JP2004043547A - Thermosetting resin having imide structure, cured product thereof, and thermosetting resin composition - Google Patents

Thermosetting resin having imide structure, cured product thereof, and thermosetting resin composition Download PDF

Info

Publication number
JP2004043547A
JP2004043547A JP2002199855A JP2002199855A JP2004043547A JP 2004043547 A JP2004043547 A JP 2004043547A JP 2002199855 A JP2002199855 A JP 2002199855A JP 2002199855 A JP2002199855 A JP 2002199855A JP 2004043547 A JP2004043547 A JP 2004043547A
Authority
JP
Japan
Prior art keywords
resin
thermosetting resin
weight
parts
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002199855A
Other languages
Japanese (ja)
Inventor
Nobuyuki Furukawa
古川 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2002199855A priority Critical patent/JP2004043547A/en
Publication of JP2004043547A publication Critical patent/JP2004043547A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a novel resin giving a cured product being excellent in heat resistance and mechanical properties and improved in flame retardancy, and a resin composition containing the resin. <P>SOLUTION: The novel resin is a thermosetting resin of an imide-structure-containing benzoxazine type and comprises a resin represented by formula (1) and a polymer thereof. In formula (1), R<SB>1</SB>is a 1-10C organic group; R<SB>2</SB>is hydrogen or a 1-6C hydrocarbon group; (k) is an integer of 0-5; (m) is an integer of 0-3: and (n) is an integer of 1-10. The thermosetting resin is obtained by reacting an imide-structure-containing bisphenol with an amine and an aldehyde in a molar ratio of about 1:2:4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性、硬化特性、難燃性に優れ、機械的特性も良好なベンゾキサジン環構造を有する熱硬化性樹脂(以下、BXZ樹脂ともいう)に関するものであり、特に、ビフェニル構造を有する新規なBXZ樹脂に関するものである。
【0002】
【従来の技術】
エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、メラミン樹脂、ポリイミド樹脂等様々な熱硬化性樹脂が開発され、それぞれの樹脂特性に合った分野へ応用されている。最近、プリント配線板用銅張積層板、多層配線板用接着剤、半導体用封止材料、半導体実装用接着剤、半導体搭載用モジュール、あるいは、自動車用、航空機用、建築部材等に用いられる部品等に用いられる硬化性樹脂において、高温・高湿下での安定性や信頼性に優れた樹脂材料が求められている。また、環境低負荷化の観点から、ハロゲンフリー難燃性を有する樹脂材料が強く望まれている。
【0003】
近年、ベンゾキサジン樹脂が、従来のフェノール樹脂に比較して、硬化物の耐熱性、耐湿性が良好な樹脂であることが報告されている(H. Ishida, et al., J. Polym. Sci.,  Vol. 32, p921 (1994), H. Ishida, et al., J.Appl. Polym. Sci., Vol. 61, 1595 (1996))。また、これらの樹脂は、開環重合反応性を有しているため、低硬化収縮性を示し、開環反応後の硬化物は、低熱膨張性を有しているなど様々な特徴を有することも示されている(H. Ishida, et al., J. Polym. Sci., Vol.34, 1019 (1994),)。更に、これらは、エポキシ樹脂とも反応性を示し、硬化剤として有効であることも示されている(特開平4−227922号)。しかしながら、従来のこれらの樹脂は、一般に硬化反応が終了後の硬化物特性において、靭性に乏しく、機械的特性や電気的特性においても特性が充分とはいえなかった。また、その他の樹脂と複合化を図る上において、各種溶剤や樹脂への溶解性が要求されるが、従来報告されている上記樹脂は、溶剤や液状エポキシ樹脂等の他の有機物質への溶解性に劣っていた。
【0004】
BXZ樹脂は、下記反応式に示されるように、フェノール化合物、一級アミン及び一級アルデヒドから合成することができる。フェノールを原料に、一級アミンとしてアニリン、一級アルデヒドとしてホルムアルデヒドを用いた場合を下記反応式に示す。
【化3】

Figure 2004043547
このようにして得られるBXZ樹脂は単一の化合物の場合もあるが、多くの場合、オリゴマー、フェノール樹脂等の副生物を含む混合物であるが、主成分は上記反応生成物である。
【0005】
このBXZ樹脂は、下記反応式に示すように、加熱により開環重合反応を起こし、フェノール性水酸基と三級アミノ基を生成する。
【化4】
Figure 2004043547
ビスフェノール類あるいはフェノール樹脂を原料に用いた場合、二官能性BXZ樹脂あるいは多官能性BXZ樹脂が得られ、開環重合反応に伴い三次元架橋反応が進行し、良好な機械的特性を有する硬化物が得られる。
【0006】
BXZ樹脂(二官能性BXZ樹脂を含む)及びその組成物は、特公昭49−47378号公報、特開平2−69567号公報、特開平4−227922号公報等で知られている。しかし、これらは、従来の硬化性樹脂に比較して難燃性は高いが充分とは言えず、硬化した後の硬化物が靭性に乏しく、充分な機械的特性が得られず、誘電率等の電気的特性も充分なものとは言えなかった。
【0007】
【発明が解決しようとする課題】
本発明は、硬化後において、耐熱性、難燃性、機械的特性、溶解性等に優れた特性を有する新規なBXZ樹脂を提供するものである。
【0008】
【課題を解決するための手段】
すなわち、本発明は、下記一般式(1)
【化5】
Figure 2004043547
(式中、Arは4価の有機基を示し、Ar は2価の有機基を示し、Rは炭素数1〜10の炭化水素基を示し、Rは炭素数1〜6の炭化水素基を示し、Rは水素又は炭素数1〜6の炭化水素基を示し、kは0〜5の整数、mは0〜3の整数、nは0〜10の整数を示す)で表される樹脂、そのオリゴマ−又はこの部分硬化物からなる熱硬化性樹脂である。
【0009】
また、本発明は、式(2)で表されるビスフェノールと、式(3)で表されるアミンと、RCHOで表されるアルデヒド(但し、式中、R、R、R、k, n及びmは、式(1)と同じ意味を示す)とを、ビスフェノール:アミン:アルデヒド=1:1.8〜2.2:3.6〜4.4のモル比で反応させて得られる前記の熱硬化性樹脂である。
【化6】
Figure 2004043547
【0010】
更に、本発明は、前記の熱硬化性樹脂を主とする硬化性樹脂組成物である。また。本発明は、前記の熱硬化性樹脂100重量部に、(A)その他のジヒドロベンゾキサジン環構造を有する熱硬化性樹脂を100〜900重量部配合した硬化性樹脂組成物、(B)エポキシ樹脂を100〜900重量部配合した硬化性樹脂組成物 、(C)エポキシ樹脂を100〜900重量部及び他のジヒドロベンゾキサジン環構造を有する熱硬化性樹脂を100〜900重量部配合した配合した硬化性樹脂組成物又は(D)ポリイミド樹脂を100〜900重量部配合した硬化性樹脂組成物である。
また、本発明は前記の熱硬化性樹脂又は硬化性樹脂組成物を硬化させてなる硬化物である。
【0011】
【発明の実施の形態】
本発明の熱硬化性樹脂は、ベンゾキサジン環を有する構成単位を式(4)
【化7】
Figure 2004043547
で示されるイミド構造を介して結合した構造を有する多官能性のBXZ樹脂である(以下、本発明のBXZ樹脂ともいう)。この樹脂は、硬化前においては、ベンゾキサジン環を有する構成単位と結合するイミド構造が耐熱性を向上し、分子間力を向上させている。このため、硬化後においては、良好な機械的特性、電気的特性を有するとともに、耐熱性と耐薬品性を有する硬化物となる。また、イミド構造を有しているため、ポリイミドあるいはその前駆体であるポリアミック酸との複合化が容易である。
【0012】
本発明のBXZ樹脂は、上記式(2)で表されるビスフェノールと、アルデヒド及び上記式(3)で表されるアミンとを上記モル比で反応させることにより得ることができるが、上記の方法で得られたものに限られない。
そして、式(2)で示されるイミド構造を有するビスフェノールは、テトラカルボン酸無水物、ジアミン、アミノフェノールを原料として合成することができる。
【0013】
原料に用いられるテトラカルボン酸無水物成分としては、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、2,3’,3,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’−オキシジフタル酸無水物(ODPA)、2,2’−ビス(2,3−ジカルボキシフェニル)エーテル二無水物(a−ODPA)、2,2’−ビス(3,4−ジカルボキシフェニル)プロパン二無水物(BDCP)、2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(BDCF)等の2つのフェニレン環を有するテトラカルボン酸無水物、あるいはヘキサヒドロ無水ピロメリット酸等の脂環式テトラカルボン酸類をあげることができるが、これらは、1種又は2種以上を組み合わせて用いることもできる。
式(2)で表されるビスフェノール中のArは、上記のようなテトラカルボン酸無水物成分の残基であり、=φ‐X‐φ=(但し、φはベンゼン環、Xは単結合、SO、CO、O、CR(2つのRは独立にH、CH又はCF)を示す)又は=φ=(但し、φはベンゼン環又はシクロヘキサン環を示す)で表される4価の有機基が好ましく挙げられる。
【0014】
ジアミンとしては、4,4’−ジアミノジフェニルメタン(DADM)、4,4’−ジアミノジフェニルエーテル(DADE)、4,4’−ジアミノジフェニルスルホン(DADS)、4,4’−ジアミノジフェニルスルフィド(DADSu)、4,4’−ジアミノジフェニルベンゾフェノン(DADBp)等の二つのベンゼン環を有するジアミン、更に、1,4’−ジアミノターフェニル(DATP)、1,4’−ビス(4−アミノフェノキシ)ベンゼン(BAPB)、ビス[4−(4−アミノフェノキシ)フェニル]メタン(BAPM)、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)、ビス[4−(4−アミノフェノキシ)フェニル]スルホン(BAPS)、ビス[4−(3−アミノフェノキシ)フェニル]スルホン(BAPSM)、4,4−(p−アミノフェノキシ)ビフェニル(BAPB)等、更には、1,4’−ジアミノシクロヘキサン(DACH)等の脂環構造を有するジアミンを挙げることができる。これらのジアミンは、それぞれ単独で用いても良いし、2種以上を組み合わせて用いることもできる。
【0015】
また、無色透明性を維持し、密着性の向上や応力緩和性を向上させる目的で、ジアミンの一部又は全部として、ジアミノシロキサンを用いることが有利である。かかるジアミノシロキサンとして、具体的には、式(A)又は(B)
【化8】
Figure 2004043547
(式(A)及び(B)中、j、k及びlは、1〜20の整数を示す)で表されるジアミノシロキサン等が挙げられ、全ジアミン中の使用割合は、無色透明性、密着性、応力緩和性の観点から0〜30モル%が好適である。
式(2)で表されるビスフェノール中のArは、上記のようなジアミン成分の残基であり、‐φ‐X‐φ‐(但し、φはベンゼン環、Xは単結合、SO、S、φ、O−φ−O、O−φ−CR−φ−O、O−φ−SO−φ−O、OC−O−φ−φ−O−CO、O、CR(2つのRは独立にH、CH又はCF)を示す)又は‐φ‐(但し、φはベンゼン環又はシクロヘキサン環を示す)で表される2価の有機基又は前記ジアミノシロキサン残基が好ましく挙げられる。
【0016】
式(2)で表されるビスフェノールの両末端を構成する成分となるアミノフェノールとしては、4−アミノフェノール(4AP)、3−アミノフェノール(3AP)、2−アミノフェノール(2AP)、5−アミノ−1−ナフトール(5A1N)、4−アミノ−1−ナフトール(4A1N)、6−アミノ−2−ナフトール(6A2N)、7−アミノ−2−ナフトール(7A2N)などを挙げることができるが、アミノ基に対しオルト位の少なくとも一つが水素原子である構造のアミノフェノールであれば、これらに限定されることなく使用することができる。
式(2)で表されるビスフェノール中の(Rは、上記のようなアミノフェノール類の核置換基であり、炭素数1〜6のアルキル基(隣接するアルキル基は結合して環を形成してOH基を有するベンゼン環と縮合環を形成してもよい)等が挙げられる。mは好ましくは0〜3である。
【0017】
式(2)で示されるイミド構造を有するビスフェノールは、公知のポリイミド合成法と同様の方法により製造することができる。一般式(2)の構造を形成するための原料としてのテトラカルボン酸類とジアミンとアミノフェノールとを所定モル比で配合して、同時に反応させ、ポリアミック酸を形成させ、次いでこれをイミド化する方法がある。また、アミノフェノール類(AP)とジアミン(DA)のモル比率は、(AP):(DA) = 2:19〜2:0の範囲であって、[(AP)/2+(DA)]/(テトラカルボン酸無水物のモル比がほぼ1となるよう調整して、式(2)で示されるイミド構造を有するフェノール樹脂を合成することができる。上記モル比を調整して、式(2)のnを0〜10の範囲に調整する。なお、通常はnの異なる混合物として得られるが、その場合平均のnが上記範囲に入ればよい。また、nが0の場合は、ジアミンは使用しなくてもよい。
【0018】
式(2)で表されるビスフェノールを得る方法として、(1)高温で重合させる一段重合法、(2)低温でまずアミック酸を合成し、その後高温でイミド化する二段重合法を用いることができる。一段重合法を用いる場合は、120〜300℃の温度で、好ましくは140〜250℃の温度で1〜20時間重合させることにより、重合度を向上させることができる。また、二段重合法の場合は、ポリアミック酸を0〜100℃で、1〜10時間重合させたのち、イミド化反応を120〜250℃の温度で、1〜20時間反応させることにより、イミド構造を有するビスフェノールを得ることができる。
【0019】
また、これらの反応の際に用いられる、溶媒としては、フェノール系溶剤や非プロトン性の極性溶剤が一般的に用いられる。フェノール系溶剤としては、例えば、フェノール、4−メトキシフェノール、2,6−ジメチルフェノール、m−クレゾール等が挙げられる。非プロトン性の極性有機溶剤としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等の鎖状アミド系溶媒、カプロラクタム等のラクタム類、ジグライム、ジオキサン、テトラヒドロフランなどのエーテル系溶剤、1,3−ジメチル−2−イミダゾリジノン、ジメチルスルホキシド等を用いることができる。更に、加熱イミド化の際に発生する水を、効率よく重合反応系から除去する目的で、水と共沸するトルエン、キシレン等の芳香族炭化水素溶剤を混合して用いることもできる。
【0020】
本発明のBXZ樹脂は、前記のように式(2)で表されるビスフェノールと、式(3)で表されるアミン及びRCHOで表されるアルデヒドから合成することができる。アミンとしてはアニリンが、アルデヒドとしてはホルムアルデヒドが好ましく挙げられる。反応理論量は、1:2:4であるが、反応条件や原料化合物の種類によって、反応性に差が生じ、全部の原料化合物が100%反応しない場合もありうるので、50%前後、好ましくは50%前後の幅があり得る。例えば、ビスフェノールのフェノール1モルに対して、一級アミンを2〜4モル、好ましくは1.8〜2.2モル及びアルデヒドを3.5〜5モル、好ましくは3.6〜4.4モル又はアミン1モル当たり2モル以上、好ましくは2〜4モルの割合で用いて反応させることがよい。特に、アルデヒドはやや過剰に加えることがよい。
有利な製造方法としては、一級アミンを一級アルデヒドへ徐々に加える方法により反応させたのち、ビスフェノールを加え、20分〜24時間、70〜120℃に保つことにより合成する。このとき、必要に応じて有機溶剤を用いることもできる。反応後、生成物を抽出等の合成化学的手法で単離・精製し縮合水等の揮発成分を乾燥除去することにより目的とする本発明のBXZ樹脂が得られる。
【0021】
一級アミンとしては、アニリン、トルイジン、アニシジン等の芳香族アミンを挙げることができるが、耐熱性の点で、式(3)で表される芳香族アミンが好ましく、必須成分としてアニリンあるいは置換アニリンを用いることが有利である。また、アニリンあるいは置換アニリンとその他の複数のアミンを組み合わせて用いることもできる。
【0022】
アルデヒドとしては、水溶液としても用いることができ、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等を挙げることができる。ホルムアルデヒドにおいては、ホルマリン水溶液として、またパラホルムアルデヒドとして、いずれの形態でも用いることができる。
【0023】
本発明のBXZ樹脂は、上記のような製造方法により得られるが、モル比が理論量であったとしても、上記したように副反応が生じたり、モル比が理論量をはずれると更に副反応物が増加する。しかし、主成分は本発明のBXZ樹脂である。
本発明のBXZ樹脂は、上記反応式に示すように、加熱により開環重合反応を起こし、フェノール性水酸基と三級アミノ基を生成すると共に三次元架橋反応が進行し、良好な機械的特性を有する硬化物が得られる。この硬化物は低吸湿性、高いガラス転移温度、高強度・高弾性率、更には低硬化収縮率を示し、難燃性にも優れている。
【0024】
本発明のBXZ樹脂は、上記一般式(1)で表される樹脂又はこの樹脂を主としオリゴマー若しくは部分硬化物を含む樹脂である。一般式(1)において、Rは、炭素数1〜10の炭化水素基であって、フェニル基、メチルフェニル基、アリルフェニル基、エチニルフェニル基等のフェニル基を有する炭化水素基である。Rは、炭素数1〜6の炭化水素基であって、好ましくは水素、メチル基、エチル基又はプロピル基ある。kは0〜5の整数を示し、nは1から10の整数を示す。
【0025】
上記原料化合物から得られる本発明のBXZ樹脂を例示すれば、下記式(A)〜(I)で表される樹脂が好ましく挙げられる。なお、本発明のBXZ樹脂は、下記式(A)〜(I)で表される樹脂だけでなく、そのオリゴマー若しくは部分硬化物が含まれてもよいことは前記の通りである。
【0026】
【化9】
Figure 2004043547
【0027】
【化10】
Figure 2004043547
【0028】
【化11】
Figure 2004043547
【0029】
これらは、いずれも上記反応により容易に合成することができ、150〜250℃に加熱することにより、機械的特性、電気的特性、耐湿性に優れた硬化物を得ることができる。
【0030】
本発明の熱硬化性樹脂は、他の樹脂と組合わせて硬化性樹脂組成物とすることができる。この場合、本発明のBXZ樹脂は10wt%以上含有されることが好ましい。本発明の硬化性樹脂組成物の一つは、本発明のBXZ樹脂を主成分とする組成物である。また、他の本発明の硬化性樹脂組成物は、本発明のBXZ樹脂100重量部に、(A)その他のジヒドロベンゾキサジン環構造を有する熱硬化性樹脂を100〜900重量部配合した硬化性樹脂組成物、(B)エポキシ樹脂を100〜900重量部配合した硬化性樹脂組成物、(C)エポキシ樹脂を100〜900重量部及び他のジヒドロベンゾキサジン環構造を有する熱硬化性樹脂を100〜900重量部配合した配合した硬化性樹脂組成物又は(D)ポリイミド樹脂を100〜900重量部配合した硬化性樹脂組成物である。
本発明の硬化性樹脂及び硬化性樹脂組成物は、本発明のBXZ樹脂を有効量含有とする限り任意の樹脂、充填材、添加剤等を配合し得る。
【0031】
本発明の硬化性樹脂組成物は、他のジヒドロベンゾキサジン環構造を有する熱硬化性樹脂、エポキシ樹脂又はその両者を配合することができる。この場合の、他のジヒドロベンゾキサジン環構造を有する熱硬化性樹脂又はエポキシ樹脂の配合量は、本発明のBXZ樹脂10重量部に対し、熱硬化性樹脂又はエポキシ樹脂10〜90重量部、好ましくは10〜50重量部である。更に、ポリイミド樹脂を配合することもでき、この場合の配合量も前記の範囲がよい。
本発明のBXZ樹脂は前記のようにジヒドロベンゾキサジン構造の開環重合反応により硬化する樹脂であり、これら他のジヒドロベンゾキサジン環構造を有するBXZ樹脂を、本発明のBXZ樹脂に配合することにより、物性を改良することができる。
【0032】
本発明の硬化性樹脂組成物に配合する他のジヒドロベンゾキサジン環構造を有する樹脂は、本発明のBXZ樹脂と異なるものであれば制限はなく、ジヒドロベンゾキサジン環構造を1つのみ有するBXZ樹脂や、本発明のBXZ樹脂を与えない原料化合物、例えばフェノール、ナフトール、脂肪族アミン等を使用して得たBXZ樹脂がある。これらの他のBXZ樹脂は、本発明のBXZ樹脂とは別個に合成して、その後混合してもよく、また、本発明のBXZ樹脂を合成する際、本発明のBXZ樹脂を与えない原料化合物を一部併用することによって、混合物として得ることもできる。
【0033】
上記他のBXZ樹脂としては、具体的には、下記式(a)〜(g)で表される化合物又はそのオリゴマー等、あるいは各種フェノール樹脂から合成されるジヒドロベンゾキサジン樹脂が挙げられる。
【0034】
【化12】
Figure 2004043547
【0035】
【化13】
Figure 2004043547
【0036】
【化14】
Figure 2004043547
【0037】
また、本発明の硬化性樹脂組成物に配合するエポキシ樹脂には格別の制限はないが、多官能ヒドロキシ化合物から誘導されるエポキシ樹脂であることが有利である。好ましいエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂があり、あるいは、可とう性付与の観点から、低粘度エポキシ樹脂として、ビスフェノールF型エポキシ樹脂、プロピレングリコール系脂肪族エポキシ樹脂、各種脂環式エポキシ樹脂、グリシジルエステル系エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂があり、また、ビスフェノール型エポキシ樹脂の直接水素化反応で得られる水素化ビスフェノールA型エポキシ樹脂等とも、混合して用いることが出来る。
【0038】
更に、本発明の硬化性樹脂は、各種ポリイミドあるいはポリイミド前駆体樹脂であるポリアミック酸と複合して用いることもできる。
【0039】
本発明の硬化物は、本発明のBXZ樹脂又は本発明の硬化性樹脂組成物を熱硬化させてなる硬化物である。
【0040】
【実施例】
以下、合成例及び実施例により、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、原料の略称は、本文中に記載した略号と同じものを用いた。
【0041】
実施例1
イミド構造を有するビスフェノールの合成
窒素気流下で、攪拌機付きのセパラブル三口フラスコを用いて、NMP(N−メチル−2−ピロリジノン)200ml中に、ODPA 0.1モル(31.0g)、4AP 0.2モル(21.8g)を投入し、室温にて3時間反応させた。トルエン50mlを加えた後、反応装置にDean−Stark型還流装置を取り付け、150℃に温度を上昇させた。還流が始まった後、約5時間反応させ、イミド化の際に発生する水分を除去して反応を終了させた。反応溶液を200mlの水に投入して析出物をろ取して、下記式で表される(n=0)イミド基含有ビスフェノール(略称;ODPA−PH)を得た。
得られた樹脂の原料組成を表1に示した。また、IR測定結果を図1に示す。
【0042】
【化15】
Figure 2004043547
【0043】
BXZ樹脂の合成
アニリン37.25g(0.4モル)をNMP 200ml中に溶解し、ホルムアルデヒド液(36〜38%水溶液)98.4g(0.2モル)を滴下し、室温下で5時間反応させた。その後、化合物(ODPA−PH)41.2g(0.2モルOH等量)を加え、撹拌下、100℃〜120℃で、5時間反応させた。反応終了後、溶媒を真空除去し、イミド基含有ベンゾキサジン樹脂(BXZ樹脂−1)87gを得た。
【0044】
(評価方法)
BXZ樹脂10gを250℃に維持したホットプレート上で1時間硬化させた後、物性の測定を行った。その結果を表2に示す。また、BXZ樹脂−1のIR測定結果を図2に、DSC測定結果を図3に示す。
なお、ガラス転移温度(Tg)は、動的粘弾性測定装置(DMA)、熱膨張係数は、熱機械分析装置(TMA)を、熱分解開始温度(5%重量減少温度)は、熱重量分析装置(TGA)を用い,引張強度、引張伸び率及び引張弾性率はJIS K 6911に準じて測定を行った。また、難燃性試験は、JIS K 6911に従って測定をおこなった。
【0045】
実施例2〜6
原料組成を変えて実施例1と同様にして各種のビスフェノールを合成し、更に、得られたビスフェノールを使用して実施例1と同様にして各種の本発明のBXZ樹脂−2〜6を合成した。また、実施例1の記載と同様の方法により評価を行った。
【0046】
比較例1〜2
ビスフェノールA及びビスフェノールFを原料にベンゾキサジン樹脂(それぞれの略称をBa、Faとする)を合成した。また、200℃に維持したホットプレート上で1時間硬化させた後物性の測定を行った以外は、実施例1の記載と同様の方法により評価を行った。
【化16】
Figure 2004043547
【0047】
BXZ樹脂の原料となるビスフェノールの原料組成を表1に、硬化物の物性を表2に示した。
【0048】
【表1】
Figure 2004043547
【0049】
【表2】
Figure 2004043547
【0050】
【発明の効果】
本発明の熱硬化性樹脂は、硬化前の状態では、各種有機溶剤や樹脂への溶解性に優れているため、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂等の樹脂との複合化が容易であり、硬化物の電気特性や機械的特性が良好で、耐湿性も良好である。また、本発明の熱硬化性樹脂組成物は、硬化物の電気特性や機械的特性が良好で、耐湿性も良好である。したがって、本発明の熱硬化性樹脂又はその組成物は、プリント配線板用積層板、プリント配線板、半導体封止材、半導体搭載用モジュール、その他各種電子部品周辺部材として、また、自動車、航空機部材、建築部材等、更には、炭素繊維や炭素電極あるいはセパレーターなどの各種複合材料等のバインダーやマトリックス樹脂として好適に用いることができる。
【図面の簡単な説明】
【図1】IR測定図
【図2】IR測定図
【図3】DSC測定図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermosetting resin having a benzoxazine ring structure (hereinafter, also referred to as BXZ resin) having excellent heat resistance, curing properties, flame retardancy, and good mechanical properties, and particularly has a biphenyl structure. It relates to a new BXZ resin.
[0002]
[Prior art]
Various thermosetting resins such as an epoxy resin, a phenol resin, a polyimide resin, a melamine resin, and a polyimide resin have been developed, and have been applied to fields suited to their respective resin characteristics. Recently, copper-clad laminates for printed wiring boards, adhesives for multilayer wiring boards, sealing materials for semiconductors, adhesives for mounting semiconductors, modules for mounting semiconductors, or parts used for automobiles, aircraft, building components, etc. For a curable resin used for such purposes, a resin material having excellent stability and reliability under high temperature and high humidity is required. Further, from the viewpoint of reducing the environmental load, a resin material having halogen-free flame retardancy is strongly desired.
[0003]
In recent years, it has been reported that benzoxazine resins are resins having better heat resistance and moisture resistance of cured products than conventional phenolic resins (H. Ishida, et al., J. Polym. Sci. 32, p921 (1994), H. Ishida, et al., J. Appl. Polym. Sci., Vol. 61, 1595 (1996)). In addition, since these resins have ring-opening polymerization reactivity, they exhibit low curing shrinkage, and cured products after the ring-opening reaction have various characteristics such as low thermal expansion properties. (H. Ishida, et al., J. Polym. Sci., Vol. 34, 1019 (1994),). Further, they also show reactivity with epoxy resins and are effective as a curing agent (Japanese Patent Laid-Open No. 4-227922). However, these conventional resins generally have poor toughness in the properties of the cured product after the completion of the curing reaction, and are not sufficient in mechanical properties and electrical properties. In addition, in order to form a composite with other resins, solubility in various solvents and resins is required. However, the above-mentioned resins which have been reported so far are soluble in other organic substances such as solvents and liquid epoxy resins. The sex was inferior.
[0004]
The BXZ resin can be synthesized from a phenol compound, a primary amine and a primary aldehyde as shown in the following reaction formula. The following reaction formula shows the case where phenol is used as a raw material and aniline is used as a primary amine and formaldehyde is used as a primary aldehyde.
Embedded image
Figure 2004043547
The BXZ resin thus obtained may be a single compound, but in many cases, it is a mixture containing by-products such as oligomers and phenolic resins, but the main component is the above reaction product.
[0005]
The BXZ resin causes a ring-opening polymerization reaction by heating to generate a phenolic hydroxyl group and a tertiary amino group as shown in the following reaction formula.
Embedded image
Figure 2004043547
When a bisphenol or phenol resin is used as a raw material, a bifunctional BXZ resin or a polyfunctional BXZ resin is obtained, and a three-dimensional crosslinking reaction proceeds with the ring-opening polymerization reaction, and the cured product has good mechanical properties. Is obtained.
[0006]
BXZ resins (including bifunctional BXZ resins) and compositions thereof are known from JP-B-49-47378, JP-A-2-69567, JP-A-4-227922 and the like. However, these have high flame retardancy compared to conventional curable resins, but they are not sufficient, and the cured products after curing have poor toughness, do not have sufficient mechanical properties, and have a dielectric constant. Also, the electrical characteristics of the compound were not sufficient.
[0007]
[Problems to be solved by the invention]
The present invention provides a novel BXZ resin having excellent properties such as heat resistance, flame retardancy, mechanical properties, and solubility after curing.
[0008]
[Means for Solving the Problems]
That is, the present invention provides the following general formula (1)
Embedded image
Figure 2004043547
(Wherein, Ar 1 represents a tetravalent organic group, Ar 2 represents a divalent organic group, R 1 represents a hydrocarbon group having 1 to 10 carbon atoms, and R 2 represents a hydrocarbon group having 1 to 6 carbon atoms. Represents a hydrocarbon group, R 3 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms, k represents an integer of 0 to 5, m represents an integer of 0 to 3, and n represents an integer of 0 to 10) It is a thermosetting resin comprising the resin represented, its oligomer or this partially cured product.
[0009]
In addition, the present invention provides a bisphenol represented by the formula (2), an amine represented by the formula (3), and an aldehyde represented by R 3 CHO (where R 1 , R 2 , R 3 , K, n and m have the same meaning as in formula (1)) with bisphenol: amine: aldehyde = 1: 1.8 to 2.2: 3.6 to 4.4 in a molar ratio. The thermosetting resin obtained by the above.
Embedded image
Figure 2004043547
[0010]
Further, the present invention is a curable resin composition mainly containing the above-mentioned thermosetting resin. Also. The present invention relates to a curable resin composition comprising (A) 100 to 900 parts by weight of a thermosetting resin having a dihydrobenzoxazine ring structure, and (B) epoxy. A curable resin composition containing 100 to 900 parts by weight of a resin, (C) a compounding of 100 to 900 parts by weight of an epoxy resin and 100 to 900 parts by weight of another thermosetting resin having a dihydrobenzoxazine ring structure. Curable resin composition containing 100 to 900 parts by weight of the cured resin composition or the polyimide resin (D).
Further, the present invention is a cured product obtained by curing the thermosetting resin or the curable resin composition.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The thermosetting resin of the present invention has a constitutional unit having a benzoxazine ring represented by the formula (4)
Embedded image
Figure 2004043547
Is a polyfunctional BXZ resin having a structure linked via an imide structure represented by the following formula (hereinafter, also referred to as BXZ resin of the present invention). Before curing, the imide structure bonded to the structural unit having a benzoxazine ring improves the heat resistance and the intermolecular force before curing. Therefore, after curing, the cured product has good mechanical properties and electrical properties, and also has heat resistance and chemical resistance. In addition, since it has an imide structure, it can be easily compounded with polyimide or a polyamic acid that is a precursor thereof.
[0012]
The BXZ resin of the present invention can be obtained by reacting a bisphenol represented by the above formula (2) with an aldehyde and an amine represented by the above formula (3) at the above molar ratio. It is not limited to the one obtained in.
The bisphenol having an imide structure represented by the formula (2) can be synthesized using tetracarboxylic anhydride, diamine, and aminophenol as raw materials.
[0013]
Examples of the tetracarboxylic anhydride component used as a raw material include 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. Anhydride (BPDA), 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride (a-BPDA), 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′-oxydiphthalic anhydride (ODPA), 2,2′-bis (2,3-dicarboxyphenyl) ether dianhydride (a-ODPA), 2,2′-bis ( Tetracarboxylic acid having two phenylene rings, such as 3,4-dicarboxyphenyl) propane dianhydride (BDCP) and 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (BDCF) Examples thereof include acid anhydrides and alicyclic tetracarboxylic acids such as hexahydropyromellitic anhydride, and these can be used alone or in combination of two or more.
Ar 1 in the bisphenol represented by the formula (2) is a residue of a tetracarboxylic anhydride component as described above, and = φ-X-φ = (where φ is a benzene ring, and X is a single bond , SO 2 , CO, O, CR 2 (two Rs independently represent H, CH 3 or CF 3 ) or = φ = (where φ represents a benzene ring or a cyclohexane ring) 4 A valent organic group is preferably exemplified.
[0014]
Examples of the diamine include 4,4'-diaminodiphenylmethane (DADM), 4,4'-diaminodiphenylether (DADE), 4,4'-diaminodiphenylsulfone (DADS), 4,4'-diaminodiphenylsulfide (DADSu), Diamines having two benzene rings such as 4,4'-diaminodiphenylbenzophenone (DADBp), and 1,4'-diaminoterphenyl (DATP), 1,4'-bis (4-aminophenoxy) benzene (BAPB) ), Bis [4- (4-aminophenoxy) phenyl] methane (BAPM), 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), bis [4- (4-aminophenoxy) Phenyl] sulfone (BAPS), bis [4- (3-aminophenoxy) phenyl] sul Examples thereof include diamines having an alicyclic structure such as hon (BAPSM), 4,4- (p-aminophenoxy) biphenyl (BAPB), and 1,4′-diaminocyclohexane (DACH). These diamines may be used alone or in combination of two or more.
[0015]
It is advantageous to use diaminosiloxane as part or all of the diamine for the purpose of maintaining colorless transparency and improving adhesion and stress relaxation. As such a diaminosiloxane, specifically, formula (A) or (B)
Embedded image
Figure 2004043547
(In the formulas (A) and (B), j, k and l each represent an integer of 1 to 20), and the like. From the viewpoint of the properties and stress relaxation properties, 0 to 30 mol% is preferable.
Ar 2 in the bisphenol represented by the formula (2) is a residue of the diamine component as described above, and is -φ-X-φ- (where φ is a benzene ring, X is a single bond, SO 2 , S, φ, O-φ-O, O-φ-CR 2 -φ-O, O-φ-SO 2 -φ-O, OC-O-φ-φ-O-CO, O, CR 2 (2 Two Rs independently represent H, CH 3 or CF 3 ) or -φ- (where φ represents a benzene ring or a cyclohexane ring), or a divalent organic group or the above diaminosiloxane residue is preferable. No.
[0016]
Examples of the aminophenol that constitutes both ends of the bisphenol represented by the formula (2) include 4-aminophenol (4AP), 3-aminophenol (3AP), 2-aminophenol (2AP), and 5-aminophenol. -1-naphthol (5A1N), 4-amino-1-naphthol (4A1N), 6-amino-2-naphthol (6A2N), 7-amino-2-naphthol (7A2N) and the like. However, any aminophenol having a structure in which at least one of the ortho positions is a hydrogen atom can be used without being limited thereto.
(R 2 ) m in the bisphenol represented by the formula (2) is a nucleus substituent of an aminophenol as described above, and has an alkyl group having 1 to 6 carbon atoms (adjacent alkyl groups are bonded to form a ring May be formed to form a condensed ring with a benzene ring having an OH group). m is preferably 0 to 3.
[0017]
The bisphenol having an imide structure represented by the formula (2) can be produced by a method similar to a known polyimide synthesis method. A method in which a tetracarboxylic acid, a diamine, and an aminophenol as raw materials for forming the structure of the general formula (2) are mixed at a predetermined molar ratio, reacted simultaneously, to form a polyamic acid, and then imidized. There is. The molar ratio between the aminophenols (AP) and the diamine (DA) is in the range of (AP) :( DA) = 2: 19 to 2: 0, and [(AP) / 2 + (DA)] / (By adjusting the molar ratio of the tetracarboxylic anhydride to be approximately 1, a phenol resin having an imide structure represented by the formula (2) can be synthesized. By adjusting the molar ratio, the formula (2) ) Is adjusted to a range of 0 to 10. In general, the mixture is obtained as a different mixture of n, in which case the average n may be within the above range. It does not have to be used.
[0018]
As a method for obtaining the bisphenol represented by the formula (2), (1) a one-stage polymerization method of polymerizing at a high temperature, and (2) a two-stage polymerization method of first synthesizing an amic acid at a low temperature and then imidizing at a high temperature Can be. When a one-stage polymerization method is used, the degree of polymerization can be improved by polymerizing at a temperature of 120 to 300 ° C, preferably at a temperature of 140 to 250 ° C for 1 to 20 hours. In the case of the two-stage polymerization method, after the polyamic acid is polymerized at 0 to 100 ° C. for 1 to 10 hours, the imidization reaction is performed at a temperature of 120 to 250 ° C. for 1 to 20 hours. A bisphenol having a structure can be obtained.
[0019]
In addition, a phenol solvent or an aprotic polar solvent is generally used as a solvent used in these reactions. Examples of the phenol solvent include phenol, 4-methoxyphenol, 2,6-dimethylphenol, m-cresol and the like. Examples of the aprotic polar organic solvent include chain amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, lactams such as caprolactam, diglyme, dioxane, and tetrahydrofuran. Ether solvents such as 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide and the like. Further, an aromatic hydrocarbon solvent such as toluene or xylene, which azeotropes with water, can be mixed and used for the purpose of efficiently removing water generated during the thermal imidization from the polymerization reaction system.
[0020]
As described above, the BXZ resin of the present invention can be synthesized from the bisphenol represented by the formula (2), the amine represented by the formula (3), and the aldehyde represented by R 3 CHO. An amine is preferably aniline, and an aldehyde is preferably formaldehyde. The theoretical reaction amount is 1: 2: 4. However, the reactivity varies depending on the reaction conditions and the type of the starting compounds, and 100% of all starting compounds may not react. Can have a width of around 50%. For example, based on 1 mol of the phenol of bisphenol, 2 to 4 mol, preferably 1.8 to 2.2 mol, of the primary amine and 3.5 to 5 mol, preferably 3.6 to 4.4 mol of the aldehyde, or The reaction may be carried out using 2 mol or more, preferably 2 to 4 mol, per 1 mol of the amine. In particular, the aldehyde is preferably added in a slight excess.
As an advantageous production method, the reaction is carried out by gradually adding a primary amine to a primary aldehyde, and then bisphenol is added, and the mixture is maintained at 70 to 120 ° C. for 20 minutes to 24 hours. At this time, an organic solvent can be used if necessary. After the reaction, the product is isolated and purified by a synthetic chemical technique such as extraction, and the volatile components such as condensed water are dried and removed to obtain the desired BXZ resin of the present invention.
[0021]
Examples of the primary amine include aromatic amines such as aniline, toluidine, and anisidine. From the viewpoint of heat resistance, an aromatic amine represented by the formula (3) is preferable, and aniline or a substituted aniline is used as an essential component. It is advantageous to use. Further, aniline or a substituted aniline may be used in combination with a plurality of other amines.
[0022]
The aldehyde can be used as an aqueous solution, and examples thereof include formaldehyde, acetaldehyde, and benzaldehyde. Formaldehyde can be used in any form as an aqueous formalin solution or as paraformaldehyde.
[0023]
The BXZ resin of the present invention can be obtained by the above-described production method. However, even if the molar ratio is a stoichiometric amount, a side reaction occurs as described above, and if the molar ratio deviates from the stoichiometric amount, a further side reaction occurs. Things increase. However, the main component is the BXZ resin of the present invention.
As shown in the above reaction formula, the BXZ resin of the present invention causes a ring-opening polymerization reaction by heating, generates a phenolic hydroxyl group and a tertiary amino group, and a three-dimensional cross-linking reaction proceeds. A cured product having the above is obtained. The cured product exhibits low moisture absorption, high glass transition temperature, high strength and high elastic modulus, and also low curing shrinkage, and is excellent in flame retardancy.
[0024]
The BXZ resin of the present invention is a resin represented by the above general formula (1) or a resin mainly containing this resin and containing an oligomer or a partially cured product. In the general formula (1), R 1 is a hydrocarbon group having 1 to 10 carbon atoms and has a phenyl group such as a phenyl group, a methylphenyl group, an allylphenyl group, and an ethynylphenyl group. R 2 is a hydrocarbon group having 1 to 6 carbon atoms, preferably, hydrogen, methyl, ethyl or propyl. k represents an integer of 0 to 5, and n represents an integer of 1 to 10.
[0025]
As an example of the BXZ resin of the present invention obtained from the above-mentioned raw material compounds, resins represented by the following formulas (A) to (I) are preferred. As described above, the BXZ resin of the present invention may include not only resins represented by the following formulas (A) to (I) but also oligomers or partially cured products thereof.
[0026]
Embedded image
Figure 2004043547
[0027]
Embedded image
Figure 2004043547
[0028]
Embedded image
Figure 2004043547
[0029]
All of these can be easily synthesized by the above reaction, and by heating to 150 to 250 ° C., a cured product having excellent mechanical properties, electrical properties, and moisture resistance can be obtained.
[0030]
The thermosetting resin of the present invention can be combined with another resin to form a curable resin composition. In this case, the BXZ resin of the present invention is preferably contained in an amount of 10 wt% or more. One of the curable resin compositions of the present invention is a composition containing the BXZ resin of the present invention as a main component. Further, another curable resin composition of the present invention is obtained by curing 100 to 900 parts by weight of (A) another thermosetting resin having a dihydrobenzoxazine ring structure with 100 parts by weight of the BXZ resin of the present invention. Resin composition, (B) 100 to 900 parts by weight of epoxy resin, and (C) 100 to 900 parts by weight of epoxy resin and other thermosetting resin having a dihydrobenzoxazine ring structure Or a curable resin composition containing 100 to 900 parts by weight of (D) a polyimide resin.
The curable resin and the curable resin composition of the present invention may contain any resin, filler, additive, and the like as long as the BXZ resin of the present invention is contained in an effective amount.
[0031]
The curable resin composition of the present invention may contain another thermosetting resin having a dihydrobenzoxazine ring structure, an epoxy resin, or both. In this case, the blending amount of the thermosetting resin or epoxy resin having another dihydrobenzoxazine ring structure is 10 to 90 parts by weight of the thermosetting resin or epoxy resin with respect to 10 parts by weight of the BXZ resin of the present invention. Preferably it is 10 to 50 parts by weight. Further, a polyimide resin can be blended, and the blending amount in this case is preferably within the above range.
The BXZ resin of the present invention is a resin which is cured by the ring-opening polymerization reaction of the dihydrobenzoxazine structure as described above, and these other BXZ resins having a dihydrobenzoxazine ring structure are blended with the BXZ resin of the present invention. Thereby, physical properties can be improved.
[0032]
The other resin having a dihydrobenzoxazine ring structure to be mixed with the curable resin composition of the present invention is not limited as long as it is different from the BXZ resin of the present invention, and has only one dihydrobenzoxazine ring structure. There are BXZ resins and BXZ resins obtained using phenol, naphthol, aliphatic amines and the like, which do not give the BXZ resin of the present invention. These other BXZ resins may be synthesized separately from the BXZ resin of the present invention, and then mixed together. Also, when synthesizing the BXZ resin of the present invention, a starting compound which does not give the BXZ resin of the present invention Can be obtained as a mixture by partially using
[0033]
Specific examples of the other BXZ resin include compounds represented by the following formulas (a) to (g) or oligomers thereof, and dihydrobenzoxazine resins synthesized from various phenol resins.
[0034]
Embedded image
Figure 2004043547
[0035]
Embedded image
Figure 2004043547
[0036]
Embedded image
Figure 2004043547
[0037]
Although there is no particular limitation on the epoxy resin to be added to the curable resin composition of the present invention, it is advantageous that the epoxy resin is derived from a polyfunctional hydroxy compound. Preferred epoxy resins include bisphenol A epoxy resin, phenol novolak epoxy resin, and cresol novolak epoxy resin, or, from the viewpoint of imparting flexibility, bisphenol F epoxy resin and propylene glycol as low viscosity epoxy resins. -Based aliphatic epoxy resins, various alicyclic epoxy resins, glycidyl ester-based epoxy resins, glycidylamine-type epoxy resins, hydantoin-type epoxy resins, and hydrogenated bisphenol A obtained by direct hydrogenation of bisphenol-type epoxy resins It can be mixed with a type epoxy resin or the like.
[0038]
Further, the curable resin of the present invention can be used in combination with various polyimides or polyamic acid which is a polyimide precursor resin.
[0039]
The cured product of the present invention is a cured product obtained by thermally curing the BXZ resin of the present invention or the curable resin composition of the present invention.
[0040]
【Example】
Hereinafter, the present invention will be specifically described with reference to Synthesis Examples and Examples, but the present invention is not limited to these Examples. In addition, the abbreviation of the raw material used was the same as the abbreviation described in the text.
[0041]
Example 1
Synthesis of bisphenol having imide structure Under a nitrogen stream, 0.1 mol (31.0 g) of ODPA in 200 ml of NMP (N-methyl-2-pyrrolidinone) was used in a separable three-necked flask equipped with a stirrer. Two moles (21.8 g) were charged and reacted at room temperature for 3 hours. After adding 50 ml of toluene, a Dean-Stark reflux device was attached to the reactor, and the temperature was raised to 150 ° C. After the reflux started, the reaction was carried out for about 5 hours, and the water generated during imidization was removed to terminate the reaction. The reaction solution was poured into 200 ml of water, and the precipitate was collected by filtration to obtain an imide group-containing bisphenol (abbreviation: ODPA-PH) represented by the following formula (n = 0).
The raw material composition of the obtained resin is shown in Table 1. FIG. 1 shows the results of IR measurement.
[0042]
Embedded image
Figure 2004043547
[0043]
Synthesis of BXZ resin 37.25 g (0.4 mol) of aniline was dissolved in 200 ml of NMP, 98.4 g (0.2 mol) of formaldehyde solution (36-38% aqueous solution) was added dropwise, and the mixture was reacted at room temperature for 5 hours. I let it. Thereafter, 41.2 g (equivalent to 0.2 mol OH) of a compound (ODPA-PH) was added, and the mixture was reacted at 100 ° C to 120 ° C for 5 hours with stirring. After completion of the reaction, the solvent was removed in vacuo to obtain 87 g of an imide group-containing benzoxazine resin (BXZ resin-1).
[0044]
(Evaluation method)
After curing 10 g of the BXZ resin on a hot plate maintained at 250 ° C. for 1 hour, physical properties were measured. Table 2 shows the results. FIG. 2 shows the results of IR measurement of BXZ resin-1, and FIG. 3 shows the results of DSC measurement thereof.
The glass transition temperature (Tg) is measured by a dynamic viscoelasticity analyzer (DMA), the coefficient of thermal expansion is measured by a thermomechanical analyzer (TMA), and the thermal decomposition onset temperature (5% weight loss temperature) is measured by thermogravimetric analysis. Using a device (TGA), the tensile strength, tensile elongation and tensile elasticity were measured according to JIS K 6911. In addition, the flame retardancy test was performed according to JIS K 6911.
[0045]
Examples 2 to 6
Various bisphenols were synthesized in the same manner as in Example 1 by changing the raw material composition, and various BXZ resins-2 to 6 of the present invention were synthesized in the same manner as in Example 1 using the obtained bisphenol. . The evaluation was performed in the same manner as described in Example 1.
[0046]
Comparative Examples 1-2
A benzoxazine resin (abbreviations of Ba and Fa, respectively) was synthesized from bisphenol A and bisphenol F as raw materials. Evaluation was performed in the same manner as described in Example 1 except that physical properties were measured after curing for 1 hour on a hot plate maintained at 200 ° C.
Embedded image
Figure 2004043547
[0047]
Table 1 shows the raw material composition of bisphenol as the raw material of the BXZ resin, and Table 2 shows the physical properties of the cured product.
[0048]
[Table 1]
Figure 2004043547
[0049]
[Table 2]
Figure 2004043547
[0050]
【The invention's effect】
The thermosetting resin of the present invention, in a state before curing, is excellent in solubility in various organic solvents and resins, and is easily compounded with a resin such as a phenol resin, an epoxy resin, and a polyimide resin, The electrical properties and mechanical properties of the cured product are good, and the moisture resistance is also good. Further, the thermosetting resin composition of the present invention has good electrical properties and mechanical properties of the cured product, and also has good moisture resistance. Therefore, the thermosetting resin or the composition of the present invention can be used as a laminate for a printed wiring board, a printed wiring board, a semiconductor encapsulant, a module for mounting a semiconductor, a peripheral member for various electronic components, and a member for an automobile or an aircraft. It can be suitably used as a binder or matrix resin for various composite materials such as carbon fibers, carbon electrodes, and separators, as well as building members and the like.
[Brief description of the drawings]
FIG. 1 IR measurement diagram. FIG. 2 IR measurement diagram. FIG. 3 DSC measurement diagram.

Claims (10)

下記一般式(1)
Figure 2004043547
(式中、Arは4価の有機基を示し、Arは2価の有機基を示し、R炭素数1〜10の炭化水素基を示し、Rは炭素数1〜6の炭化水素基を示し、Rは水素又は炭素数1〜6の炭化水素基を示し、kは0〜5の整数、mは0〜3の整数、nは0〜10の整数を示す)で表される樹脂からなることを特徴とする熱硬化性樹脂。
The following general formula (1)
Figure 2004043547
(Wherein, Ar 1 represents a tetravalent organic group, Ar 2 represents a divalent organic group, R 1 represents a hydrocarbon group having 1 to 10 carbon atoms, and R 2 represents a hydrocarbon group having 1 to 6 carbon atoms. R 3 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms, k represents an integer of 0 to 5, m represents an integer of 0 to 3, and n represents an integer of 0 to 10). A thermosetting resin comprising a resin to be cured.
一般式(1)で表される樹脂と、そのオリゴマ−又はこの部分硬化物からなる請求項1に記載の熱硬化性樹脂。The thermosetting resin according to claim 1, comprising a resin represented by the general formula (1) and an oligomer or a partially cured product thereof. 式(2)で表されるビスフェノールと、式(3)で表されるアミンと、RCHOで表されるアルデヒド(但し、式中、R、R、R、k、n及びmは、式(1)と同じ意味を示す)とを、ビスフェノール:アミン:アルデヒド=1:1.8〜2.2:3.6〜4.4のモル比で反応させて得られる請求項1又は2記載の熱硬化性樹脂。
Figure 2004043547
A bisphenol represented by the formula (2), an amine represented by the formula (3), and an aldehyde represented by R 3 CHO (where R 1 , R 2 , R 3 , k, n and m Has the same meaning as in formula (1)) and bisphenol: amine: aldehyde = 1: 1.8 to 2.2: 3.6 to 4.4 in molar ratio. Or the thermosetting resin according to 2.
Figure 2004043547
請求項1〜3のいずれかに記載の熱硬化性樹脂を主とする硬化性樹脂組成物。A curable resin composition mainly comprising the thermosetting resin according to claim 1. 請求項1〜3のいずれかに記載の熱硬化性樹脂100重量部に、その他のジヒドロベンゾキサジン環構造を有する熱硬化性樹脂を100〜900重量部配合した硬化性樹脂組成物。A curable resin composition comprising 100 parts by weight of the thermosetting resin according to claim 1 and 100 to 900 parts by weight of another thermosetting resin having a dihydrobenzoxazine ring structure. 請求項1〜3のいずれかに記載の熱硬化性樹脂100重量部にエポキシ樹脂を100〜900重量部配合した硬化性樹脂組成物。A curable resin composition comprising 100 parts by weight of the thermosetting resin according to any one of claims 1 to 3 and 100 to 900 parts by weight of an epoxy resin. 請求項1〜3のいずれかに記載の熱硬化性樹脂100重量部にエポキシ樹脂を100〜900重量部及び他のジヒドロベンゾキサジン環構造を有する熱硬化性樹脂を100〜900重量部配合した配合した硬化性樹脂組成物。100 to 900 parts by weight of an epoxy resin and 100 to 900 parts by weight of a thermosetting resin having another dihydrobenzoxazine ring structure are mixed with 100 parts by weight of the thermosetting resin according to claim 1. A curable resin composition blended. 請求項1〜3のいずれかに記載の熱硬化性樹脂100重量部にポリイミド樹脂を100〜900重量部配合した硬化性樹脂組成物。A curable resin composition obtained by mixing 100 to 900 parts by weight of a polyimide resin with 100 parts by weight of the thermosetting resin according to claim 1. 請求項1〜3のいずれかに記載の熱硬化性樹脂を硬化させてなる硬化物。A cured product obtained by curing the thermosetting resin according to claim 1. 請求項4〜8のいずれかに記載の硬化性樹脂組成物を硬化させてなる硬化物。A cured product obtained by curing the curable resin composition according to claim 4.
JP2002199855A 2002-07-09 2002-07-09 Thermosetting resin having imide structure, cured product thereof, and thermosetting resin composition Withdrawn JP2004043547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199855A JP2004043547A (en) 2002-07-09 2002-07-09 Thermosetting resin having imide structure, cured product thereof, and thermosetting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199855A JP2004043547A (en) 2002-07-09 2002-07-09 Thermosetting resin having imide structure, cured product thereof, and thermosetting resin composition

Publications (1)

Publication Number Publication Date
JP2004043547A true JP2004043547A (en) 2004-02-12

Family

ID=31706881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199855A Withdrawn JP2004043547A (en) 2002-07-09 2002-07-09 Thermosetting resin having imide structure, cured product thereof, and thermosetting resin composition

Country Status (1)

Country Link
JP (1) JP2004043547A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109403A1 (en) * 2003-06-02 2004-12-16 Toray Industries, Inc. Photosensitive resin composition, and electronic component and display using same
JP2010001481A (en) * 2005-09-03 2010-01-07 Samsung Sdi Co Ltd Polybenzoxazine-based compound
US8148028B2 (en) 2006-05-29 2012-04-03 Samsung Sdi Co., Ltd. Polybenzoxazines, electrolyte membrane comprising the same, and fuel cell employing the electrolyte membrane
US8188210B2 (en) 2007-11-02 2012-05-29 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8187766B2 (en) 2007-11-06 2012-05-29 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8192892B2 (en) 2007-09-11 2012-06-05 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell employing the same
US8227138B2 (en) 2007-11-02 2012-07-24 Samsung Electronics Co., Ltd. Phosphorus containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8252890B2 (en) 2007-09-11 2012-08-28 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell using the same
US8298450B2 (en) 2007-10-11 2012-10-30 Samsung Electronics Co., Ltd. Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same
US8323849B2 (en) 2007-11-02 2012-12-04 Samsung Electronics Co., Ltd. Electrolyte membrane containing a crosslinked polybenzoxazine-based compound for fuel cell and fuel cell using the same
US8679699B2 (en) 2006-08-22 2014-03-25 Samsung Sdi Co., Ltd Membrane electrode assembly for fuel cell and fuel cell employing the same
WO2016029038A1 (en) * 2014-08-21 2016-02-25 Hexion Inc. Curing compositions and methods of preparing
CN109694545A (en) * 2018-12-28 2019-04-30 东莞联茂电子科技有限公司 A kind of Halogen-free high heat-resistant resin combination for copper-clad plate
CN110655650A (en) * 2019-11-11 2020-01-07 同济大学 Benzoxazine bridged polyimide precursor and preparation method thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476476B2 (en) 2003-06-02 2009-01-13 Toray Industries, Inc. Photosensitive resin composition, electronic component using the same, and display unit using the same
WO2004109403A1 (en) * 2003-06-02 2004-12-16 Toray Industries, Inc. Photosensitive resin composition, and electronic component and display using same
US8349515B2 (en) 2005-09-03 2013-01-08 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
JP2010001481A (en) * 2005-09-03 2010-01-07 Samsung Sdi Co Ltd Polybenzoxazine-based compound
US8034508B2 (en) 2005-09-03 2011-10-11 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8426081B2 (en) 2005-09-03 2013-04-23 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8148028B2 (en) 2006-05-29 2012-04-03 Samsung Sdi Co., Ltd. Polybenzoxazines, electrolyte membrane comprising the same, and fuel cell employing the electrolyte membrane
US8580455B2 (en) 2006-05-29 2013-11-12 Samsung Sdi Co., Ltd. Crosslinked polybenzoxazines, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8679699B2 (en) 2006-08-22 2014-03-25 Samsung Sdi Co., Ltd Membrane electrode assembly for fuel cell and fuel cell employing the same
US9243012B2 (en) 2007-09-11 2016-01-26 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer, or polymer thereof
US8252890B2 (en) 2007-09-11 2012-08-28 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell using the same
US8715881B2 (en) 2007-09-11 2014-05-06 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell using the same
US8192892B2 (en) 2007-09-11 2012-06-05 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell employing the same
US8298450B2 (en) 2007-10-11 2012-10-30 Samsung Electronics Co., Ltd. Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same
US8808941B2 (en) 2007-11-02 2014-08-19 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8227138B2 (en) 2007-11-02 2012-07-24 Samsung Electronics Co., Ltd. Phosphorus containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8188210B2 (en) 2007-11-02 2012-05-29 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8512914B2 (en) 2007-11-02 2013-08-20 Samsung Electronics Co., Ltd. Phosphorus containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8323849B2 (en) 2007-11-02 2012-12-04 Samsung Electronics Co., Ltd. Electrolyte membrane containing a crosslinked polybenzoxazine-based compound for fuel cell and fuel cell using the same
US8551669B2 (en) 2007-11-02 2013-10-08 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8507148B2 (en) 2007-11-06 2013-08-13 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8187766B2 (en) 2007-11-06 2012-05-29 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
WO2016029038A1 (en) * 2014-08-21 2016-02-25 Hexion Inc. Curing compositions and methods of preparing
US9790313B2 (en) 2014-08-21 2017-10-17 Hexion Inc. Curing compositions and methods of preparing
CN109694545A (en) * 2018-12-28 2019-04-30 东莞联茂电子科技有限公司 A kind of Halogen-free high heat-resistant resin combination for copper-clad plate
CN110655650A (en) * 2019-11-11 2020-01-07 同济大学 Benzoxazine bridged polyimide precursor and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100834604B1 (en) Heat-resistant composition
JP4120780B2 (en) Method for producing polyimide resin having phenolic hydroxyl group
US7683152B2 (en) Partial block polyimide-polysiloxane copolymer, making method, and resin composition comprising the copolymer
JP4737447B2 (en) Polyimide resin having a phenolic hydroxyl group and a polyimide resin composition
JP2004043547A (en) Thermosetting resin having imide structure, cured product thereof, and thermosetting resin composition
JP3700311B2 (en) Siloxane polyimide and heat-resistant adhesive containing the same
JP2003012924A (en) Curable resin composition
JP2006028533A (en) Polyimide silicone resin and method for producing the same
WO2004009708A1 (en) Curable resin composition
KR101280718B1 (en) Polyimidesilicone resin and thermosetting composition comprising the same
US7858734B2 (en) Polyimide material and preparation method thereof
JP5010357B2 (en) Novel polyamic acid, polyimide and their uses
JP2003213130A (en) Polyimide resin composition and fire-resistant adhesive
JP2003327671A (en) Heat-resistant resin composition and adhesive film using the same
JPH05194747A (en) Curable resin, production thereof, and protective film for electronic part
JP5045924B2 (en) Method for producing polyimide resin having phenolic hydroxyl group
JP5499312B2 (en) NOVEL POLYIMIDE SILICON HAVING ALCOHOLIC HYDROXY AND PROCESS FOR PRODUCING THE SAME
JP5352527B2 (en) Novel polyimide and method for producing the same
JP2004182814A (en) Thermosetting resin, resin composition and cured product
JP4749606B2 (en) Epoxy group-containing polyimide copolymer and cured product thereof
JP2004043622A (en) Thermosetting resin having silicone structural unit, cured product thereof, and thermosetting resin composition
KR101139091B1 (en) Polyimide having alcoholic hydroxyl group and process for preparing the same
TWI789796B (en) Polymer and application thereof
JP2002060488A (en) Method for manufacturing polyamic acid and polyimide, and adhesive tape obtained by using them
JP2003335858A (en) Polyimide resin

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004