JP2004106537A - Manufacturing method for polyester film coated metal sheet - Google Patents

Manufacturing method for polyester film coated metal sheet Download PDF

Info

Publication number
JP2004106537A
JP2004106537A JP2003303241A JP2003303241A JP2004106537A JP 2004106537 A JP2004106537 A JP 2004106537A JP 2003303241 A JP2003303241 A JP 2003303241A JP 2003303241 A JP2003303241 A JP 2003303241A JP 2004106537 A JP2004106537 A JP 2004106537A
Authority
JP
Japan
Prior art keywords
polyester
film
layer
polyester film
making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003303241A
Other languages
Japanese (ja)
Inventor
Kuniharu Mori
森 邦治
Hirohisa Fujita
藤田 裕久
Hiromu Nagano
永野 ▲煕▼
Hideto Ohashi
大橋 英人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003303241A priority Critical patent/JP2004106537A/en
Publication of JP2004106537A publication Critical patent/JP2004106537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a polyester film coated metal sheet excellent in economical efficiency and can fabricating properties and having good heat resistance even in an outer surface baking and coating process performed for the purpose of obtaining a beautiful appearance after can fabrication. <P>SOLUTION: After a molten resin film, which is obtained in the confluent state with an olefinic polymer using a T-die, is cooled and solidified, both end parts of the film are cut off to obtain a polyester film. The polyester film is constituted of an A-layer, a B-layer and a C-layer. The A-layer comprises a polyester with a crystallization temperature upon falling temperature of 150°C or higher, the B-layer comprises a polymer which consists of a polyester and an olefinic polymer in a weight ratio of 70:30-100:0 and has a melting point of 190-225°C and a glass transition temperature of 50°C or higher and the C-layer comprises a polyester with a glass transition temperature of 30-50°C. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明はポリエステル系フィルム被覆金属板の製造方法に関するものである。さらに詳細には、製缶性(例えば、絞り・しごき加工性)に優れたポリエステル系フィルム被覆金属板の製造方法に関するものである。 The present invention relates to a method for producing a metal film coated with a polyester film. More specifically, the present invention relates to a method for producing a polyester-film-coated metal sheet having excellent can-making properties (for example, drawing and ironing workability).

 従来、金属缶の缶内面および缶外面は腐蝕防止を目的として、エポキシ系,フェノール系等の各種熱硬化性樹脂を溶剤に溶解または分散させたものを塗布し、金属表面を被覆することが広く行われてきた。しかしながら、この熱硬化性樹脂の被覆方法では塗料の乾燥に長時間を要するため生産性が低下したり、多量の有機溶剤による環境汚染など好ましくない問題を発生させることが多いという欠点があった。
 かかる欠点を解決するため、金属板に熱可塑性樹脂を溶融押出法で被覆する方法が開示されている(例えば、特許文献1参照)。また、溶融押出した熱可塑性樹脂を一旦冷却固化させた後、加熱された金属板に圧着する方法が開示されている(例えば、特許文献2参照)。また、溶融押出法で作製したポリエチレンテレフタレートおよび/またはポリブチレンテレフタレートの未配向フィルムを加熱された金属板に圧着する方法が開示されている(例えば、特許文献3参照)。
特開昭57−203545号公報 特開平10−309775号公報 特開2001−1447号公報
Conventionally, the inner surface and outer surface of metal cans are coated with various thermosetting resins such as epoxy or phenol dissolved or dispersed in a solvent to prevent corrosion. Has been done. However, this method of coating with a thermosetting resin has disadvantages in that it often takes a long time to dry the paint, resulting in a decrease in productivity and undesired problems such as environmental pollution due to a large amount of organic solvents.
In order to solve such a defect, a method of coating a metal plate with a thermoplastic resin by a melt extrusion method has been disclosed (for example, see Patent Document 1). Further, a method is disclosed in which a melt-extruded thermoplastic resin is once cooled and solidified, and then pressure-bonded to a heated metal plate (for example, see Patent Document 2). Further, a method is disclosed in which a non-oriented film of polyethylene terephthalate and / or polybutylene terephthalate produced by a melt extrusion method is pressure-bonded to a heated metal plate (for example, see Patent Document 3).
JP-A-57-203545 JP-A-10-309775 JP 2001-1447 A

 しかしながら、これらの熱可塑性樹脂の被覆方法では、Tダイから層状に溶融樹脂を押出す際、溶融樹脂膜の巾減少(ネックインと称す)が大きく、被覆に必要な樹脂巾に対して数10cm広い巾で製膜する必要があり、経済性の点から満足される方法ではなかった。
 かかる欠点を解決するため、三官能以上の多塩基酸または多価アルコール成分を共重合させたポリエステルを配合してなるポリエステルを使用することによりネックインを小さくする方法が開示されている(例えば、特許文献4、特許文献5参照)。
特開平10−86308号公報 特開2000−71388号公報
However, in these thermoplastic resin coating methods, when the molten resin is extruded in a layer form from a T-die, the width of the molten resin film greatly decreases (referred to as neck-in), and is several tens of cm with respect to the resin width required for coating. It was necessary to form a film with a wide width, and it was not a method that was satisfactory in terms of economy.
In order to solve such a drawback, a method of reducing neck-in by using a polyester obtained by blending a polyester obtained by copolymerizing a trifunctional or higher polybasic acid or a polyhydric alcohol component is disclosed (for example, Patent Documents 4 and 5).
JP-A-10-86308 JP-A-2000-71388

 しかしながら、これらの被覆方法では、三官能以上の多塩基酸または多価アルコール成分を共重合させたポリエステルが押出機からTダイに至る溶融工程で熱劣化しやすく、熱安定剤を併用しても得られた溶融樹脂膜に異物(例えば、ゲル状異物または劣化物を核とした異物)が発生しやすく、製缶時に樹脂被覆層に異物を起点とした亀裂が入るため、製缶用の樹脂被覆金属板として満足されるものではなかった。            
 また、絞り・しごき缶に用いられる樹脂被覆金属板の被覆用樹脂では、製缶加工(絞り・しごき加工)に追従しうる優れた成形性が要求されるばかりでなく、製缶後に美麗化を目的として実施される外面焼付け塗装の加熱においても耐衝撃性が低下しないことが要求される。しかしながら、前記の樹脂被覆金属板は耐衝撃性が低下することが多く、耐衝撃性の要求を満足するものではなかった。                     
 また、ポリエステルフィルムを金属板にラミネートする方法も多数開示されている(例えば、特許文献6、特許文献7、特許文献8)。
特公昭57−23584号公報 特公昭59−34580号公報 特公昭62−61427号公報
However, in these coating methods, a polyester obtained by copolymerizing a trifunctional or higher polybasic acid or a polyhydric alcohol component is liable to be thermally degraded in a melting step from an extruder to a T-die, and even when a heat stabilizer is used in combination. Foreign matter (for example, a gel-like foreign matter or a foreign matter having a degraded substance as a nucleus) is likely to be generated in the obtained molten resin film, and a crack originating from the foreign matter is formed in the resin coating layer at the time of can making. It was not satisfactory as a coated metal plate.
In addition, the resin used for coating the resin-coated metal sheet used for drawing and ironing cans must not only have excellent formability that can follow can making (drawing and ironing), but also beautify after can making. It is required that impact resistance does not decrease even when heating the external surface baking coating performed for the purpose. However, the impact resistance of the resin-coated metal sheet is often lowered, and the impact resistance is not satisfied.
Also, many methods of laminating a polyester film on a metal plate have been disclosed (for example, Patent Document 6, Patent Document 7, Patent Document 8).
JP-B-57-23584 JP-B-59-34580 JP-B-62-61427

 しかしながら、当該技術では、フィルムを構成するポリエステルの融点以上の温度で金属板とラミネートして十分に密着させた場合、製缶加工時の衝撃、すなわち、ストッパーに高速で当った衝撃で缶底部に局所的なフィルム破れ(クラック)が発生し、製缶用として満足されるポリエステル系フィルム被覆金属板が得られなかった。
 かかる欠点を解決するため、ポリエステル系フィルムの柔軟性を向上させて耐衝撃性を確保しようとした場合、製缶工程で加工ポンチに粘着するばかりでなく、製缶後に美麗化を目的として実施される外面焼付け塗装の加熱工程等での搬送時に搬送ピンの跡がつき易いという耐熱性不足に起因した問題が起り、金属缶の内層保護を目的としたポリエステル系フィルム被覆金属板として満足されるものではなかった。
However, in this technology, when laminated with a metal plate at a temperature equal to or higher than the melting point of the polyester constituting the film and brought into close contact with the metal plate, the impact at the time of the can-making process, that is, the impact at a high speed against the stopper hits the bottom of the can. Local film tearing (cracks) occurred, and a polyester film-coated metal plate satisfactory for can-making could not be obtained.
In order to improve the flexibility of the polyester-based film to secure the impact resistance in order to solve such a drawback, not only is it adhered to the processing punch in the can-making process, but also for the purpose of beautification after can-making. A problem caused by insufficient heat resistance that the transfer pins are likely to be traced during transfer in the heating process of the outer surface baking coating, etc., which is satisfactory as a polyester film coated metal plate for the purpose of protecting the inner layer of a metal can Was not.

 本発明は前記従来技術の問題点を解消することを目的とするものである。即ち、溶融押出時のネックインが小さく、かつ得られた溶融樹脂膜に異物が発生しにくく、かつ耐衝撃性が良好なため、経済性と製缶性に優れ、かつ製缶後に美麗化を目的として実施される外面焼付け塗装工程の搬送においても耐熱性が良好なポリエステル系フィルム被覆金属板の製造方法を提供するものである。 The present invention aims to solve the above-mentioned problems of the prior art. In other words, the neck-in during melt extrusion is small, and foreign matters are hardly generated in the obtained molten resin film, and the impact resistance is good, so that it is excellent in economic efficiency and can making property, and beautiful after can making. An object of the present invention is to provide a method for producing a polyester film-coated metal sheet having good heat resistance even in the transfer of the outer surface baking coating step performed for the purpose.

 本発明の目的は、金属板に融点が180℃以上のポリエステルを被覆する製造方法において、Tダイを用いて両端部にオレフィン系ポリマーが合流された状態で得た溶融樹脂膜を冷却固化して得た樹脂膜を縦方向に1軸延伸し、次いで熱固定処理し、次いで両端部を切断除去してポリエステル系フィルムを得る方法と該ポリエステル系フィルムを別工程で加熱された金属板にラミネートする方法よりなるポリエステル系フィルム被覆金属板の製造方法であって、かつポリエステル系フィルムがA層、B層、C層より構成され、A層は降温結晶化温度が150℃以上のポリエステルよりなり、B層は融点が190〜225℃かつガラス転移温度が50℃以上のポリエステルとオレフィン系ポリマーが70:30〜100:0(重量%)よりなり、C層はガラス転移温度が30〜50℃であるポリエステルよりなるものであって、かつポリエステル系フィルムは150℃での縦方向の熱収縮率が4〜30%であることを特徴とするポリエステル系フィルム被覆金属板の製造方法によって達成される。 An object of the present invention is to provide a manufacturing method for coating a metal plate with a polyester having a melting point of 180 ° C. or more by cooling and solidifying a molten resin film obtained in a state where olefin-based polymers are joined at both ends using a T-die. The obtained resin film is monoaxially stretched in the longitudinal direction, then heat-set, and then cut and removed at both ends to obtain a polyester film, and the polyester film is laminated on a metal plate heated in another step. A polyester-based film comprising a layer A, a layer B and a layer C, wherein the layer A comprises a polyester having a temperature-reducing crystallization temperature of 150 ° C. or higher; The layer is composed of a polyester and an olefin-based polymer having a melting point of 190 to 225 ° C. and a glass transition temperature of 50 ° C. or more, from 70:30 to 100: 0 (% by weight). And C, wherein the polyester layer has a glass transition temperature of 30 to 50 ° C., and the polyester film has a heat shrinkage in the longitudinal direction at 150 ° C. of 4 to 30%. This is achieved by a method for producing a system film-coated metal plate.

 本発明のポリエステル系フィルム被覆金属板の製造方法は原料の無駄を省けるため、経済性に優れた製造方法であるばかりでなく、製缶性(加工ポンチの離型性,フィルムの密着性,耐クラック性)と耐熱性に優れたポリエステル系フィルム被覆金属板が得られる製造方法である。さらに、各層の熱特性のバランスが良好であるため、製缶後の熱処理工程でもフィルムにシワが発生しにくいため、極めて有用なポリエステル系フィルム被覆金属板の製造方法といえる。 The method for producing a metal sheet coated with a polyester-based film of the present invention is not only an economical production method because it is possible to reduce waste of raw materials, but also has a can-making property (a releasing property of a processing punch, an adhesive property of a film, a resistance to film resistance). This is a method of producing a polyester film-coated metal sheet having excellent crack resistance and heat resistance. Furthermore, since the thermal characteristics of each layer are well-balanced and the film is less likely to wrinkle even in the heat treatment step after can-making, it can be said that this is a very useful method for producing a polyester film-coated metal sheet.

 本発明におけるポリエステル系フィルムのA層を構成するポリエステルは降温結晶化温度が150℃以上であることが耐熱性を確保する点で必要である。降温結晶化温度が150℃未満の場合、製缶時にポンチとフィルムの粘着が起こったり、熱処理工程で搬送ピンの跡がフィルムに残ったりする等の耐熱性不足に由来する不良が発生する。降温結晶化温度が高ければ耐熱性はより向上していくが、降温結晶化温度が200℃を超えるとフィルムの剛性が高まり製缶加工時の変形に追従できなくなって、缶壁部にクラックが発生する。また、フィルムの製膜性も著しく低下するため、降温結晶化温度は200℃以下とすることが好ましい。A層を構成するポリエステルはジカルボン酸成分および/またはグリコール成分が1種であっても、2種以上であっても構わない。例えば、ジカルボン酸成分として、テレフタル酸,イソフタル酸,オルソフタル酸,ナフタレンジカルボン酸,ジフェニルスルホンジカルボン酸,5−ナトリウムスルホイソフタル酸等の芳香族ジカルボン酸、シュウ酸,コハク酸,アジピン酸,セバシン酸,デカンジカルボン酸,マレイン酸,フマル酸,ダイマー酸等の脂肪族ジカルボン酸、p−オキシ安息香酸等のオキシカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸が使用できる。また、グリコール成分として、エチレングリコール,プロパンジオール,ブタンジオール、ペンタンジオール,ヘキサンジオール,ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環族グリコール、ビスフェノールA,ビスフェノールS等の芳香族グリコールが使用できる。
 A層の厚みは1〜20μmが好ましく、2〜15μmがさらに好ましい。1μm未満の場合、耐熱性の向上効果が充分でなくなるため好ましくない。逆に、20μmを超える場合、耐熱性向上効果が飽和するばかりでなく製缶時にクラックが発生しやすくなり好ましくない。
The polyester constituting the layer A of the polyester film in the present invention is required to have a temperature-reducing crystallization temperature of 150 ° C. or more from the viewpoint of securing heat resistance. If the cooling crystallization temperature is lower than 150 ° C., defects due to insufficient heat resistance, such as sticking of the punch and the film at the time of can-making and traces of transport pins remaining on the film in the heat treatment step, occur. The higher the cooling crystallization temperature, the more the heat resistance is improved. However, if the cooling crystallization temperature exceeds 200 ° C., the rigidity of the film increases, and the film cannot follow the deformation during the can-making process, and cracks are formed on the can wall. appear. Further, since the film-forming property of the film is remarkably reduced, the temperature-reducing crystallization temperature is preferably 200 ° C. or less. The polyester constituting the layer A may contain one kind of dicarboxylic acid component and / or glycol component, or may contain two or more kinds. For example, as a dicarboxylic acid component, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, diphenylsulfonedicarboxylic acid, 5-sodium sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, Aliphatic dicarboxylic acids such as decanedicarboxylic acid, maleic acid, fumaric acid, and dimer acid, oxycarboxylic acids such as p-oxybenzoic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid can be used. Examples of the glycol component include aliphatic glycols such as ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, and neopentyl glycol; alicyclic glycols such as cyclohexanedimethanol; and aromatic glycols such as bisphenol A and bisphenol S. Can be used.
The thickness of the layer A is preferably from 1 to 20 μm, more preferably from 2 to 15 μm. When the thickness is less than 1 μm, the effect of improving heat resistance is not sufficient, which is not preferable. Conversely, if it exceeds 20 μm, the effect of improving heat resistance is not only saturated, but also cracks are likely to occur during can making, which is not preferable.

 本発明におけるポリエステル系フィルムのB層を構成するポリエステルは融点が190〜225℃かつガラス転移点が50℃以上であることが耐衝撃性を確保する上で必要である。融点が225℃を超える場合、製缶時にクラックが発生しやすくなり好ましくない。融点が190℃未満あるいはガラス転移点が50℃未満の場合、製缶時にクラックが発生しにくいが、A層との熱特性のバランスが悪くなってフィルムを金属板とラミネートする場合や製缶後の熱処理工程においてフィルムにシワが入りやすくなり好ましくない。融点が190〜225℃かつガラス転移点が50℃以上のポリエステルとオレフィン系ポリマーが70:30〜100:0重量%であることが必要である。オレフィン系ポリマーが30重量%を超える場合、耐熱性が低下しやすくなるため好ましくない。
 B層を構成するポリエステルはジカルボン酸成分および/またはグリコール成分が1種であっても、2種以上であっても構わない。例えば、ジカルボン酸成分として、テレフタル酸,イソフタル酸,オルソフタル酸,ナフタレンジカルボン酸,ジフェニルスルホンジカルボン酸,5−ナトリウムスルホイソフタル酸等の芳香族ジカルボン酸、シュウ酸,コハク酸,アジピン酸,セバシン酸,デカンジカルボン酸,マレイン酸,フマル酸,ダイマー酸等の脂肪族ジカルボン酸、p−オキシ安息香酸等のオキシカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸が使用できる。また、グリコール成分として、エチレングリコール,プロパンジオール,ブタンジオール、ペンタンジオール,ヘキサンジオール,ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環族グリコール、ビスフェノールA,ビスフェノールS等の芳香族グリコールが使用できる。
It is necessary that the polyester constituting the layer B of the polyester film in the present invention has a melting point of 190 to 225 ° C and a glass transition point of 50 ° C or higher in order to secure impact resistance. If the melting point exceeds 225 ° C., cracks are likely to occur during can making, which is not preferable. When the melting point is less than 190 ° C. or the glass transition point is less than 50 ° C., cracks are less likely to occur during can making, but the balance of thermal properties with the layer A is poor, and the film is laminated with a metal plate or after can making. In the heat treatment step, wrinkles are easily formed in the film, which is not preferable. It is necessary that the polyester and the olefin-based polymer having a melting point of 190 to 225 ° C and a glass transition point of 50 ° C or more are 70:30 to 100: 0% by weight. If the amount of the olefin-based polymer exceeds 30% by weight, the heat resistance tends to decrease, which is not preferable.
The polyester constituting the layer B may contain one type of dicarboxylic acid component and / or glycol component, or two or more types. For example, as a dicarboxylic acid component, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, diphenylsulfonedicarboxylic acid, 5-sodium sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, Aliphatic dicarboxylic acids such as decanedicarboxylic acid, maleic acid, fumaric acid, and dimer acid, oxycarboxylic acids such as p-oxybenzoic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid can be used. Examples of the glycol component include aliphatic glycols such as ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, and neopentyl glycol; alicyclic glycols such as cyclohexanedimethanol; and aromatic glycols such as bisphenol A and bisphenol S. Can be used.

 B層を構成するポリエステルとブレンドされるオレフィン系ポリマーはポリエチレンおよび/またはエチレン系共重合体が好ましい。低密度ポリエチレン,中密度ポリエチレン,高密度ポリエチレン,直鎖状低密度ポリエチレン,超高分子量ポリエチレン,エチレン−プロピレン共重合体,エチレン−ブテン共重合体,エチレン−酢酸ビニル共重合体,エチレン−エチルアクリレート共重合体,エチレン−メチルアクリレート共重合体、エチレン−メチルメタアクリレート共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−エチルアクリレート−無水マレイン酸共重合体、アイオノマー、エチレン−無水マレイン酸グラフト共重合体、エチレン−ビニルアルコール共重合体等が使用できる。また、溶融樹脂膜の両端部とB層で使用するオレフィン系ポリマーは同一であることが好ましい。その理由は、樹脂の無駄を省く観点から層状に押出された樹脂を冷却固化後、縦1軸延伸及び熱固定処理して得た樹脂膜の両端部を切断除去して得た樹脂をB層で再使用した場合、金属板に被覆されたポリエステル系フィルムの品質が安定するためである。
 B層の厚みは3〜60μmが好ましく、5〜40μmがさらに好ましい。3μm未満の場合、製缶時にクラックが発生しやすくなり好ましくない。逆に、60μmを超える場合、製缶時にクラックは発生しにくいが、耐熱性が低下し、さらにコスト的に不利になるため好ましくない。
 また、Tダイから押出された層状の溶融樹脂膜の両端部とB層で使用するオレフィン系ポリマーは同一であることが好ましい。その理由は、樹脂の無駄を省く観点から層状に押出された樹脂を冷却固化後に切断除去して得た両端部を含む樹脂をB層で再使用した場合、金属板に被覆された樹脂膜の品質が安定するためである。
 本発明では両端部を含む樹脂を再使用する場合、再使用比率は特に限定しないが、5〜60(重量%)が好ましい。
The olefin polymer blended with the polyester constituting the B layer is preferably polyethylene and / or an ethylene copolymer. Low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate Copolymer, ethylene-methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-ethyl acrylate-maleic anhydride copolymer, ionomer , An ethylene-maleic anhydride graft copolymer, an ethylene-vinyl alcohol copolymer, and the like. It is preferable that the olefin-based polymer used in both ends of the molten resin film and the B layer is the same. The reason is that the resin extruded in a layered form is cooled and solidified from the viewpoint of reducing waste of the resin, and then the resin obtained by cutting and removing both ends of the resin film obtained by longitudinally uniaxial stretching and heat-setting is coated with a B layer. This is because the quality of the polyester-based film coated on the metal plate becomes stable when reused.
The thickness of the layer B is preferably from 3 to 60 μm, more preferably from 5 to 40 μm. If it is less than 3 μm, cracks are likely to occur during can making, which is not preferable. Conversely, if it exceeds 60 μm, cracks are less likely to occur during can making, but heat resistance is lowered and the cost is disadvantageous, which is not preferable.
Further, it is preferable that both ends of the layered molten resin film extruded from the T die and the olefin polymer used in the B layer are the same. The reason is that when the resin containing both ends obtained by cutting and removing the resin extruded in layers after cooling and solidifying from the viewpoint of reducing waste of the resin is reused in the B layer, the resin film coated on the metal plate becomes This is because the quality is stable.
In the present invention, when the resin containing both ends is reused, the reuse ratio is not particularly limited, but is preferably 5 to 60 (% by weight).

 C層を構成するポリエステルはガラス転移温度が30〜50℃であることが必要ある。C層を構成するポリエステルのガラス転移点が50℃を超える場合、使用する金属板によっては(特にブリキを使用した場合)、製缶時に缶壁部にフィルム剥離が生じ、この剥離部を起点としたクラックが発生しやすくなり好ましくない。ガラス転移点が30℃未満の場合、A層やB層との熱特性のバランスが悪くなり、フィルムを金属板とラミネートする場合や製缶後の熱処理工程においてフィルムにシワが入りやすくなり好ましくない。
 C層を構成するポリエステルはジカルボン酸成分および/またはグリコール成分が1種であっても、2種以上であっても構わない。例えば、ジカルボン酸成分として、テレフタル酸,イソフタル酸,オルソフタル酸,ナフタレンジカルボン酸,ジフェニルスルホンジカルボン酸,5−ナトリウムスルホイソフタル酸等の芳香族ジカルボン酸、シュウ酸,コハク酸,アジピン酸,セバシン酸,デカンジカルボン酸,マレイン酸,フマル酸,ダイマー酸等の脂肪族ジカルボン酸、p−オキシ安息香酸等のオキシカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸が使用できる。また、グリコール成分として、エチレングリコール,プロパンジオール,ブタンジオール、ペンタンジオール,ヘキサンジオール,ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環族グリコール、ビスフェノールA,ビスフェノールS等の芳香族グリコールが使用できる。
 C層の厚みは1〜15μmが好ましく、2〜10μmがより好ましい。1μm未満の場合、金属板との密着性が不充分となるため好ましくない。逆に、15μmを超えた場合、金属板との密着性が飽和するばかりでなく、フィルムを金属板とラミネートする場合や製缶後の熱処理工程においてフィルムにシワが入りやすくなり好ましくない。
The polyester constituting the layer C needs to have a glass transition temperature of 30 to 50 ° C. When the glass transition point of the polyester constituting the C layer exceeds 50 ° C., depending on the metal plate used (especially when tinplate is used), film peeling occurs on the can wall during can-making, and this peeled portion is used as a starting point. Undesirably, cracks easily occur. When the glass transition point is lower than 30 ° C., the balance between the thermal properties of the layer A and the layer B is deteriorated, and the film is easily wrinkled in the case of laminating the film with a metal plate or in the heat treatment step after can making. .
The polyester constituting the C layer may contain one type of dicarboxylic acid component and / or glycol component, or two or more types. For example, as a dicarboxylic acid component, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, diphenylsulfonedicarboxylic acid, 5-sodium sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, Aliphatic dicarboxylic acids such as decanedicarboxylic acid, maleic acid, fumaric acid, and dimer acid, oxycarboxylic acids such as p-oxybenzoic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid can be used. Examples of the glycol component include aliphatic glycols such as ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, and neopentyl glycol; alicyclic glycols such as cyclohexanedimethanol; and aromatic glycols such as bisphenol A and bisphenol S. Can be used.
The thickness of the C layer is preferably from 1 to 15 μm, more preferably from 2 to 10 μm. If the thickness is less than 1 μm, the adhesion to the metal plate becomes insufficient, which is not preferable. Conversely, if the thickness exceeds 15 μm, not only the adhesion to the metal plate is saturated, but also the film tends to wrinkle in the case of laminating the film with the metal plate or in the heat treatment step after can-making.

 本発明におけるポリエステルには、必要に応じて酸化防止剤,熱安定剤,紫外線吸収剤,可塑剤,顔料,帯電防止剤,潤滑剤,結晶核剤,無機又は有機粒子よりなる滑剤等を配合させてもよい。
 本発明におけるポリエステルの製造方法については特に限定しない。即ち、エステル交換法または直接重合法のいずれの方法で製造されたものであっても使用できる。また、分子量を高めるために固相重合法で製造されたものであってもかまわない。さらに、缶に内容物を充填後に実施されるパストライズ処理,レトルト処理等でのポリエステル樹脂からのオリゴマー量を少なくする点より、減圧固相重合法で製造されたオリゴマー含有量が低いポリエステルを使用することは好ましい。
The polyester of the present invention may contain, if necessary, an antioxidant, a heat stabilizer, an ultraviolet absorber, a plasticizer, a pigment, an antistatic agent, a lubricant, a nucleating agent, a lubricant comprising inorganic or organic particles, and the like. May be.
The method for producing the polyester in the present invention is not particularly limited. That is, those produced by either the transesterification method or the direct polymerization method can be used. Further, it may be produced by a solid-phase polymerization method in order to increase the molecular weight. Further, a polyester having a low oligomer content produced by a vacuum solid-phase polymerization method is used in order to reduce the amount of oligomers from the polyester resin in a paste-lize treatment, a retort treatment, and the like, which are performed after filling the contents in a can. Is preferred.

 本発明で使用されるポリエステルの融点は180℃以上であることが製缶性(絞り・しごき加工において、缶内面側のポリエステル系フィルムではポンチの離型性)の確保から必要である。 ポ リ エ ス テ ル It is necessary that the melting point of the polyester used in the present invention is 180 ° C. or higher in order to ensure can-making properties (in a drawing or ironing process, the polyester film on the inner side of the can is released from the punch).

 本発明ではポリエステルとオレフィン系ポリマーをTダイから層状に押出す際、
両端部(片側が5cm以下の部分)にオレフィン系ポリマーを使用することが好ましい。
 本発明ではポリエステルとオレフィン系ポリマーをドライブレンドまたは溶融混
合して得たポリマーを公知の1軸または2軸押出機内で溶融させた後、エッジラミネーションタイプ等の公知のマルチマニホールドダイを使用して層状の溶融樹脂膜を得る。
 本発明では冷却固化方法として、回転させた冷却ロールにTダイから層状に溶融した樹脂を接触させる公知の方法が使用できる。溶融樹脂を冷却ロールに接触させる際、強制的にエアーを吹き付ける方法または静電気で密着させる方法を採用することが好ましい。また、強制エアー吹き付け法,静電密着法のいずれにおいても層状樹脂の両端部と中央部を独立させて実施する方法がより好ましい。さらに、溶融樹脂が冷却ロールに接触する際、反対側を減圧して随伴流を低減させる方策(例えば、バキュームチャンバー,バキュームボックス等の装置)を併用することがより好ましい。
 本発明では冷却固化させた後、必要に応じて両端部を切断除去して得た樹脂膜をポリエステルのガラス転移点以上の温度で1.3〜6.0倍の縦延伸を実施し、次いで緊張下で50℃以上かつポリエステルの融点−20℃の温度で1〜20秒間熱処理し、次いで樹脂膜の両端部を切断除去してポリエステル系フィルムを得る。
 本発明で用いるポリエステル系フィルムは150℃での縦方向の熱収縮率を4〜30%であることが必要である。熱収縮率が4%未満の場合、ラミネート後の密着性が低下するため好ましくない。逆に、熱収縮率が30%を超える場合、ラミネートまでの保管中に縦方向の経時収縮によりシワ・ブロッキングが発生し、ポリエステル系フィルム被覆金属板にシワ・気泡のスジが発生しやすく好ましくない。
 本発明では金属板として、ティンフリースティール等の表面処理鋼板またはブリキ(錫メッキ鋼板)またはニッケルメッキ鋼板あるいはアルミニウム板またはアルミニウム合金板あるいは表面処理を施したアルミニウム板またはアルミニウム合金板が使用できる。これらの金属板をポリエステルの融点−20℃以上かつ融点+150℃に加熱した後、ラミネートロールを使用して金属板にポリエステル系フィルムをラミネートし、引き続いてこのラミネート金属板をポリエステルの融点+10℃以上かつ融点+60℃で加熱した後、水冷および/または空冷してポリエステル系フィルム被覆金属板を得る。但し、ポリエステル系フィルムを金属板にラミネートする場合、C層側と金属板を接触させることが密着性と製缶性を確保するために好ましい。
In the present invention, when extruding a polyester and an olefin-based polymer into a layer from a T-die,
It is preferable to use an olefin-based polymer at both ends (one side is 5 cm or less).
In the present invention, a polymer obtained by dry-blending or melt-mixing a polyester and an olefin-based polymer is melted in a known single-screw or twin-screw extruder, and then layered using a known multi-manifold die such as an edge lamination type. Is obtained.
In the present invention, as the cooling and solidifying method, a known method of contacting the molten resin in a layer form from a T-die with a rotated cooling roll can be used. When bringing the molten resin into contact with the cooling roll, it is preferable to employ a method of forcibly blowing air or a method of bringing the resin into close contact with static electricity. In both of the forced air spraying method and the electrostatic adhesion method, it is more preferable that both ends and the center of the layered resin are independently formed. Further, when the molten resin comes into contact with the cooling roll, it is more preferable to use a measure (for example, a device such as a vacuum chamber or a vacuum box) for reducing the entrained flow by reducing the pressure on the opposite side.
In the present invention, after solidification by cooling, the resin film obtained by cutting and removing both ends as necessary is subjected to longitudinal stretching of 1.3 to 6.0 times at a temperature not lower than the glass transition point of polyester, and then A heat treatment is performed under tension at a temperature of 50 ° C. or more and a melting point of the polyester of −20 ° C. for 1 to 20 seconds, and then both ends of the resin film are cut off to obtain a polyester film.
The polyester film used in the present invention needs to have a heat shrinkage in the longitudinal direction at 150 ° C. of 4 to 30%. If the heat shrinkage is less than 4%, the adhesion after lamination is undesirably reduced. Conversely, when the heat shrinkage exceeds 30%, wrinkles and blocking occur due to longitudinal shrinkage during storage until lamination, and wrinkles and bubbles are easily generated on the polyester film-coated metal plate, which is not preferable. .
In the present invention, as the metal plate, a surface-treated steel plate such as tin-free steel, a tin plate (tin-plated steel plate), a nickel-plated steel plate, an aluminum plate or an aluminum alloy plate, or a surface-treated aluminum plate or aluminum alloy plate can be used. After heating these metal plates to a melting point of polyester of -20 ° C. or higher and a melting point of + 150 ° C., a polyester film is laminated on the metal plate using a laminating roll. Subsequently, the laminated metal plate is heated to a melting point of polyester of + 10 ° C. or higher. After heating at a melting point of + 60 ° C., the resultant is cooled with water and / or air to obtain a metal plate coated with a polyester film. However, when laminating a polyester-based film on a metal plate, it is preferable that the C layer side and the metal plate are in contact with each other in order to ensure adhesion and can-making properties.

 以下、実施例をもとに本発明を説明する。
[評価方法]
(1)ポリエステルの融点,ガラス転移点
 ポリエステル組成物を300℃で5分間加熱溶融した後、液体窒素で急冷して
得たサンプル10mgを用い、窒素気流中、示差走査型熱量計(DSC)を用いて10℃/分の昇温速度で発熱・吸熱曲線(DSC曲線)を測定したときの、融解に伴う吸熱ピークの頂点温度を融点Tm(℃)とし、0〜100℃間の吸熱変化曲線に2本の接線を引き、その交点をガラス転移点Tg(℃)とした。
(2)ポリエステルの降温結晶化温度
 ポリエステル組成物10mgを窒素気流中、示差走査型熱量計(DSC)内で300℃で5分間加熱溶融した後、連続して10℃/分の降温速度で発熱曲線(DSC曲線)を測定したときの結晶化に伴う発熱ピークの頂点温度を降温結晶化温度Tc2とした。
(3)ネックイン量
 Tダイの吐出口巾(60cm)とn=3で測定した冷却固化後の樹脂膜巾(両端部を切断除去する前の樹脂膜巾)の平均値(Acm)を用い、次式でネックイン量(cm)を求めた。ネックイン量が5cm以下を実用性ありと評価した。
          ネックイン量(cm)=60−A
(4)保管後のロールフィルムの外観と耐切断性
 ロール状フィルムを40℃で相対湿度80%の条件下で1ケ月保管した後、フィルムの外観とJIS K 7127に準じた引張試験(縦方向 n=30、15mm巾の1号試験片、試験速度:200mm/分)を実施した。評価基準を以下のとおり設定し、○を実用性ありと評価した。
  [外観]
    ○:シワ・ブロッキング・タルミなし
    ×:シワ・ブロッキング・タルミあり
  [耐切断性]
    破断伸度<5%以下のサンプル数で評価した。(2個/30個以下を実用性あり   と評価した。)
(5)熱収縮率
 JIS Z 1715に準じて評価した。
(6)ポリエステル系フィルム被覆金属板の作製方法
 250℃に加熱したアルミニウム合金板(厚み:0.26mmの3004系合金板)の片面にポリエステル系フィルムをラミネートした後、275℃で加熱した後に水中急冷してラミネートアルミニウム板を作製した。
(7)製缶性の評価
 ラミネートアルミニウム板をn=10でポリエステル系フィルム側が内面となるように製缶し、加工ポンチとフィルムの離型性、フィルム剥離、缶壁部と缶底部のクラック発生状態を目視観察した。
(7)耐熱性
 アルミニウムラミネート板を5cm×5cmに切出し、該切片のフィルム面側に100gの分銅を置き、200℃で5分加熱した後の分銅の跡型の発生状況を目視観察した。評価基準は以下のとおり設定し、○を実用性ありと評価した。
 ○:跡型が目立たない
 △:跡型がわずかに目立つ
 ×:跡型が目立つ
(8)熱処理後のシワ発生状態の評価
 上記金属缶10個を熱風乾燥機中に200℃で5分間加熱した後のシワの発生状態を目視で観察した。
[実施例・比較例に用いたポリエステルとオレフィン系ポリマーの略号と内容]
(1)PET      :ポリエチレンテレフタレート
(2)PBT      :ポリブチレンテレフタレート
(3)PET−I(15):ポリエチレンテレフタレート・イソフタレート(エ    
             チレンイソフタレートの繰り返し単位15モル%)
(4)PET−I(22):ポリエチレンテレフタレート・イソフタレート(エチレンイ             ソフタレートの繰り返し単位22モル%)
(5)PET−I(50):ポリエチレンテレフタレート・イソフタレート(エチレンイ             ソフタレートの繰り返し単位50モル%)
(6)ポリエステルA  :テレフタル酸/イソフタル酸/アジピン酸(65/10/              25モル%)と1,4ブタンジオールとの共重合ポリエステ             ル            
(7)ポリエステルB  :テレフタル酸/ダイマー酸(91/9モル%)と1,4ブタ             ンジオールとの共重合ポリエステル
(8)CO−PES   :テレフタル酸とエチレングリコール/シクロヘキサン
             ジメタノール(70/30モル%)との共重合ポリエステル
(9)オレフィンA   :低密度ポリエチレン(住友化学社製、スミカセンG401:             商品名)
(10)オレフィンB  :直鎖状低密度ポリエチレン(住友化学社製、スミカセンF              V405:商品名)
(11)オレフィンC  :エチレンーブテン共重合体(三井化学社製、タフマーA4              085:商品名)
(12)オレフィンD  :アイオノマー(三井デュポンポリケミカル社製、ハイミラ              ン1706:商品名)
(13)オレフィンE  :エチレン−メチルアクリレート共重合体(イーストマンケ              ミカル社製、EMAC SP2205:商品名)
(14)オレフィンF  :ポリプロピレン(住友化学社製、ノーブレンFS2011              DG2:商品名)
Hereinafter, the present invention will be described based on examples.
[Evaluation method]
(1) Melting Point and Glass Transition Point of Polyester A polyester composition was heated and melted at 300 ° C. for 5 minutes, and then quenched with liquid nitrogen. Using a 10 mg sample, a differential scanning calorimeter (DSC) was run in a nitrogen stream. When the exothermic / endothermic curve (DSC curve) is measured at a heating rate of 10 ° C./min using the melting point Tm (° C.) as the melting point Tm (° C.), the endothermic change curve between 0 and 100 ° C. Were drawn with two tangent lines, and the intersection was defined as the glass transition point Tg (° C.).
(2) Temperature drop crystallization temperature of polyester 10 mg of the polyester composition was heated and melted at 300 ° C. for 5 minutes in a nitrogen stream in a differential scanning calorimeter (DSC), and then continuously heated at a rate of 10 ° C./min. The peak temperature of the exothermic peak accompanying the crystallization when the curve (DSC curve) was measured was defined as the cooling crystallization temperature Tc2.
(3) Neck-in Amount The average value (Acm) of the width of the resin film after cooling and solidification (resin film width before cutting off both ends) measured at n = 3 and the discharge port width of the T die (60 cm) is used. The neck-in amount (cm) was determined by the following equation. A neck-in amount of 5 cm or less was evaluated as practical.
Neck-in amount (cm) = 60-A
(4) Appearance and cut resistance of roll film after storage After storing the roll film at 40 ° C. for one month under the condition of relative humidity of 80%, the appearance of the film and a tensile test according to JIS K 7127 (longitudinal direction) n = 30, No. 1 test piece of 15 mm width, test speed: 200 mm / min). The evaluation criteria were set as follows, and ○ was evaluated as practical.
[appearance]
:: No wrinkle, blocking, and thinning ×: With wrinkle, blocking, and thinning [cutting resistance]
Evaluated by the number of samples having a breaking elongation of <5%. (2/30 or less were evaluated as practical.)
(5) Heat shrinkage rate Evaluated according to JIS Z 1715.
(6) Preparation method of polyester-based film-coated metal plate A polyester-based film was laminated on one side of an aluminum alloy plate (3004 series alloy plate having a thickness of 0.26 mm) heated to 250 ° C, heated at 275 ° C, and then submerged in water. It was quenched to produce a laminated aluminum plate.
(7) Evaluation of can-making property A laminated aluminum plate was made at n = 10 so that the polyester-based film side became the inner surface, and the mold punch and the film were released, the film was peeled off, and cracks occurred on the can wall and the bottom of the can. The condition was visually observed.
(7) Heat resistance The aluminum laminated plate was cut into a piece of 5 cm x 5 cm, a weight of 100 g was placed on the film surface side of the section, and after heating at 200 ° C for 5 minutes, the appearance of traces of the weight was visually observed. The evaluation criteria were set as follows, and ○ was evaluated as practical.
:: Traces are not noticeable △: Traces are noticeable ×: Traces are noticeable (8) Evaluation of wrinkle generation after heat treatment 10 metal cans were heated in a hot air dryer at 200 ° C. for 5 minutes. The appearance of wrinkles later was visually observed.
[Abbreviations and contents of polyester and olefin-based polymers used in Examples and Comparative Examples]
(1) PET: polyethylene terephthalate (2) PBT: polybutylene terephthalate (3) PET-I (15): polyethylene terephthalate / isophthalate (d)
15 mol% of repeating units of tylene isophthalate)
(4) PET-I (22): polyethylene terephthalate / isophthalate (22 mol% of repeating units of ethylene isophthalate)
(5) PET-I (50): polyethylene terephthalate / isophthalate (50 mol% of ethylene isophthalate repeating unit)
(6) Polyester A: copolymerized polyester of terephthalic acid / isophthalic acid / adipic acid (65/10/25 mol%) and 1,4 butanediol
(7) Polyester B: Copolymerized polyester of terephthalic acid / dimer acid (91/9 mol%) and 1,4-butanediol (8) CO-PES: Terephthalic acid and ethylene glycol / cyclohexane dimethanol (70/30 mol) %) And low-density polyethylene (Sumikasen G401: trade name, manufactured by Sumitomo Chemical Co., Ltd.)
(10) Olefin B: linear low-density polyethylene (Sumitomo Chemical Co., Ltd., Sumikasen FV405: trade name)
(11) Olefin C: ethylene butene copolymer (Tuffmer A4085: trade name, manufactured by Mitsui Chemicals, Inc.)
(12) Olefin D: ionomer (manufactured by Du Pont-Mitsui Polychemicals, Himiran 1706: trade name)
(13) Olefin E: ethylene-methyl acrylate copolymer (EMAC SP2205, trade name, manufactured by Eastman Chemical Company)
(14) Olefin F: Polypropylene (manufactured by Sumitomo Chemical Co., Ltd., Noblen FS2011 DG2: trade name)

[実施例 1]
 樹脂膜のA層原料としてPET、B層原料としてPET−I(15)、C層原料としてPET−I(22) 70重量%とポリエステルA 30重量%を280℃で溶融させ、樹脂膜の両端部の原料としてオレフィンA単体を250℃で溶融させ、エッジラミネーションタイプのTダイ(オレフィンの吐出口巾/中央部の吐出口巾/オレフィンの吐出口巾=2cm/56cm/2cm、260℃に加熱)を用いて、層状に冷却ロール(周速20m/分)へキャスト(Tダイから冷却ロールでの溶融樹脂の接地点までの距離15cm、中央部と両端部は別々の装置で強制的にエアーを吹付け)した後、樹脂膜(A)を予熱温度65℃、延伸温度100℃で3.0倍縦延伸し、クリップ把持方式のセッターを用い150℃で3秒間熱処理した後、両端部(片側5cm)を切断除去して巻取り、厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ロール状ポリエステル系フィルムを40℃で相対湿度80%の条件下で1ケ月保管した後、250℃に加熱した3004系アルミニウム合金板(厚み 0.26mm)にポリエステル系フィルムのC層側がアルミニウム合金板と接触するように圧着し、275℃に加熱した後、水中急冷してラミネートアルミニウム板を得た。
 こうして得られたラミネートアルミニウム板に成形用潤滑剤を塗布した後、加熱して板温70℃でポリエステル系フィルムが内面側となるように絞り加工を実施した。次いで、得られたカップの温度を40℃にして金型温度80℃でしごき加工を実施し、350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態),耐熱性,熱処理後のシワ発生状態を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性と耐熱性に優れ、かつ製缶後の熱処理でシワが発生しにくいポリエステル系フィルム被覆金属板の製造方法であるといえる。
[Example 1]
70% by weight of PET as a raw material of layer A, PET-I (15) as raw material of layer B, 70% by weight of PET-I (22) and 30% by weight of polyester A are melted at 280 ° C. Olefin A alone is melted at 250 ° C as the raw material of the part, and an edge lamination type T die (olefin discharge port width / center discharge port width / olefin discharge port width = 2cm / 56cm / 2cm, heated to 260 ° C) ) And cast it into a layered cooling roll (peripheral speed 20 m / min) (distance from the T-die to the contact point of the molten resin on the cooling roll is 15 cm, and the center and both ends are forcibly aired by separate devices) ), The resin film (A) was longitudinally stretched 3.0 times at a preheating temperature of 65 ° C. and a stretching temperature of 100 ° C., and was heat-treated at 150 ° C. for 3 seconds using a clip gripping setter. Part winding to cut and removed (one 5 cm), a thickness of 25 [mu] m (A layer / B layer / C layer: 6/13 / 6μm) in length to obtain a roll-shaped polyester film of 100 m.
After storing the roll-shaped polyester film for one month at 40 ° C. and a relative humidity of 80%, the C-layer side of the polyester film was added to the 3004 aluminum alloy plate (0.26 mm thick) heated to 250 ° C. And heated to 275 ° C., followed by rapid cooling in water to obtain a laminated aluminum plate.
After applying the forming lubricant to the thus obtained laminated aluminum plate, the plate was heated and subjected to drawing at a plate temperature of 70 ° C. so that the polyester film was on the inner surface side. Next, the temperature of the obtained cup was set to 40 ° C., and ironing was performed at a mold temperature of 80 ° C. to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) Table 1 shows the state of wrinkles after heat treatment and heat resistance. The method of this example has a small neck-in amount, is excellent in economical efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and can-making properties and heat resistance. It can be said that this is a method for producing a polyester-based film-coated metal plate which is excellent in wrinkles and hardly generates wrinkles by heat treatment after can-making.

[実施例 2]
 樹脂膜のA層の原料をPBTとした以外は実施例1と同様にして厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態),耐熱性,熱処理後のシワ発生状態を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性と耐熱性に優れ、かつ製缶後の熱処理でシワが発生しにくいポリエステル系フィルム被覆金属板の製造方法であるといえる。
[Example 2]
Rolled polyester film having a thickness of 25 μm (A layer / B layer / C layer: 6/13/6 μm) and a length of 100 m in the same manner as in Example 1 except that the raw material of the A layer of the resin film was PBT. Got.
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) Table 1 shows the state of wrinkles after heat treatment and heat resistance. The method of this example has a small neck-in amount, is excellent in economical efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and can-making properties and heat resistance. It can be said that this is a method for producing a polyester-based film-coated metal plate which is excellent in wrinkles and hardly generates wrinkles by heat treatment after can-making.

[実施例 3]
 樹脂膜のA層の原料をポリエステルBとした以外は実施例1と同様にして厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態),耐熱性,熱処理後のシワ発生状態を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性と耐熱性に優れ、かつ製缶後の熱処理でシワが発生しにくいポリエステル系フィルム被覆金属板の製造方法であるといえる。
[Example 3]
Roll-type polyester system having a thickness of 25 μm (A layer / B layer / C layer: 6/13/6 μm) and a length of 100 m in the same manner as in Example 1 except that the raw material of the A layer of the resin film was polyester B. A film was obtained.
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) Table 1 shows the state of wrinkles after heat treatment and heat resistance. The method of this example has a small neck-in amount, is excellent in economical efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and can-making properties and heat resistance. It can be said that this is a method for producing a polyester-based film-coated metal plate which is excellent in wrinkles and hardly generates wrinkles by heat treatment after can-making.

[実施例 4]
 樹脂膜のB層の原料をPET−I(22)とした以外は実施例1と同様にして厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態),耐熱性,熱処理後のシワ発生状態を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性と耐熱性に優れ、かつ製缶後の熱処理でシワが発生しにくいポリエステル系フィルム被覆金属板の製造方法であるといえる。
[Example 4]
Except that the raw material of the B layer of the resin film was PET-I (22), the thickness was 25 μm (A layer / B layer / C layer: 6/13/6 μm) and the length was 100 m as in Example 1. A roll-shaped polyester film was obtained.
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) Table 1 shows the state of wrinkles after heat treatment and heat resistance. The method of this example has a small neck-in amount, is excellent in economical efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and can-making properties and heat resistance. It can be said that this is a method for producing a polyester-based film-coated metal plate which is excellent in wrinkles and hardly generates wrinkles by heat treatment after can-making.

[実施例 5]
 樹脂膜のB層の原料をPET−I(22) 80重量%とPBT 20重量%とした以外は実施例1と同様にして厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態),耐熱性,熱処理後のシワ発生状態を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性と耐熱性に優れ、かつ製缶後の熱処理でシワが発生しにくいポリエステル系フィルム被覆金属板の製造方法であるといえる。
[Example 5]
The thickness was 25 μm (A layer / B layer / C layer: 6/13 /) as in Example 1 except that the raw material of the B layer of the resin film was 80% by weight of PET-I (22) and 20% by weight of PBT. 6 μm) and a roll-shaped polyester film having a length of 100 m was obtained.
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) Table 1 shows the state of wrinkles after heat treatment and heat resistance. The method of this example has a small neck-in amount, is excellent in economical efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and can-making properties and heat resistance. It can be said that this is a method for producing a polyester-based film-coated metal plate which is excellent in wrinkles and hardly generates wrinkles by heat treatment after can-making.

[実施例 6]
樹脂膜のB層の原料をPET−I(15) 87重量%とオレフィンA 13重量%とした以外は実施例1と同様にして厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態),耐熱性,熱処理後のシワ発生状態を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性と耐熱性に優れ、かつ製缶後の熱処理でシワが発生しにくいポリエステル系フィルム被覆金属板の製造方法であるといえる。
[Example 6]
The thickness was 25 μm (A layer / B layer / C layer: 6/13) in the same manner as in Example 1 except that the raw material of the B layer of the resin film was 87% by weight of PET-I (15) and 13% by weight of olefin A. / 6 μm) and a roll-shaped polyester film having a length of 100 m.
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) Table 1 shows the state of wrinkles after heat treatment and heat resistance. The method of this example has a small neck-in amount, is excellent in economical efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and can-making properties and heat resistance. It can be said that this is a method for producing a polyester-based film-coated metal plate which is excellent in wrinkles and hardly generates wrinkles by heat treatment after can-making.

[実施例 7]
 樹脂膜のB層の原料をPET−I(15) 87重量%とオレフィンB 13重量%とし、樹脂膜の両端部の原料をオレフィンB単体とした以外は実施例1と同様にして厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態),耐熱性,熱処理後のシワ発生状態を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性と耐熱性に優れ、かつ製缶後の熱処理でシワが発生しにくいポリエステル系フィルム被覆金属板の製造方法であるといえる。
[Example 7]
The thickness of the resin layer was 25 μm in the same manner as in Example 1 except that the raw material of the layer B was 87% by weight of PET-I (15) and 13% by weight of olefin B, and the raw materials at both ends of the resin film were olefin B alone. (A layer / B layer / C layer: 6/13/6 μm) to obtain a roll-shaped polyester film having a length of 100 m.
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) Table 1 shows the state of wrinkles after heat treatment and heat resistance. The method of this example has a small neck-in amount, is excellent in economical efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and can-making properties and heat resistance. It can be said that this is a method for producing a polyester-based film-coated metal plate which is excellent in wrinkles and hardly generates wrinkles by heat treatment after can-making.

[実施例 8]
  樹脂膜のB層の原料をPET−I(15) 87重量%とオレフィンC 13重量%とし、樹脂膜の両端部の原料をオレフィンC単体とした以外は実施例1と同様にして厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態),耐熱性,熱処理後のシワ発生状態を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性と耐熱性に優れ、かつ製缶後の熱処理でシワが発生しにくいポリエステル系フィルム被覆金属板の製造方法であるといえる。
[Example 8]
The thickness of the resin layer was 25 μm in the same manner as in Example 1 except that the raw material of the B layer of the resin film was 87% by weight of PET-I (15) and 13% by weight of olefin C, and the raw materials at both ends of the resin film were olefin C alone. (A layer / B layer / C layer: 6/13/6 μm) to obtain a roll-shaped polyester film having a length of 100 m.
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) Table 1 shows the state of wrinkles after heat treatment and heat resistance. The method of this example has a small neck-in amount, is excellent in economical efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and can-making properties and heat resistance. It can be said that this is a method for producing a polyester-based film-coated metal plate which is excellent in wrinkles and hardly generates wrinkles by heat treatment after can-making.

[実施例 9]
  樹脂膜のB層の原料をPET−I(15) 87重量%とオレフィンD 13重量%とし、樹脂膜の両端部の原料をオレフィンD単体とした以外は実施例1と同様にして厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態),耐熱性,熱処理後のシワ発生状態を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性と耐熱性に優れ、かつ製缶後の熱処理でシワが発生しにくいポリエステル系フィルム被覆金属板の製造方法であるといえる。
[Example 9]
The thickness of the resin layer was 25 μm in the same manner as in Example 1 except that the raw material of the layer B of the resin film was 87% by weight of PET-I (15) and 13% by weight of olefin D, and the raw materials at both ends of the resin film were olefin D alone. (A layer / B layer / C layer: 6/13/6 μm) to obtain a roll-shaped polyester film having a length of 100 m.
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) Table 1 shows the state of wrinkles after heat treatment and heat resistance. The method of this example has a small neck-in amount, is excellent in economical efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and can-making properties and heat resistance. It can be said that this is a method for producing a polyester-based film-coated metal plate which is excellent in wrinkles and hardly generates wrinkles by heat treatment after can-making.

[実施例 10]
  樹脂膜のB層の原料をPET−I(15) 87重量%とオレフィンA/オレフィンE=70/30(重量%)よりなるオレフィン 13重量%とし、樹脂膜の両端部の原料をオレフィンA/オレフィンE=70/30(重量%)よりなるオレフィンとした以外は実施例1と同様にして厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態),耐熱性,熱処理後のシワ発生状態を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性と耐熱性に優れ、かつ製缶後の熱処理でシワが発生しにくいポリエステル系フィルム被覆金属板の製造方法であるといえる。
[Example 10]
The raw material of the layer B of the resin film is 87% by weight of PET-I (15) and 13% by weight of an olefin comprising olefin A / olefin E = 70/30 (% by weight). A roll having a thickness of 25 μm (layer A / layer B / layer C: 6/13/6 μm) and a length of 100 m in the same manner as in Example 1 except that the olefin was made of olefin E = 70/30 (% by weight). A polyester film was obtained.
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) Table 1 shows the state of wrinkles after heat treatment and heat resistance. The method of this example has a small neck-in amount, is excellent in economical efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and can-making properties and heat resistance. It can be said that this is a method for producing a polyester-based film-coated metal plate which is excellent in wrinkles and hardly generates wrinkles by heat treatment after can-making.

[実施例 11]
  樹脂膜のB層の原料をPET−I(15) 85重量%と実施例1でポリエステル系フィルムを得る前に切断除去した両端部(オレフィンAの比率が85重量%)を造粒して得たポリマーを15重量%とした以外は実施例1と同様にして厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態),耐熱性,熱処理後のシワ発生状態を表1に示す。本実施例の方法は、ネックイン量が小さく経済性に優れ、かつ保管後のポリエステル系フィルムの外観不良及び耐切断性の低下がないためラミネート性が良好であり、かつ製缶性と耐熱性に優れ、かつ製缶後の熱処理でシワが発生しにくいポリエステル系フィルム被覆金属板の製造方法であるといえる。
[Example 11]
The raw material for the layer B of the resin film was obtained by granulating 85% by weight of PET-I (15) and both ends (85% by weight of olefin A) cut and removed before obtaining a polyester film in Example 1. Rolled polyester film having a thickness of 25 μm (A layer / B layer / C layer: 6/13/6 μm) and a length of 100 m was obtained in the same manner as in Example 1 except that the amount of the polymer was changed to 15% by weight. .
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) Table 1 shows the state of wrinkles after heat treatment and heat resistance. The method of this example has a small neck-in amount, is excellent in economical efficiency, and has good laminating properties because there is no deterioration in appearance and cut resistance of the polyester film after storage, and can-making properties and heat resistance. It can be said that this is a method for producing a polyester-based film-coated metal plate which is excellent in wrinkles and hardly generates wrinkles by heat treatment after can-making.

[比較例 1]
 樹脂膜の両端部の原料をPETとした以外は実施例1と同様にしてロール状樹脂膜を得ようとしたが、ネックイン量が大きく,かつ両端部を18cm切断除去しなければ、厚み分布が一様な中央部が得られないため、経済性に劣るポリエステル系フィルム被覆金属板の製造方法であるといえる。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量を表2に示す。
[Comparative Example 1]
An attempt was made to obtain a roll-shaped resin film in the same manner as in Example 1 except that PET was used as the raw material at both ends of the resin film. However, if the neck-in amount was large and both ends were not cut and removed by 18 cm, the thickness distribution was reduced. However, since a uniform central portion cannot be obtained, it can be said that this is a method of producing a polyester film-coated metal plate which is inferior in economic efficiency.
Table 2 shows the melting point, glass transition point, cooling crystallization temperature, and neck-in amount during casting of the polyester.

[比較例 2]
 C層を設けない以外は実施例1と同様にして厚みが25μm(A層/B層:6/19μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態)を表2に示す。この方法は、製缶性が劣るため、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
[Comparative Example 2]
A roll-shaped polyester film having a thickness of 25 μm (layer A / layer B: 6/19 μm) and a length of 100 m was obtained in the same manner as in Example 1 except that the layer C was not provided.
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) , Cracks) are shown in Table 2. This method is not preferable as a method for producing a polyester film-coated metal sheet because of poor can-making properties.

[比較例 3]
 B層を設けない以外は実施例1と同様にして厚みが25μm(A層/C層:6/19μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態),耐熱性,熱処理後のシワ発生状態を表2に示す。この方法は、耐熱性がやや劣り、かつ製缶後の熱処理でシワが発生しやすいため、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
[Comparative Example 3]
A roll-shaped polyester film having a thickness of 25 μm (A layer / C layer: 6/19 μm) and a length of 100 m was obtained in the same manner as in Example 1 except that the B layer was not provided.
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) Table 2 shows the state of wrinkles after heat treatment and heat resistance. This method is not preferable as a method for producing a polyester-based film-coated metal sheet because heat resistance is slightly inferior and wrinkles are easily generated in heat treatment after can-making.

[比較例 4]
 A層を設けない以外は実施例1と同様にして厚みが25μm(B層/C層:19/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態),耐熱性を表2に示す。この方法は、製缶性と耐熱性が劣るため、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
[Comparative Example 4]
A roll-like polyester film having a thickness of 25 μm (layer B / C layer: 19/6 μm) and a length of 100 m was obtained in the same manner as in Example 1 except that the layer A was not provided.
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) Table 2 shows the heat resistance. This method is not preferable as a method for producing a polyester-based film-coated metal sheet because of poor can-making properties and heat resistance.

[比較例 5]
 樹脂膜のC層の原料としてCO−PESとした以外は実施例1と同様にして厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様に、ラミネートアルミニウム板を作製しようとしたが、ラミネート後に275℃に加熱した際、シワが発生したためポリエステル系フィルム被覆金属板の製造方法として好ましくない。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性を表2に示す。
[Comparative Example 5]
Roll-shaped polyester having a thickness of 25 μm (A layer / B layer / C layer: 6/13/6 μm) and a length of 100 m in the same manner as in Example 1 except that CO-PES was used as the raw material of the C layer of the resin film. A system film was obtained.
Next, a laminated aluminum plate was prepared in the same manner as in Example 1. However, when heated to 275 ° C. after lamination, wrinkles occurred, which is not preferable as a method for producing a polyester film-coated metal plate.
Table 2 shows the melting point, the glass transition point, the crystallization temperature during cooling, the neck-in amount during casting, the heat shrinkage, the appearance of the roll film after storage, and the cut resistance of the polyester.

[比較例 6]
 樹脂膜のA層の原料としてPET 60重量%とPET−I(50) 40重量%とした以外は実施例1と同様にして厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態),耐熱性を表2に示す。この方法は、製缶性と耐熱性が劣るため、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
[Comparative Example 6]
Except for using 60% by weight of PET and 40% by weight of PET-I (50) as raw materials for the A layer of the resin film, the thickness was 25 μm (A layer / B layer / C layer: 6/13 / 6 μm) and a roll-shaped polyester film having a length of 100 m was obtained.
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) Table 2 shows the heat resistance. This method is not preferable as a method for producing a polyester-based film-coated metal sheet because of poor can-making properties and heat resistance.

[比較例 7]
 樹脂膜のB層の原料としてポリエステルA 50重量%とオレフィンA 50重量%とした以外は実施例1と同様にして厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態),耐熱性を表2に示す。この方法は、製缶性が劣るため、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
[Comparative Example 7]
The thickness was 25 μm (A layer / B layer / C layer: 6/13/6 μm) in the same manner as in Example 1 except that 50% by weight of polyester A and 50% by weight of olefin A were used as raw materials for layer B of the resin film. A roll-shaped polyester film having a length of 100 m was obtained.
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) Table 2 shows the heat resistance. This method is not preferable as a method for producing a polyester film-coated metal sheet because of poor can-making properties.

 [比較例 8]
 実施例1の原料で厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系未延伸フィルムを得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性を表2に示す。
 実施例1と同様に保管した結果、フィルムの耐切断性が悪く、シワ・タルミ・ブロッキングが発生し、外観が良好なラミネートアルミニウム板が得られないため、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
[Comparative Example 8]
A roll-shaped polyester unstretched film having a thickness of 25 μm (layer A / layer B / layer C: 6/13/6 μm) and a length of 100 m was obtained from the raw material of Example 1.
Table 2 shows the melting point, the glass transition point, the crystallization temperature during cooling, the neck-in amount during casting, the heat shrinkage, the appearance of the roll film after storage, and the cut resistance of the polyester.
As a result of storage in the same manner as in Example 1, the cut resistance of the film is poor, wrinkle-tarmi blocking occurs, and a laminated aluminum plate having a good appearance cannot be obtained. Not preferred.

 [比較例 9]
 縦延伸後の熱処理温度を190℃とした以外は実施例1と同様にして厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ついで、実施例1と同様にラミネートアルミニウム板を作製し、製缶して350mlサイズのシームレス缶を得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性,製缶性(加工ポンチの離型性,フィルム剥離状態,クラック発生状態)を表2に示す。この方法は、製缶性が劣るため、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
[Comparative Example 9]
Rolled polyester film having a thickness of 25 μm (A layer / B layer / C layer: 6/13/6 μm) and a length of 100 m in the same manner as in Example 1 except that the heat treatment temperature after longitudinal stretching was 190 ° C. Got.
Then, a laminated aluminum plate was prepared and made in the same manner as in Example 1 to obtain a 350 ml-sized seamless can.
Melting point of polyester, Glass transition point, Temperature crystallization temperature, Neck-in amount during casting, Heat shrinkage, Appearance and cut resistance of roll film after storage, Can making property (Releasability of processed punch, Film peeling state) , Cracks) are shown in Table 2. This method is not preferable as a method for producing a polyester film-coated metal sheet because of poor can-making properties.

 [比較例 10]
 縦延伸後に熱処理を実施しなかった以外は実施例1と同様にして厚みが25μm(A層/B層/C層:6/13/6μm)で長さが100mのロール状ポリエステル系フィルムを得た。
 ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量,熱収縮率,保管後のロールフィルムの外観と耐切断性を表2に示す。
 この方法は、フィルムの横方向のシワとフィルムの両端部にタルミが発生し、外観が良好なラミネートアルミニウム板が得られないため、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
[Comparative Example 10]
A roll-like polyester film having a thickness of 25 μm (A layer / B layer / C layer: 6/13/6 μm) and a length of 100 m was obtained in the same manner as in Example 1 except that the heat treatment was not performed after the longitudinal stretching. Was.
Table 2 shows the melting point, the glass transition point, the crystallization temperature during cooling, the neck-in amount during casting, the heat shrinkage, the appearance of the roll film after storage, and the cut resistance of the polyester.
This method is not preferable as a method for producing a metal film coated with a polyester film, since a wrinkle in the lateral direction of the film and tarnish are generated at both ends of the film, and a laminated aluminum plate having a good appearance cannot be obtained.

 [比較例 11]
 樹脂膜のB層の原料をPET−I(15) 87重量%とオレフィンF 13重量%とし、樹脂膜の両端部の原料をオレフィンF単体とした以外は実施例1と同様にしてキャストしたが、ネックイン量が大きいため、この方法は、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。ポリエステルの融点,ガラス転移点,降温結晶化温度,キャスト時のネックイン量を表2に示す。この方法はネックイン量が大きく経済的でないため、ポリエステル系フィルム被覆金属板の製造方法として好ましくない。
[Comparative Example 11]
Casting was performed in the same manner as in Example 1 except that the raw material of the layer B of the resin film was 87% by weight of PET-I (15) and 13% by weight of olefin F, and the raw materials at both ends of the resin film were olefin F alone. This method is not preferable as a method for producing a polyester film-coated metal plate because of its large neck-in amount. Table 2 shows the melting point, glass transition point, cooling crystallization temperature, and neck-in amount during casting of the polyester. This method is not economical because of a large neck-in amount and is not preferred as a method for producing a polyester film-coated metal plate.

 本発明はポリエステル系フィルム被覆金属板の製造方法は原料の無駄を省けるため、経済性に優れた製造方法であるばかりでなく、製缶性(加工ポンチの離型性,フィルムの密着性,耐クラック性)と耐熱性に優れたポリエステル系フィルム被覆金属板が得られるため、金属缶成形用のポリエステル系フィルム被覆金属板の製造方法として広く利用することができ、産業界に寄与することが大きい。 According to the present invention, the method for producing a polyester film-coated metal sheet is not only an economical production method because it is possible to reduce waste of raw materials, but also has a can-making property (a releasing property of a processing punch, adhesion of a film, and resistance to film resistance). Since a polyester film-coated metal sheet having excellent cracking properties and heat resistance can be obtained, it can be widely used as a method for producing a polyester film-coated metal sheet for forming a metal can, and greatly contributes to the industry. .

Claims (3)

 金属板に融点が180℃以上のポリエステルを被覆する製造方法において、Tダイを用いて両端部にオレフィン系ポリマーが合流された状態で得た溶融樹脂膜を冷却固化して得た樹脂膜を縦方向に1軸延伸し、次いで熱固定処理し、次いで両端部を切断除去してポリエステル系フィルムを得る方法と該ポリエステル系フィルムを別工程で加熱された金属板にラミネートする方法よりなるポリエステル系フィルム被覆金属板の製造方法であって、かつポリエステル系フィルムがA層、B層、C層より構成され、A層は降温結晶化温度が150℃以上のポリエステルよりなり、B層は融点が190〜225℃かつガラス転移温度が50℃以上のポリエステルとオレフィン系ポリマーが70:30〜100:0(重量%)よりなり、C層はガラス転移温度が30〜50℃であるポリエステルよりなるものであって、かつポリエステル系フィルムは150℃での縦方向の熱収縮率が4〜30%であることを特徴とするポリエステル系フィルム被覆金属板の製造方法。 In a manufacturing method in which a metal plate is coated with a polyester having a melting point of 180 ° C. or more, a resin film obtained by cooling and solidifying a molten resin film obtained in a state where an olefin polymer is merged at both ends using a T-die is vertically stretched. Uniaxially stretching in the direction, then heat-setting, and then cutting and removing both ends to obtain a polyester film, and laminating the polyester film to a metal plate heated in a separate step A method for producing a coated metal plate, wherein a polyester film is composed of an A layer, a B layer, and a C layer, the A layer is made of polyester having a temperature-reducing crystallization temperature of 150 ° C. or more, and the B layer has a melting point of 190 to 190 ° C. The polyester and the olefin-based polymer having a glass transition temperature of 225 ° C and a glass transition temperature of 50 ° C or higher consist of 70:30 to 100: 0 (% by weight). A polyester film-coated metal sheet comprising a polyester having a transfer temperature of 30 to 50 ° C., and wherein the polyester film has a heat shrinkage in the longitudinal direction at 150 ° C. of 4 to 30%. Manufacturing method.  請求項1記載の溶融樹脂膜の両端部とB層のオレフィン系ポリマーが同一であることを特徴とするポリエステル系フィルム被覆金属板の製造方法。 (4) A method for producing a metal film coated with a polyester film, wherein both ends of the molten resin film according to (1) and the olefin polymer in the layer B are the same.  請求項1記載のオレフィン系ポリマーがポリエチレンおよび/またはエチレン系共重合体であることを特徴とするポリエステル系フィルム被覆金属板の製造方法。 方法 A method for producing a metal sheet coated with a polyester film, wherein the olefin polymer according to claim 1 is polyethylene and / or an ethylene copolymer.
JP2003303241A 2002-08-29 2003-08-27 Manufacturing method for polyester film coated metal sheet Pending JP2004106537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303241A JP2004106537A (en) 2002-08-29 2003-08-27 Manufacturing method for polyester film coated metal sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002251393 2002-08-29
JP2003303241A JP2004106537A (en) 2002-08-29 2003-08-27 Manufacturing method for polyester film coated metal sheet

Publications (1)

Publication Number Publication Date
JP2004106537A true JP2004106537A (en) 2004-04-08

Family

ID=32301298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303241A Pending JP2004106537A (en) 2002-08-29 2003-08-27 Manufacturing method for polyester film coated metal sheet

Country Status (1)

Country Link
JP (1) JP2004106537A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297380A (en) * 2004-04-13 2005-10-27 Toyobo Co Ltd Laminated polyester film for coating metal sheet and method for manufacturing the same, laminated polyester film-coated metal sheet and method for manufacturing the same and laminated polyester film-coated metal can
JP2005297379A (en) * 2004-04-13 2005-10-27 Toyobo Co Ltd Laminated polyester film for coating metal sheet and method for manufacturing the same, laminated polyester film-coated metal sheet and method for manufacturing the same, and laminated polyester film-coated metal can

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297380A (en) * 2004-04-13 2005-10-27 Toyobo Co Ltd Laminated polyester film for coating metal sheet and method for manufacturing the same, laminated polyester film-coated metal sheet and method for manufacturing the same and laminated polyester film-coated metal can
JP2005297379A (en) * 2004-04-13 2005-10-27 Toyobo Co Ltd Laminated polyester film for coating metal sheet and method for manufacturing the same, laminated polyester film-coated metal sheet and method for manufacturing the same, and laminated polyester film-coated metal can

Similar Documents

Publication Publication Date Title
JPH07238176A (en) White polyester film for lamination with metallic sheet and its production
JP4264810B2 (en) Method for producing polyester film-coated metal sheet
JP2004106537A (en) Manufacturing method for polyester film coated metal sheet
JP4189740B2 (en) Method for producing polyester film-coated metal sheet
JP2011152733A (en) Laminate film and molding sheet using the same
JP2004106536A (en) Manufacturing method for polyester film coated metal sheet
JP2004074776A (en) Manufacturing method for polyester film-coated metal plate
JP2004042618A (en) Method for manufacturing polyester film-coated metallic sheet
JP2003291258A (en) Method for manufacturing resin-coated metallic sheet
JP4288575B2 (en) Method for producing polyester film-coated metal sheet
JP4193119B2 (en) Method for producing polyester film-coated metal sheet
JP2004042620A (en) Method for manufacturing polyester film-coated metallic sheet
JPH09226738A (en) Metal can and synthetic resin film for metal can
JP4261253B2 (en) Polyester film for coating metal plate, method for producing the same, and method for producing polyester film-coated metal plate
JP2004042616A (en) Method for manufacturing polyester film-coated metallic sheet
JP2004074777A (en) Manufacturing process of polyester film clad metal sheet
JP4154662B2 (en) Method for producing resin-coated metal sheet
JP4576142B2 (en) Polyester film for metal plate coating, method for producing the same, and method for producing polyester film-coated metal plate
JP2007105948A (en) Polyester film
JP6836067B2 (en) Polyester film for lamination
JP2004285342A (en) Metal plate laminating polyester-based film
JPH09104768A (en) Black polyester film for lining laminated-metal can
JP4099711B2 (en) Method for producing resin-coated metal sheet
JP4288576B2 (en) Method for producing resin-coated metal sheet
JP4189735B2 (en) Method for producing resin-coated metal sheet