JP2004043960A - Method for reducing copper solubility on inner surface of copper tube - Google Patents

Method for reducing copper solubility on inner surface of copper tube Download PDF

Info

Publication number
JP2004043960A
JP2004043960A JP2003077931A JP2003077931A JP2004043960A JP 2004043960 A JP2004043960 A JP 2004043960A JP 2003077931 A JP2003077931 A JP 2003077931A JP 2003077931 A JP2003077931 A JP 2003077931A JP 2004043960 A JP2004043960 A JP 2004043960A
Authority
JP
Japan
Prior art keywords
copper
tin
copper tube
tube
solubility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003077931A
Other languages
Japanese (ja)
Inventor
Achim Dr Baukloh
アヒム・バウクロー
Stefan Priggemeyer
シュテファン・プリッゲマイヤー
Ulrich Dr Reiter
ウルリッヒ・ライター
Christian Triquet
クリスチャン・トリク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KM Europa Metal AG
Original Assignee
KM Europa Metal AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KM Europa Metal AG filed Critical KM Europa Metal AG
Publication of JP2004043960A publication Critical patent/JP2004043960A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent provide copper ions dissolved from copper by coating an inner surface of copper tube with tin from being infiltrated into drinking water when the copper tube is used as components for drinking water pipe. <P>SOLUTION: In the method of reducing the solubility of copper in water on the inner surface of copper tube, in order to accomplish uniformly oriented crystal growth, in a process of tin plating and copper/tin-phase formation, process parameters of a surface treatment (degreasing and pickling), flow conditions (flow rate <1 m/s), temperature (50°C-80°C), and time (1 min-10 min) are intentionally and mutually harmonized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、銅管の内部表面の銅溶解性を低減する方法に関する。
【0002】
【従来の技術】
銅管の内部表面を錫で被覆して、この種の錫被覆によって銅から溶解した銅イオンが、この種の銅管が飲料水用導管の構成要素として使用される場合に、飲料水にあふれ出るのを防止することは公知である。この関係では飲料水への要求についてのヨーロッパの規準も注意するべきである。
【0003】
銅管の内部表面に錫層を塗布するための従来公知の方法の場合には、無秩序な結晶しか生成していない。従って錫結晶の充填密度が満足ではない。それ故に銅イオンは錫層を超えて飲料水中に入り込み得る。
【0004】
【発明が解決しようとする課題】
本発明の課題は、従来技術から出発して、銅管の内部表面での銅溶解を明瞭に低減することを保証する方法を提供することである。
【0005】
【課題を解決するための手段】
この課題は、請求項1に記載の特徴的構成要件によって解決される。
【0006】
本発明は、錫被覆の過程で配向した結晶成長がある場合に錫結晶の高度の充填密度を達成できることを明らかにした。錫層の高い充填密度は非常に均一で一様に形成されそして極めて安定する銅/錫−相をもたらす。この目的のために、錫層が一様でありそして僅かな孔数のもとで約0.1μm〜3μmの程度の僅かな厚みで被覆する。この配向された結晶成長はプロセスパラメータの表面予備処理(脱脂および酸洗い)、流れ条件(流れ速度<1m/秒)、温度(50℃〜80℃)および時間(1分〜10分)の意図的な調製によって達成される。
【0007】
比較的に短い運転時間の後に金属の錫が管表面に既にもはや固定することができないという状況にも係わらず、外部の安定なCu/Sn−相のために銅溶解性が僅かなままであるという性質が得られる。本発明に従って処理した管表面は非常に僅かな銅溶解性および高い耐久性に特徴がある。
【0008】
錫の結晶構造の確認はX線回折実験の結果によって有利に実施される。X線と単結晶との間の相互作用の際に、入射する波が錫結晶の格子様構造のために別個の空間方向に回折される。最初の光線に対する結晶格子の配向、格子のディメンションおよび使用する波長によって回折方向の状況が決まるのであるが、回折された光線の強度は単位細胞中の錫原子の分布によって左右される。
【0009】
この目的のために、本発明に従って錫で被覆された銅管から試料として長い切片を分離する。次いでこの試料を長軸方向に細長く切り取りそして細長く切り取った試料を次いで曲げて平らな材料とする。上側に錫被覆を持つこの平らな材料を次いでλ(FeKα)=1.9373ÅのX線を照射し、その際にX線を色々な回折角度で平らな試料の上に向ける。結果は、色々な角度のもとで高いX線回折強度をが確認でき、それによってX線がほぼ100%反射されることが実証されることが判る。従って錫原子が非常に高い充填密度を有する。銅イオンが飲料水中に入り込むことに対する満足な遮蔽層が形成される。
【0010】
本発明の基本的思想の有利な実施態様においては、請求項2に従って錫結晶の平面(101)が銅管の内部表面に対して平行に配向する。
【0011】
この関係においては請求項3に従って、錫結晶面(101)を銅結晶面(101)に対して平行に配向している場合が有利である。
【0012】
更に、請求項4によれば、銅−および錫結晶面(101)を互いに平行に配向させそしてこれらの方向(101)を互いに垂直に配向することによって更なる改善が達成される。
【0013】
有利な錫被覆は以下の内部比較実験によって確認された:
本発明の被覆された銅管を飲料水に15ケ月接触させる。この接触のために内部表面に二酸化錫層(Sn3 2 (OH)2 )が生じる。この銅管から同様に長い切片を分離し、長手方向で切断し、平らに曲げそして次にλ(FeKα)=1.9373ÅのX線を照射する。この場合には、X線の反射(X線回折強度)が明らかに100%以下であることが確認された。本発明の目的が達成されなかったと考えられる。
【0014】
次いで水酸化錫層を完全に取り除き、もとの被覆物状態を再び存在させる。即ち、銅上に銅/錫−層(Cu6 Sn5 )が存在する。
【0015】
次いでX線照射を行うと、ほぼ100%の反射が確認できた。従って本発明の方法はその長所を完全に確認される。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for reducing the solubility of copper on the inner surface of a copper tube.
[0002]
[Prior art]
The interior surface of the copper tubing is coated with tin, and the copper ions dissolved from the copper by such tin coating flood the drinking water when such copper tubing is used as a component in drinking water conduits. It is known to prevent exit. In this connection, European standards for drinking water requirements should also be noted.
[0003]
In the case of the conventionally known method for applying a tin layer to the inner surface of a copper tube, only disordered crystals are formed. Therefore, the packing density of tin crystals is not satisfactory. Therefore, copper ions can enter the drinking water beyond the tin layer.
[0004]
[Problems to be solved by the invention]
It is an object of the present invention to provide a method, starting from the prior art, which ensures that copper dissolution on the inner surface of a copper tube is distinctly reduced.
[0005]
[Means for Solving the Problems]
This problem is solved by the characteristic features described in claim 1.
[0006]
The present invention has shown that a high packing density of tin crystals can be achieved when there is oriented crystal growth during the tin coating. The high packing density of the tin layer results in a copper / tin phase which is very uniform and uniformly formed and is very stable. For this purpose, the tin layer is uniform and coated with a small thickness, on the order of about 0.1 μm to 3 μm, with a small number of pores. This oriented crystal growth is intended for the process parameters of surface pretreatment (degreasing and pickling), flow conditions (flow rate <1 m / s), temperature (50-80 ° C) and time (1-10 minutes). Is achieved by a typical preparation.
[0007]
Despite the situation in which metallic tin can no longer be fixed to the tube surface after a relatively short operating time, the copper solubility remains low due to the external stable Cu / Sn-phase. Is obtained. Tube surfaces treated according to the invention are characterized by very low copper solubility and high durability.
[0008]
Confirmation of the crystal structure of tin is advantageously performed by the results of X-ray diffraction experiments. Upon interaction between the X-rays and the single crystal, the incident wave is diffracted in separate spatial directions due to the lattice-like structure of the tin crystal. The orientation of the crystal lattice with respect to the initial light, the dimensions of the lattice and the wavelength used determine the state of the diffraction direction, but the intensity of the diffracted light depends on the distribution of tin atoms in the unit cell.
[0009]
For this purpose, long sections are separated as samples from tin-coated copper tubes according to the invention. The sample is then slit longitudinally and the cut sample is then bent into a flat material. This flat material with a tin coating on top is then irradiated with X-rays at λ (FeKα) = 1.3733 °, with the X-rays being directed at various diffraction angles onto a flat sample. The results show that high X-ray diffraction intensity can be confirmed under various angles, thereby demonstrating that almost 100% of the X-rays are reflected. Thus, tin atoms have a very high packing density. A satisfactory barrier to the entry of copper ions into the drinking water is formed.
[0010]
In an advantageous embodiment of the basic idea of the invention, the plane of the tin crystal (101) is oriented parallel to the inner surface of the copper tube according to claim 2.
[0011]
In this connection, it is advantageous according to claim 3 if the tin crystal plane (101) is oriented parallel to the copper crystal plane (101).
[0012]
Furthermore, according to claim 4, a further improvement is achieved by orienting the copper and tin crystal planes (101) parallel to each other and the directions (101) perpendicular to each other.
[0013]
Advantageous tin coatings have been confirmed by the following internal comparative experiments:
The coated copper tube of the present invention is brought into contact with drinking water for 15 months. This contact results in a tin dioxide layer (Sn 3 O 2 (OH) 2 ) on the inner surface. Similarly long sections are separated from the copper tube, cut longitudinally, bent flat and then irradiated with X-rays at λ (FeKα) = 1.9373 °. In this case, it was confirmed that the X-ray reflection (X-ray diffraction intensity) was clearly 100% or less. It is believed that the object of the present invention was not achieved.
[0014]
The tin hydroxide layer is then completely removed, and the original coating state is restored. That is, the copper / tin on a copper - layer (Cu 6 Sn 5) is present.
[0015]
Then, when X-ray irradiation was performed, almost 100% reflection was confirmed. Thus, the advantages of the method of the present invention are fully confirmed.

Claims (4)

銅管内部表面の銅溶解性を低減する方法において、一様に配向した結晶成長を達成するために錫被覆および銅/錫−相形成の過程でプロセスパラメータの表面処理(脱脂および酸洗い)、流れ条件(流れ速度<1m/秒)、温度(50℃〜80℃)および時間(1分〜10分)を意図的に互いに調和させることを特徴とする、上記方法。In a method of reducing the copper solubility of the inner surface of the copper tube, surface treatment (degreasing and pickling) of process parameters in the course of tin coating and copper / tin-phase formation to achieve uniformly oriented crystal growth; The above method characterized in that the flow conditions (flow velocity <1 m / s), the temperature (50 ° C. to 80 ° C.) and the time (1 min to 10 min) are intentionally matched to one another. 錫結晶面(101)を銅管の内部表面に対して平行に配向させる、請求項1に記載の方法。The method according to claim 1, wherein the tin crystal plane (101) is oriented parallel to the inner surface of the copper tube. 錫結晶面(101)を銅結晶面(101)に対して平行に配向させる、請求項1または2に記載の方法。3. The method according to claim 1, wherein the tin crystal plane (101) is oriented parallel to the copper crystal plane (101). 銅−および錫結晶面(101)を互いに平行に配向させそして方向(101)を互いに垂直に配向させる請求項1〜3のいずれか一つに記載の方法。4. The method according to claim 1, wherein the copper and tin crystal faces are oriented parallel to one another and the directions are oriented perpendicular to one another.
JP2003077931A 2002-03-23 2003-03-20 Method for reducing copper solubility on inner surface of copper tube Pending JP2004043960A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10213185A DE10213185A1 (en) 2002-03-23 2002-03-23 Process for reducing copper solubility on the inner surface of a copper pipe

Publications (1)

Publication Number Publication Date
JP2004043960A true JP2004043960A (en) 2004-02-12

Family

ID=27771523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077931A Pending JP2004043960A (en) 2002-03-23 2003-03-20 Method for reducing copper solubility on inner surface of copper tube

Country Status (7)

Country Link
US (1) US20030178107A1 (en)
EP (1) EP1347078A3 (en)
JP (1) JP2004043960A (en)
AU (1) AU2003200591B2 (en)
CA (1) CA2419630A1 (en)
DE (1) DE10213185A1 (en)
MX (1) MXPA03001950A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5419275B2 (en) * 2009-11-30 2014-02-19 Jx日鉱日石金属株式会社 Reflow Sn plating material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2282511A (en) * 1940-03-20 1942-05-12 American Brass Co Coating cupreous surfaces with tin
JP2804722B2 (en) * 1994-10-26 1998-09-30 株式会社神戸製鋼所 Tin plating method on the inner surface of copper or copper alloy tube
AU2792697A (en) * 1996-06-05 1998-01-05 Sumitomo Light Metal Industries, Ltd. Internally tin-plated copper pipe manufacturing method
DE19653765A1 (en) * 1996-12-23 1998-06-25 Km Europa Metal Ag Tinned copper pipe and process for coating a copper pipe
JP3277846B2 (en) * 1997-05-19 2002-04-22 日立電線株式会社 Plating method for inner surface Sn or Sn alloy plating tube
DE19749382A1 (en) * 1997-11-07 1999-05-27 Atotech Deutschland Gmbh Tinning of copper pipes
DE10003582A1 (en) * 2000-01-28 2001-08-02 Km Europa Metal Ag Production of a tin layer on the inner surface of hollow copper alloy parts e.g., brass comprises reducing the lead content of the inner surface by treating with an aqueous reduction solution and plating with tin

Also Published As

Publication number Publication date
DE10213185A1 (en) 2003-10-02
EP1347078A2 (en) 2003-09-24
AU2003200591A1 (en) 2003-10-09
EP1347078A3 (en) 2004-02-11
CA2419630A1 (en) 2003-09-23
AU2003200591B2 (en) 2008-07-31
US20030178107A1 (en) 2003-09-25
MXPA03001950A (en) 2004-10-29

Similar Documents

Publication Publication Date Title
TWI631241B (en) Novel adhesion promoting process for metallisation of substrate surfaces
CA1186601A (en) Radiation induced deposition of metal on semiconductor surfaces
CA2860596C (en) Electroless nickel plating bath
EP0687136A1 (en) Method for selectively metallizing a substrate
JPH04292441A (en) Manufacturing of reflective article
Chu et al. Local deposition of Ni‐P alloy on aluminum by laser irradiation and electroless plating
ES2279148T3 (en) METHOD OF PRE-TREATMENT FOR DEPOSITION MATERIAL WITHOUT ELECTRICAL CURRENT AND METHOD TO PRODUCE AN ELEMENT THAT HAS COATED TANK.
JP7175532B2 (en) METAL FILM-FORMING COMPOSITION AND METAL FILM-FORMING METHOD
Vorobyova Adhesion interaction between electrolessly deposited copper film and polyimide
JP2004043960A (en) Method for reducing copper solubility on inner surface of copper tube
Yoshino et al. Electroless diffusion barrier process using SAM on low-k dielectrics
JP2017525851A (en) Copper circuit, copper alloy circuit, and method for reducing light reflectivity of touch screen devices
Tran et al. Ultra-thin silver films grown by sputtering with a soft ion beam-treated intermediate layer
WO2022004024A1 (en) Laminated film structure and method for manufacturing laminated film structure
WO1993009276A1 (en) Age resistant solder coatings
EP2188407B1 (en) Method for reducing porosity of a metal deposit by ionic bombardment
Chen et al. Alloy phases formed in immiscible Cu Mo and Cu W systems by multilayer-technique
JPS599161A (en) Surface treatment of metal
EP0225244A1 (en) Pretreating process for uranium-titanium alloy work pieces, particularly for electroless nickel plating
Durhuus et al. Selective electroless silver deposition on graphene edges
Chu et al. Nucleation of Metals on Aluminum by Laser Irradiation and the Effect on Ni‐P Electroless Deposition
Chen et al. Enhancement of seeding and electroless Cu plating on tan barrier layers: the role of plasma functionalized self-assembled monolayers
RU2633438C1 (en) Method for sputtering titanium coating onto hydride titanium particles
Almanza et al. Solar mirrors
RU2553148C1 (en) Method of producing monophase intermetallic thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106