JP4099711B2 - Method for producing resin-coated metal sheet - Google Patents

Method for producing resin-coated metal sheet Download PDF

Info

Publication number
JP4099711B2
JP4099711B2 JP2003022282A JP2003022282A JP4099711B2 JP 4099711 B2 JP4099711 B2 JP 4099711B2 JP 2003022282 A JP2003022282 A JP 2003022282A JP 2003022282 A JP2003022282 A JP 2003022282A JP 4099711 B2 JP4099711 B2 JP 4099711B2
Authority
JP
Japan
Prior art keywords
resin film
resin
polyester
metal plate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003022282A
Other languages
Japanese (ja)
Other versions
JP2003291198A (en
Inventor
邦治 森
裕久 藤田
英人 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003022282A priority Critical patent/JP4099711B2/en
Publication of JP2003291198A publication Critical patent/JP2003291198A/en
Application granted granted Critical
Publication of JP4099711B2 publication Critical patent/JP4099711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は樹脂被覆金属板の製造方法に関するものである。さらに詳細には、製缶性(例えば、絞り・しごき加工性)と耐衝撃性に優れ、かつ温水殺菌処理が実施される金属缶に好適な樹脂被覆金属板の製造方法に関するものである。
【0002】
【従来技術】
従来、金属缶の缶内面及び缶外面は腐蝕防止を目的として、エポキシ系,フェノール系等の各種熱硬化性樹脂を溶剤に溶解又は分散させたものを塗布し、金属表面を被覆することが広く行われてきた。しかしながら、この熱硬化性樹脂の被覆方法では塗料の乾燥に長時間を要するため生産性が低下したり、多量の有機溶剤による環境汚染など好ましくない問題を発生させることが多いという欠点があった。
【0003】
かかる欠点を解決するため、金属板に熱可塑性樹脂を溶融押出法で被覆する方法が開示されている(例えば、特許文献1参照。)。又、溶融押出した熱可塑性樹脂を一旦冷却固化させた後、加熱された金属板に圧着する方法が開示されている(例えば、特許文献2参照。)。又、溶融押出法で作製したポリエチレンテレフタレート及び/又はポリブチレンテレフタレートの未配向フィルムを加熱された金属板に圧着する方法が開示されている(例えば、特許文献3参照。)。しかしながら、これらの熱可塑性樹脂の被覆方法では、Tダイから層状に溶融樹脂を押出す際、溶融樹脂膜の巾減少(ネックインと称す)が大きく、被覆に必要な樹脂巾に対して数10cm広い巾で製膜する必要があり、経済性の点から満足される方法ではなかった。
【0004】
かかる欠点を解決するため、三官能以上の多塩基酸又は多価アルコール成分を共重合させたポリエステルを配合してなるポリエステルを使用することによりネックインを小さくする方法が開示されている(例えば、特許文献4、5参照。)。しかしながら、これらの被覆方法では、三官能以上の多塩基酸又は多価アルコール成分を共重合させたポリエステルが押出機からTダイに至る溶融工程で熱劣化しやすく、熱安定剤を併用しても得られた溶融樹脂膜に異物(例えば、ゲル状異物又は劣化物を核とした異物)が発生しやすく、製缶時に樹脂被覆層に異物を起点とした亀裂が入るため、製缶用の樹脂被覆金属板として満足されるものではなかった。
【0005】
又、絞り・しごき缶に用いられる樹脂被覆金属板の被覆用樹脂では、製缶(絞り・しごき加工)に追従しうる優れた成形性が要求されるばかりでなく、製缶後に美麗化を目的として実施される外面焼付け塗装の加熱においても耐衝撃性が低下しないことが要求される。しかしながら、前記の樹脂被覆金属板は耐衝撃性が低下することが多く、耐衝撃性の要求を満足するものではなかった。
【0006】
【特許文献1】
特開昭57−203545号公報
【特許文献2】
特開平10−309775号公報
【特許文献3】
特開2001−1447号公報
【特許文献4】
特開平10−86308号公報
【特許文献5】
特開2000−71388号公報
【0007】
【発明が解決しようとする課題】
本発明は前記従来技術の問題点を解消することを目的とするものである。即ち、溶融押出時のネックインが小さく、かつ得られた溶融樹脂膜に異物が発生しにくいため、経済性と製缶性に優れ、かつ製缶後に美麗化を目的として実施される外面焼付け塗装の加熱においても耐衝撃性が低下しにくく、かつ温水殺菌処理が実施される金属缶に好適な樹脂被覆金属板の製造方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明の目的は、金属板の片面に融点180℃以上の結晶性ポリエステルを主体とする樹脂膜(A)を被覆しもう一方の面に融点180℃以上の結晶性ポリエステルよりなる樹脂膜(B)を被覆する製造方法において、Tダイを用いて両端部にオレフィン系ポリマーが合流された状態で得た溶融樹脂膜を冷却固化後に両端部を切断除去して樹脂膜(A)と樹脂膜(B)を得る方法と樹脂膜(A)及び樹脂膜(B)を加熱された金属板にラミネートする方法よりなる樹脂被覆金属板の製造方法であって、かつ樹脂膜(A)が(I)層/(II)層の複合構成であり、(I)層がポリエチレンテレフタレートとポリブチレンフタレートが60:40〜30:70重量%よりなり、(II)層が全酸成分の50モル%以上がテレフタル酸残基かつ5〜50モル%が炭素数10以上の脂肪族ジカルボン酸残基であるポリエステルとオレフィン系ポリマーが70:30〜100:0重量%よりなり、樹脂膜(B)がポリエチレンテレフタレートとポリブチレンテレフタレートが60:40〜30:70重量%のポリエステルよりなるものであることを特徴とする樹脂被覆金属板の製造方法によって達成される。
【0009】
【発明の実施の形態】
本発明における樹脂膜(A)の(I)層及び樹脂膜(B)ではポリエチレンテレフタレート及びポリブチレンテレフタレートの特性を損なわない範囲でテレフタル酸以外のジカルボン酸成分とエチレングリコール及びブタンジオール以外のグリコール成分を使用できる。例えば、ジカルボン酸として、イソフタル酸,オルソフタル酸,ナフタレンジカルボン酸,ジフェニルスルホンジカルボン酸,5−ナトリウムスルホイソフタル酸等の芳香族ジカルボン酸、シュウ酸,コハク酸,アジピン酸,セバシン酸,デカンジカルボン酸,マレイン酸,フマル酸,ダイマー酸等の脂肪族ジカルボン酸、p−オキシ安息香酸等のオキシカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸が使用できる。又、エチレングリコール及びブタンジオール以外のグリコール成分として、プロパンジオール,ペンタンジオール,ヘキサンジオール,ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環族グリコール、ビスフェノールA,ビスフェノールS等の芳香族グリコールが使用できる。
【0010】
本発明における樹脂膜(A)の(II)層を構成するポリエステルは、全酸成分の50モル%以上がテレフタル酸残基と5〜50モル%が炭素数10以上の脂肪族ジカルボン酸であることが必要である。テレフタル酸残基が50モル%未満では耐熱性が不足し、製缶時のポンチの離型性が悪くなり好ましくない。炭素数10以上の脂肪族ジカルボン酸としては、セバシン酸,エイコ酸,デカンジカルボン酸,ダイマー酸等が挙げられる。ダイマー酸とはオレイン酸等の高級不飽和脂肪酸の二量化反応によって得られ、通常不飽和結合を分子中に有するが、水素添加をして不飽和度を下げたものも使用できる。水素添加をした方が耐熱性や柔軟性が向上するためより好ましい。又、二量化反応の過程で直鎖分岐状構造,脂環構造,芳香環構造が生成されるが、これらの構造や量を特に限定するものではない。炭素数10未満の脂肪族ジカルボン酸残基では耐衝撃性の付与が充分でないため好ましくない。炭素数10以上の脂肪族ジカルボン酸残基が5モル%未満では耐衝撃性の付与が充分でないため好ましくない。逆に50モル%を超えると耐衝撃性が飽和するばかりでなく、耐熱性が低下するため好ましくない。
【0011】
又、樹脂膜(A)の(II)層を構成するポリエステルはテレフタル酸残基と炭素数10以上の脂肪族ジカルボン酸残基が前記の範囲を満足していれば、これらの酸以外のジカルボン酸残基を含むことを特に限定するものではない。又、炭素数10以上の脂肪族ジカルボン酸残基は1種類であってもよいし、2種類以上併用してもよい。又、樹脂膜(A)の(II)層を構成するポリエステルのグリコール残基を特に限定するものではなく、エチレングリコール,プロパンジオール,ブタンジオール,ペンタンジオール,ヘキサンジオール,ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環族グリコール、ビスフェノールA,ビスフェノールS等の芳香族グリコールの残基でよい。
【0012】
本発明におけるポリエステルには、必要に応じて酸化防止剤,熱安定剤,紫外線吸収剤,可塑剤,顔料,帯電防止剤,潤滑剤,結晶核剤,無機又は有機粒子よりなる滑剤等を配合させてもよい。
【0013】
本発明におけるポリエステルの製造方法については特に限定しない。即ち、エステル交換法又は直接重合法のいずれの方法で製造されたものであっても使用できる。又、分子量を高めるために固相重合法で製造されたものであってもかまわない。さらに缶に内容物を充填後に実施されるパストライズ処理,レトルト処理等でのポリエステル樹脂からのオリゴマー量を少なくする点より、減圧固相重合法で製造されたオリゴマー含有量が低いポリエステルを使用することは好ましい。
【0014】
樹脂膜(A)の(I)層及び樹脂膜(B)のポリエステルのポリエチレンテレフタレートとポリブチレンテレフタレートのブレンド比率が同一であることが好ましい。その理由は、樹脂の無駄を省く観点から層状に押出された樹脂を冷却固化後に切断除去して得た両端部を含む樹脂を樹脂膜(A)の(II)層で再使用した場合、金属板に被覆された樹脂膜の品質が安定するためである。
【0015】
本発明で使用されるポリエステルの融点は180℃以上であることが製缶性(絞り・しごき加工において、缶内面側の樹脂ではポンチの離型性の確保、缶外面側の樹脂ではかじり抑制[樹脂皮膜での縦方向のキズ])から必要である。
【0016】
樹脂膜(A)の(II)層でポリエステルとブレンドされるオレフィン系ポリマーは特に限定しない。低密度ポリエチレン,中密度ポリエチレン,高密度ポリエチレン,直鎖状低密度ポリエチレン,超高分子量ポリエチレン,ポリプロピレン,エチレンープロピレン共重合体,エチレンーブテン共重合体,エチレンー酢酸ビニル共重合体,エチレンーエチルアクリレート共重合体,エチレンービニルアルコール共重合体,アイオノマー等が使用できる。
【0017】
Tダイから押出された層状の樹脂膜(A)の両端部と(II)層で使用するオレフィン系ポリマー及び樹脂膜(B)の両端部で使用するオレフィン系ポリマーは同一であることが好ましい。その理由は、樹脂の無駄を省く観点から層状に押出された樹脂を冷却固化後に切断除去して得た両端部を含む樹脂を樹脂膜(A)の(II)層で再使用した場合、金属板に被覆された樹脂膜の品質が安定するためである。
【0018】
本発明では両端部を含む樹脂を樹脂膜(A)の(II)層で再使用する場合、再使用比率は特に限定しないが、5〜90重量%が好ましい。
【0019】
本発明ではポリエステルとオレフィン系ポリマーをTダイから層状に押出す際、両端部(片側が5cm以下の部分)にオレフィン系ポリマーを使用することが必要である。
【0020】
本発明ではポリエステルとオレフィン系ポリマーをドライブレンド又は溶融混合して得たポリマーを公知の1軸又は2軸押出機内で溶融させた後、エッジラミネーションタイプ等の公知のマルチマニホールドダイを使用して層状の溶融樹脂膜を得る。
【0021】
本発明では冷却固化方法として、回転させた冷却ロールにTダイから層状に溶融した樹脂を接触させる公知の方法が使用できる。溶融樹脂を冷却ロールに接触させる際、強制的にエアーを吹き付ける方法又は静電気で密着させる方法を採用することが好ましい。又、強制エアー吹き付け法,静電密着法のいずれにおいても層状樹脂の両端部と中央部を独立させて実施する方法がより好ましい。
【0022】
本発明では冷却固化させた後、両端部を切断除去して得た樹脂膜を加熱された金属板に直接ラミネートする方法、又は冷却固化させた後、両端部を切断除去して得た樹脂膜を一旦巻取った後、別工程で加熱された金属板にラミネートする方法のいずれも使用できる。
【0023】
後者の被覆方法においては、冷却固化物を縦延伸(例えば、ポリエステルのガラス転移点以上かつ冷結晶化温度未満の温度で2.0〜6.0倍延伸)を実施し、さらに緊張下で熱処理(例えば、50℃以上かつポリエステルの融点−20℃の温度で1〜20秒間)を実施することが好ましい。その理由は、巻取った樹脂膜ロールを保管した後、この樹脂膜ロールを加熱金属板に被覆する際、巻出し張力による樹脂膜の破断と樹脂膜ロールの保管時における経時収縮に起因したシワ,ブロッキング等を抑制するのに好ましいためである。
【0024】
本発明では金属板として、ティンフリースティール等の表面処理鋼板あるいはアルミニウム板又はアルミニウム合金板あるいは表面処理を施したアルミニウム板又はアルミニウム合金板が使用できる。これらの金属板をポリエステルの融点−20℃以上かつ融点+150℃に加熱した後、ラミネートロールを使用して樹脂膜(A)と樹脂膜(B)を金属板に同時ラミネート又は逐次ラミネートし、引き続いてこのラミネート金属板をポリエステルの融点+10℃以上かつ融点+60℃で加熱した後、水冷及び/又は空冷して樹脂被覆金属板を得る。但し、樹脂膜(A)を金属板にラミネートする場合、(II)層側と金属板を接触させることが製缶性を確保するために好ましい。
【0025】
本発明では金属板上の樹脂膜厚みは特に限定されないが、10〜50μmが被覆効果(防錆性)と耐衝撃性と経済性の点から好ましい。
【0026】
【実施例】
以下、実施例をもとに本発明を説明する。
[評価方法]
【0027】
(1)ポリエステルの融点
ポリエステル組成物を300℃で5分間加熱溶融した後、液体窒素で急冷して得たサンプル10mgを用い、窒素気流中、示差走査型熱量計(DSC)を用いて10℃/分の昇温速度で発熱・吸熱曲線(DSC曲線)を測定したときの、融解に伴う吸熱ピークの頂点温度を融点Tm(℃)とした。
【0028】
(2)ネックイン量
Tダイの吐出口巾(60cm)とn=3で測定した冷却固化後の樹脂膜巾(両端部を切断除去する前の樹脂膜巾)の平均値(Acm)を用い、次式でネックイン量(cm)を求めた。ネックイン量が5cm以下を実用性ありと評価した。
ネックイン量(cm)=60−A
【0029】
(3)樹脂被覆金属板の作製方法
250℃に加熱したアルミニウム合金板(厚み:0.26mmの3004系合金板)の片面に樹脂膜(A)を(II)層が金属板と接触するように,もう一方の面に樹脂膜(B)を同時にラミネートした後、275℃で加熱した後に水中急冷してラミネートアルミニウム板を作製した。
【0030】
(4)缶内面樹脂と加工ポンチの離型性
ラミネートアルミニウム板をn=10で製缶し、成形缶上部に起る座屈程度を目視観察した。評価基準は以下のとおり設定し、○を実用性ありと評価した。
○:缶開口部の座屈未発生
△:缶開口部円周の約1/3に座屈発生
×:缶開口部円周の1/3以上に座屈発生
【0031】
(5)缶外面の耐かじり性(缶外面樹脂における縦方向のキズ)
ラミネートアルミニウム板をn=10で製缶し、成形した缶体胴壁部外面樹脂のキズ発生程度を目視観察した。評価基準は以下のとおり設定し、○を実用性ありと評価した。
○:キズ未発生
△:外面の約1/3にキズ発生
×:外面の1/3以上に激しいキズ発生
【0032】
(6)耐衝撃性
アルミニウムラミネート板を製缶して得た缶を280℃で40秒加熱後水中急冷した缶の胴壁中央部より7cm角のサンプルを切り出す。このサンプルの缶外面に相当する面に先端径10mmの重り(600g)を高さ10cmから落して衝撃を付与する。ついで7%の希塩酸を満たしたガラス容器上にサンプルを置き(サンプルの凸部が浸漬する状態で置き)、3日後に凸部の腐蝕状態を目視観察した。評価基準は以下のとおり設定し、○を実用性ありと評価した。
○:凸部の腐蝕未発生
×:凸部の腐蝕発生
【0033】
(7)温水処理後の缶外面の白化程度
アルミニウムラミネート板を製缶して得た缶を270℃で40秒間加熱した後水中急冷したものをサンプルとする。このサンプルを80℃の温水中に10分間浸漬した後、水中急冷して得た缶外面を目視観察した。評価基準は以下のとおり設定 し、○を実用性ありと評価した。
○:白化が目立たない
△:明らかに白化しているが、アルミニウム合金板の色が見える
×:白化によりアルミニウム合金板の色がみえない
【0034】
[実施例・比較例に用いたポリエステルとオレフィン系ポリマーの略号と内容]
(1)PET:ポリエチレンテレフタレート
(2)PBT:ポリブチレンテレフタレート
(3)ポリエステルA:テレフタル酸/炭素数36のダイマー酸(モル比90/10) とエチレングリコールとの共重合ポリエステル
(4)ポリエステルB:テレフタル酸/炭素数36のダイマー酸(モル比95/5)とエチレングリコール/1,4ブタンジオール(モル比30/70)との共重合ポリエステル
(5)ポリエステルC:テレフタル酸とエチレングリコール/シクロヘキサンジメタノール(モル% 70/30)との共重合ポリエステル
(6)オレフィン:タフマーA−4085(三井化学社製、商品名)
【0035】
[実施例 1]
樹脂膜(A)の(I)層原料としてPET/PBT=40/60重量%のポリエステル、(II)層原料としてポリエステルA単体を280℃で溶融させ、樹脂膜(A)の両端部の原料としてオレフィン単体を250℃で溶融させ、エッジラミネーションタイプのTダイ(オレフィンの吐出口巾/中央部の吐出口巾/オレフィンの吐出口巾=2cm/56cm/2cm、260℃に加熱)を用いて、層状に冷却ロール(周速20m/分)へキャスト(Tダイから冷却ロールでの溶融樹脂の接地点までの距離15cm、中央部と両端部は別々の装置で強制的にエアーを吹付け)した後、両端部(片側5cm)を切断除去して巻取り、樹脂膜(A)に用いる厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)のロール状の樹脂膜を得た。
又、樹脂膜(B)の中央部の原料としてPET/PBT=40/60重量%のポリエステルを280℃で溶融させ、樹脂膜(B)の両端部の原料としてオレフィン単体を250℃で溶融させ、エッジラミネーションタイプのTダイ(オレフィンの吐出口巾/中央部の吐出口巾/オレフィンの吐出口巾=2cm/56cm/2cm、260℃に加熱)を用いて、層状に冷却ロール(周速 20m/分)へキャスト(Tダイから冷却ロールでの溶融樹脂の接地点までの距離 15cm、中央部と両端部は別々の装置で強制的にエアーを吹付け)した後、両端部(片側5cm)を切断除去して巻取り、樹脂膜(B)に用いる厚みが16μmのロール状の樹脂膜を得た。
【0036】
250℃に加熱した3004系アルミニウム合金板(厚み 0.26mm)の片面に樹脂膜(A)を(II)層側がアルミニウム合金板と接触するように圧着し、もう一方の面に樹脂膜(B)を圧着し275℃に加熱した後、水中急冷してラミネートアルミニウム板を得た。
【0037】
こうして得られたラミネートアルミニウム板に成形用潤滑剤を塗布した後、加熱して板温70℃で樹脂膜(A)が缶内面側となるようにして絞り加工を実施した。次いで、得られたカップの温度を40℃にして金型温度80℃でしごき加工を実施し、350mlサイズのシームレス缶を得た。
【0038】
ポリエステルの融点,キャスト時のネックイン量,製缶性(缶内面樹脂膜とポンチの離型性と缶外面樹脂膜のキズ発生程度),温水処理後の缶外面の白化程度,耐衝撃性を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れた樹脂被覆金属板の製造方法であり、製缶性に優れ、かつ外面の耐温水白化性と耐衝撃性が優れた金属缶が得られる樹脂被覆金属板の製造方法であるといえる。
【0039】
[実施例 2]
樹脂膜Aの(II)層原料をポリエステルB単体とした以外は実施例1と同様にして樹脂膜(A)に用いる厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)のロール状樹脂膜と樹脂膜(B)に用いる厚みが16μmのロール状樹脂膜を得た。
【0040】
ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0041】
ポリエステルの融点,キャスト時のネックイン量,製缶性(缶内面樹脂膜とポンチの離型性と缶外面樹脂膜のキズ発生程度),温水処理後の缶外面の白化程度,耐衝撃性を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れた樹脂被覆金属板の製造方法であり、製缶性に優れ、かつ外面の耐温水白化性と耐衝撃性が優れた金属缶が得られる樹脂被覆金属板の製造方法であるといえる。
【0042】
[実施例 3]
樹脂膜Aの(II)層原料をポリエステルBを87重量%とオレフィン13重量%とした以外は実施例1と同様にして樹脂膜(A)に用いる厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)のロール状樹脂膜と樹脂膜(B)に用いる厚みが16μmのロール状樹脂膜を得た。
【0043】
ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0044】
ポリエステルの融点,キャスト時のネックイン量,製缶性(缶内面樹脂膜とポンチの離型性と缶外面樹脂膜のキズ発生程度),温水処理後の缶外面の白化程度,耐衝撃性を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れた樹脂被覆金属板の製造方法であり、製缶性に優れ、かつ外面の耐温水白化性と耐衝撃性が優れた金属缶が得られる樹脂被覆金属板の製造方法であるといえる。
【0045】
[実施例 4]
樹脂膜Aの(II)層原料をポリエステルAを50重量%と実施例1で樹脂膜(A)を得る前に切断除去した両端部を造粒して得たポリマーを50重量%とした以外は実施例1と同様にして樹脂膜(A)に用いる厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)のロール状樹脂膜と樹脂膜(B)に用いる厚みが16μmのロール状樹脂膜を得た。
ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0046】
ポリエステルの融点,キャスト時のネックイン量,製缶性(缶内面樹脂膜とポンチの離型性と缶外面樹脂膜のキズ発生程度),温水処理後の缶外面の白化程度,耐衝撃性を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れた樹脂被覆金属板の製造方法であり、製缶性に優れ、かつ外面の耐温水白化性と耐衝撃性が優れた金属缶が得られる樹脂被覆金属板の製造方法であるといえる。
【0047】
[実施例 5]
樹脂膜Aの(II)層原料をポリエステルAを50重量%と実施例1で樹脂膜(B)を得る前に切断除去した両端部を造粒して得たポリマーを50重量%とした以外は実施例1と同様にして樹脂膜(A)に用いる厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)のロール状樹脂膜と樹脂膜(B)に用いる厚みが16μmのロール状樹脂膜を得た。ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0048】
ポリエステルの融点,キャスト時のネックイン量,製缶性(缶内面樹脂膜とポンチの離型性と缶外面樹脂膜のキズ発生程度),温水処理後の缶外面の白化程度,耐衝撃性を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れた樹脂被覆金属板の製造方法であり、製缶性に優れ、かつ外面の耐温水白化性と耐衝撃性が優れた金属缶が得られる樹脂被覆金属板の製造方法であるといえる。
【0049】
[比較例 1]
樹脂膜(A)と樹脂膜(B)の両端部の原料をPET/PBT=40/60重量%とした以外は実施例1と同様にしてロール状樹脂膜を得ようとしたが、ネックイン量が大きく,かつ両端部を18cm切断除去しなければ、厚み分布が一様な中央部が得られないため、経済性に劣る樹脂膜製造方法であった。
【0050】
[比較例 2]
樹脂膜(A)の(I)層の原料としてPET/PBT=20/80重量%のポリエステルとし、樹脂膜(B)の中央部の原料としてPET/PBT=20/80とした以外は実施例1と同様にして製膜しようとしたが、冷却ロールと巻取ロール間で樹脂膜が割れることが多く、ロール状の樹脂膜を安定して得られないため、樹脂膜製造方法として好ましくない。
【0051】
[比較例 3]
樹脂膜(A)の(I)層の原料としてPET/PBT=70/30重量%のポリエステルとし、樹脂膜(B)の中央部の原料としてPET/PBT=70/30とした以外は実施例1と同様にして樹脂膜(A)に用いる厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)のロール状樹脂膜と樹脂膜(B)に用いる厚みが16μmのロール状樹脂膜を得た。
【0052】
ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0053】
ポリエステルの融点,キャスト時のネックイン量,製缶性(缶内面樹脂膜とポンチの離型性と缶外面樹脂膜のキズ発生程度),温水処理後の缶外面の白化程度,耐衝撃性を表1に示す。この方法は、ネックイン量が小さく経済性に優れた樹脂被覆金属板の製造方法であり、製缶性と耐衝撃性が優れた樹脂被覆金属板の製造方法であったが、外面の耐温水白化性が劣るため、樹脂被覆金属板の製造方法として好ましくない。
【0054】
[比較例 4]
樹脂膜(A)の(I)層,(II)層の原料としてポリエスエルAとした以外は実施例1と同様にして樹脂膜(A)に用いる厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)のロール状樹脂膜と樹脂膜(B)に用いる厚みが16μmのロール状樹脂膜を得た。
【0055】
ポリエステルの融点,キャスト時のネックイン量,製缶性(缶内面樹脂膜とポンチの離型性と缶外面樹脂膜のキズ発生程度),温水処理後の缶外面の白化程度,耐衝撃性を表1に示す。この方法は、ネックイン量が小さく経済性に優れた樹脂被覆金属板の製造方法であったが、缶内面樹脂と加工ポンチが粘着し全周にわたって座屈が発生するため、樹脂被覆金属板の製造方法として好ましくない。
【0056】
[比較例 5]
樹脂膜(A)の(II)層と樹脂膜(B)の原料としてポリエステルC単体とした以外は実施例1と同様にして樹脂膜(A)に用いる厚みが25μm((I)層厚み12.5μm,(II)層厚み12.5μm)のロール状樹脂膜と樹脂膜(B)に用いる厚みが16μmのロール状樹脂膜を得た。
【0057】
ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
【0058】
ポリエステルの融点,キャスト時のネックイン量,製缶性(缶内面樹脂膜とポンチの離型性と缶外面樹脂膜のキズ発生程度),温水処理後の缶外面の白化程度,耐衝撃性を表1に示す。この方法は、ネックイン量が小さく経済性に優れた樹脂被覆金属板の製造方法であり、外面の耐温水白化性が優れた樹脂被覆金属板の製造方法であったが、製缶性と耐衝撃性が劣っているため、樹脂被覆金属板の製造方法として好ましくない。
【0059】
[比較例 6]
樹脂膜(A)の(II)層の原料としてPET/PBT=40/60重量%のポリエステル50重量%とオレフィン50重量%とした以外は実施例1と同様にしてロール状樹脂膜を得た。
【0060】
ポリエステルの融点,キャスト時のネックイン量,製缶性(缶内面樹脂膜とポンチの離型性と缶外面樹脂膜のキズ発生程度),温水処理後の缶外面の白化程度,耐衝撃性を表1に示す。この方法は、ネックイン量が小さく経済性に優れた樹脂膜製造方法であったが、得られた樹脂被覆金属板の製缶性がやや劣っているため、樹脂被覆金属板の製造方法として好ましくない。
【0061】
【表1】

Figure 0004099711
【0062】
【発明の効果】
本発明の樹脂被覆金属板の製造方法は原料の無駄を省けるため、経済性に優れた製造方法であるばかりでなく、製缶性(特に、缶内面樹脂膜と加工ポンチの離型性と缶外面樹脂膜の耐キズつき性)に優れた樹脂被覆金属板が得られる製造方法である。さらに、内容物を充填後に実施される温水殺菌処理で金属缶外面の外観不良(樹脂膜の白化)が発生しにくく、製缶後に美麗化を目的として実施される外面焼付け塗装を想定した加熱を実施しても耐衝撃性が低下しにくい極めて有用な樹脂被覆金属板の製造方法といえる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a resin-coated metal plate. More specifically, the present invention relates to a method for producing a resin-coated metal plate that is excellent in can manufacturing property (for example, drawing / ironing workability) and impact resistance and suitable for a metal can that is subjected to hot water sterilization treatment.
[0002]
[Prior art]
Conventionally, the inner surface and outer surface of a metal can have been widely coated with a solution in which various thermosetting resins such as epoxy and phenol are dissolved or dispersed in a solvent for the purpose of preventing corrosion. Has been done. However, this thermosetting resin coating method has a drawback in that it takes a long time to dry the paint, so that productivity is lowered and undesired problems such as environmental pollution due to a large amount of organic solvent often occur.
[0003]
In order to solve such drawbacks, a method of coating a metal plate with a thermoplastic resin by a melt extrusion method is disclosed (for example, see Patent Document 1). Further, a method is disclosed in which a melt-extruded thermoplastic resin is once cooled and solidified and then pressure-bonded to a heated metal plate (see, for example, Patent Document 2). Further, a method is disclosed in which an unoriented film of polyethylene terephthalate and / or polybutylene terephthalate produced by a melt extrusion method is pressure-bonded to a heated metal plate (see, for example, Patent Document 3). However, in these thermoplastic resin coating methods, when the molten resin is extruded in layers from the T-die, the width of the molten resin film is greatly reduced (called neck-in), and several tens of centimeters relative to the resin width required for coating. It was necessary to form a film with a wide width, which was not a satisfactory method from the viewpoint of economy.
[0004]
In order to solve such a drawback, a method of reducing neck-in by using a polyester obtained by blending a polyester obtained by copolymerizing a tribasic or higher polybasic acid or a polyhydric alcohol component is disclosed (for example, (See Patent Documents 4 and 5.) However, in these coating methods, a polyester obtained by copolymerizing a tribasic or higher polybasic acid or a polyhydric alcohol component is likely to be thermally deteriorated in a melting process from an extruder to a T die, and a heat stabilizer may be used in combination. The resulting molten resin film is likely to generate foreign matters (for example, foreign matters having a gel-like foreign matter or deteriorated core), and the resin coating layer is cracked starting from the foreign matters during can making. It was not satisfactory as a coated metal plate.
[0005]
Resin-coated metal sheet coating resins used for squeezing and ironing cans are not only required to have excellent moldability to follow canning (drawing and ironing), but also to beautify after making the cans It is required that the impact resistance is not lowered even in the heating of the outer surface baking coating performed as described above. However, the resin-coated metal plate often has a reduced impact resistance, and does not satisfy the demand for impact resistance.
[0006]
[Patent Document 1]
JP-A-57-203545
[Patent Document 2]
JP-A-10-309775
[Patent Document 3]
JP 2001-1447 A
[Patent Document 4]
JP 10-86308 A
[Patent Document 5]
JP 2000-71388 A
[0007]
[Problems to be solved by the invention]
The object of the present invention is to solve the problems of the prior art. In other words, because the neck-in at the time of melt extrusion is small and foreign matter is not easily generated in the obtained molten resin film, it is excellent in economic efficiency and can-making properties, and is baked on the outside surface for the purpose of beautification after can-making Thus, the present invention provides a method for producing a resin-coated metal plate suitable for a metal can in which impact resistance is unlikely to decrease even during heating, and a hot water sterilization treatment is performed.
[0008]
[Means for Solving the Problems]
An object of the present invention is to coat a resin film (A) mainly composed of crystalline polyester having a melting point of 180 ° C. or higher on one side of a metal plate and to form a resin film (B) made of crystalline polyester having a melting point of 180 ° C. or higher on the other side. ), The molten resin film obtained in a state where the olefinic polymer is joined to both ends using a T die is cooled and solidified, and then both ends are cut and removed to obtain a resin film (A) and a resin film ( B) and a method for producing a resin-coated metal plate comprising a method of laminating a resin film (A) and a resin film (B) on a heated metal plate, and the resin film (A) is (I) Layer / (II) layer, wherein (I) layer comprises 60: 40-30: 70 wt% of polyethylene terephthalate and polybutylene phthalate, and (II) layer comprises 50 mol% or more of the total acid component Terephthalic acid residue and 5-50 mol % Is an aliphatic dicarboxylic acid residue having 10 or more carbon atoms and the olefin polymer is 70:30 to 100: 0% by weight, and the resin film (B) is 60:40 to polyethylene terephthalate and polybutylene terephthalate. This is achieved by a method for producing a resin-coated metal plate, which is made of 30: 70% by weight of polyester.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the resin film (A) (I) layer and resin film (B) of the present invention, a dicarboxylic acid component other than terephthalic acid and a glycol component other than ethylene glycol and butanediol are used so long as the properties of polyethylene terephthalate and polybutylene terephthalate are not impaired. Can be used. For example, as dicarboxylic acid, aromatic dicarboxylic acid such as isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, 5-sodium sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, decanedicarboxylic acid, Aliphatic dicarboxylic acids such as maleic acid, fumaric acid and dimer acid, oxycarboxylic acids such as p-oxybenzoic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid can be used. As glycol components other than ethylene glycol and butanediol, aliphatic glycols such as propanediol, pentanediol, hexanediol and neopentylglycol, alicyclic glycols such as cyclohexanedimethanol, and aromatics such as bisphenol A and bisphenol S Glycol can be used.
[0010]
In the polyester constituting the (II) layer of the resin film (A) in the present invention, 50 mol% or more of the total acid component is a terephthalic acid residue and 5 to 50 mol% is an aliphatic dicarboxylic acid having 10 or more carbon atoms. It is necessary. If the terephthalic acid residue is less than 50 mol%, the heat resistance is insufficient, and the releasability of the punch at the time of can-making is deteriorated. Examples of the aliphatic dicarboxylic acid having 10 or more carbon atoms include sebacic acid, eicoic acid, decanedicarboxylic acid, and dimer acid. Dimer acid is obtained by a dimerization reaction of a higher unsaturated fatty acid such as oleic acid, and usually has an unsaturated bond in the molecule, but it can also be used after hydrogenation to reduce the degree of unsaturation. Hydrogenation is more preferable because heat resistance and flexibility are improved. In addition, a linear branched structure, an alicyclic structure, and an aromatic ring structure are generated during the dimerization reaction, but these structures and amounts are not particularly limited. Aliphatic dicarboxylic acid residues having less than 10 carbon atoms are not preferred because they do not provide sufficient impact resistance. If the aliphatic dicarboxylic acid residue having 10 or more carbon atoms is less than 5 mol%, it is not preferable because the impact resistance is not sufficient. On the other hand, if it exceeds 50 mol%, not only the impact resistance is saturated but also the heat resistance is lowered, which is not preferable.
[0011]
The polyester constituting the (II) layer of the resin film (A) can be a dicarboxylic acid other than these acids, provided that the terephthalic acid residue and the aliphatic dicarboxylic acid residue having 10 or more carbon atoms satisfy the above range. Including an acid residue is not particularly limited. Moreover, one type of aliphatic dicarboxylic acid residue having 10 or more carbon atoms may be used, or two or more types may be used in combination. Further, the glycol residue of the polyester constituting the (II) layer of the resin film (A) is not particularly limited, and aliphatic such as ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, neopentylglycol, etc. It may be a residue of an alicyclic glycol such as glycol or cyclohexanedimethanol, or an aromatic glycol such as bisphenol A or bisphenol S.
[0012]
In the polyester of the present invention, an antioxidant, a heat stabilizer, an ultraviolet absorber, a plasticizer, a pigment, an antistatic agent, a lubricant, a crystal nucleating agent, a lubricant composed of inorganic or organic particles, and the like are blended as necessary. May be.
[0013]
The method for producing the polyester in the present invention is not particularly limited. That is, it can be used even if it is produced by either the transesterification method or the direct polymerization method. Further, it may be produced by a solid phase polymerization method in order to increase the molecular weight. Furthermore, use a polyester with a low oligomer content produced by the low-pressure solid-state polymerization method from the viewpoint of reducing the amount of oligomers from the polyester resin in pastry treatment, retort treatment, etc. that are carried out after filling the contents in the can. Is preferred.
[0014]
It is preferable that the blend ratio of the polyethylene terephthalate and the polybutylene terephthalate of the polyester of the resin film (A) (I) and the resin film (B) is the same. The reason is that when the resin including both ends obtained by cutting and removing the resin extruded in a layer form after cooling and solidification is reused in the (II) layer of the resin film (A) from the viewpoint of eliminating the waste of the resin, This is because the quality of the resin film coated on the plate is stabilized.
[0015]
Polyester used in the present invention has a melting point of 180 ° C. or higher. Can manufacturing ability (in drawing and ironing process, the inner surface of the can ensures punch releasability, the outer surface of the can suppresses galling [ It is necessary from vertical scratches in the resin film]).
[0016]
The olefin polymer blended with the polyester in the (II) layer of the resin film (A) is not particularly limited. Low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer Polymers, ethylene-vinyl alcohol copolymers, ionomers and the like can be used.
[0017]
It is preferable that the both ends of the layered resin film (A) extruded from the T-die and the olefin polymer used in the (II) layer and the olefin polymer used in both ends of the resin film (B) are the same. The reason is that when the resin including both ends obtained by cutting and removing the resin extruded in a layer form after cooling and solidification is reused in the (II) layer of the resin film (A) from the viewpoint of eliminating the waste of the resin, This is because the quality of the resin film coated on the plate is stabilized.
[0018]
In the present invention, when the resin including both ends is reused in the (II) layer of the resin film (A), the reuse ratio is not particularly limited, but is preferably 5 to 90% by weight.
[0019]
In the present invention, when the polyester and the olefin polymer are extruded in a layer form from the T die, it is necessary to use the olefin polymer at both end portions (portions where one side is 5 cm or less).
[0020]
In the present invention, a polymer obtained by dry blending or melt-mixing a polyester and an olefin polymer is melted in a known single-screw or twin-screw extruder, and then layered using a known multi-manifold die such as an edge lamination type. A molten resin film is obtained.
[0021]
In the present invention, as a cooling and solidification method, a known method in which a resin melted in a layer form from a T die is brought into contact with a rotated cooling roll can be used. When the molten resin is brought into contact with the cooling roll, it is preferable to employ a method of forcibly blowing air or a method of closely contacting with static electricity. Moreover, both the forced air spraying method and the electrostatic contact method are more preferable to carry out the method in which both end portions and the central portion of the layered resin are made independent.
[0022]
In the present invention, a method of directly laminating a resin film obtained by cutting and removing both ends after cooling and solidification on a heated metal plate, or a resin film obtained by cutting and removing both ends after cooling and solidification Any of the methods of once winding the film and laminating it on a metal plate heated in a separate process can be used.
[0023]
In the latter coating method, the cooled solidified material is longitudinally stretched (for example, stretched by 2.0 to 6.0 times at a temperature not lower than the glass transition temperature of the polyester and lower than the cold crystallization temperature), and further heat-treated under tension. It is preferable to carry out (for example, at a temperature of 50 ° C. or higher and a melting point of polyester of −20 ° C. for 1 to 20 seconds). The reason for this is that, after storing the wound resin film roll, when the resin film roll is coated on a heated metal plate, the resin film roll is wrinkled due to breakage of the resin film due to unwinding tension and shrinkage with time during storage of the resin film roll. This is because it is preferable to suppress blocking and the like.
[0024]
In the present invention, as the metal plate, a surface-treated steel plate such as tin-free steel, an aluminum plate, an aluminum alloy plate, an aluminum plate or an aluminum alloy plate subjected to surface treatment can be used. After heating these metal plates to a melting point of -20 ° C. or higher and a melting point of + 150 ° C. of polyester, the resin film (A) and the resin film (B) are simultaneously laminated or sequentially laminated on the metal plate using a laminating roll, and subsequently The laminated metal plate is heated at a melting point of polyester of + 10 ° C. or higher and a melting point of + 60 ° C., and then cooled with water and / or air to obtain a resin-coated metal plate. However, when laminating the resin film (A) on a metal plate, it is preferable to contact the (II) layer side with the metal plate in order to ensure canability.
[0025]
In the present invention, the thickness of the resin film on the metal plate is not particularly limited, but 10 to 50 μm is preferable from the viewpoint of coating effect (rust prevention), impact resistance and economy.
[0026]
【Example】
Hereinafter, the present invention will be described based on examples.
[Evaluation methods]
[0027]
(1) Melting point of polyester
After heating and melting the polyester composition at 300 ° C. for 5 minutes, 10 mg of a sample obtained by quenching with liquid nitrogen was used, and the temperature rising rate was 10 ° C./min using a differential scanning calorimeter (DSC) in a nitrogen stream. When the exothermic / endothermic curve (DSC curve) was measured, the peak temperature of the endothermic peak accompanying melting was defined as the melting point Tm (° C.).
[0028]
(2) Neck-in amount
Using the average value (Acm) of the T die outlet width (60 cm) and the resin film width after cooling and solidification (resin film width before cutting and removing both ends) measured at n = 3, The amount (cm) was determined. A neck-in amount of 5 cm or less was evaluated as practical.
Neck-in amount (cm) = 60-A
[0029]
(3) Method for producing resin-coated metal plate
Resin film (A) on one side of an aluminum alloy plate heated to 250 ° C. (3004 series alloy plate having a thickness of 0.26 mm), and a resin film (II) on the other side so that the layer (II) is in contact with the metal plate After laminating B) at the same time, it was heated at 275 ° C. and then quenched in water to produce a laminated aluminum plate.
[0030]
(4) Releasability between can inner surface resin and processing punch
A laminated aluminum plate was canned at n = 10, and the degree of buckling occurring at the upper part of the molded can was visually observed. Evaluation criteria were set as follows, and ○ was evaluated as practical.
○: No buckling at the can opening
Δ: Buckling occurred at about 1/3 of the circumference of the can opening
×: Buckling occurs at 1/3 or more of the circumference of the can opening
[0031]
(5) Scratch resistance of the outer surface of the can (longitudinal scratch on the outer surface of the can)
A laminated aluminum plate was canned at n = 10, and the degree of generation of scratches on the outer surface of the molded can body wall portion was visually observed. Evaluation criteria were set as follows, and ○ was evaluated as practical.
○: No scratch
Δ: Scratches occur in about 1/3 of the outer surface
×: Severe scratches occurred to 1/3 or more of the outer surface
[0032]
(6) Impact resistance
A 7 cm square sample is cut out from the center of the barrel wall of a can that was obtained by heating an aluminum laminate plate at 280 ° C. for 40 seconds and then quenching in water. A weight (600 g) having a tip diameter of 10 mm is dropped from a height of 10 cm on the surface corresponding to the outer surface of the can of this sample to give an impact. Then, the sample was placed on a glass container filled with 7% dilute hydrochloric acid (with the convex portion of the sample immersed), and the corrosive state of the convex portion was visually observed after 3 days. Evaluation criteria were set as follows, and ○ was evaluated as practical.
○: No protrusion corrosion
X: Corrosion of convex part
[0033]
(7) The degree of whitening of the outer surface of the can after hot water treatment
A can obtained by making an aluminum laminate plate was heated at 270 ° C. for 40 seconds and then rapidly quenched in water. After immersing this sample in warm water at 80 ° C. for 10 minutes, the outer surface of the can obtained by quenching in water was visually observed. Evaluation criteria were set as follows, and ○ was evaluated as practical.
○: Whitening is not noticeable
Δ: Clearly whitened, but the color of the aluminum alloy plate is visible
×: The color of the aluminum alloy plate is not visible due to whitening
[0034]
[Abbreviations and contents of polyester and olefin polymer used in Examples and Comparative Examples]
(1) PET: Polyethylene terephthalate
(2) PBT: Polybutylene terephthalate
(3) Polyester A: Copolyester of terephthalic acid / C36 dimer acid (molar ratio 90/10) and ethylene glycol
(4) Polyester B: Copolyester of terephthalic acid / C36 dimer acid (molar ratio 95/5) and ethylene glycol / 1,4 butanediol (molar ratio 30/70)
(5) Polyester C: Copolyester of terephthalic acid and ethylene glycol / cyclohexanedimethanol (mol% 70/30)
(6) Olefin: Tuffmer A-4085 (Mitsui Chemicals, trade name)
[0035]
[Example 1]
The resin film (A) (I) layer raw material PET / PBT = 40/60% by weight polyester, and the (II) layer raw material polyester A alone is melted at 280 ° C., and the raw material at both ends of the resin film (A). The olefin simple substance is melted at 250 ° C. and an edge lamination type T die (olefin outlet width / central outlet width / olefin outlet width = 2 cm / 56 cm / 2 cm, heated to 260 ° C.) is used. , Cast into cooling rolls (circumferential speed 20m / min) in layers (distance 15cm from the T die to the ground point of the molten resin with the cooling rolls, forcibly blowing air at the center and both ends with separate devices) Then, both ends (5 cm on one side) are cut off and wound up, and the thickness used for the resin film (A) is 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness 12.5 μm). Obtain a resin film .
Also, PET / PBT = 40/60% by weight of polyester is melted at 280 ° C. as a raw material at the center of the resin film (B), and olefin is melted at 250 ° C. as a raw material at both ends of the resin film (B). , Using an edge lamination type T-die (olefin outlet width / central outlet width / olefin outlet width = 2 cm / 56 cm / 2 cm, heated to 260 ° C.), layered cooling rolls (circumferential speed 20 m / Min) cast (distance from the T die to the contact point of the molten resin with the cooling roll is 15cm, the center and both ends are forcibly blown with separate devices), then both ends (5cm on one side) Was removed by cutting, and a roll-shaped resin film having a thickness of 16 μm used for the resin film (B) was obtained.
[0036]
A resin film (A) is pressure-bonded to one side of a 3004 series aluminum alloy plate (thickness 0.26 mm) heated to 250 ° C. so that the (II) layer side is in contact with the aluminum alloy plate, and a resin film (B ) And heated to 275 ° C., and then quenched in water to obtain a laminated aluminum plate.
[0037]
A lubricant for molding was applied to the laminated aluminum plate thus obtained, and then heated and drawn at a plate temperature of 70 ° C. so that the resin film (A) was on the inner surface side of the can. Next, the temperature of the obtained cup was set to 40 ° C., and ironing was performed at a mold temperature of 80 ° C. to obtain a 350 ml size seamless can.
[0038]
Melting point of polyester, neck-in amount during casting, can-making ability (can releasability of can inner surface resin film and punch and occurrence of scratches on can outer surface resin film), degree of whitening of can outer surface after hot water treatment, impact resistance Table 1 shows. The method of this example is a method for producing a resin-coated metal plate having a small neck-in amount and excellent in economic efficiency, and a metal can excellent in can manufacturing performance and having excellent hot water whitening resistance and impact resistance on the outer surface. It can be said that this is a method for producing the resulting resin-coated metal sheet.
[0039]
[Example 2]
The thickness used for the resin film (A) is 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness 12) in the same manner as in Example 1 except that the material for the (II) layer of the resin film A is polyester B alone. 0.5 μm) roll-shaped resin film and 16 μm-thick roll-shaped resin film used for the resin film (B) were obtained.
[0040]
Next, a laminated aluminum plate was produced in the same manner as in Example 1, and canned to obtain a 350 ml size seamless can.
[0041]
Melting point of polyester, neck-in amount during casting, can-making ability (can releasability of can inner surface resin film and punch and occurrence of scratches on can outer surface resin film), degree of whitening of can outer surface after hot water treatment, impact resistance Table 1 shows. The method of this example is a method for producing a resin-coated metal plate having a small neck-in amount and excellent in economic efficiency, and a metal can excellent in can manufacturing performance and having excellent hot water whitening resistance and impact resistance on the outer surface. It can be said that this is a method for producing the resulting resin-coated metal sheet.
[0042]
[Example 3]
The thickness used for the resin film (A) is 25 μm in the same manner as in Example 1 except that the (II) layer raw material of the resin film A is 87% by weight of polyester B and 13% by weight of olefin. A roll-shaped resin film having a thickness of 16 μm and a roll-shaped resin film having a thickness of 5 μm and a (II) layer thickness of 12.5 μm) were obtained.
[0043]
Next, a laminated aluminum plate was produced in the same manner as in Example 1, and canned to obtain a 350 ml size seamless can.
[0044]
Melting point of polyester, neck-in amount during casting, can-making ability (can releasability of can inner surface resin film and punch and occurrence of scratches on can outer surface resin film), degree of whitening of can outer surface after hot water treatment, impact resistance Table 1 shows. The method of this example is a method for producing a resin-coated metal plate having a small neck-in amount and excellent in economic efficiency, and a metal can excellent in can manufacturing performance and having excellent hot water whitening resistance and impact resistance on the outer surface. It can be said that this is a method for producing the resulting resin-coated metal sheet.
[0045]
[Example 4]
(II) layer raw material of the resin film A is 50% by weight of polyester A and the polymer obtained by granulating both ends cut and removed before obtaining the resin film (A) in Example 1 is made 50% by weight. Is used in the same manner as in Example 1 for the roll-shaped resin film and the resin film (B) having a thickness of 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness 12.5 μm) used for the resin film (A). A roll-shaped resin film having a thickness of 16 μm was obtained.
Next, a laminated aluminum plate was produced in the same manner as in Example 1, and canned to obtain a 350 ml size seamless can.
[0046]
Melting point of polyester, neck-in amount during casting, can-making ability (can releasability of can inner surface resin film and punch and occurrence of scratches on can outer surface resin film), degree of whitening of can outer surface after hot water treatment, impact resistance Table 1 shows. The method of this example is a method for producing a resin-coated metal plate having a small neck-in amount and excellent in economic efficiency, and a metal can excellent in can manufacturing performance and having excellent hot water whitening resistance and impact resistance on the outer surface. It can be said that this is a method for producing the resulting resin-coated metal sheet.
[0047]
[Example 5]
(II) layer raw material of the resin film A is 50% by weight of polyester A and the polymer obtained by granulating both ends cut and removed before obtaining the resin film (B) in Example 1 is made 50% by weight. Is used in the same manner as in Example 1 for the roll-shaped resin film and the resin film (B) having a thickness of 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness 12.5 μm) used for the resin film (A). A roll-shaped resin film having a thickness of 16 μm was obtained. Next, a laminated aluminum plate was produced in the same manner as in Example 1, and canned to obtain a 350 ml size seamless can.
[0048]
Melting point of polyester, neck-in amount during casting, can-making ability (can releasability of can inner surface resin film and punch and occurrence of scratches on can outer surface resin film), degree of whitening of can outer surface after hot water treatment, impact resistance Table 1 shows. The method of this example is a method for producing a resin-coated metal plate having a small neck-in amount and excellent in economic efficiency, and a metal can excellent in can manufacturing performance and having excellent hot water whitening resistance and impact resistance on the outer surface. It can be said that this is a method for producing the resulting resin-coated metal sheet.
[0049]
[Comparative Example 1]
A roll-shaped resin film was obtained in the same manner as in Example 1 except that the raw materials at both ends of the resin film (A) and the resin film (B) were changed to PET / PBT = 40/60% by weight. If the amount is large and both end portions are not cut and removed by 18 cm, a central portion with a uniform thickness distribution cannot be obtained.
[0050]
[Comparative Example 2]
Example except that PET / PBT = 20/80 wt% polyester as the raw material of the (I) layer of the resin film (A) and PET / PBT = 20/80 as the raw material of the central part of the resin film (B) However, since the resin film often breaks between the cooling roll and the take-up roll and a roll-shaped resin film cannot be obtained stably, it is not preferable as a method for producing a resin film.
[0051]
[Comparative Example 3]
Example except that PET / PBT = 70/30 wt% polyester as the raw material of the (I) layer of the resin film (A) and PET / PBT = 70/30 as the raw material of the central part of the resin film (B) The thickness used for the resin film (A) is 25 μm ((I) layer thickness 12.5 μm, (II) layer thickness 12.5 μm) and the thickness used for the resin film (B) is 16 μm. A roll-shaped resin film was obtained.
[0052]
Next, a laminated aluminum plate was produced in the same manner as in Example 1, and canned to obtain a 350 ml size seamless can.
[0053]
Melting point of polyester, neck-in amount during casting, can-making ability (can releasability of can inner surface resin film and punch and occurrence of scratches on can outer surface resin film), degree of whitening of can outer surface after hot water treatment, impact resistance Table 1 shows. This method is a method for producing a resin-coated metal plate having a small neck-in amount and excellent in economic efficiency, and was a method for producing a resin-coated metal plate having excellent can-making properties and impact resistance. Since whitening property is inferior, it is not preferable as a manufacturing method of a resin-coated metal sheet.
[0054]
[Comparative Example 4]
The thickness used for the resin film (A) is 25 μm in the same manner as in Example 1 except that the polyester film A is used as the raw material for the (I) and (II) layers of the resin film (A) (the (I) layer thickness is 12.5 μm). , (II) layer-shaped resin film having a thickness of 12.5 μm and a roll-shaped resin film having a thickness of 16 μm used for the resin film (B) were obtained.
[0055]
Melting point of polyester, neck-in amount during casting, can-making ability (can releasability of can inner surface resin film and punch and occurrence of scratches on can outer surface resin film), degree of whitening of can outer surface after hot water treatment, impact resistance Table 1 shows. This method was a method for producing a resin-coated metal plate with a small neck-in amount and excellent economic efficiency.However, since the resin on the inner surface of the can adheres to the processing punch and buckling occurs around the entire circumference, This is not preferable as a production method.
[0056]
[Comparative Example 5]
The thickness used for the resin film (A) is 25 μm ((I) layer thickness of 12) in the same manner as in Example 1 except that the material (II) of the resin film (A) and the material of the resin film (B) are polyester C alone. 0.5 μm, (II) layer thickness 12.5 μm) and a roll-shaped resin film having a thickness of 16 μm used for the resin film (B) were obtained.
[0057]
Next, a laminated aluminum plate was produced in the same manner as in Example 1, and canned to obtain a 350 ml size seamless can.
[0058]
Melting point of polyester, neck-in amount during casting, can-making ability (can releasability of can inner surface resin film and punch and occurrence of scratches on can outer surface resin film), degree of whitening of can outer surface after hot water treatment, impact resistance Table 1 shows. This method is a method for producing a resin-coated metal plate having a small neck-in amount and excellent in economic efficiency, and a method for producing a resin-coated metal plate having excellent hot water whitening resistance on the outer surface. Since the impact property is inferior, it is not preferable as a method for producing a resin-coated metal sheet.
[0059]
[Comparative Example 6]
A roll-shaped resin film was obtained in the same manner as in Example 1 except that 50% by weight of polyester / 50% by weight of olefin and PET / PBT = 40/60% by weight were used as raw materials for the (II) layer of the resin film (A). .
[0060]
Melting point of polyester, neck-in amount during casting, can-making ability (can releasability of can inner surface resin film and punch and occurrence of scratches on can outer surface resin film), degree of whitening of can outer surface after hot water treatment, impact resistance Table 1 shows. This method was a resin film production method having a small neck-in amount and excellent in economic efficiency, but because the resulting resin-coated metal plate is somewhat inferior in canability, it is preferable as a method for producing a resin-coated metal plate. Absent.
[0061]
[Table 1]
Figure 0004099711
[0062]
【The invention's effect】
The method for producing a resin-coated metal sheet according to the present invention is not only an economical method because it eliminates waste of raw materials, but also has a can-making property (particularly, a mold inner surface resin film and a processing punch release property and a can. This is a manufacturing method for obtaining a resin-coated metal plate excellent in scratch resistance of the outer resin film. In addition, the hot water sterilization performed after filling the contents is unlikely to cause a bad appearance on the outer surface of the metal can (whitening of the resin film), and heating that assumes the outer surface baking coating performed for the purpose of beautification after the can is made. It can be said that this is a very useful method for producing a resin-coated metal plate, which is hardly reduced in impact resistance even if it is carried out.

Claims (3)

金属板の片面に融点180℃以上の結晶性ポリエステルを主体とする樹脂膜(A)を被覆しもう一方の面に融点180℃以上の結晶性ポリエステルよりなる樹脂膜(B)を被覆された樹脂被覆金属板の製造方法であって、
樹脂膜(A)が(I)層/(II)層の複合構成であり、(I)層がポリエチレンテレフタレートとポリブチレンフタレートが60:40〜30:70重量%よりなり、(II)層が全酸成分の50モル%以上がテレフタル酸残基かつ5〜50モル%が炭素数10以上の脂肪族ジカルボン酸残基であるポリエステルとオレフィン系ポリマーが70:30〜100:0重量%よりなり、樹脂膜(B)がポリエチレンテレフタレートとポリブチレンテレフタレートが60:40〜30:70重量%のポリエステルよりなるものであり、
Tダイを用いて両端部にオレフィン系ポリマーが合流された状態で得た溶融樹脂膜を冷却固化後に両端部を切断除去して樹脂膜(A)と樹脂膜(B)を得る工程と、
樹脂膜(A)及び樹脂膜(B)を加熱された金属板にラミネートする工程からなることを特徴とする樹脂被覆金属板の製造方法。
One surface to the melting point 180 ° C. or higher of the crystalline polyester resin coated film (A) composed mainly of other surface consisting of a melting point 180 ° C. or more crystalline polyester resin film of a metal plate (B) a resin which is coated A method for producing a coated metal plate, comprising:
The resin film (A) has a composite structure of (I) layer / (II) layer, the (I) layer is composed of 60:40 to 30:70 wt% of polyethylene terephthalate and polybutylene phthalate, and the (II) layer is Polyester and olefin polymer in which 50 mol% or more of all acid components are terephthalic acid residues and 5 to 50 mol% are aliphatic dicarboxylic acid residues having 10 or more carbon atoms are composed of 70:30 to 100: 0 wt%. , the resin film (B) is polyethylene terephthalate and polybutylene terephthalate 60: 40-30: all SANYO consisting 70 wt% of a polyester,
A step of obtaining a resin film (A) and a resin film (B) by cutting and removing both ends after cooling and solidifying the molten resin film obtained in a state in which the olefin polymer is merged at both ends using a T die ;
A method for producing a resin-coated metal plate, comprising a step of laminating a resin film (A) and a resin film (B) on a heated metal plate.
樹脂膜(A)の両端部と(II)層のオレフィン系ポリマー及び樹脂膜(B)の両端部のオレフィン系ポリマーが同一であることを特徴とする請求項1に記載された樹脂被覆金属板の製造方法。  2. The resin-coated metal plate according to claim 1, wherein the olefinic polymer in both ends of the resin film (A), the (II) layer, and the olefinic polymer in both ends of the resin film (B) are the same. Manufacturing method. 樹脂膜(A)の(I)層と樹脂膜(B)のポリエステルのポリエチレンテレフタレートとポリブチレンテレフタレートのブレンド比率が同一であることを特徴とする請求項1に記載された樹脂被覆金属板の製造方法。  The resin-coated metal sheet according to claim 1, wherein the blend ratio of the polyethylene terephthalate and the polybutylene terephthalate of the polyester of the resin film (A) and the resin film (B) is the same. Method.
JP2003022282A 2002-02-01 2003-01-30 Method for producing resin-coated metal sheet Expired - Fee Related JP4099711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003022282A JP4099711B2 (en) 2002-02-01 2003-01-30 Method for producing resin-coated metal sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-25850 2002-02-01
JP2002025850 2002-02-01
JP2003022282A JP4099711B2 (en) 2002-02-01 2003-01-30 Method for producing resin-coated metal sheet

Publications (2)

Publication Number Publication Date
JP2003291198A JP2003291198A (en) 2003-10-14
JP4099711B2 true JP4099711B2 (en) 2008-06-11

Family

ID=29253453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003022282A Expired - Fee Related JP4099711B2 (en) 2002-02-01 2003-01-30 Method for producing resin-coated metal sheet

Country Status (1)

Country Link
JP (1) JP4099711B2 (en)

Also Published As

Publication number Publication date
JP2003291198A (en) 2003-10-14

Similar Documents

Publication Publication Date Title
JP2003291258A (en) Method for manufacturing resin-coated metallic sheet
JP4099711B2 (en) Method for producing resin-coated metal sheet
JP4264810B2 (en) Method for producing polyester film-coated metal sheet
JP4364630B2 (en) Polyester film for bonding metal plates
JP4189735B2 (en) Method for producing resin-coated metal sheet
JP4189740B2 (en) Method for producing polyester film-coated metal sheet
JP4154662B2 (en) Method for producing resin-coated metal sheet
JP4193119B2 (en) Method for producing polyester film-coated metal sheet
JP4288576B2 (en) Method for producing resin-coated metal sheet
JP4258807B2 (en) Polyester film for coating metal plate, method for producing the same, and method for producing polyester film-coated metal plate
JP2003291259A (en) Method for manufacturing resin-coated metallic sheet
JP4576147B2 (en) Polyester film-coated metal sheet, method for producing polyester film-coated metal sheet, and polyester film-coated metal can
JP4288575B2 (en) Method for producing polyester film-coated metal sheet
JP2004042618A (en) Method for manufacturing polyester film-coated metallic sheet
JP4258808B2 (en) Polyester film for coating metal plate, method for producing the same, and method for producing polyester film-coated metal plate
JP4297779B2 (en) Method for producing polyester film-coated metal sheet
JP2004285342A (en) Metal plate laminating polyester-based film
JP2003291199A (en) Production method for resin-coated metal plate
JP2004074777A (en) Manufacturing process of polyester film clad metal sheet
JP2004106536A (en) Manufacturing method for polyester film coated metal sheet
JP4576142B2 (en) Polyester film for metal plate coating, method for producing the same, and method for producing polyester film-coated metal plate
JP2005298688A (en) Polyester-based film for coating metal sheet and its manufacturing method, polyester-based film-coated metal sheet and its manufacturing method, polyester-based film-coated metal can
JP2005297380A (en) Laminated polyester film for coating metal sheet and method for manufacturing the same, laminated polyester film-coated metal sheet and method for manufacturing the same and laminated polyester film-coated metal can
JP2004042616A (en) Method for manufacturing polyester film-coated metallic sheet
JP4297778B2 (en) Method for producing polyester film-coated metal sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees