pump in which the suction side of the pump is fitted to the outlet of the suction passage so that the suction side of the pump coincides with the outlet, and the pump is driven by closing the water channel by the gate door so that the water can be forcibly drained from the upstream side to the downstream side. In the gate, the ceiling surface on the suction port side of the suction channel is formed so as to be lower than the ceiling surface on the air outlet side. Since the ceiling surface on the outlet side is configured to be continuous with the flat ceiling surface, the lowest operable water level of the pump can be set low.
(2) By making the ceiling surface on the suction port side and the ceiling surface on the air outlet side of the suction channel continuous with a smoothly curved curved ceiling surface, the ceiling surface on the suction port side and the air outlet side Even if there is a large height difference on the ceiling surface, the direction of the water flow flowing through the suction flow path does not suddenly change, so that the water flow separates from the ceiling surface and the flow path resistance increases, and the suction resistance of the pump increases. Can be prevented from increasing.
(3) The upstream end of the ceiling surface on the suction port side of the suction flow path is horizontal or slightly lower than horizontal, so that it faces downward near the suction-side water surface on the upstream side of the gate door body. The flow can be weakened, and even when the suction-side water surface is wavy, the risk of sucking air from the water surface can be suppressed.
(4) The suction port of the suction channel is formed in a rectangular shape that extends horizontally so that the ceiling surface is parallel to the water surface, so that the water flow flowing from the water surface side is concentrated at one location on the ceiling surface of the suction port. It is possible to prevent the occurrence of swirling of the flow and to suppress the occurrence of the air suction vortex more effectively.
(5) The ceiling of the suction port is formed by forming the corners at both left and right ends of the ceiling of the suction port into a circular arc shape having no corners or a shape in which the corners are bent stepwise to increase the angle of the corners. Can be prevented from occurring at the corners, and the occurrence of the air suction phenomenon at the corners can be suppressed.
(6) Since the suction port of the suction channel is formed to be wide left and right, the area of the suction port of the suction channel can be increased, and thus the unit area of the water flow passing through the suction port portion. The flow velocity per hit can be reduced, and the generation of the air suction vortex can be further suppressed.
[Brief description of the drawings]
FIG. 1 shows an embodiment of a pump gate according to the present invention, wherein (a) is a schematic cut-away side view, and (b) is a schematic front view.
FIG. 2 is a diagram showing, as a comparison with the pump gate of FIG. 1, an air suction phenomenon occurring when the upstream end of the ceiling surface of the suction flow path is directed upward and connected to the suction port.
FIG. 3 shows, as a comparison with the pump gate shown in FIG. 1, a phenomenon in which a water flow separates from the ceiling surface when the upstream end of the ceiling surface of the suction flow path is connected to the suction port with a steep downward angle. FIG.
FIG. 4 is a diagram showing, as a comparison with the pump gate of FIG. 1, an air suction phenomenon from the water surface that occurs when a corner of a ceiling portion of a square-shaped suction port has a corner.
FIG. 5 is a schematic front view showing another shape of the corners at the left and right ends of the ceiling of the suction port in the present invention.
FIG. 6 is a cut-away side view schematically showing an example of a conventionally used pump gate.
7 is an enlarged view of the pump gate of FIG. 6, wherein (a) is a cut side view and (b) is a front view.
[Explanation of symbols]
2 Waterway 3 Gate door 4 Horizontal axis pump (pump)
9, 9a Suction channel 10 Suction port 11 Outlet port 18, 18a, 18b, 18c Ceiling surface 19 Corner

Claims (7)

水路を開閉するゲート扉体の所要位置に、該ゲート扉体の水路上流側面に開口した吸込口と水路下流側面に開口した吹出口とを連通するポンプ用の吸込み流路を設け、該吸込み流路の吹出口に、ポンプの吸入側を一致させて取り付けて、上記ゲート扉体により水路を閉じて上記ポンプを駆動することにより上流側から下流側へ強制排水できるようにしてあるポンプゲートにおいて、上記吸込み流路の吸込口側の天井面を、吹出口側の天井面よりも低くなるように形成してなる構成を有することを特徴とするポンプゲート。At a required position of the gate door body that opens and closes the water passage, a suction passage for a pump is provided, which communicates a suction port opened on the upstream side surface of the water passage with an air outlet opened on the downstream side surface of the water passage of the gate door body. In the pump gate, the suction side of the pump is attached to the outlet of the road so that the suction side is aligned, and the drainage can be forcibly drained from the upstream side to the downstream side by closing the water channel by the gate door body and driving the pump. A pump gate having a configuration in which a ceiling surface on the suction port side of the suction flow path is formed to be lower than a ceiling surface on the air outlet side. 吸込み流路の吸込口側の天井面と吹出口側の天井面を、平面の天井面で連続させた請求項1記載のポンプゲート。2. The pump gate according to claim 1, wherein a ceiling surface on the suction port side and a ceiling surface on the air outlet side of the suction flow path are continuous with a flat ceiling surface. 吸込み流路の吸込口側の天井面と吹出口側の天井面を、滑らかに湾曲した曲面の天井面で連続させた請求項1記載のポンプゲート。2. The pump gate according to claim 1, wherein the ceiling surface on the suction port side and the ceiling surface on the air outlet side of the suction flow path are continuous with a smoothly curved curved ceiling surface. 吸込み流路の吸込口側の天井面の上流側端部が、水平若しくは水平よりもやや下向きとなるようにした請求項1、2又は3記載のポンプゲート。4. The pump gate according to claim 1, wherein the upstream end of the ceiling surface on the suction port side of the suction passage is horizontal or slightly downward from horizontal. 吸込み流路の吸込口を、天井面が水面と平行になるよう水平に延びる角型形状とした請求項1、2、3又は4記載のポンプゲート。5. The pump gate according to claim 1, wherein the suction port of the suction channel has a rectangular shape extending horizontally so that a ceiling surface is parallel to a water surface. 吸込口の天井部の左右両端の角部を角のない円弧形状もしくは角部を段階的に曲げて角部の角度を広げた形状とした請求項5記載のポンプゲート。6. The pump gate according to claim 5, wherein the corners at the left and right ends of the ceiling of the suction port are formed in a circular arc shape having no corners or in a shape in which the corners are gradually bent to increase the angle of the corners. 吸込み流路の吸込口を左右幅広に形成するようにした請求項1、2、3、4、5又は6記載のポンプゲート。The pump gate according to claim 1, 2, 3, 4, 5, or 6, wherein a suction port of the suction flow path is formed to be wide left and right.
JP2002200311A 2002-07-09 2002-07-09 Pump gate Pending JP2004044138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002200311A JP2004044138A (en) 2002-07-09 2002-07-09 Pump gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002200311A JP2004044138A (en) 2002-07-09 2002-07-09 Pump gate

Publications (1)

Publication Number Publication Date
JP2004044138A true JP2004044138A (en) 2004-02-12

Family

ID=31707218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002200311A Pending JP2004044138A (en) 2002-07-09 2002-07-09 Pump gate

Country Status (1)

Country Link
JP (1) JP2004044138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105465044A (en) * 2014-09-26 2016-04-06 株式会社日立制作所 Horizontal axis pump system and horizontal axis pump applied in the system
JPWO2016178387A1 (en) * 2015-05-01 2018-02-08 株式会社石垣 Horizontal axis submersible pump and suction cover used for horizontal axis submersible pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105465044A (en) * 2014-09-26 2016-04-06 株式会社日立制作所 Horizontal axis pump system and horizontal axis pump applied in the system
JPWO2016178387A1 (en) * 2015-05-01 2018-02-08 株式会社石垣 Horizontal axis submersible pump and suction cover used for horizontal axis submersible pump

Similar Documents

Publication Publication Date Title
TWI704287B (en) Horizontal shaft submersible pump and suction cover for horizontal shaft submersible pump
JP5318240B2 (en) Suction tank
JP2004044138A (en) Pump gate
JP2007032036A (en) Horizontal pump, pump gate facility, and drainage pumping station
JP2007032037A (en) Horizontal pump, pump gate facility, and drainage pumping station
JP3995245B2 (en) Suction cover structure of horizontal shaft pump
CN111749930B (en) Suction hood, transverse-axis pump, pump gate, and method for operating pump gate
JP2007231748A (en) Pump device and and pump gate device
JP3998148B2 (en) Suction cover structure of horizontal shaft pump
JP2005290972A (en) Pump gate and method for operating the same
JP2002021050A (en) Gate pump
JP5227370B2 (en) Drain pump
JP5204588B2 (en) Vertical shaft pump
JP3749456B2 (en) Pump gate
JP4628029B2 (en) Rectifying member of submersible pump for pump gate
KR200442052Y1 (en) drain pump
JP5041632B2 (en) Submersible pump and gate pump using the submersible pump
KR102648851B1 (en) Gate Pump With A Function Of Accelerating The Fluid
JP3749407B2 (en) Blockage avoidance type pump gate
JPH06213190A (en) Vertical-shaft type advanced stand-by operation pump
JP2004132190A (en) Pump with guide vane in combination use as valve
JP4491097B2 (en) Pump gate
JP2007255354A (en) Pump device and pump gate device
JP3749401B2 (en) Vortex pump gate
JP2020012376A (en) Suction cover, horizontal shaft pump, and pump gate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060522

A521 Written amendment

Effective date: 20060522

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Effective date: 20070724

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070925

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080219

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812