JP2004040788A - 電磁トランスポンダ読取器 - Google Patents

電磁トランスポンダ読取器 Download PDF

Info

Publication number
JP2004040788A
JP2004040788A JP2003160948A JP2003160948A JP2004040788A JP 2004040788 A JP2004040788 A JP 2004040788A JP 2003160948 A JP2003160948 A JP 2003160948A JP 2003160948 A JP2003160948 A JP 2003160948A JP 2004040788 A JP2004040788 A JP 2004040788A
Authority
JP
Japan
Prior art keywords
circuit
transponder
demodulator
signal
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003160948A
Other languages
English (en)
Inventor
Jean-Pierre Enguent
ジャン−ピエール アングン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA filed Critical STMicroelectronics SA
Publication of JP2004040788A publication Critical patent/JP2004040788A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D5/00Circuits for demodulating amplitude-modulated or angle-modulated oscillations at will

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

【課題】電磁トランスポンダが送信する信号を復調する方法と回路を提供する。
【解決手段】トランスポンダの負荷の関数である変数の発振回路の上でのセンサと、少なくとも機能的に並列で前記センサからの信号を受ける位相復調器及び振幅復調器と、各復調器の結果の加算器と、一方の復調器と直列に接続されて両者の伝搬時間差を補償する遅延素子とを有する。
【選択図】   図4

Description

【0001】
【発明の属する技術分野】
本発明は電磁トランスポンダを使うシステム、つまり、読取り及び/又は書込み端末と呼ばれるユニット(一般に固定)により無接触で無線によりインターロゲイトされるトランシーバ(多くの場合可動)に関する。本発明は特に独立の電源をもたないトランスポンダの読取り書込み端末に関する。その種のトランスポンダは内部の電子回路が必要とする電力を読取り書込み端末が放射する高周波フィールドから取り出す。本発明はそのような端末に関し、トランスポンダのデータ(例えば電子レーベル)を読取るのみ、又はトランスポンダのデータ(例えば無接触スマートカード)を変更する読取り書込み端末に関する。
【0002】
【従来の技術】
電磁トランスポンダを使用するシステムは、トランスポンダ側及び読取り/書込み端末側でアンテナを構成する巻線をふくむ発振回路の使用に基礎をおく。これらの回路はトランスポンダが読取り/書込み端末のフィールドに入ったとき、近接磁界により結合するようになっている。
【0003】
図1は、従来の、読取り/書込み端末1とトランスポンダ10の間のデータ交換システムを示す。
【0004】
一般に、端末1は、増幅器又はアンテナカップラ3と基準端子4(一般に接地)の間の、インダクタンスL1とキャパシタC1と抵抗R1で構成される直列発振回路の形態をとる。アンテナカップラ3は制御及びデータ使用回路5に属する変調器(図示なし)で発生する高周波伝送信号を受け取る。前記回路5は、変復調器と、制御信号とデータを処理するマイクロプロセッサを有する。回路5はさらに高周波基準信号を発生する水晶発振器を有する。この基準信号は、トランスポンダ10で発生した送信データを復調する位相復調器6(Δφ)の基準信号REFとして使用されることもある。信号REFは、回路5から取り出す代わりに、水晶発振器から直接取り出して、アンテナカップラ3の出力端子2からサンプルしてもよい(図1の点線9)。
【0005】
トランスポンダ10は基本的に、制御処理回路13の2つの入力端子11,12の間のインダクタンスL2とキャパシタC2の並列発振回路を含む。端子11と12は実際には整流回路(図示なし)の入力に結合し、整流回路の出力はトランスポンダの内部回路のD.C.パワー端子を形成する。これらの回路は、マイクロプロセッサ、メモリー、端末1から受信する信号の復調器、端末に送信する情報の変調器を有する。
【0006】
端末からトランスポンダへのデータ送信がないときは、高周波励振信号は単に電源として使用される。
【0007】
端末からトランスポンダへの情報の送信は遠隔供給キャリアの振幅を変調することにより行われる。
【0008】
トランスポンダ10から端末1への情報の送信は発振回路L2,C2の負荷を修飾して、トランスポンダが高周波磁界からのパワーをより多く又はより少なく消費するようにする。この変化は、端末側で、高周波励振信号の振幅が一定に保たれれば、検出することができる。従って、トランスポンダのパワーの変動はアンテナL1の電流の振幅及び位相の変化に翻訳される。この変化は、例えば、端末1の位相復調器6により検出される。この目的のために、例えば、復調器6は電流電圧変換器から発生する所望信号UTIを復調器6の入力端子と接地4の間の抵抗R3により受け取る。抵抗R3は発振回路R1,L1,C1で測定した電流を、該発振回路と直列接続の強度トランス7により電圧に変換する。強度トランス7は図1では2つの巻線7’、7”で示される。1次巻線7’は発振回路と直列である。2次巻線7”は、第1端子が接地し、第2端子が位相復調器6の入力端子に接続される。
【0009】
トランスポンダから端末にデータを送信するために、トランスポンダの変調ステージ(図示なし)は、端末の発振回路の励振周波数(例えば13.56MHz)よりもはるかに低い(例えば比は少なくとも10)サブキャリア周波数(例えば847.5kHz)で制御される。トランスポンダ側での負荷の変化は電子スイッチにより行われ、抵抗又はキャパシタを制御して発振回路L2−C2の負荷を変化させる。電子スイッチはサブキャリア周波数で制御されて、利用回路13で形成される負荷に関して追加の制動をトランスポンダの発振回路に周期的に与える。
【0010】
トランスポンダの電子回路が閉じるサブキャリアの半周期では、復調器6は高周波キャリアの基準信号REFに対するわずかな位相シフト(2〜3度又は1度以下)を検出する。次に復調器6の出力8はトランスポンダの電子スイッチの制御信号のイメージである信号を取り出し、復号されて送信された2進データを回復する。
【0011】
位相復調器を使用する従来の読取り/書込み端末の問題点は、位相復調器の周波数応答が、2つの発振回路が遠隔供給周波数(13.56MHz)に同調していると、この遠隔供給周波数に対応して復調される周波数でゼロ(つまり出力電圧がゼロ)を示すことにある。
【0012】
この現象を図2に示し、図2は位相復調器6の応答を示す。図2は、復調器6の出力の電圧V8の形状を、位相シフトを検出するキャリア周波数に対して示す。この図に示されるように、電圧V8は周波数f0でゼロになり、この周波数は、与えられた結合係数に対し、トランスポンダの発振回路L2−C2の共振周波数に対応する(f=1/2π√(LC))。
【0013】
この問題を解決するために、発振回路は一般に同調外れとして、端末とトランスポンダの2つの発振回路が遠隔供給キャリアの周波数に同時に同調しないようにしている。
【0014】
しかし、この欠点として、これがトランスポンダのリモート電源つまりシステム範囲に影響する。実際、トランスポンダが受け取るパワーは端末とトランスポンダの2つの発振回路が共にキャリア周波数に同調したときに最大となる。
【0015】
別の問題は発振回路のキャパシタの製造許容度、特にトランスポンダのキャパシタC2、が10%のオーダであることにある。従って、製造許容度の厳しさから、端末による位相復調を保証するためのキャリア周波数からの位相シフトがセキュリティのためにわずかとなる。
【0016】
従って、従来のシステムの欠点として、リモート電源と端末の位相復調容量との間で妥協をしなければならない。
【0017】
さらに、位相復調応答のギャップの位置が2つの発振回路の間の相互インダクタンスに従って変化するので、この妥協も困難である。相互インダクタンスは端末とトランスポンダからアンテナL1とL2を分離する距離に対応し、従って、送信時のトランスポンダの端末に対する相対位相に対応する。
【0018】
この変化は図3に示され、端末とトランスポンダの間のいくつかの間隔に対する電圧−周波数特性の例を示し、電圧はトランスポンダのリモート供給電圧、例えばキャパシタC2の電圧を示し、fは端末の直列共振回路の励振周波数に対応する。
【0019】
図3の異なる曲線は周波数f0に同調した発振回路に対して描かれ、つまり端末とトランスポンダの発振回路がリモート供給キャリアに対応する共振周波数をもつ発振回路に対して描かれる。曲線g1,g2,g3,g4,g5,g6はトランスポンダと端末の間の距離が減少する場合を示す。つまり、周波数f0の小さなドームの曲線g1はシステム限定範囲に対応する。距離が減少すると、電圧−周波数特性によるピークは曲線g2,g3,g4に示すように大きくなる。曲線g1は最適結合位置、つまり、トランスポンダが周波数f0で受け取る最大リモート供給振幅により結合が最適化される位置に対応する。トランスポンダが端末に近づいて距離が短くなると、電圧振幅は減少し(曲線g5)、インダクタンスL1,L2の間隔が減少するにつれて強くなる(曲線g6)。そして電圧V2は周波数f0をかこむ周波数に対して最大値を示す。その結果、発振回路の共振周波数をキャリア周波数に対してシフトすることにより、システムの垂直動作軸は図3の特性で変移し、従って、復元されるリモート供給電圧は、少なくとも曲線g1〜g4に対して減少する。
【0020】
位相復調の位相ギャップとインダクタンスの間の距離に関連する位相ギャップの位置の変化は、素子の製造許容度と関連して、従来のシステムの信頼性を低くしている。
【0021】
第1の解決は位相復調器を振幅復調器に代えることであろう。実際、端末の発振回路でのトランスポンダによる電荷の変化はわずかな振幅の変化として翻訳され、端末の発振回路の電流又はキャパシタC1の両端の電圧として検出可能である。
【0022】
しかし、振幅復調器の周波数応答も復調ギャップを示し、つまり、復調器の出力電圧がゼロとなるので、上記解決は問題のみを提起する。キャパシタの製造許容度による発振回路の共振周波数の大きな変化は、発振回路の結合による復調ギャップの位置の大きな変化と関連して、実際に、振幅復調器の使用を位相復調器と同様に危険にしている。
【0023】
WO−A−9618969が開示する無接触トランシーバシステムでは、読取器は位相復調器と振幅復調器の両方を備え、最良のレベルの出力信号を選択する。
【0024】
しかし、この解決は完全には満足できない。実際、2つの復調器で復調される信号は必ずしも同期していないので、受信時に、位相復調と振幅復調の選択を修飾することはできない。
【0025】
さらに、発振回路の製造許容度とその動作ドリフトに関連する欠点は残る。
【0026】
【発明が解決しようとする課題】
本発明は、トランスポンダが送信したデータを復元する振幅復調器と位相復調器の応答の問題を解決する新規な解決を提供することを目的とする。
【0027】
本発明の目的は、特に、トランスポンダの変更なしに、読取り/書込み端末により実現する解決を提供することにある。特に、本発明は現存のトランスポンダにより動作可能な解決を提供することを目的とする。
【0028】
本発明はさらにトランスポンダにより送信されたデータの復調の応答が最適化され、発振回路の共振周波数とキャリア周波数から独立となる、電磁トランスポンダの新規な読取り/書込み端末を提供することを目的とする。
【0029】
本発明はさらにトランスポンダの共振回路の動作ドリフトに敏感でない解決を提供することを目的とする。
【0030】
本発明はさらに端末及び/又はトランスポンダの発振回路の製造のバラツキの問題のない解決を提供することを目的とする。
【0031】
本発明はさらに伝送システムの範囲を最適化する解決を提供することを目的とする。
【0032】
【課題を解決するための手段】
上記目的を達成するための本発明の特徴は、電磁トランスポンダが送信する信号を復調する回路において、前記トランスポンダにより形成される負荷の関数である変数の発振回路の上でのセンサと、少なくとも機能的に並列で前記センサからの信号を受け取る位相復調器及び振幅復調器と、前記各復調器により提供される結果の加算器と、一方の前記復調器に直列に接続され2つの復調器の間の伝搬時間の差を補償する遅延素子とを有する回路にある。
【0033】
本発明の実施例によると、前記加算器により提供される信号に従って前記遅延素子による遅延を調節する調節器を有する。
【0034】
本発明の実施例によると、前記遅延素子の関連する第1の復調器が振幅復調器である。
【0035】
本発明の実施例によると、前記調節器が、前記加算器の出力に入力を結合する整流素子と、前記整流素子により提供される信号を第1の入力に受け、基準信号を第2の入力に受け、出力により前記遅延素子を制御する比較器とを有する。
【0036】
本発明の実施例によると、前記遅延素子は前記第1の復調器と直列で制御可能な抵抗素子と、該抵抗素子の端子を基準電圧に接続するキャパシタ素子とを有する。
【0037】
本発明の実施例によると、前記抵抗素子は電界効果トランジスタで構成され、そのゲートは前記調節器により提供される調節信号を受け、その直列抵抗を条件づける。
【0038】
本発明の実施例によると、前記復調器、加算器、遅延素子、及び調節器はディジタル信号プロセッサの形態で構成される。
【0039】
本発明の実施例によると、前記センサは前記発振回路の電流又はその1又は複数の素子の両端の電圧を測定する。
【0040】
本発明は又電磁界を発生し、少なくともひとつのトランスポンダが該電磁界の中に入ったとき該トランスポンダと通信することの出来る端末を提供する。
【0041】
本発明はさらに電磁トランスポンダにより送信される信号を復調する方法において、前記トランスポンダにより形成される負荷の関数である変数を発振回路の上で測定し、測定された信号を位相復調し、測定された信号を振幅復調し、2つの復調の一方を他方に対して遅延し、2つの復調の結果を加算し、第1の復調結果にもたらされる遅延を前記加算の積分の結果に従って調節する方法を提供する。
【0042】
本発明の実施例によると、前記方法はディジタル処理手段により実現される。
【0043】
本発明の実施例によると、前記方法はアナログ回路により実現される。
【0044】
本発明の上記目的、特徴及び利点は添付図面を用いた特定の実施例により非限定的に下記に詳細に記述される。
【0045】
【発明の実施の形態】
異なる図で同じ素子は同じ符号で示される。図2と図3と図5と図6の縮尺は同じではない。本発明の理解に必要な素子のみが図示され記述される。特に、端末とトランスポンダの制御、処理、利用回路は詳述せず、本発明の目的ではない。
【0046】
本発明の特徴は、電磁トランスポンダ読取り/書込み端末の中に、端末の発振回路の信号の測定によるトランスポンダの変調回路からのイメージを取り出す復調回路が、振幅復調と位相復調の結果を加算し、一方、2つの結果の一方を他方に対して遅延させることにある。遅延は2つの復調結果の同期の問題を解決する。加算の和を利用することは、2つの結果の一方を選択するよりはるかに単純である。さらに、2つの復調の伝搬遅延の差は補償され、発振回路素子の製造許容度に関する問題は避けられる。
【0047】
本発明の好ましい実施例によると、一方の復調結果に対する遅延は復調回路出力の信号に従って制御される。この制御は端末の発振回路の共振回路のドリフトを保証することができる。従ってシステムの範囲が最適化される。
【0048】
図4は本発明による読取り/書込み端末20の実施例を示す。図4で端末20は従来のトランスポンダ10と関連して示される。
【0049】
前述のごとく、トランスポンダ10は、利用処理回路13の端子11と12の間のインダクタンスL2とキャパシタC2の並列回路を有する。
【0050】
前述のごとく、端末20は抵抗R1とインダクタンスL1とキャパシタC1の直列発振回路を有する。この発振回路は増幅器又はアンテナカップラ3の出力端子2と接地4の間で強度トランス7と直列に接続される。端末20は、マイクロプロセッサと水晶発振器と変調器と電源を有する回路5により制御され利用される。直列発振回路の電圧又は電流を測定する強度トランス7又は同種の装置は復調回路21の入力に信号UTIを提供する。この復調回路は従来の回路(図1)と同様に基準信号REF(回路5又は端子2から)を受け取り、信号UTIとREFは共にリモート供給キャリア周波数である。回路21は位相復調器6(Δφ)と振幅復調器22(ΔA)とを並列に有する。位相復調器6と振幅復調器22の各入力23と24は、測定のための信号UTIを受け取る。復調器6と22の基準端子25と26は基準信号REFを受け取る。復調器6と22の構成は周知である。実施の例は図7に関連して後述する。
【0051】
本発明によると、復調器6,22の各出力27,28は加算器29で混合され、その出力30がトランスポンダ10の変調信号のイメージの信号、つまり、回路5に与えられる復調信号の結果を提供する。さらに、復調器の一方は遅延素子31(τ)、例えば遅延線、と直列で、位相復調器6と振幅復調器22の間の伝搬時間シフトを補償する。
【0052】
好ましくは、遅延素子31は、位相復調器ではなく振幅復調器と関連する。従って位相復調器の形成は単純化される。実際、振幅復調器と位相復調器は共にローパスフィルタを有する。しかし、位相復調器にローパスフィルタを形成することは振幅復調器の場合よりも困難である。従って、遅延線を振幅側に移すことにより、位相復調パスへの追加の妨害が避けられる。
【0053】
好ましくは、遅延線31は設定可能で、その設定入力は調節器50(REG)により制御可能で、加算器29により提供される(復調された)出力信号に関して、遅延を基準値に制御する。実際、基準値は加算器30の出力で期待されるレベルを表す。
【0054】
図5は振幅復調器の電圧対周波数特性を示す。前述のごとく、この特性は、位相復調器と同様に、振幅復調器の動作ギャップ(周波数f’0)を示し、復調器28の出力電圧V28(又はV22)は回路L1,C1の共振周波数(f’0)でゼロ又はゼロに近い。
【0055】
しかし、与えられた回路に対し、つまり、与えられたキャリア周波数と回路の相互インダクタンスに関連した発振回路の素子の与えられた定数に対して、復調ギャップは位相復調器(周波数f0)と振幅復調器(周波数f’0)とでは異なる周波数にある。従って、2つの復調器で得られる結果を混合すると、電圧−周波数特性は図6に示すようになり、もはや復調ギャップは存在しない。つまり回路21の出力の電圧V30がゼロとなる周波数は存在しない。
【0056】
図7は本発明による復調回路21の実施例を示す。
【0057】
位相復調器23は例えばXORゲート31の使用に基礎をおく。ゲート31は第1入力32に基準信号REFを受け、第2入力33に所望信号UTIを受ける。入力信号は同じ周波数で入力32と33の前で整形されている。特に、2つの信号は静止状態で相互に90°だけ移相されている。つまり、位相変調がないときには90°の基本位相シフトがある。図7の例では基準信号REFが移相器34で90°だけシフトされている。さらに、所望信号と基準信号は入力32と33の上流でクランプ35と36によりクランプされている。ゲート31の出力は信号UTIとREFの周波数に関し2倍周波数の信号を提供する。この出力は例えば単純化した形態では抵抗RとキャパシタCによる平均化器37に印加される。平均化器37は又ローパスフィルタを形成し、増幅器38と直列接続されて出力27に受け入れ可能な振幅をもつ。
【0058】
振幅復調器22は、例えば、入力信号UTIとREFを受け取る乗算器41に基礎をおく。乗算器41の出力はローパスフィルタ42に送られて、実際の振幅復調器の出力を形成する。この出力は本発明による遅延装置31の入力に送られる。
【0059】
位相復調と振幅復調の並列ブランチの出力27と28は加算器29で加算され、その出力30は復調結果を与える。
【0060】
図示の好ましい実施例によると、遅延素子31は電界効果トランジスタ51(例えばJFETトランジスタ)とキャパシタ素子52で構成される。トランジスタ51はフィルタ42の出力を加算器29の入力28(つまり振幅復調ブランチの出力28)に接続する。キャパシタ52は端子28を接地に接続する。トランジスタ51のゲートは遅延素子31の設定入力端子を形成する。従って、トランジスタ51のオン状態の直列抵抗の修飾により時定数を設定可能な抵抗キャパシタセルが形成される。
【0061】
調節器50は例えば整流素子53で形成され、その入力は加算器30の出力に接続され、その出力は比較器54(COMP)の第1入力に接続される。比較器54の第2入力は所定の基準信号ENTを受け取る。比較器54はトランジスタ51のゲート電圧を変化させてその直列抵抗を修飾する信号(アナログ)を提供する。従ってトランジスタ51はリニアモードで制御される。整流器53の機能は加算器30の出力信号(ほぼ正弦波)をD.C.レベルに変換することにあり、そのRMSレベルが基準レベルENTと比較される。整流器は好ましくは高速化の理由により全波整流である。
【0062】
基準信号ENTは期待される動作周波数の変化に従って経験的に決定され、トランジスタ51の制御信号が該トランジスタを正しい遅延範囲に置くことを保証する。
【0063】
別の遅延素子構造も可能である。例えば、スイッチ可能な抵抗ネットワークにより遅延を修飾することができる。
【0064】
本発明の利点は復調回路21がもはや復調ギャップを示さないことにある。この結果は位相及び振幅復調器に干渉せずに得られる。実際、本発明によると、振幅及び位相復調スペクトラムにおける復調ギャップの存在は問題ではない。仮に位相又は振幅復調器が非常に近い信号を発生したとしても、他の復調器が正しい結果を提供する。
【0065】
本発明の別の利点はトランスポンダから独立なことにある。従って本発明による読取り/書込み端末と共に動作させるために現存のトランスポンダを変更する必要はない。
【0066】
本発明の別の利点は、読取り/書込み端末の側でも、従来の端末に関し必要な修飾が限定されることにある。特に、本発明は従来の復調器に関し入出力の変更を必要としない。実際、本発明の回路21は、従来の位相復調器と同様に、基準信号入力と所望信号入力と復調結果を提供する出力とを必要とする。本発明によると調節器の基準入力ENTのみが追加される。
【0067】
本発明の別の利点として、遅延を調節することにより復調回路出力で最適レベルが保証される。従って、端末の発振回路の周波数の動作ドリフトにかかわらずシステム範囲は最適化される。
【0068】
もちろん、本発明は当業者に容易な種々な変更、修飾、改良が可能である。特に、本発明による復調回路の実際の形成は、応用と上述の機能的記述に基づいて当業者に容易である。さらに、復調ブランチの一方にブランチの間の伝搬時間の差を補償する遅延線の(少なくとも機能的な)使用を考慮すれば、他の位相復調器及び振幅復調器が、可能である。例えば、振幅復調器はピーク検出に基礎をおくことができる。さらに、端末の発振回路の信号の測定を強度トランスにより行うことに関連して記述したが、別の測定手段、例えばキャパシタC1の両端の電圧の測定が可能である。
【0069】
最後に、アナログ的に実現される素子を前提に説明したが、ディジタル手段、例えばディジタル信号プロセッサ(DSP)又はソフトウェアによっても実現することができる。
【0070】
本発明の応用の中で、無接触スマートカード(例えばアクセス制御の身分証明、電子財布カード、カード所持者の情報を蓄積するカード、消費者の信用カード、有料テレビジョンカード、等)の読取器(例えば、アクセス制御端末又はポルティコ、自動販売機、コンピュータ端末、電話端末、テレビジョンセット、衛星デコーダ、等)についてはさらに具体的に記述されるであろう。
【0071】
上述の変更、修飾、改良は本開示の一部であり、本発明の範囲内のものである。従って、上述の記述は単なる実施例であって発明を限定するものではない。本発明は請求の範囲とその均等物によってのみ限定される。
【図面の簡単な説明】
【図1】従来の技術と問題点を示す図である。
【図2】従来の技術と問題点を示す図である。
【図3】従来の技術と問題点を示す図である。
【図4】本発明による、電磁トランスポンダに関連する読取り/書込み端末の実施例のブロック図である。
【図5】振幅復調器の電圧−周波数特性を示す。
【図6】本発明の復調回路の電圧−周波数特性を示す。
【図7】本発明による復調回路の詳細なブロック図である。
【符号の説明】
1 読取り/書込み端末
2 アンテナカップラの出力端子
3 アンテナカップラ
4 接地
5 制御及びデータ使用回路
6 位相復調器
7 強度トランス
8 復調器の出力
9 REF取出線
10 トランスポンダ
11 端子
12 端子
13 制御回路
21 復調回路
22 振幅復調器
23 位相復調器
29 加算器
31 遅延回路
50 調節回路

Claims (12)

  1. 電磁トランスポンダが送信する信号を復調する回路において、
    前記トランスポンダにより形成される負荷の関数である変数の発振回路(L1,C1)の上でのセンサ(7)と、
    少なくとも機能的に並列で前記センサからの信号を受け取る位相復調器(6)及び振幅復調器(22)と、
    前記各復調器により提供される結果の加算器(29)と、
    一方の前記復調器に直列に接続され2つの復調器の間の伝搬時間の差を補償する遅延素子(31)とを有することを特徴とする回路。
  2. 前記加算器(29)により提供される信号に従って前記遅延素子(31)による遅延を調節する調節器(50)を有する、請求項1記載の回路。
  3. 前記遅延素子(31)の関連する第1の復調器が振幅復調器(22)である、請求項1記載の回路。
  4. 前記調節器(50)が、
    前記加算器(29)の出力に入力を結合する整流素子(53)と、
    前記整流素子により提供される信号を第1の入力に受け、基準信号(ENT)を第2の入力に受け、出力により前記遅延素子(31)を制御する比較器(54)とを有する、請求項1記載の回路。
  5. 前記遅延素子(31)は前記第1の復調器(22)と直列で制御可能な抵抗素子(51)と、該抵抗素子の端子を基準電圧に接続するキャパシタ素子(52)とを有する、請求項1記載の回路。
  6. 前記抵抗素子は電界効果トランジスタで構成され、そのゲートは前記調節器(50)により提供される調節信号を受け、その直列抵抗を条件づける、請求項1記載の回路。
  7. 前記復調器(6,22)、加算器(29)、遅延素子(31)、及び調節器(50)はディジタル信号プロセッサの形態で構成される、請求項1記載の回路。
  8. 前記センサ(7)は前記発振回路(L1,C1)の電流(I)又はその1又は複数の素子の両端の電圧を測定する、請求項1記載の回路。
  9. 請求項1−8のひとつに記載の復調回路(21)を有し、電磁界を発生し、少なくともひとつのトランスポンダが該電磁界の中に入ったとき該トランスポンダと通信することの出来る端末。
  10. 電磁トランスポンダにより送信される信号を復調する方法において、
    前記トランスポンダにより形成される負荷の関数である変数を発振回路(L1,C1)の上で測定し、
    測定された信号を位相復調し、
    測定された信号を振幅復調し、
    2つの復調の一方を他方に対して遅延し、
    2つの復調の結果を加算し、
    第1の復調結果にもたらされる遅延を前記加算の積分の結果に従って調節する方法。
  11. ディジタル処理手段により実現される請求項10記載の方法。
  12. アナログ回路により実現される請求項10記載の方法。
JP2003160948A 2002-06-06 2003-06-05 電磁トランスポンダ読取器 Withdrawn JP2004040788A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0207000A FR2840742A1 (fr) 2002-06-06 2002-06-06 Lecteur de transpondeur electromagnetique

Publications (1)

Publication Number Publication Date
JP2004040788A true JP2004040788A (ja) 2004-02-05

Family

ID=29433340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003160948A Withdrawn JP2004040788A (ja) 2002-06-06 2003-06-05 電磁トランスポンダ読取器

Country Status (6)

Country Link
US (1) US6847256B2 (ja)
EP (1) EP1369813B1 (ja)
JP (1) JP2004040788A (ja)
CN (1) CN100508418C (ja)
DE (1) DE60303661T2 (ja)
FR (1) FR2840742A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009271775A (ja) * 2008-05-08 2009-11-19 Toshiba Corp 受信装置
JP2011205368A (ja) * 2010-03-25 2011-10-13 Sony Corp 信号処理回路、リーダ/ライタ、非接触icカード及び信号処理方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049935B1 (en) 1999-07-20 2006-05-23 Stmicroelectronics S.A. Sizing of an electromagnetic transponder system for a dedicated distant coupling operation
FR2796781A1 (fr) 1999-07-20 2001-01-26 St Microelectronics Sa Dimensionnement d'un systeme a transpondeur electromagnetique pour un fonctionnement en hyperproximite
FR2804557B1 (fr) * 2000-01-31 2003-06-27 St Microelectronics Sa Adaptation de la puissance d'emission d'un lecteur de transpondeur electromagnetique
FR2808941B1 (fr) * 2000-05-12 2002-08-16 St Microelectronics Sa Validation de la presence d'un transpondeur electromagnetique dans le champ d'un lecteur a demodulation d'amplitude
FR2808946A1 (fr) * 2000-05-12 2001-11-16 St Microelectronics Sa Validation de la presence d'un transpondeur electromagnetique dans le champ d'un lecteur
FR2808942B1 (fr) * 2000-05-12 2002-08-16 St Microelectronics Sa Validation de la presence d'un transpondeur electromagnetique dans le champ d'un lecteur a demodulation de phase
FR2808945B1 (fr) * 2000-05-12 2002-08-16 St Microelectronics Sa Evaluation du nombre de transpondeurs electromagnetiques dans le champ d'un lecteur
FR2809235A1 (fr) * 2000-05-17 2001-11-23 St Microelectronics Sa Antenne de generation d'un champ electromagnetique pour transpondeur
FR2809251B1 (fr) * 2000-05-17 2003-08-15 St Microelectronics Sa Dispositif de production d'un champ electromagnetique pour transpondeur
FR2812986B1 (fr) 2000-08-09 2002-10-31 St Microelectronics Sa Detection d'une signature electrique d'un transpondeur electromagnetique
US20030169169A1 (en) 2000-08-17 2003-09-11 Luc Wuidart Antenna generating an electromagnetic field for transponder
JP5355936B2 (ja) * 2007-06-28 2013-11-27 日本信号株式会社 リーダライタ、及び物品仕分システム
TWI638541B (zh) * 2013-05-28 2018-10-11 新力股份有限公司 通信裝置、通信系統及通信方法
EP2830229B1 (en) * 2013-07-25 2017-04-19 Nxp B.V. A multichannel transponder and a method of determining a most strongly coupled channel or more strongly coupled channels
CN111238546A (zh) * 2020-04-01 2020-06-05 北京先通康桥医药科技有限公司 电容传感器的微弱电容变化测量电路
CN111307183A (zh) * 2020-04-09 2020-06-19 北京先通康桥医药科技有限公司 阵列式电容传感器的动态测量电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489716B1 (ko) * 1996-11-05 2005-09-12 코닌클리케 필립스 일렉트로닉스 엔.브이. 동기식복조기를갖는비접촉식데이터송수신장치
FR2756953B1 (fr) * 1996-12-10 1999-12-24 Innovatron Ind Sa Objet portatif telealimente pour la communication sans contact avec une borne
EP0892493A1 (en) * 1997-07-18 1999-01-20 STMicroelectronics S.r.l. Amplitude and phase demodulator circuit for signals with very low modulation index
US6650226B1 (en) * 1999-04-07 2003-11-18 Stmicroelectronics S.A. Detection, by an electromagnetic transponder reader, of the distance separating it from a transponder
FR2792137A1 (fr) * 1999-04-07 2000-10-13 St Microelectronics Sa Detection, par un lecteur de transpondeur electromagnetique, de la distance qui le separe d'un transpondeur
FR2808946A1 (fr) * 2000-05-12 2001-11-16 St Microelectronics Sa Validation de la presence d'un transpondeur electromagnetique dans le champ d'un lecteur
CN1283070A (zh) * 2000-09-15 2001-02-07 刘文起 新型高频电磁感应电热转换装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009271775A (ja) * 2008-05-08 2009-11-19 Toshiba Corp 受信装置
US8310345B2 (en) 2008-05-08 2012-11-13 Kabushiki Kaisha Toshiba Receiving apparatus
JP2011205368A (ja) * 2010-03-25 2011-10-13 Sony Corp 信号処理回路、リーダ/ライタ、非接触icカード及び信号処理方法

Also Published As

Publication number Publication date
US6847256B2 (en) 2005-01-25
US20030227323A1 (en) 2003-12-11
FR2840742A1 (fr) 2003-12-12
EP1369813B1 (fr) 2006-02-22
CN100508418C (zh) 2009-07-01
CN1467920A (zh) 2004-01-14
DE60303661D1 (de) 2006-04-27
DE60303661T2 (de) 2006-10-05
EP1369813A1 (fr) 2003-12-10

Similar Documents

Publication Publication Date Title
US6473028B1 (en) Detection of the distance between an electromagnetic transponder and a terminal
JP2004040788A (ja) 電磁トランスポンダ読取器
US6650226B1 (en) Detection, by an electromagnetic transponder reader, of the distance separating it from a transponder
US6650229B1 (en) Electromagnetic transponder read terminal operating in very close coupling
US6703921B1 (en) Operation in very close coupling of an electromagnetic transponder system
US6547149B1 (en) Electromagnetic transponder operating in very close coupling
US8536982B2 (en) Automatic tuning for RFID systems by changing capacitor values in case of an error
US8249502B2 (en) Radio-frequency communication device, system and method
JP5668196B2 (ja) 電磁トランスポンダの結合係数の誘導性評価
US7994923B2 (en) Non-contact electronic device
JP4655376B2 (ja) 電磁式トランスポンダ読取り装置の伝送電力の適合
US8693956B2 (en) Resistive evaluation of the coupling factor of an electromagnetic transponder
US8798533B2 (en) Evaluation of the coupling factor of an electromagnetic transponder by capacitive detuning
JPH0981701A (ja) 非接触式情報記録媒体および非接触式情報伝送方法
JP5607995B2 (ja) 端末及びトランスポンダの結合のトランスポンダによる認証
JP5519425B2 (ja) 端末及びトランスポンダの結合の端末による認証
JP4752170B2 (ja) 電磁トランスポンダの電気シグネチャの検出
JP3829577B2 (ja) 電磁トランスポンダシステムの全二重伝送方法
US20060172702A1 (en) Sizing of an electromagnetic transponder system for an operation in extreme proximity
JP2011004402A (ja) 電磁トランスポンダにおける電力管理
JP2006180491A (ja) 自律電源供給のない電磁トランスポンダ
JP3968948B2 (ja) 電磁トランスポンダからの距離の検出
JP4691825B2 (ja) 読み出し機の場における電磁気トランスポンダの数の評価
US6859640B2 (en) Demodulation capacity of an electromagnetic transponder
JP2009175976A (ja) 送受信回路、情報処理装置、通信方法、およびプログラム

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905