JP2004042619A - Method for manufacturing polyester film-coated metallic sheet - Google Patents

Method for manufacturing polyester film-coated metallic sheet Download PDF

Info

Publication number
JP2004042619A
JP2004042619A JP2003134655A JP2003134655A JP2004042619A JP 2004042619 A JP2004042619 A JP 2004042619A JP 2003134655 A JP2003134655 A JP 2003134655A JP 2003134655 A JP2003134655 A JP 2003134655A JP 2004042619 A JP2004042619 A JP 2004042619A
Authority
JP
Japan
Prior art keywords
polyester
film
layer
olefin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003134655A
Other languages
Japanese (ja)
Other versions
JP2004042619A5 (en
JP4193119B2 (en
Inventor
Kuniharu Mori
森 邦治
Hirohisa Fujita
藤田 裕久
Hiromu Nagano
永野 ▲煕▼
Hideto Ohashi
大橋 英人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003134655A priority Critical patent/JP4193119B2/en
Publication of JP2004042619A publication Critical patent/JP2004042619A/en
Publication of JP2004042619A5 publication Critical patent/JP2004042619A5/ja
Application granted granted Critical
Publication of JP4193119B2 publication Critical patent/JP4193119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a polyester film-coated metallic sheet which shows excellent economy and superb plate working properties because the possibilities of a neck-in phenomenon during melt-extrusion are low and a foreign substance is hardly generated in an obtained molten resin film and a hardly deteriorated impact resistance in heating for an outer face baking finish performed for the purpose of making the appearance of a metallic can presentable after plate making and is best-suited for the metallic can receiving a hot water sterilization. <P>SOLUTION: In the manufacturing method for coating one side of the metallic sheet with a film (A) composed mainly of a crystalline polyester with a melting point of 180°C or higher and the other side with a film (B) consisting of a crystalline polyester with a melting point of 180°C or higher, the resin films (A) and (B) obtained by cooling/setting the molten resin film extruded in a laminar fashion under the state that olefin polymer flows join at both end parts of a T-die, are uniaxially stretched in a longitudinal direction, then the stretched resin films (A) and (B) are thermally set and the polyester films (A) and (B) are obtained by cutting/removing both end parts as one process. The polyester films (A) and (B) are laminated on the metallic sheet heated in a separate process as the other process. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
ポリエステル系フィルム被覆金属板の製造方法に関するものである。さらに詳細には、製缶性(例えば、絞り・しごき加工性)と耐衝撃性に優れ、かつ温水殺菌処理が実施される金属缶に好適なポリエステル系フィルム被覆金属板の製造方法に関するものである。
【0002】
【従来技術】
従来、金属缶の缶内面及び缶外面は腐蝕防止を目的として、エポキシ系,フェノール系等の各種熱硬化性樹脂を溶剤に溶解又は分散させたものを塗布し、金属表面を被覆することが広く行われてきた。しかしながら、この熱硬化性樹脂の被覆方法では塗料の乾燥に長時間を要するため生産性が低下したり、多量の有機溶剤による環境汚染など好ましくない問題を発生させることが多いという欠点があった。
【0003】
かかる欠点を解決するため、金属板に熱可塑性樹脂を溶融押出法で被覆する方法が開示されている(例えば、特許文献1参照。)。
【0004】
又、溶融押出した熱可塑性樹脂を一旦冷却固化させた後、加熱された金属板に圧着する方法が開示されている(例えば、特許文献2参照。)。しかしながら、これらの熱可塑性樹脂の被覆方法では、Tダイから層状に溶融樹脂を押出す際、溶融樹脂膜の巾減少(ネックインと称す)が大きく、被覆に必要な樹脂巾に対して数10cm広い巾で製膜する必要があり、経済性の点から満足される方法ではなかった。
【0005】
かかる欠点を解決するため、三官能以上の多塩基酸又は多価アルコール成分を共重合させたポリエステルを配合してなるポリエステルを使用することによりネックインを小さくする方法が開示されている(例えば、特許文献3、特許文献4参照。)。しかしながら、これらの被覆方法では、三官能以上の多塩基酸又は多価アルコール成分を共重合させたポリエステルが押出機からTダイに至る溶融工程で熱劣化しやすく、熱安定剤を併用しても得られた溶融樹脂膜に異物(例えば、ゲル状異物又は劣化物を核とした異物)が発生しやすく、製缶時に樹脂被覆層に異物を起点とした亀裂が入るため、製缶用の樹脂被覆金属板として満足されるものではなかった。
【0006】
又、絞り・しごき缶に用いられる樹脂被覆金属板の被覆用樹脂では、製缶(絞り・しごき加工)に追従しうる優れた成形性が要求されるばかりでなく、製缶後に美麗化を目的として実施される外面焼付け塗装の加熱においても耐衝撃性が低下しないことが要求される。しかしながら、前記の樹脂被覆金属板は耐衝撃性が低下することが多く、耐衝撃性の要求を満足するものではなかった。
【0007】
【特許文献1】
特開昭57−203545号公報
【特許文献2】
特開平10−309775号公報
【特許文献3】
特開平10−86308号公報
【特許文献4】
特開2000−71388号公報
【0008】
【発明が解決しようとする課題】
本発明は前記従来技術の問題点を解消することを目的とするものである。即ち、溶融押出時のネックインが小さく、かつ得られた溶融樹脂膜に異物が発生しにくいため、経済性と製缶性に優れ、かつ製缶後に美麗化を目的として実施される外面焼付け塗装の加熱においても耐衝撃性が低下しにくく、かつ温水殺菌処理が実施される金属缶に好適なポリエステル系フィルム被覆金属板の製造方法を提供するものである。
【0009】
【課題を解決するための手段】
本発明の目的は、金属板の片面に融点180℃以上の結晶性ポリエステルを主体とするフィルム(A)を被覆しもう一方の面に融点180℃以上の結晶性ポリエステルよりなるフィルム(B)を被覆する製造方法において、Tダイを用いて両端部にオレフィン系ポリマーが合流された状態で層状に押出した溶融樹脂膜を冷却固化して得た樹脂膜(A)及び(B)を縦方向に1軸延伸し、次いで熱固定処理し、次いで両端部を切断除去してポリエステル系フィルム(A)及び(B)を得る方法と該ポリエステル系フィルム(A)及び(B)を別工程で加熱された金属板にラミネートする方法よりなるポリエステル系フィルム被覆金属板の製造方法であって、かつポリエステル系フィルム(A)は(I)層/(II)層の複合構成であり、(I)層がポリエチレンテレフタレートとポリブチレンフタレートが60:40〜30:70(重量%)よりなり、(II)層が全酸成分の50モル%以上がテレフタル酸残基かつ5〜50モル%が炭素数10以上の脂肪族ジカルボン酸残基であるポリエステルとオレフィン系ポリマーが70:30〜100:0(重量%)よりなるものであって、かつポリエステル系フィルム(B)はポリエチレンテレフタレートとポリブチレンテレフタレートが60:40〜30:70(重量%)のポリエステルよりなるものであって、かつポリエステル系フィルム(A)及び(B)は150℃での縦方向の熱収縮率が4〜30%であることを特徴とするポリエステル系フィルム被覆金属板の製造方法によって達成される。
【0010】
この場合において、前記樹脂膜(A)の両端部と(II)層のオレフィン系ポリマー及び樹脂膜(B)の両端部のオレフィン系ポリマーが同一であることが好適である。
【0011】
また、この場合において、前記オレフィン系ポリマーがポリエチレン及び/又はエチレン系共重合体であることが好適である。
【0012】
さらにまた、この場合において、前記樹脂膜(A)の(I)層と樹脂膜(B)のポリエステルのポリエチレンテレフタレートとポリブチレンテレフタレートの比率が同一であることが好適である。
【0013】
【発明の実施の形態】
本発明におけるポリエステル系フィルム(A)の(I)層及びポリエステル系フィルム(B)ではポリエチレンテレフタレート及びポリブチレンテレフタレートの特性を損なわない範囲でテレフタル酸以外のジカルボン酸成分とエチレングリコール及びブタンジオール以外のグリコール成分を使用できる。例えば、ジカルボン酸として、イソフタル酸,オルソフタル酸,ナフタレンジカルボン酸,ジフェニルスルホンジカルボン酸,5−ナトリウムスルホイソフタル酸等の芳香族ジカルボン酸、シュウ酸,コハク酸,アジピン酸,セバシン酸,デカンジカルボン酸,マレイン酸,フマル酸,ダイマー酸等の脂肪族ジカルボン酸、p−オキシ安息香酸等のオキシカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸が使用できる。又、エチレングリコール及びブタンジオール以外のグリコール成分として、プロパンジオール,ペンタンジオール,ヘキサンジオール,ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環族グリコール、ビスフェノールA,ビスフェノールS等の芳香族グリコールが使用できる。
【0014】
本発明におけるポリエステル系フィルム(A)の(II)層を構成するポリエステルは、全酸成分の50モル%以上がテレフタル酸残基と5〜50モル%が炭素数10以上の脂肪族ジカルボン酸であることが必要である。テレフタル酸残基が50モル%未満では耐熱性が不足し、製缶時のポンチの離型性が悪くなり好ましくない。炭素数10以上の脂肪族ジカルボン酸としては、セバシン酸,エイコ酸,デカンジカルボン酸,ダイマー酸等が挙げられる。ダイマー酸とはオレイン酸等の高級不飽和脂肪酸の二量化反応によって得られ、通常不飽和結合を分子中に有するが、水素添加をして不飽和度を下げたものも使用できる。水素添加をした方が耐熱性や柔軟性が向上するためより好ましい。又、二量化反応の過程で直鎖分岐状構造,脂環構造,芳香環構造が生成されるが、これらの構造や量を特に限定するものではない。炭素数10未満の脂肪族ジカルボン酸残基では耐衝撃性の付与が充分でないため好ましくない。炭素数10以上の脂肪族ジカルボン酸残基が5モル%未満では耐衝撃性の付与が充分でないため好ましくない。逆に50モル%を超えると耐衝撃性が飽和するばかりでなく、耐熱性が低下するため好ましくない。又、 ポリエステル系フィルム(A)の(II)層を構成するポリエステルはテレフタル酸残基と炭素数10以上の脂肪族ジカルボン酸残基が前記の範囲を満足していれば、これらの酸以外のジカルボン酸残基を含むことを特に限定するものではない。又、炭素数10以上の脂肪族ジカルボン酸残基は1種類であってもよいし、2種類以上併用してもよい。又、ポリエステル系フィルム(A)の(II)層を構成するポリエステルのグリコール残基を特に限定するものではなく、エチレングリコール,プロパンジオール,ブタンジオール,ペンタンジオール,ヘキサンジオール,ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環族グリコール、ビスフェノールA,ビスフェノールS等の芳香族グリコールの残基でよい。
【0015】
本発明におけるポリエステルには、必要に応じて酸化防止剤,熱安定剤,紫外線吸収剤,可塑剤,顔料,帯電防止剤,潤滑剤,結晶核剤,無機又は有機粒子よりなる滑剤等を配合させてもよい。
【0016】
本発明におけるポリエステルの製造方法については特に限定しない。即ち、エステル交換法又は直接重合法のいずれの方法で製造されたものであっても使用できる。又、分子量を高めるために固相重合法で製造されたものであってもかまわない。さらに缶に内容物を充填後に実施されるパストライズ処理,レトルト処理等でのポリエステル樹脂からのオリゴマー量を少なくする点より、減圧固相重合法で製造されたオリゴマー含有量が低いポリエステルを使用することは好ましい。但し、樹脂膜(A)の(I)層と樹脂膜(B)のポリエステルのポリエチレンテレフタレートとポリブチレンテレフタレートの比率が同一であることが好ましい。その理由は、樹脂の無駄を省く観点から層状に押出された樹脂(A)及び(B)を冷却固化後に縦1軸延伸及び熱固定処理して得た樹脂膜(A)及び(B)の両端部を切断除去して得た樹脂を樹脂膜(A)の(II)層で再使用した場合、金属板に被覆されたポリエステル系フィルム(A)の品質が安定するためである。
本発明で使用されるポリエステルの融点は180℃以上であることが製缶性(絞り・しごき加工において、缶内面側のポリエステル系フィルムではポンチの離型性の確保、缶外面側のポリエステル系フィルムではかじり抑制[ポリエステル系フィルムでの縦方向のキズ])から必要である。
【0017】
本発明では樹脂膜(A)の両端部と(II)層及び樹脂膜(B)の両端部で使用するオレフィン系ポリマーはポリエチレン及び/又はエチレン系共重合体が好ましい。低密度ポリエチレン,中密度ポリエチレン,高密度ポリエチレン,直鎖状低密度ポリエチレン,超高分子量ポリエチレン,エチレンープロピレン共重合体,エチレンーブテン共重合体,エチレンー酢酸ビニル共重合体,エチレンーエチルアクリレート共重合体,エチレンーメチルアクリレート共重合体、エチレンーメチルメタアクリレート共重合体、エチレンーアクリル酸共重合体、エチレンーメタクリル酸共重合体、エチレンーエチルアクリレートー無水マレイン酸共重合体、アイオノマー、エチレンー無水マレイン酸グラフト共重合体、エチレンービニルアルコール共重合体等が使用できる。樹脂膜(A)の両端部と(II)層で使用するオレフィン系ポリマー及び樹脂膜(B)の両端部で使用するオレフィン系ポリマーは同一であることが好ましい。その理由は、樹脂の無駄を省く観点から層状に押出された樹脂(A)及び(B)を冷却固化後に縦1軸延伸及び熱固定処理して得た樹脂膜(A)及び(B)の両端部を切断除去して得た樹脂を樹脂膜(A)の(II)層で再使用した場合、金属板に被覆されたポリエステル系フィルム(A)の品質が安定するためである。
【0018】
本発明ではポリエステル系フィルムのポリエステルとオレフィン系ポリマーの比率は70:30〜100:0(重量%)であることが必要である。オレフィン系ポリマーが30重量%を超える場合、製缶性(ポンチの離型性)が劣るため好ましくない。
【0019】
本発明ではポリエステルとオレフィン系ポリマーをTダイから層状に押出す際、両端部(片側が5cm以下の部分)にオレフィン系ポリマーを使用することが好ましい。
本発明ではポリエステルとオレフィン系ポリマーをドライブレンド又は溶融混合して得たポリマーを公知の1軸又は2軸押出機内で溶融させた後、エッジラミネーションタイプ等の公知のマルチマニホールドダイを使用して層状の溶融樹脂膜を得る。
【0020】
本発明では冷却固化方法として、回転させた冷却ロールにTダイから層状に溶融した樹脂を接触させる公知の方法が使用できる。溶融樹脂を冷却ロールに接触させる際、強制的にエアーを吹き付ける方法又は静電気で密着させる方法を採用することが好ましい。又、強制エアー吹き付け法,静電密着法のいずれにおいても層状樹脂の両端部と中央部を独立させて実施する方法がより好ましい。さらに、溶融樹脂が冷却ロールに接触する際、反対側を減圧して随伴流を低減させる方策(例えば、バキュームチャンバー,バキュームボックス等の装置)を併用することがより好ましい。
【0021】
本発明では冷却固化させた後、必要に応じて両端部を切断除去して得た樹脂膜(A)及び(B)をポリエステルのガラス転移点以上かつ冷結晶化温度未満の温度で1.3〜6.0倍の縦延伸を実施し、次いで緊張下で50℃以上かつポリエステルの融点−20℃の温度で1〜20秒間熱処理し、次いで樹脂膜の両端部を切断除去してポリエステル系フィルム(A)及び(B)を得る。
【0022】
本発明で用いるポリエステル系フィルム(A)及び(B)は150℃での縦方向の熱収縮率を4〜30%であることが必要である。熱収縮率が4%未満の場合、ラミネート後の密着性が低下するため好ましくない。逆に、熱収縮率が30%を超える場合、ラミネートまでの保管中に縦方向の経時収縮によりシワ・ブロッキングが発生し、ポリエステル系フィルム被覆金属板にシワ・気泡のスジが発生しやすく好ましくない。
【0023】
本発明では上記の切断除去した樹脂膜の両端部を細断後、押固める方法又は加熱溶融させる方法等によって得た原料を樹脂膜(A)の(II)層で再使用することは可能である。再使用率は特に限定されないが、5〜90重量%が好ましい。
【0024】
本発明では金属板として、ティンフリースティール等の表面処理鋼板あるいはアルミニウム板又はアルミニウム合金板あるいは表面処理を施したアルミニウム板又はアルミニウム合金板が使用できる。これらの金属板をポリエステルの融点−20℃以上かつ融点+150℃に加熱した後、ラミネートロールを使用して金属板にポリエステル系フィルム(A)及び(B)をラミネートし、引き続いてこのラミネート金属板をポリエステルの融点+10℃以上かつ融点+60℃で加熱した後、水冷及び/又は空冷してポリエステル系フィルム被覆金属板を得る。但し、ポリエステル系フィルム(A)を金属板にラミネートする場合、(II)層側と金属板を接触させることが製缶性を確保するために好ましい。
【0025】
【実施例】
以下、実施例をもとに本発明を説明する。
[評価方法]
(1)ポリエステルの融点
ポリエステル組成物を300℃で5分間加熱溶融した後、液体窒素で急冷して得たサンプル10mgを用い、窒素気流中、示差走査型熱量計(DSC)を用いて10℃/分の昇温速度で発熱・吸熱曲線(DSC曲線)を測定したときの、融解に伴う吸熱ピークの頂点温度を融点Tm(℃)とした。
【0026】
(2)ネックイン量
Tダイの吐出口巾(60cm)とn=3で測定した冷却固化後の樹脂膜巾(両端部を切断除去する前の樹脂膜巾)の平均値(Acm)を用い、次式でネックイン量(cm)を求めた。ネックイン量が5cm以下を実用性ありと評価した。
ネックイン量(cm)=60−A
【0027】
(3)保管後のロールフィルムの外観と耐切断性
ロール状フィルムを40℃で相対湿度80%の条件下で1ケ月保管した後、フィルムの外観とJIS K 7127に準じた引張試験(縦方向 n=30、15mm巾の1号試験片、試験速度:200mm/分)を実施した。評価基準を以下のとおり設定し、○を実用性ありと評価した。
[外観]
○:シワ・ブロッキング・タルミなし
×:シワ・ブロッキング・タルミあり
[耐切断性]
破断伸度<5%以下のサンプル数で評価した。(2個/30個以下を実用   性ありと評価した。)
【0028】
(4)熱収縮率
JIS Z 1715に準じて評価した。
【0029】
(5)ポリエステル系フィルム被覆金属板の作製方法
250℃に加熱したアルミニウム合金板(厚み:0.26mmの3004系合金板)の片面にポリエステル系フィルム(A)の(II)層が金属板と接触するように,もう一方の面にポリエステル系フィルム(B)を同時にラミネートした後、275℃で加熱した後に水中急冷して被覆アルミニウム板を作製した。
【0030】
(6)缶内面樹脂と加工ポンチの離型性
被覆アルミニウム板のポリエステル系フィルム(A)が缶内面側になるようにn=10で製缶し、成形缶上部に起る座屈程度を目視観察した。評価基準は以下のとおり設定し、○を実用性ありと評価した。
○:缶開口部の座屈未発生
△:缶開口部円周の約1/3に座屈発生
×:缶開口部円周の1/3以上に座屈発生
【0031】
(7)缶外面の耐かじり性(缶外面のポリエステル系フィルムでの縦方向のキズ)
被覆アルミニウム板のポリエステル系フィルム(A)が缶内面側になるようにn=10で製缶し、成形した缶体胴壁部の外面ポリエステル系フィルム(B)のキズ発生程度を目視観察した。評価基準は以下のとおり設定し、○を実用性ありと評価した。
○:キズ未発生
△:外面の約1/3にキズ発生
×:外面の1/3以上に激しいキズ発生
【0032】
(8)耐衝撃性
被覆アルミニウム板を製缶して得た缶を280℃で40秒加熱後水中急冷した缶の胴壁中央部より7cm角のサンプルを切り出す。このサンプルの缶外面に相当する面に先端径10mmの重り(600g)を高さ10cmから落して衝撃を付与する。ついで7%の希塩酸を満たしたガラス容器上にサンプルを置き(サンプルの凸部が浸漬する状態で置き)、3日後に凸部の腐蝕状態を目視観察した。評価基準は以下のとおり設定し、○を実用性ありと評価した。
○:凸部の腐蝕未発生
×:凸部の腐蝕発生
【0033】
(9)温水処理後の缶外面の白化程度
被覆アルミニウム板を製缶して得た缶を270℃で40秒間加熱した後水中急冷したものをサンプルとする。このサンプルを80℃の温水中に10分間浸漬した後、水中急冷して得た缶外面を目視観察した。評価基準は以下のとおり設定し、○を実用性ありと評価した。
○:白化が目立たない
△:明らかに白化しているが、アルミニウム合金板の色が見える
×:白化によりアルミニウム合金板の色がみえない
【0034】
[実施例・比較例に用いたポリエステルとオレフィン系ポリマーの略号と内容]
(1)PET    :ポリエチレンテレフタレート
(2)PBT    :ポリブチレンテレフタレート
(3)ポリエステルA:テレフタル酸/炭素数36のダイマー酸(モル比90/10) とエチレングリコールとの共重合ポリエステル
(4)ポリエステルB:テレフタル酸/炭素数36のダイマー酸(モル比95/5)とエチレングリコール/1,4ブタンジオール(モル比30/70)との共重合ポリエステル
(5)ポリエステルC:テレフタル酸とエチレングリコール/シクロヘキサンジメタノール(モル比70/30)との共重合ポリエステル
(6)オレフィンA :低密度ポリエチレン(住友化学社製、スミカセンG401:商品名)
(7)オレフィンB :エチレンーブテン共重合体(三井化学社製、タフマーA4085:商品名)
(8)オレフィンC :アイオノマー(三井デュポンポリケミカル社製、ハイミラン1706:商品名)
(9)オレフィンD :エチレンーメチルアクリレート共重合体(イーストマンケミカル社製、EMAC SP2205:商品名)
(10)オレフィンF :ポリプロピレン(住友化学社製、ノーブレンFS2011DG2:商品名)
【0035】
[実施例 1]
樹脂膜(A)の(I)層原料としてPET/PBT=40/60(重量%)のポリエステル、(II)層原料としてポリエステルA単体を270℃で溶融させ、樹脂膜(A)の両端部の原料としてオレフィンA単体を250℃で溶融させ、エッジラミネーションタイプのTダイ(両端部の吐出口巾/中央部の吐出口巾/両端部の吐出口巾=2cm/56cm/2cm、260℃に加熱)を用いて、層状に冷却ロール(周速20m/分)へキャスト(Tダイから冷却ロールでの溶融樹脂の接地点までの距離15cm、中央部と両端部は別々の装置で強制的にエアーを吹付け)して樹脂膜(A)を得た。
樹脂膜(A)を予熱温度65℃、延伸温度100℃で3.0倍縦延伸し、クリップ把持方式のセッターを用い150℃で3秒間熱処理した後、両端部(片側5cm)を切断除去して巻取り、厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)で長さが100mのロール状ポリエステル系フィルム(A)を得た。
【0036】
又、樹脂膜(B)の中央部の原料としてPET/PBT=40/60(重量%)のポリエステルを270℃で溶融させ、樹脂膜(B)の両端部の原料としてオレフィンA単体を250℃で溶融させ、エッジラミネーションタイプのTダイ(両端部の吐出口巾/中央部の吐出口巾/両端部の吐出口巾=2cm/56cm/2cm、260℃に加熱)を用いて、層状に冷却ロール(周速20m/分)へキャスト(Tダイから冷却ロールでの溶融樹脂の接地点までの距離15cm、中央部と両端部は別々の装置で強制的にエアーを吹付け)して樹脂膜(B)を得た。
樹脂膜(B)を予熱温度65℃、延伸温度100℃で3.0倍縦延伸し、クリップ把持方式のセッターを用い150℃で3秒間熱処理した後、両端部(片側5cm)を切断除去して巻取り、厚みが16μmで長さが100mのロール状ポリエステル系フィルム(B)を得た。
【0037】
ロール状ポリエステル系フィルム(A)及び(B)を40℃で相対湿度80%の条件下で1ケ月保管した後、250℃に加熱した3004系アルミニウム合金板(厚み 0.26mm)の両面に前記フィルムを圧着し、275℃に加熱した後、水中急冷して被覆アルミニウム板を得た。
【0038】
こうして得られた被覆アルミニウム板に成形用潤滑剤を塗布した後、加熱して板温70℃でポリエステル系フィルム(A)が内面側となるように絞り加工を実施した。次いで、得られたカップの温度を40℃にして金型温度80℃でしごき加工を実施し、350mlサイズのシームレス缶を得た。
【0039】
ポリエステルの融点,キャスト時のネックイン量,保管後のロールフィルムの外観と耐切断性,熱収縮率,製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度),耐衝撃性,温水処理後の缶外面の白化程度を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性に優れ、かつ耐衝撃性と外面の耐温水白化性が優れた金属缶が得られるポリエステル系フィルム被覆金属板の製造方法であるといえる。
【0040】
[実施例 2]
樹脂膜Aの(II)層原料をポリエステルB単体とした以外は実施例1と同様にして厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)で長さが100mのロール状ポリエステル系フィルム(A)と厚みが16μmで長さが100mのロール状ポリエステル系フィルム(B)を得た。
ついで、実施例1と同様に被覆アルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0041】
ポリエステルの融点,キャスト時のネックイン量,保管後のロールフィルムの外観と耐切断性,熱収縮率,製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度),耐衝撃性,温水処理後の缶外面の白化程度を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性に優れ、かつ耐衝撃性と外面の耐温水白化性が優れた金属缶が得られるポリエステル系フィルム被覆金属板の製造方法であるといえる。
【0042】
[実施例 3]
樹脂膜Aの(II)層原料をポリエステルA 87重量%とオレフィンA 13重量%とした以外は実施例1と同様にして厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)で長さが100mのロール状ポリエステル系フィルム(A)と厚みが16μmで長さが100mのロール状ポリエステル系フィルム(B)を得た。
【0043】
ついで、実施例1と同様に被覆アルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0044】
ポリエステルの融点,キャスト時のネックイン量,保管後のロールフィルムの外観と耐切断性,熱収縮率,製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度),耐衝撃性,温水処理後の缶外面の白化程度を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性に優れ、かつ耐衝撃性と外面の耐温水白化性が優れた金属缶が得られるポリエステル系フィルム被覆金属板の製造方法であるといえる。
【0045】
[実施例 4]
樹脂膜Aの(II)層原料をポリエステルA 87重量%とオレフィンB 13重量%とし、樹脂膜(A)及び(B)の両端部の原料をオレフィンBとした以外は実施例1と同様にして厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)で長さが100mのロール状ポリエステル系フィルム(A)と厚みが16μmで長さが100mのロール状ポリエステル系フィルム(B)を得た。
【0046】
ついで、実施例1と同様に被覆アルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0047】
ポリエステルの融点,キャスト時のネックイン量,保管後のロールフィルムの外観と耐切断性,熱収縮率,製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度),耐衝撃性,温水処理後の缶外面の白化程度を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性に優れ、かつ耐衝撃性と外面の耐温水白化性が優れた金属缶が得られるポリエステル系フィルム被覆金属板の製造方法であるといえる。
【0048】
[実施例 5]
樹脂膜Aの(II)層原料をポリエステルA 87重量%とオレフィンC 13重量%とし、樹脂膜(A)及び(B)の両端部の原料をオレフィンCとした以外は実施例1と同様にして厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)で長さが100mのロール状ポリエステル系フィルム(A)と厚みが16μmで長さが100mのロール状ポリエステル系フィルム(B)を得た。
【0049】
ついで、実施例1と同様に被覆アルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0050】
ポリエステルの融点,キャスト時のネックイン量,保管後のロールフィルムの外観と耐切断性,熱収縮率,製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度),耐衝撃性,温水処理後の缶外面の白化程度を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性に優れ、かつ耐衝撃性と外面の耐温水白化性が優れた金属缶が得られるポリエステル系フィルム被覆金属板の製造方法であるといえる。
【0051】
[実施例 6]
樹脂膜Aの(II)層原料をポリエステルA 87重量%とオレフィンA/オレフィンD=70/30(重量%)よりなるオレフィン 13重量%とし、樹脂膜(A)及び(B)の両端部の原料をオレフィンA/オレフィンD=70/30(重量%)とした以外は実施例1と同様にして厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)で長さが100mのロール状ポリエステル系フィルム(A)と厚みが16μmで長さが100mのロール状ポリエステル系フィルム(B)を得た。
【0052】
ついで、実施例1と同様に被覆アルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0053】
ポリエステルの融点,キャスト時のネックイン量,保管後のロールフィルムの外観と耐切断性,熱収縮率,製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度),耐衝撃性,温水処理後の缶外面の白化程度を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性に優れ、かつ耐衝撃性と外面の耐温水白化性が優れた金属缶が得られるポリエステル系フィルム被覆金属板の製造方法であるといえる。
【0054】
[実施例 7]
樹脂膜Aの(II)層原料をポリエステルA 85重量%と実施例1でポリエステル系フィルム(A)及び(B)を得る前に切断除去した両端部(オレフィンAの比率が85重量%)を造粒して得たポリマーを15重量%とした以外は実施例1と同様にして厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)で長さが100mのロール状ポリエステル系フィルム(A)と厚みが16μmで長さが100mのロール状ポリエステル系フィルム(B)を得た。
ついで、実施例1と同様に被覆アルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0055】
ポリエステルの融点,キャスト時のネックイン量,保管後のロールフィルムの外観と耐切断性,熱収縮率,製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度),耐衝撃性,温水処理後の缶外面の白化程度を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性に優れ、かつ耐衝撃性と外面の耐温水白化性が優れた金属缶が得られるポリエステル系フィルム被覆金属板の製造方法であるといえる。
【0056】
[比較例 1]
樹脂膜(A)と樹脂膜(B)の両端部の原料をPET/PBT=40/60(重量%)のポリエステルとした以外は実施例1と同様にしてロール状樹脂膜を得ようとしたが、ネックイン量が大きく,かつ両端部を18cm切断除去しなければ、厚み分布が一様な中央部が得られないため、この方法はポリエステル系フィルム被覆金属板の製造方法として好ましくない。ポリエステルの融点,キャスト時のネックイン量を表2に示す。
【0057】
[比較例 2]
樹脂膜(A)の(I)層の原料をPET/PBT=20/80(重量%)のポリエステルとし、樹脂膜(B)の中央部の原料をPET/PBT=20/80(重量%)のポリエステルとした以外は実施例1と同様にして製膜しようとしたが、冷却ロールと縦延伸の予熱ロール間で樹脂膜が割れることが多く、さらに縦延伸時に樹脂膜が破断することが多く、ロール状ポリエステル系フィルム(A)及び(B)を得られないため、この方法はポリエステル系フィルム製造方法として好ましくない。ポリエステルの融点,キャスト時のネックイン量を表2に示す。
【0058】
[比較例 3]
樹脂膜(A)の(I)層の原料をPET/PBT=70/30(重量%)のポリエステルとし、樹脂膜(B)の中央部の原料をPET/PBT=70/30(重量%)のポリエステルとした以外は実施例1と同様にして厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)で長さが100mのロール状ポリエステル系フィルム(A)と厚みが16μmで長さが100mのロール状ポリエステル系フィルム(B)を得た。
【0059】
ついで、実施例1と同様に被覆アルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0060】
ポリエステルの融点,キャスト時のネックイン量,保管後のロールフィルムの外観と耐切断性,熱収縮率,製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度),耐衝撃性,温水処理後の缶外面の白化程度を表2に示す。この方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性に優れ、かつ金属缶の耐衝撃性に優れていたが、外面の耐温水白化性が劣るため、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
【0061】
[比較例 4]
樹脂膜(A)の(I)層及び(II)層の原料をポリエスエルAとした以外は実施例1と同様にして同様にして厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)で長さが100mのロール状ポリエステル系フィルム(A)と厚みが16μmで長さが100mのロール状ポリエステル系フィルム(B)を得た。
【0062】
ついで、実施例1と同様に被覆アルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0063】
ポリエステルの融点,キャスト時のネックイン量,製缶性(缶内面樹脂膜とポンチの離型性と缶外面樹脂膜のキズ発生程度)を表2に示す。この方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であったが、被覆アルミニウム板を製缶した際、缶内面フィルムと加工ポンチが粘着し缶開口部の全周にわたって座屈が発生したため製缶性が劣っており、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
【0064】
[比較例 5]
樹脂膜(A)の(I)層と樹脂膜(B)の中央部の原料をポリエステルC単体とした以外は実施例1と同様にして厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)で長さが100mのロール状ポリエステル系フィルム(A)と厚みが16μmで長さが100mのロール状ポリエステル系フィルム(B)を得た。
【0065】
ついで、実施例1と同様に被覆アルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0066】
ポリエステルの融点,キャスト時のネックイン量,保管後のロールフィルムの外観と耐切断性,熱収縮率,製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度)を表2に示す。この方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良はなかったが、耐切断性が低下し、又被覆アルミニウム板を製缶した際、缶内面フィルムと加工ポンチが粘着し缶開口部の全周にわたって座屈が発生し、さらに缶外面フィルムの全周にキズが発生したため製缶性が劣っており、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
【0067】
[比較例 6]
樹脂膜(A)の(II)層の原料をPET/PBT=40/60(重量%)のポリエステル50重量%とオレフィン50重量%とした以外は実施例1と同様にして厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)で長さが100mのロール状ポリエステル系フィルム(A)と厚みが16μmで長さが100mのロール状ポリエステル系フィルム(B)を得た。
ついで、実施例1と同様に被覆アルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0068】
ポリエステルの融点,キャスト時のネックイン量,保管後のロールフィルムの外観と耐切断性,熱収縮率,製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度)を表2に示す。この方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であったが、被覆アルミニウム板を製缶した際、加工ポンチの抜けがわるく缶内面開口部の約1/3に座屈が発生したため製缶性が劣っており、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
【0069】
[比較例 7]
実施例1の原料で厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)と16μmの2種類のポリエステル系未延伸フィルム(100mのロール状フィルム)を得た。
ポリエステルの融点,キャスト時のネックイン量,保管後のロールフィルムの外観と耐切断性,熱収縮率を表2に示す。
実施例1と同様に保管した結果、フィルムの耐切断性が悪く、シワ・タルミ・ブロッキングが発生し、外観が良好な被覆アルミニウム板が得られなかったため、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
【0070】
[比較例 8]
縦延伸後の熱処理温度を190℃とした以外は実施例1と同様にして厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)で長さが100mのロール状ポリエステル系フィルム(A)と厚みが16μmで長さが100mのロール状ポリエステル系フィルム(B)を得た。
【0071】
ついで、実施例1と同様に被覆アルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0072】
ポリエステルの融点,キャスト時のネックイン量,保管後のロールフィルムの外観と耐切断性,熱収縮率,製缶性(缶内面フィルムとポンチの離型性と缶外面フィルムのキズ発生程度)を表2に示す。この方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下はなかったが、被覆アルミニウム板を製缶した際、フィルムが剥離したため、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
【0073】
[比較例 9]
縦延伸後に熱処理を実施しなかった以外は実施例1と同様にして厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)で長さが100mのロール状ポリエステル系フィルム(A)と厚みが16μmで長さが100mのロール状ポリエステル系フィルム(B)を得た。
ポリエステルの融点,キャスト時のネックイン量,保管後のロールフィルムの外観と耐切断性,熱収縮率を表2に示す。
この方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの耐切断性の低下はなかったが、フィルムの横方向のシワとフィルムの両端部にタルミが発生し、外観が良好な被覆アルミニウム板が得られなかっため、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
【0074】
[比較例 10]
樹脂膜Aの(II)層原料をポリエステルA 87重量%とオレフィンF 13重量%とし、樹脂膜(A)及び(B)の両端部の原料をオレフィンFとした以外は実施例1と同様にしてキャストしたが、ネックイン量が大きいため、この方法は、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。ポリエステルの融点,キャスト時のネックイン量を表2に示す。
【0075】
【表1】

Figure 2004042619
【0076】
【表2】
Figure 2004042619
【0077】
【発明の効果】
本発明のポリエステル系フィルム被覆金属板の製造方法は原料の無駄を省けるため、経済性に優れた製造方法であるばかりでなく、フレーバー性に優れたポリエステル系フィルム被覆金属板が得られる製造方法である。さらに、製缶性(特に、缶内面樹脂膜と加工ポンチの離型性と缶外面樹脂膜の耐キズつき性)に優れ、かつ内容物を充填後に実施される温水殺菌処理で金属缶外面の外観不良(樹脂膜の白化)が発生しにくく、かつ製缶後に美麗化を目的として実施される外面焼付け塗装を想定した加熱を実施しても耐衝撃性が低下しにくいため、極めて有用なポリエステル系フィルム被覆金属板の製造方法といえる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a metal film coated with a polyester film. More specifically, the present invention relates to a method for producing a polyester film-coated metal sheet which is excellent in can-making properties (eg, drawing / ironing workability) and impact resistance, and is suitable for a metal can to be subjected to hot water sterilization. .
[0002]
[Prior art]
Conventionally, the inner surface and outer surface of metal cans are widely coated with a solution in which various thermosetting resins such as epoxy and phenol are dissolved or dispersed in a solvent to prevent corrosion. Has been done. However, this method of coating with a thermosetting resin has disadvantages in that it often takes a long time to dry the paint, resulting in a decrease in productivity and undesired problems such as environmental pollution due to a large amount of organic solvents.
[0003]
In order to solve such a drawback, a method of coating a metal plate with a thermoplastic resin by a melt extrusion method has been disclosed (for example, see Patent Document 1).
[0004]
Further, a method is disclosed in which a melt-extruded thermoplastic resin is once cooled and solidified, and then pressure-bonded to a heated metal plate (for example, see Patent Document 2). However, in these thermoplastic resin coating methods, when the molten resin is extruded in a layer form from a T-die, the width of the molten resin film greatly decreases (referred to as neck-in), and is several tens of cm with respect to the resin width required for coating. It was necessary to form a film with a wide width, and it was not a method that was satisfactory in terms of economy.
[0005]
In order to solve such a drawback, a method of reducing neck-in by using a polyester obtained by blending a polyester obtained by copolymerizing a trifunctional or higher polybasic acid or polyhydric alcohol component is disclosed (for example, See Patent Documents 3 and 4.) However, in these coating methods, a polyester obtained by copolymerizing a trifunctional or higher polybasic acid or polyhydric alcohol component is liable to be thermally degraded in a melting step from an extruder to a T-die, and even when a heat stabilizer is used in combination. Foreign matter (for example, a gel-like foreign matter or a foreign matter with a degraded substance as a nucleus) is likely to be generated in the obtained molten resin film, and a crack originating from the foreign matter is formed in the resin coating layer at the time of can-making. It was not satisfactory as a coated metal plate.
[0006]
In addition, the coating resin of the resin-coated metal plate used for drawing and ironing cans is required not only to have excellent formability that can follow can making (drawing and ironing), but also to beautify after can making. It is required that the impact resistance does not decrease even in the heating of the outer surface baking coating carried out as follows. However, the impact resistance of the resin-coated metal sheet is often lowered, and the impact resistance is not satisfied.
[0007]
[Patent Document 1]
JP-A-57-203545 [Patent Document 2]
JP-A-10-309775 [Patent Document 3]
JP-A-10-86308 [Patent Document 4]
JP 2000-71388 A
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the conventional technology. That is, since the neck-in at the time of melt extrusion is small and foreign matters are hardly generated in the obtained molten resin film, it is excellent in economy and can making property, and external baking coating performed for the purpose of beautification after can making It is intended to provide a method for producing a polyester-film-coated metal sheet suitable for a metal can to be subjected to a hot water sterilization treatment, in which impact resistance is hardly reduced even by heating.
[0009]
[Means for Solving the Problems]
An object of the present invention is to coat a film (A) mainly composed of a crystalline polyester having a melting point of 180 ° C. or more on one surface of a metal plate and a film (B) composed of a crystalline polyester having a melting point of 180 ° C. or more on the other surface. In the manufacturing method of coating, the resin films (A) and (B) obtained by cooling and solidifying a molten resin film extruded in a layered state in a state where olefin polymers are merged at both ends using a T die are vertically oriented. The polyester film (A) and (B) are uniaxially stretched, then heat-set, and then cut and removed at both ends to obtain the polyester films (A) and (B). A method for producing a polyester-based film-coated metal plate comprising a method of laminating on a metal plate, wherein the polyester-based film (A) has a composite structure of (I) layer / (II) layer; Is composed of 60:40 to 30:70 (% by weight) of polyethylene terephthalate and polybutylene phthalate. In the (II) layer, 50 mol% or more of the total acid component is a terephthalic acid residue and 5 to 50 mol% has 10 carbon atoms. The polyester as the aliphatic dicarboxylic acid residue and the olefin-based polymer consist of 70:30 to 100: 0 (% by weight), and the polyester-based film (B) contains polyethylene terephthalate and polybutylene terephthalate at 60%. : 40 to 30: 70 (% by weight) of polyester, and the polyester films (A) and (B) have a heat shrinkage in the longitudinal direction at 150 ° C. of 4 to 30%. This is achieved by a method for producing a polyester-based film-coated metal plate, which is a feature of the invention.
[0010]
In this case, it is preferable that both ends of the resin film (A) and the olefin polymer of the layer (II) and the olefin polymer of both ends of the resin film (B) are the same.
[0011]
In this case, it is preferable that the olefin-based polymer is polyethylene and / or an ethylene-based copolymer.
[0012]
Further, in this case, it is preferable that the polyester (I) layer of the resin film (A) and the polyester of the resin film (B) have the same ratio of polyethylene terephthalate and polybutylene terephthalate.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the layer (I) of the polyester film (A) and the polyester film (B) in the present invention, dicarboxylic acid components other than terephthalic acid and ethylene glycol and butanediol other than terephthalic acid are used as long as the properties of polyethylene terephthalate and polybutylene terephthalate are not impaired. A glycol component can be used. For example, as dicarboxylic acids, aromatic dicarboxylic acids such as isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, diphenylsulfonedicarboxylic acid, 5-sodium sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, decanedicarboxylic acid, Aliphatic dicarboxylic acids such as maleic acid, fumaric acid and dimer acid, oxycarboxylic acids such as p-oxybenzoic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid can be used. As glycol components other than ethylene glycol and butanediol, aliphatic glycols such as propanediol, pentanediol, hexanediol and neopentyl glycol, alicyclic glycols such as cyclohexanedimethanol, and aromatics such as bisphenol A and bisphenol S Glycol can be used.
[0014]
The polyester constituting the (II) layer of the polyester film (A) in the present invention is such that 50 mol% or more of the total acid component is a terephthalic acid residue and 5 to 50 mol% is an aliphatic dicarboxylic acid having 10 or more carbon atoms. It is necessary to be. If the terephthalic acid residue is less than 50 mol%, heat resistance is insufficient, and the releasability of the punch at the time of can making becomes poor, which is not preferable. Examples of the aliphatic dicarboxylic acid having 10 or more carbon atoms include sebacic acid, eicoic acid, decanedicarboxylic acid, and dimer acid. The dimer acid is obtained by a dimerization reaction of a higher unsaturated fatty acid such as oleic acid and generally has an unsaturated bond in the molecule, but one having a reduced degree of unsaturation by hydrogenation can also be used. Hydrogenation is more preferable because heat resistance and flexibility are improved. In the course of the dimerization reaction, a linear branched structure, an alicyclic structure and an aromatic ring structure are produced, but these structures and amounts are not particularly limited. An aliphatic dicarboxylic acid residue having less than 10 carbon atoms is not preferable because impact resistance is not sufficiently imparted. If the number of aliphatic dicarboxylic acid residues having 10 or more carbon atoms is less than 5 mol%, impact resistance is not sufficiently imparted, which is not preferable. Conversely, if it exceeds 50 mol%, the impact resistance is not only saturated, but also the heat resistance is lowered, which is not preferable. If the polyester constituting the layer (II) of the polyester film (A) has a terephthalic acid residue and an aliphatic dicarboxylic acid residue having 10 or more carbon atoms satisfying the above ranges, the polyester other than these acids may be used. The inclusion of a dicarboxylic acid residue is not particularly limited. The aliphatic dicarboxylic acid residue having 10 or more carbon atoms may be used alone or in combination of two or more. Further, the glycol residue of the polyester constituting the layer (II) of the polyester film (A) is not particularly limited, and fatty acids such as ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, and neopentyl glycol can be used. It may be a residue of an alicyclic glycol such as an aromatic glycol or cyclohexanedimethanol, or an aromatic glycol such as bisphenol A or bisphenol S.
[0015]
The polyester of the present invention may contain, if necessary, an antioxidant, a heat stabilizer, an ultraviolet absorber, a plasticizer, a pigment, an antistatic agent, a lubricant, a nucleating agent, a lubricant comprising inorganic or organic particles, and the like. May be.
[0016]
The method for producing the polyester in the present invention is not particularly limited. That is, those produced by either the transesterification method or the direct polymerization method can be used. Further, those produced by a solid-phase polymerization method for increasing the molecular weight may be used. In addition, use a polyester with a low oligomer content produced by a vacuum solid-phase polymerization method in order to reduce the amount of oligomers from the polyester resin in the past lamination process, retort process, etc. performed after filling the contents in the can. Is preferred. However, it is preferable that the polyester (I) of the resin film (A) and the polyester of the resin film (B) have the same ratio of polyethylene terephthalate and polybutylene terephthalate. The reason for this is that the resin films (A) and (B) obtained by subjecting the resin (A) and (B) extruded in layers to cooling unidirectional stretching and heat fixing after cooling and solidifying from the viewpoint of reducing waste of the resin. This is because the quality of the polyester film (A) coated on the metal plate becomes stable when the resin obtained by cutting and removing both ends is reused in the (II) layer of the resin film (A).
The melting point of the polyester used in the present invention is 180 ° C. or more, and the can-making property is assured (in the drawing / ironing process, the polyester film on the inner surface of the can is released from the punch, and the polyester film on the outer surface of the can is secured). This is necessary for suppressing galling (vertical scratches on the polyester film)).
[0017]
In the present invention, the olefin polymer used at both ends of the resin film (A), the (II) layer and both ends of the resin film (B) is preferably polyethylene and / or an ethylene copolymer. Low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, ethylene-propylene copolymer, ethylene butene copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer , Ethylene-methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-ethyl acrylate-maleic anhydride copolymer, ionomer, ethylene-anhydride A maleic acid graft copolymer, an ethylene-vinyl alcohol copolymer, or the like can be used. It is preferable that the olefin-based polymer used in both ends of the resin film (A) and the (II) layer and the olefin-based polymer used in both ends of the resin film (B) are the same. The reason for this is that the resin films (A) and (B) obtained by subjecting the resin (A) and (B) extruded in layers to cooling unidirectional stretching and heat fixing after cooling and solidifying from the viewpoint of reducing waste of the resin. This is because the quality of the polyester film (A) coated on the metal plate becomes stable when the resin obtained by cutting and removing both ends is reused in the (II) layer of the resin film (A).
[0018]
In the present invention, the ratio of the polyester to the olefin polymer in the polyester film needs to be 70:30 to 100: 0 (% by weight). If the olefin-based polymer exceeds 30% by weight, the can-making properties (punch release properties) are poor, which is not preferable.
[0019]
In the present invention, when the polyester and the olefin-based polymer are extruded in a layer form from a T-die, it is preferable to use the olefin-based polymer at both ends (a portion of one side of which is 5 cm or less).
In the present invention, a polymer obtained by dry blending or melt-mixing a polyester and an olefin-based polymer is melted in a known single-screw or twin-screw extruder, and then layered using a known multi-manifold die such as an edge lamination type. Is obtained.
[0020]
In the present invention, as the cooling and solidifying method, a known method of contacting the molten resin in a layer form from a T-die with a rotated cooling roll can be used. When the molten resin is brought into contact with the cooling roll, it is preferable to employ a method of forcibly blowing air or a method of bringing the resin into close contact with static electricity. In both the forced air spraying method and the electrostatic adhesion method, a method in which both ends and the central portion of the layered resin are performed independently is more preferable. Further, when the molten resin comes into contact with the cooling roll, it is more preferable to use a measure (for example, a device such as a vacuum chamber or a vacuum box) for reducing the entrained flow by reducing the pressure on the opposite side.
[0021]
In the present invention, the resin films (A) and (B) obtained by cutting and removing both ends as necessary after cooling and solidifying are cooled to 1.3 ° C. at a temperature equal to or higher than the glass transition point of the polyester and lower than the cold crystallization temperature. A longitudinal stretching of up to 6.0 times is performed, and then a heat treatment is performed under tension at a temperature of 50 ° C. or more and a melting point of the polyester of −20 ° C. for 1 to 20 seconds, and then both ends of the resin film are cut off to obtain a polyester film. (A) and (B) are obtained.
[0022]
The polyester films (A) and (B) used in the present invention must have a heat shrinkage in the longitudinal direction at 150 ° C. of 4 to 30%. If the heat shrinkage is less than 4%, the adhesion after lamination is undesirably reduced. Conversely, when the heat shrinkage exceeds 30%, wrinkles and blocking occur due to longitudinal shrinkage during storage until lamination, and wrinkles and bubbles are easily generated on the polyester film-coated metal plate, which is not preferable. .
[0023]
In the present invention, it is possible to reuse the raw material obtained by shredding both ends of the cut and removed resin film and then compacting or heating and melting the resin film in the (II) layer of the resin film (A). is there. The reuse rate is not particularly limited, but is preferably 5 to 90% by weight.
[0024]
In the present invention, as the metal plate, a surface-treated steel plate such as tin-free steel, an aluminum plate or an aluminum alloy plate, or an aluminum plate or an aluminum alloy plate subjected to a surface treatment can be used. After heating these metal plates to a melting point of polyester of −20 ° C. or more and a melting point of + 150 ° C., the polyester films (A) and (B) are laminated on the metal plates using a laminating roll. Is heated at the melting point of the polyester + 10 ° C. or higher and the melting point + 60 ° C., and then cooled with water and / or air to obtain a polyester film-coated metal plate. However, when laminating the polyester-based film (A) on a metal plate, it is preferable to contact the (II) layer side with the metal plate in order to ensure can-making properties.
[0025]
【Example】
Hereinafter, the present invention will be described based on examples.
[Evaluation method]
(1) Melting point of polyester The polyester composition was heated and melted at 300 ° C. for 5 minutes, and then quenched with liquid nitrogen to obtain 10 mg of a sample, which was heated to 10 ° C. in a nitrogen stream using a differential scanning calorimeter (DSC). The peak temperature of the endothermic peak accompanying melting when the exothermic / endothermic curve (DSC curve) was measured at a heating rate of / min was defined as the melting point Tm (° C.).
[0026]
(2) Neck-in Amount The average value (Acm) of the discharge port width of the T-die (60 cm) and the resin film width after cooling and solidification (resin film width before cutting off both ends) measured at n = 3 is used. The neck-in amount (cm) was determined by the following equation. A neck-in amount of 5 cm or less was evaluated as practical.
Neck-in amount (cm) = 60-A
[0027]
(3) Appearance of roll film after storage and cut resistance After storing the roll-shaped film at 40 ° C. and a relative humidity of 80% for one month, the appearance of the film and a tensile test according to JIS K 7127 (longitudinal direction) n = 30, No. 1 test piece of 15 mm width, test speed: 200 mm / min). The evaluation criteria were set as follows, and ○ was evaluated as practical.
[appearance]
○: No wrinkle, blocking, and thinning ×: With wrinkle, blocking, and thinning [cutting resistance]
Evaluated by the number of samples having a breaking elongation of <5%. (2/30 or less were evaluated as practical.)
[0028]
(4) Heat shrinkage rate Evaluated according to JIS Z 1715.
[0029]
(5) Method for producing a polyester-based film-coated metal plate On one side of an aluminum alloy plate (thickness: 0.26 mm, 3004-based alloy plate) heated to 250 ° C., a (II) layer of the polyester-based film (A) is formed as a metal plate. A polyester film (B) was simultaneously laminated on the other surface so as to make contact, and then heated at 275 ° C. and then rapidly cooled in water to produce a coated aluminum plate.
[0030]
(6) Releasability of the resin on the inner surface of the can and the processed punch The can was made at n = 10 so that the polyester film (A) of the coated aluminum plate was on the inner surface of the can, and the degree of buckling occurring at the upper part of the molded can was visually observed. Observed. The evaluation criteria were set as follows, and ○ was evaluated as practical.
:: No buckling occurred at the can opening. 座: Buckling occurred at about 1/3 of the circumference of the can opening. X: Buckling occurred at 1/3 or more of the circumference of the can opening.
(7) Galling resistance of the outer surface of the can (vertical scratches on the polyester film on the outer surface of the can)
The can was made at n = 10 so that the polyester film (A) of the coated aluminum plate was on the inner surface side of the can, and the degree of scratching of the outer polyester film (B) of the molded can body wall was visually observed. The evaluation criteria were set as follows, and ○ was evaluated as practical.
:: no scratches Δ: scratches occurred on about 1/3 of the outer surface ×: severe scratches occurred on 1/3 or more of the outer surface
(8) Impact Resistance A can of 7 cm square was cut out from the center of the body wall of a can obtained by heating an aluminum plate at 280 ° C. for 40 seconds and then rapidly cooling in water. A weight (600 g) having a tip diameter of 10 mm is dropped from a height of 10 cm on a surface corresponding to the outer surface of the can of this sample to give an impact. Then, the sample was placed on a glass container filled with 7% diluted hydrochloric acid (placed in a state where the convex portion of the sample was immersed), and after 3 days, the corrosion state of the convex portion was visually observed. The evaluation criteria were set as follows, and ○ was evaluated as practical.
:: no corrosion of the convex portion occurred x: corrosion of the convex portion occurred
(9) A sample obtained by heating a can at a temperature of 270 ° C. for 40 seconds and then quenching in water is used as a sample. After this sample was immersed in warm water at 80 ° C. for 10 minutes, the outer surface of the can obtained by rapid cooling in water was visually observed. The evaluation criteria were set as follows, and ○ was evaluated as practical.
:: Whitening is not conspicuous. 明 ら か に: Whitening is apparent, but the color of the aluminum alloy plate is visible. X: Color of the aluminum alloy plate is not visible due to whitening.
[Abbreviations and contents of polyester and olefin-based polymers used in Examples and Comparative Examples]
(1) PET: polyethylene terephthalate (2) PBT: polybutylene terephthalate (3) Polyester A: copolymer polyester of terephthalic acid / dimer acid having 36 carbon atoms (molar ratio 90/10) and ethylene glycol (4) polyester B Terephthalic acid / copolymerized polyester of dimer acid having 36 carbon atoms (molar ratio: 95/5) and ethylene glycol / 1,4-butanediol (molar ratio: 30/70) Polyester C: terephthalic acid and ethylene glycol / Copolymerized polyester with cyclohexanedimethanol (molar ratio 70/30) (6) Olefin A: Low-density polyethylene (Sumikasen G401, trade name, manufactured by Sumitomo Chemical Co., Ltd.)
(7) Olefin B: ethylene butene copolymer (manufactured by Mitsui Chemicals, Tuffmer A4085: trade name)
(8) Olefin C: ionomer (Himilan 1706: trade name, manufactured by Du Pont-Mitsui Polychemicals)
(9) Olefin D: ethylene-methyl acrylate copolymer (EMAC SP2205: trade name, manufactured by Eastman Chemical Company)
(10) Olefin F: polypropylene (Noblen FS2011DG2: trade name, manufactured by Sumitomo Chemical Co., Ltd.)
[0035]
[Example 1]
Polyester of PET / PBT = 40/60 (% by weight) as the (I) layer raw material of the resin film (A) and polyester A alone as the (II) layer raw material are melted at 270 ° C., and both ends of the resin film (A) The olefin A alone is melted at 250 ° C. as a raw material of the material, and then an edge lamination type T die (discharge port width at both ends / discharge port width at the center / discharge port width at both ends = 2 cm / 56 cm / 2 cm, 260 ° C.) (Heating), cast into a layered cooling roll (peripheral speed 20 m / min) (distance from T-die to ground contact point of molten resin on cooling roll 15 cm, center and both ends forced by separate devices) The resin film (A) was obtained by blowing air.
The resin film (A) was longitudinally stretched 3.0 times at a preheating temperature of 65 ° C. and a stretching temperature of 100 ° C., and was heat-treated at 150 ° C. for 3 seconds using a clip gripping setter, and then cut off at both ends (5 cm on one side). Then, a roll-shaped polyester film (A) having a thickness of 100 m and a thickness of 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness 12.5 μm) was obtained.
[0036]
Further, a polyester of PET / PBT = 40/60 (% by weight) is melted at 270 ° C. as a raw material at the center of the resin film (B), and olefin A alone is heated at 250 ° C. as a raw material at both ends of the resin film (B). And cooled in layers using an edge lamination type T die (discharge port width at both ends / discharge port width at center / discharge port width at both ends = 2 cm / 56 cm / 2 cm, heated to 260 ° C.) Cast into a roll (peripheral speed: 20 m / min) (distance from the T-die to the contact point of the molten resin with the cooling roll: 15 cm, forced air is blown at the center and both ends by separate devices) and the resin film (B) was obtained.
The resin film (B) was longitudinally stretched 3.0 times at a preheating temperature of 65 ° C. and a stretching temperature of 100 ° C., and was heat-treated at 150 ° C. for 3 seconds using a clip gripping setter. To give a roll-shaped polyester film (B) having a thickness of 16 μm and a length of 100 m.
[0037]
The roll-shaped polyester films (A) and (B) were stored at 40 ° C. for one month under the condition of a relative humidity of 80%, and then the both sides of a 3004 series aluminum alloy plate (0.26 mm thick) heated to 250 ° C. After the film was pressed and heated to 275 ° C., it was rapidly cooled in water to obtain a coated aluminum plate.
[0038]
After applying a forming lubricant to the coated aluminum plate thus obtained, it was heated and drawn at a plate temperature of 70 ° C. so that the polyester film (A) was on the inner surface side. Next, the temperature of the obtained cup was set to 40 ° C., and ironing was performed at a mold temperature of 80 ° C. to obtain a 350 ml-sized seamless can.
[0039]
Melting point of polyester, neck-in amount during casting, appearance and cut resistance of roll film after storage, heat shrinkage, can-making properties (releasability of inner can film and punch and degree of scratch on can outer film), Table 1 shows the impact resistance and the degree of whitening of the outer surface of the can after hot water treatment. The method of this example has a small neck-in amount, is excellent in economic efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and is excellent in can-making properties. It can be said that this is a method for producing a polyester film-coated metal plate that can provide a metal can having excellent impact resistance and hot water whitening resistance on the outer surface.
[0040]
[Example 2]
The thickness was 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness 12.5 μm) and length was the same as in Example 1 except that polyester B was used as the raw material for the (II) layer of the resin film A. A roll-shaped polyester film (A) having a length of 100 m and a roll-shaped polyester film (B) having a thickness of 16 μm and a length of 100 m were obtained.
Next, a coated aluminum plate was prepared and made in the same manner as in Example 1, to obtain a 350 ml-sized seamless can.
[0041]
Melting point of polyester, neck-in amount during casting, appearance and cut resistance of roll film after storage, heat shrinkage, can-making properties (releasability of inner can film and punch and degree of scratch on can outer film), Table 1 shows the impact resistance and the degree of whitening of the outer surface of the can after hot water treatment. The method of this example has a small neck-in amount, is excellent in economic efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and is excellent in can-making properties. It can be said that this is a method for producing a polyester film-coated metal plate that can provide a metal can having excellent impact resistance and hot water whitening resistance on the outer surface.
[0042]
[Example 3]
The thickness was 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness) in the same manner as in Example 1 except that 87% by weight of polyester A and 13% by weight of olefin A were used as raw materials for layer (II) of resin film A. A roll-shaped polyester film (A) having a length of 12.5 μm) and a length of 100 m and a roll-shaped polyester film (B) having a thickness of 16 μm and a length of 100 m were obtained.
[0043]
Next, a coated aluminum plate was prepared and made in the same manner as in Example 1, to obtain a 350 ml-sized seamless can.
[0044]
Melting point of polyester, neck-in amount during casting, appearance and cut resistance of roll film after storage, heat shrinkage, can-making properties (releasability of inner can film and punch and degree of scratch on can outer film), Table 1 shows the impact resistance and the degree of whitening of the outer surface of the can after hot water treatment. The method of this example has a small neck-in amount, is excellent in economic efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and is excellent in can-making properties. It can be said that this is a method for producing a polyester film-coated metal plate that can provide a metal can having excellent impact resistance and hot water whitening resistance on the outer surface.
[0045]
[Example 4]
The same procedure as in Example 1 was repeated except that the raw material of the layer (II) of the resin film A was 87% by weight of polyester A and 13% by weight of olefin B, and the raw materials at both ends of the resin films (A) and (B) were olefin B. Roll-type polyester film (A) having a thickness of 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness 12.5 μm) and a length of 100 m, and a roll-type polyester film having a thickness of 16 μm and a length of 100 m A system film (B) was obtained.
[0046]
Next, a coated aluminum plate was prepared and made in the same manner as in Example 1, to obtain a 350 ml-sized seamless can.
[0047]
Melting point of polyester, neck-in amount during casting, appearance and cut resistance of roll film after storage, heat shrinkage, can-making properties (releasability of inner can film and punch and degree of scratch on can outer film), Table 1 shows the impact resistance and the degree of whitening of the outer surface of the can after hot water treatment. The method of this example has a small neck-in amount, is excellent in economic efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and is excellent in can-making properties. It can be said that this is a method for producing a polyester film-coated metal plate that can provide a metal can having excellent impact resistance and hot water whitening resistance on the outer surface.
[0048]
[Example 5]
The same procedure as in Example 1 was repeated except that the raw material of the layer (II) of the resin film A was 87% by weight of polyester A and 13% by weight of olefin C, and the raw materials at both ends of the resin films (A) and (B) were olefin C. Roll-type polyester film (A) having a thickness of 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness 12.5 μm) and a length of 100 m, and a roll-type polyester film having a thickness of 16 μm and a length of 100 m A system film (B) was obtained.
[0049]
Next, a coated aluminum plate was prepared and made in the same manner as in Example 1, to obtain a 350 ml-sized seamless can.
[0050]
Melting point of polyester, neck-in amount during casting, appearance and cut resistance of roll film after storage, heat shrinkage, can-making properties (releasability of inner can film and punch and degree of scratch on can outer film), Table 1 shows the impact resistance and the degree of whitening of the outer surface of the can after hot water treatment. The method of this example has a small neck-in amount, is excellent in economic efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and is excellent in can-making properties. It can be said that this is a method for producing a polyester film-coated metal plate that can provide a metal can having excellent impact resistance and hot water whitening resistance on the outer surface.
[0051]
[Example 6]
The raw material of the (II) layer of the resin film A was made of 87% by weight of polyester A and 13% by weight of olefin composed of olefin A / olefin D = 70/30 (% by weight), and both ends of the resin films (A) and (B) were formed. Except that the raw material was olefin A / olefin D = 70/30 (% by weight), the thickness was 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness 12.5 μm) and long as in Example 1. A roll-shaped polyester film (A) having a length of 100 m and a roll-shaped polyester film (B) having a thickness of 16 μm and a length of 100 m were obtained.
[0052]
Next, a coated aluminum plate was prepared and made in the same manner as in Example 1, to obtain a 350 ml-sized seamless can.
[0053]
Melting point of polyester, neck-in amount during casting, appearance and cut resistance of roll film after storage, heat shrinkage, can-making properties (releasability of inner can film and punch and degree of scratch on can outer film), Table 1 shows the impact resistance and the degree of whitening of the outer surface of the can after hot water treatment. The method of this example has a small neck-in amount, is excellent in economic efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and is excellent in can-making properties. It can be said that this is a method for producing a polyester film-coated metal plate that can provide a metal can having excellent impact resistance and hot water whitening resistance on the outer surface.
[0054]
[Example 7]
The raw material of the (II) layer of the resin film A was composed of 85% by weight of polyester A and both ends (85% by weight of olefin A) cut and removed before obtaining the polyester films (A) and (B) in Example 1. Except that the polymer obtained by granulation was 15% by weight, the thickness was 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness 12.5 μm) and length was 100 m in the same manner as in Example 1. A roll-shaped polyester film (A) and a roll-shaped polyester film (B) having a thickness of 16 μm and a length of 100 m were obtained.
Next, a coated aluminum plate was prepared and made in the same manner as in Example 1, to obtain a 350 ml-sized seamless can.
[0055]
Melting point of polyester, neck-in amount during casting, appearance and cut resistance of roll film after storage, heat shrinkage, can-making properties (releasability of inner can film and punch and degree of scratch on can outer film), Table 1 shows the impact resistance and the degree of whitening of the outer surface of the can after hot water treatment. The method of this example has a small neck-in amount, is excellent in economic efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and is excellent in can-making properties. It can be said that this is a method for producing a polyester film-coated metal plate that can provide a metal can having excellent impact resistance and hot water whitening resistance on the outer surface.
[0056]
[Comparative Example 1]
An attempt was made to obtain a roll-shaped resin film in the same manner as in Example 1 except that the raw materials at both ends of the resin film (A) and the resin film (B) were made of PET / PBT = 40/60 (wt%) polyester. However, unless the neck-in amount is large and both ends are cut and removed by 18 cm, a central portion having a uniform thickness distribution cannot be obtained, so this method is not preferable as a method for producing a polyester film-coated metal sheet. Table 2 shows the melting point of polyester and the amount of neck-in during casting.
[0057]
[Comparative Example 2]
The raw material of the layer (I) of the resin film (A) is polyester of PET / PBT = 20/80 (% by weight), and the raw material of the central part of the resin film (B) is PET / PBT = 20/80 (% by weight). An attempt was made to form a film in the same manner as in Example 1 except that the polyester was used. However, the resin film often cracked between the cooling roll and the longitudinally extending preheating roll, and more often the resin film was broken during longitudinal stretching. This method is not preferable as a method for producing a polyester film, since roll-type polyester films (A) and (B) cannot be obtained. Table 2 shows the melting point of polyester and the amount of neck-in during casting.
[0058]
[Comparative Example 3]
The raw material of the (I) layer of the resin film (A) is polyester of PET / PBT = 70/30 (% by weight), and the raw material of the central part of the resin film (B) is PET / PBT = 70/30 (% by weight). A roll-shaped polyester film (A) having a thickness of 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness 12.5 μm) and a length of 100 m was prepared in the same manner as in Example 1 except that the polyester was used. A roll-shaped polyester film (B) having a thickness of 16 μm and a length of 100 m was obtained.
[0059]
Next, a coated aluminum plate was prepared and made in the same manner as in Example 1, to obtain a 350 ml-sized seamless can.
[0060]
Melting point of polyester, neck-in amount during casting, appearance and cut resistance of roll film after storage, heat shrinkage, can-making properties (releasability of inner can film and punch and degree of scratch on can outer film), Table 2 shows the impact resistance and the degree of whitening of the outer surface of the can after the hot water treatment. This method has a small neck-in amount, is excellent in economical efficiency, has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, has excellent can-making properties, and has a metal can. Was excellent in impact resistance, but was inferior in hot water whitening resistance on the outer surface, which was not preferable as a method for producing a polyester film-coated metal sheet.
[0061]
[Comparative Example 4]
The thickness of the resin film (A) was 25 μm (the thickness of the (I) layer was 12.5 μm, and the thickness of the (II) layer was the same as in Example 1 except that the raw material of the (I) layer and the (II) layer was changed to Polysil A). A roll-shaped polyester film (A) having a layer thickness of 12.5 μm) and a length of 100 m and a roll-shaped polyester film (B) having a thickness of 16 μm and a length of 100 m were obtained.
[0062]
Next, a coated aluminum plate was prepared and made in the same manner as in Example 1, to obtain a 350 ml-sized seamless can.
[0063]
Table 2 shows the melting point of the polyester, the neck-in amount at the time of casting, and the can-making properties (the releasability between the resin film on the inner surface of the can and the punch and the degree of scratching on the resin film on the outer surface of the can). This method has a small neck-in amount, is excellent in economical efficiency, and has good laminating properties because there is no poor appearance of the polyester film after storage and no decrease in cut resistance, but when a coated aluminum plate is made, Since the inner surface of the can and the processed punch adhere to each other and buckling occurs over the entire periphery of the opening of the can, the can-making property is inferior, which is not preferable as a method for producing a polyester film-coated metal sheet.
[0064]
[Comparative Example 5]
The same procedure as in Example 1 was repeated except that the raw material of the (I) layer of the resin film (A) and the central part of the resin film (B) were polyester C alone, and the thickness was 25 μm ((I) layer thickness 12.5 μm, ( II) A roll-shaped polyester film (A) having a layer thickness of 12.5 μm) and a length of 100 m and a roll-shaped polyester film (B) having a thickness of 16 μm and a length of 100 m were obtained.
[0065]
Next, a coated aluminum plate was prepared and made in the same manner as in Example 1, to obtain a 350 ml-sized seamless can.
[0066]
Melting point of polyester, amount of neck-in during casting, appearance and cut resistance of roll film after storage, heat shrinkage, can-making properties (releasability of can inner film and punch and degree of scratch on outer film of can) It is shown in Table 2. This method has a small neck-in amount, is excellent in economic efficiency, and there is no appearance defect of the polyester film after storage, but the cut resistance is lowered, and when the coated aluminum plate is made into a can, the can inner film and The processing punch adheres and buckling occurs over the entire circumference of the can opening, and furthermore, the entire circumference of the can outer surface film is scratched, resulting in poor can-making properties, which is not preferable as a method for producing a polyester film-coated metal plate. .
[0067]
[Comparative Example 6]
The thickness of the resin film (A) was 25 μm ((P) as in Example 1 except that the raw material of the (II) layer was PET / PBT = 40/60 (wt%) of polyester 50 wt% and olefin 50 wt%. (I) layer thickness of 12.5 μm, (II) layer thickness of 12.5 μm) and a roll-shaped polyester film (A) having a length of 100 m and a roll-shaped polyester film having a thickness of 16 μm and a length of 100 m (B). Obtained.
Next, a coated aluminum plate was prepared and made in the same manner as in Example 1, to obtain a 350 ml-sized seamless can.
[0068]
Melting point of polyester, amount of neck-in during casting, appearance and cut resistance of roll film after storage, heat shrinkage, can-making properties (releasability of can inner film and punch and degree of scratch on outer film of can) It is shown in Table 2. This method has a small neck-in amount, is excellent in economical efficiency, and has good laminating properties because there is no poor appearance of the polyester film after storage and no decrease in cut resistance, but when a coated aluminum plate is made, In addition, the punch was difficult to remove, and buckling occurred in about 1/3 of the opening on the inner surface of the can, resulting in poor can-manufacturability, which is not preferable as a method for producing a polyester film-coated metal plate.
[0069]
[Comparative Example 7]
Two kinds of polyester-based unstretched films (100 m roll-shaped film) having a thickness of 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness 12.5 μm) and 16 μm were obtained from the raw materials of Example 1.
Table 2 shows the melting point of the polyester, the neck-in amount at the time of casting, the appearance, cut resistance, and heat shrinkage of the roll film after storage.
As a result of storage in the same manner as in Example 1, the cut resistance of the film was poor, wrinkles and blocking occurred, and a coated aluminum plate having a good appearance could not be obtained. Not preferred.
[0070]
[Comparative Example 8]
Except for setting the heat treatment temperature after the longitudinal stretching at 190 ° C., the same as in Example 1 was carried out in a roll shape having a thickness of 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness 12.5 μm) and length 100 m. A polyester film (A) and a roll-shaped polyester film (B) having a thickness of 16 μm and a length of 100 m were obtained.
[0071]
Next, a coated aluminum plate was prepared and made in the same manner as in Example 1, to obtain a 350 ml-sized seamless can.
[0072]
Melting point of polyester, amount of neck-in during casting, appearance and cut resistance of roll film after storage, heat shrinkage, can-making properties (releasability of can inner film and punch and degree of scratch on outer film of can) It is shown in Table 2. This method has a small amount of neck-in and is excellent in economical efficiency, and there was no poor appearance of the polyester film after storage and no decrease in cut resistance.However, when the coated aluminum plate was canned, the film was peeled off. It is not preferable as a method for producing a system-film-coated metal plate.
[0073]
[Comparative Example 9]
Roll-like polyester having a thickness of 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness 12.5 μm) and a length of 100 m in the same manner as in Example 1 except that the heat treatment was not performed after the longitudinal stretching. A film (A) and a roll-shaped polyester film (B) having a thickness of 16 μm and a length of 100 m were obtained.
Table 2 shows the melting point of the polyester, the neck-in amount at the time of casting, the appearance, cut resistance, and heat shrinkage of the roll film after storage.
This method has a small amount of neck-in and is economical, and there is no decrease in the cut resistance of the polyester film after storage. Is not preferable as a method for producing a polyester film-coated metal plate, since a coated aluminum plate having a good quality cannot be obtained.
[0074]
[Comparative Example 10]
The same procedure as in Example 1 was repeated except that the raw material of the (II) layer of the resin film A was 87% by weight of polyester A and 13% by weight of olefin F, and the raw materials at both ends of the resin films (A) and (B) were olefin F. However, this method is not preferable as a method for producing a metal film coated with a polyester film because of a large neck-in amount. Table 2 shows the melting point of polyester and the amount of neck-in during casting.
[0075]
[Table 1]
Figure 2004042619
[0076]
[Table 2]
Figure 2004042619
[0077]
【The invention's effect】
The method for producing a polyester-based film-coated metal sheet of the present invention is not only an economical production method for eliminating waste of raw materials, but also a production method capable of obtaining a polyester-based film-coated metal sheet having excellent flavor properties. is there. Furthermore, it has excellent can-making properties (especially, the releasability of the resin film on the inner surface of the can and the processing punch and the scratch resistance of the resin film on the outer surface of the can). An extremely useful polyester because it is unlikely to have poor appearance (whitening of the resin film) and it is unlikely that the impact resistance will decrease even if heating is performed assuming baking on the exterior surface for the purpose of beautification after can-making. It can be said to be a method for producing a system film-coated metal plate.

Claims (4)

金属板の片面に融点180℃以上の結晶性ポリエステルを主体とするフィルム(A)を被覆しもう一方の面に融点180℃以上の結晶性ポリエステルよりなるフィルム(B)を被覆する製造方法において、Tダイを用いて両端部にオレフィン系ポリマーが合流された状態で層状に押出した溶融樹脂膜を冷却固化して得た樹脂膜(A)及び(B)を縦方向に1軸延伸し、次いで熱固定処理し、次いで両端部を切断除去してポリエステル系フィルム(A)及び(B)を得る方法と該ポリエステル系フィルム(A)及び(B)を別工程で加熱された金属板にラミネートする方法よりなるポリエステル系フィルム被覆金属板の製造方法であって、かつポリエステル系フィルム(A)は(I)層/(II)層の複合構成であり、(I)層がポリエチレンテレフタレートとポリブチレンフタレートが60:40〜30:70(重量%)よりなり、(II)層が全酸成分の50モル%以上がテレフタル酸残基かつ5〜50モル%が炭素数10以上の脂肪族ジカルボン酸残基であるポリエステルとオレフィン系ポリマーが70:30〜100:0(重量%)よりなるものであって、かつポリエステル系フィルム(B)はポリエチレンテレフタレートとポリブチレンテレフタレートが60:40〜30:70(重量%)のポリエステルよりなるものであって、かつポリエステル系フィルム(A)及び(B)は150℃での縦方向の熱収縮率が4〜30%であることを特徴とするポリエステル系フィルム被覆金属板の製造方法。In a production method, one side of a metal plate is coated with a film (A) mainly composed of crystalline polyester having a melting point of 180 ° C. or higher, and the other side is coated with a film (B) composed of crystalline polyester having a melting point of 180 ° C. or higher. Using a T-die, the resin films (A) and (B) obtained by cooling and solidifying the molten resin film extruded into a layer in a state where the olefin-based polymer is merged at both ends are uniaxially stretched in the longitudinal direction. A method for obtaining polyester films (A) and (B) by heat-setting and then cutting off both ends, and laminating the polyester films (A) and (B) to a metal plate heated in another step. The polyester film (A) has a composite structure of (I) layer / (II) layer, and the (I) layer is polyethylene. The phthalate and the polybutylene phthalate are composed of 60:40 to 30:70 (% by weight), and the (II) layer has 50% by mole or more of terephthalic acid residues and 5 to 50% by mole of 10 or more carbon atoms in the total acid component. The polyester which is an aliphatic dicarboxylic acid residue and the olefin-based polymer are composed of 70:30 to 100: 0 (% by weight), and the polyester-based film (B) is composed of polyethylene terephthalate and polybutylene terephthalate in a ratio of 60:40. ~ 30: 70 (wt%) polyester, and the polyester films (A) and (B) have a heat shrinkage in the longitudinal direction at 150 ° C of 4 to 30%. For producing a polyester film-coated metal sheet to be formed. 請求項1に記載されたポリエステル系フィルム被覆金属板の製造方法であって、前記樹脂膜(A)の両端部と(II)層のオレフィン系ポリマー及び樹脂膜(B)の両端部のオレフィン系ポリマーが同一であることを特徴とするポリエステル系フィルム被覆金属板の製造方法。The method for producing a polyester-based film-coated metal sheet according to claim 1, wherein both ends of the resin film (A), the olefin-based polymer of the layer (II) and the olefin-based polymers at both ends of the resin film (B). A method for producing a polyester film-coated metal sheet, wherein the polymers are the same. 請求項1に記載されたポリエステル系フィルム被覆金属板の製造方法であって、前記オレフィン系ポリマーがポリエチレン及び/又はエチレン系共重合体であることを特徴とするポリエステル系フィルム被覆金属板の製造方法。The method for producing a polyester-based film-coated metal sheet according to claim 1, wherein the olefin-based polymer is polyethylene and / or an ethylene-based copolymer. . 請求項1に記載されたポリエステル系フィルム被覆金属板の製造方法であって、樹脂膜(A)の(I)層と樹脂膜(B)のポリエステルのポリエチレンテレフタレートとポリブチレンテレフタレートの比率が同一であることを特徴とするポリエステル系フィルム被覆金属板の製造方法。The method for producing a polyester film-coated metal sheet according to claim 1, wherein the polyester (I) of the resin film (A) and the polyester of the resin film (B) have the same ratio of polyethylene terephthalate and polybutylene terephthalate. A method for producing a metal sheet coated with a polyester film, the method comprising:
JP2003134655A 2002-05-13 2003-05-13 Method for producing polyester film-coated metal sheet Expired - Fee Related JP4193119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003134655A JP4193119B2 (en) 2002-05-13 2003-05-13 Method for producing polyester film-coated metal sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002137395 2002-05-13
JP2003134655A JP4193119B2 (en) 2002-05-13 2003-05-13 Method for producing polyester film-coated metal sheet

Publications (3)

Publication Number Publication Date
JP2004042619A true JP2004042619A (en) 2004-02-12
JP2004042619A5 JP2004042619A5 (en) 2008-05-15
JP4193119B2 JP4193119B2 (en) 2008-12-10

Family

ID=31719279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134655A Expired - Fee Related JP4193119B2 (en) 2002-05-13 2003-05-13 Method for producing polyester film-coated metal sheet

Country Status (1)

Country Link
JP (1) JP4193119B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347621A (en) * 2000-06-09 2001-12-18 Kanebo Ltd Polyester laminate for covering surface of metal panel
JP2001347605A (en) * 2000-06-09 2001-12-18 Toyo Seikan Kaisha Ltd Resin-coated metallic sheet, metallic can and can lid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347621A (en) * 2000-06-09 2001-12-18 Kanebo Ltd Polyester laminate for covering surface of metal panel
JP2001347605A (en) * 2000-06-09 2001-12-18 Toyo Seikan Kaisha Ltd Resin-coated metallic sheet, metallic can and can lid

Also Published As

Publication number Publication date
JP4193119B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
JP4264810B2 (en) Method for producing polyester film-coated metal sheet
JP2003291258A (en) Method for manufacturing resin-coated metallic sheet
JP2004042618A (en) Method for manufacturing polyester film-coated metallic sheet
JP4189740B2 (en) Method for producing polyester film-coated metal sheet
JP4193119B2 (en) Method for producing polyester film-coated metal sheet
JP4288575B2 (en) Method for producing polyester film-coated metal sheet
JP2004042616A (en) Method for manufacturing polyester film-coated metallic sheet
JP4099711B2 (en) Method for producing resin-coated metal sheet
JP2004106537A (en) Manufacturing method for polyester film coated metal sheet
JP4364630B2 (en) Polyester film for bonding metal plates
JP4265768B2 (en) Polyester film for coating metal plate, method for producing the same, and method for producing polyester film-coated metal plate
JP2004042620A (en) Method for manufacturing polyester film-coated metallic sheet
JP4154662B2 (en) Method for producing resin-coated metal sheet
JP2004285342A (en) Metal plate laminating polyester-based film
JP4261253B2 (en) Polyester film for coating metal plate, method for producing the same, and method for producing polyester film-coated metal plate
JP2004074776A (en) Manufacturing method for polyester film-coated metal plate
JP2004106536A (en) Manufacturing method for polyester film coated metal sheet
JP2003291259A (en) Method for manufacturing resin-coated metallic sheet
JP4189735B2 (en) Method for producing resin-coated metal sheet
JP4288576B2 (en) Method for producing resin-coated metal sheet
JPH1044354A (en) Polyester film, laminate metal plate, its manufacture and metal container
JP4258807B2 (en) Polyester film for coating metal plate, method for producing the same, and method for producing polyester film-coated metal plate
JP2004074777A (en) Manufacturing process of polyester film clad metal sheet
JP4576142B2 (en) Polyester film for metal plate coating, method for producing the same, and method for producing polyester film-coated metal plate
JP4258808B2 (en) Polyester film for coating metal plate, method for producing the same, and method for producing polyester film-coated metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

R151 Written notification of patent or utility model registration

Ref document number: 4193119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees