JP2004039761A - Wiring board, method of manufacturing the same, and semiconductor device - Google Patents

Wiring board, method of manufacturing the same, and semiconductor device Download PDF

Info

Publication number
JP2004039761A
JP2004039761A JP2002192668A JP2002192668A JP2004039761A JP 2004039761 A JP2004039761 A JP 2004039761A JP 2002192668 A JP2002192668 A JP 2002192668A JP 2002192668 A JP2002192668 A JP 2002192668A JP 2004039761 A JP2004039761 A JP 2004039761A
Authority
JP
Japan
Prior art keywords
base material
insulating base
conductive member
hole
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002192668A
Other languages
Japanese (ja)
Inventor
Kazuto Higuchi
樋口 和人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002192668A priority Critical patent/JP2004039761A/en
Publication of JP2004039761A publication Critical patent/JP2004039761A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15182Fan-in arrangement of the internal vias
    • H01L2924/15184Fan-in arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device which can reduce a failure in a solder-connecting portion in a secondary mounting and a failure in a solder-connecting portion in a reliability test after the secondary mounting. <P>SOLUTION: A wiring board 30 comprises an insulated basic material 40 on which conductive members 50 are formed. The insulated basic material 40 is formed with a through-hole 53 penetrating a second main surface 42 from a first main surface 41. The conductive member 50 comprises a pad 51 for chip connection provided on the first main surface 41, a wiring portion 52 provided on the internal wall surface of the through-hole 43, and a re-arrangement pad 53 which closes the through-hole 43 and exposed in the same surface as the second main surface 42. The pad 51 for chip connection, wiring portion 52 and re-arrangement pad 53 are formed of continuous members. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、回路配線を有する配線基板とその製造方法に関し、特に信頼性が高く、製造効率が高いものに関する。また、上述した配線基板に半導体素子を接続した半導体装置に関する。
【0002】
【従来の技術】
通常、ICチップ(半導体装置)は、検査及び取り扱いを容易とするため、入出力端子のサイズやピッチを拡大し、外部環境からチップを保護するためにチップを封止するようにパッケージングされる。当技術分野では、これをICチップの一次実装と呼び、パッケージをさらにはんだ付け等で配線基板上に接続する工程を二次実装と呼ぶ場合もある。近年では、通信ネットワーク機器の性能は飛躍的に向上しつつあり、特に次世代携帯電話に代表される高機能端末に使われるICチップは、動画伝送等複雑な機能付加に対応するため、高度な集積化及び小型化が進んでいる。
【0003】
これらのパッケージ形態は、小型化、軽量化、高密度化といった要求を満たすと同時に、機能の拡大に伴うICの多端子化に対応するために、従来のリードフレームを用いたパッケージやTABに代わり、より高密度化が可能なリードレスのCSP(Chip Scale Package)へと急速に変化しつつある。
【0004】
図8はこのようなCSPのうち、小型化及び多端子化に対して最適な構造を有する半導体装置200を示す断面図である。半導体装置200は、ICチップ(半導体素子)201とインターポーザ基板(配線基板)202とがフリップチップ接続技術で一次実装され、インターポーザ基板202のIC搭載面202aに対する裏面202bに二次実装用の再配列パッド203が形成されている。
【0005】
フリップチップ接続技術は、当技術分野において一般的に用いられる技術である。すなわち、ICチップ201は、その能動面をインターポーザ基板202側に向け、入出力パッド201aに金等で形成したバンプ204を有し、そのバンプ204を介し、インターポーザ基板202上のチップ接続パッド205に電気的に接続されている。再配列パッド203は基板裏面に格子状に配置されている。さらに、はんだボール206を搭載し、BGA(Ball Grid Array)タイプのCSPとして用いる。
【0006】
なお、再配列パッド203は、半導体装置の高密度化に伴い、そのピッチが例えば1mm、0.8mm、0.5mmと年々小さくなりつつある。
【0007】
このような用途に用いられる従来のインターポーザ基板202としては、例えば図9の(a)に示すようなものがあった。この基板の製造方法は、予めポリイミドフィルムやガラスエポキシ等の絶縁性基材211上に、IC接続用パッド205と再配列パッド203とを結ぶ配線212を形成する。次に、絶縁性基材211の裏面側(図中下面)よりレーザ加工によって再配列パッド203に達するビア孔213を開口する。次に、絶縁性基材211上に、IC接続用パッド205と再配列パッド203とを結ぶ配線212を形成する。
【0008】
次に、裏面の孔底に露出した再配列パッド203上にフラックスを塗布し、はんだボール206を仮固定した後、加熱してはんだを溶融することで再配列パッド203上に固定する。
【0009】
ところが、この構成においては、再配列パッド203のピッチが小さくなった場合、それに従いビア孔213の孔径も小さくしなくてはならず、絶縁性基材211の厚さが一定であれば孔深さ/孔径比は大きくなる。この結果、仮固定の際にはんだボール206が孔底に接触せず、はんだボール206の搭載が不可能となる場合がある。
【0010】
また、はんだボール206が搭載できた場合でも、二次実装時のリフロー工程ではんだを溶融した際に、はんだの表面張力によりはんだボール206が再配列パッド203から離れる不良や、はんだにくびれが生じ、二次実装後の熱サイクル試験によりくびれ部分にクラックが発生する等の不良が起こる。
【0011】
このような問題を解決するために、図9の(b)に示すように、孔底に露出した再配列パッド203に追加の電気めっきを行いめっき膜221でビア孔213を充填し、孔の深さを浅くした構造が「エレクトロニクス実装学会誌」、Vol.4、No.1、pp.63−67、2001に開示されている。このような構造であれば、孔深さ/孔径比を小さくできるため、図9の(a)の構造に伴う不良は減少する。また、ビア孔213を完全にめっき膜221で充填し、めっき膜221表面、すなわち新たな再配列パッド203面を絶縁性基材211の表面と同一面としたり、あるいは絶縁性基材211表面より突出した構造としても同様な効果が得られる。
【0012】
【発明が解決しようとする課題】
上述したBGA(Ball Grid Array)タイプのCSP等の半導体装置であると次のような問題があった。すなわち、前記した方法に従い再配列パッド203に追加の電気めっきを行った場合、再配列パッド203とめっき膜221との間に界面が存在してしまうため、ホットオイル試験や高温高湿下での長時間保存試験で、この界面が剥離してしまい電気抵抗が増大する可能性がある。
【0013】
さらに、めっき膜221と樹脂材製の絶縁性基材211との密着力が弱いため、ビア孔213の孔壁面において剥離し、間隙が生じる虞がある。密着が弱くなる原因としては、孔壁面の樹脂表面に存在する凹凸にめっき膜221が追従して付着しないためと考えられる。
【0014】
また、絶縁性基材211としてガラスエポキシ基材を用いることが考えられる。ガラスエポキシ基材は、ポリイミドフィルムに比べ安価で、また熱膨張率が小さいため、この分野で多用されているためである。しかしながら、ガラスエポキシ基材を用いた場合には、孔壁面にガラス繊維が露出するが、ガラス繊維表面とめっき膜との密着力が弱いことは広く知られた事実である。したがって、ガラスエポキシ基材であっても同様の問題が生じる。
【0015】
かくしてめっき膜221と絶縁性基材211とが剥離してできた間隙には外部より水分が浸入し、周囲の環境変化で膨張・収縮を繰り返し、再配列パッド203と追加のめっき膜221の界面がより劣化する。また、絶縁性基材211の厚さが厚く、孔の深さ/孔径比が大きい場合は、これに応じてめっき膜厚を厚くする必要があり、めっき時間が極めて長くなってしまう。例えば、ガラスエポキシ基材を用いた場合には、その厚さが100μm程度であるため、例えば直径0.23mmの孔に対しては少なくとも50μm以上のめっき膜厚が必要となる。電流密度を2A/dmとするとめっき時間は100分以上必要であり、甚だ生産効率が低下してしまうという問題があった。
【0016】
そこで本発明は、BGAタイプの半導体パッケージに用いるインターポーザ基板等において、追加の電気めっきを行うことなく、はんだボールの搭載不良を防止することができる配線基板及びその製造方法を提供することを目的とする。
【0017】
また本発明は、二次実装時におけるはんだ接続部の不良や、二次実装後の信頼性試験におけるはんだ接続部の不良を低減できる半導体装置を提供することを目的とする。
【0018】
【課題を解決するための手段】
上記課題を解決し目的を達成するために、本発明の配線基板、その製造方法及び半導体装置は次のように構成されている。
【0019】
(1)導電性部材が形成された絶縁性基材を有する配線基板において、前記絶縁性基材は、その第1の主面から第2の主面に達する貫通孔を具備し、前記導電性部材は、前記第1の主面に設けられた第1の導電性部材と、前記貫通孔の内壁面に設けられた第2の導電性部材と、前記貫通孔を塞ぎ、かつ、前記第2の主面と同じ面内に露出した第3の導電性部材とを具備し、前記第1、第2及び第3の導電性部材が、連続的な一つの部材により形成されていることを特徴とする。
【0020】
(2)絶縁性基材に導電性部材が設けられた配線基板の製造方法において、凸部を有する金属層を形成する工程と、未硬化の熱硬化性樹脂を含有する絶縁性基材に貫通孔を形成する工程と、前記金属層の凸部が前記絶縁性基材の貫通孔に挿入されるように、前記金属層と前記絶縁性基材とを積層する工程と、前記絶縁性基材を加熱し、前記熱硬化性樹脂を硬化させることで前記金属層と前記絶縁性基材とを密着させる工程と、前記金属層をエッチングし、導電性部材を形成する工程とを備えていることを特徴とする。
【0021】
(3)絶縁性基材に導電性部材が設けられた配線基板の製造方法において、表面に凸部を設けた型板表面の少なくとも凸部上に配置されるように導電性部材を形成する工程と、未硬化の熱硬化性樹脂を含有する絶縁性基材に貫通孔を形成する工程と、前記導電性部材を形成した型板上に、型板の凸部が前記導電性部材を介して前記絶縁性基材の貫通孔に挿入されるように、前記型板と前記絶縁性基材とを積層する工程と、前記絶縁性基材を加熱し、前記熱硬化性樹脂を硬化させることで前記金属層と前記絶縁性基材とを密着させる工程と、前記導電性材料を絶縁性基材に保持しつつ前記型板だけを導電性材料ないし絶縁性基材から剥離する工程とを具備したことを特徴とする。
【0022】
(4)半導体素子が配線基板に実装された半導体装置において、前記配線基板は、導電性部材が形成された絶縁性基材を具備し、前記絶縁性基材は、その第1の主面から第2の主面に達する貫通孔を具備し、前記導電性部材は、前記第1の主面に設けられた第1の導電性部材と、前記貫通孔の内壁面に設けられた第2の導電性部材と、前記貫通孔を塞ぎ、かつ、前記第2の主面と同じ面内に露出した第3の導電性部材とを具備し、前記第1、第2及び第3の導電性部材が、連続的な一つの部材により形成されていることを特徴とする。
【0023】
【発明の実施の形態】
図1は本発明の一実施の形態に係るBGAタイプの半導体装置10を示す縦断面図である。半導体装置10は、ICチップ(半導体素子)20と、このICチップ20が実装される配線基板30とを備えている。なお、図1中Bははんだボール、Rは封止用の樹脂を示している。
【0024】
ICチップ20は、チップ本体21と、その図中下面22に設けられた端子23と、金等のバンプ24とを備えている。配線基板30は、絶縁性基材40と、この絶縁性基材40に設けられた銅膜(金属層)からなる導電性部材50とを備えている。なお、導電性部材50は銅膜の他、めっきや箔のエッチング等で形成した銅ないし銅合金等からなる導電性材料で形成すればよい。
【0025】
また、樹脂Rは、ICチップ20の能動面ないしバンプ24による接続部を外部の水分等から保護するとともに、ICチップ20と配線基板30の機械的接続を保ち、かつ、ICチップ20と配線基板30間の熱膨張係数差から生じるバンプ接続部への応力集中を緩和する目的で、シリカ等の無機フィラーを適量含んだエポキシ樹脂等の樹脂である。この他、異方導電シート、異方導電ペースト等でもよい。
【0026】
絶縁性基材40は、ガラス繊維で強化された熱硬化性樹脂基材であり、当技術分野において一般的にFR−4やFR−5等のグレードで呼称されるガラスエポキシ板等である。絶縁性基材40には、その第1主面41から第2主面42へ貫通する貫通孔43が複数設けられている。なお、Eはエポキシ樹脂である。
【0027】
第1の主面41に設けられたチップ接続用パッド(第1の導電性部材)51と、貫通孔43の内壁面に設けられた配線部(第2の導電性部材)52と、貫通孔43を塞ぎ、かつ、第2の主面42と同じ面内に露出した再配列パッド(第3の導電性部材)53とを備えている。これらチップ接続用パッド51、配線部52、再配列パッド53は連続的な一つの部材により形成されている。再配列パッド53にははんだボールBが取り付けられている。
【0028】
絶縁性基材40内部にはガラス繊維(不図示)が存在するが、貫通孔43内側にはガラス繊維は存在せず、貫通孔の内側にある配線部52はガラス繊維と接触することなくエポキシ樹脂Eと密着している。
【0029】
図2の(a),(b)は配線基板30のみを取出して示す断面図である。図2の(a)に示す第1例に係る配線基板30においては、絶縁性基板40表面にチップ接続用パッド51が形成されている。一方、図2の(b)に示す第2例に係る配線基板30においては、絶縁性基板40の表面とチップ接続用パッド51の表面とが面一になっている。この構造上の違いは後述する配線基板30の製造方法の違いによって生じる。なお、導電性部材50が絶縁性基材40より露出した部分には、その厚さが0.01〜5μmの酸化防止膜ないし拡散防止膜を設けることができる。さらに、基材表面に導電性部材50を保護する目的で、少なくともチップ接続用パッド51及び再配列パッド53を除いた部分の導電性部材50を覆う樹脂層を形成しても良い。
【0030】
次に、上述した配線基板30の製造方法について説明する。図3〜図5は上述した図2の(a)に示す第1例の配線基板30の製造方法を示す図であり、図6及び図7は図2の(b)に示す第2例の配線基板30の製造方法を示す図である。
【0031】
図2の(a)に示す第1例の配線基板30は次のようにして製造される。配線基板30は、絶縁性基材40と導電性部材50とから構成されていることから、絶縁性基材の材料となるプリプレグ70と、導電性部材50の材料となる凸部Daを有する銅箔Dとを用意する。なお、プリプレグ70とはガラス繊維にエポキシ樹脂を含浸し、樹脂を半硬化状態、いわゆるBステージとしたシートである。
【0032】
凸部Daを有する銅膜Dの製造方法には、例えば図3の(a)〜(c)に示す第1の銅膜製造方法と、図4の(a),(b)に示す第2の銅膜製造方法とがある。
【0033】
図3の(a)〜(c)に示した第1の金属箔製造方法では型板60を用いる。すなわち、図3の(a)に示すように、凸部61を有する少なくとも表面が導電性である型板60を用意する。本実施の形態では、凸部61の高さを60μm、凸部61の上部径を200μm、凸部61の下部径250μmとして、型板60の材料にはニッケル板ないしニッケル合金板を用いた。
【0034】
続いて図3の(b)に示すように、型板60の凸部61が形成された面に電気めっきにより例えば15μm程度の厚さを有する銅箔62を形成する。電気めっき工程においては、電気めっき装置の電流源(不図示)の陰極に、型板60表面を接続し、電流源の陽極には含リン銅板(不図示)を接続する。なお、めっき液としては、例えば下記の組成の水溶液を使用することができる。
【0035】
硫酸銅5水和物           50〜150g/L
硫酸(比重1.84)        50〜200g/L
塩酸(34%)           0.05〜0.2mL/L
界面活性剤             適量
光沢剤               適量
めっき条件は、液温25℃、電流密度1〜5A/dmとし、空気吹き出しによりめっき液を攪拌することにより、銅イオンの供給を十分に行う。めっき膜厚が15μmに達する時間を予め求めておき、その時間になったら通電を止め、基材をめっき装置から取り出し十分に水洗する。
【0036】
銅箔62を形成した後、その表面を粗面化する。粗面化処理は銅を酸化させるいわゆる黒色化処理やこれをさらに還元する還元処理、あるいは無電解銅めっきにより針状結晶を析出させる処理等を用いることができるが、本例では黒色化処理の後に還元処理を行う工程を用い、表面の平均粗さを約2μmにした。
【0037】
続いて図3の(c)に示すように、形成した銅箔62を型板60より凸部61の形状を保ったまま剥離し、凸部Daを有する銅膜Dを得た。
【0038】
一方、図4の(a),(b)に示した第2の金属箔製造方法では2つの型板80,81を用いる。また、一方の面が光沢面で、かつ、他方の面が粗面化面となった一般的な18μm厚の銅箔82を用意する。図4の(a)に示すように、一方が上述した型板60と同様の凸部80aが形成された第1の型板80と、もう一方がこの第1の型板80の凸部80aに嵌合するような凹部81aを有する第2の型板81で銅箔82を挟み、20kg/cmの荷重でプレスする。図4の(b)に示すように、除荷し、両方の型板80,81を開放することで、凸部Daを有する銅膜Dを得る。
【0039】
図5の(a)〜(e)は、図3及び図4で示したように形成された凸部Daを有する銅膜Dをプリプレグ70に取り付ける方法について説明している。なお、プリプレグ70への貫通孔71の形成は、ドリルやパンチング、レーザ加工等を用いる。本例においては、厚さ100μmのFR−4のプリプレグ70に対し、炭酸ガスレーザ加工装置を用い、加工後寸法約300μmの貫通孔71を形成した。なお、貫通孔71は、図中下方にいくにつれて内径が大きくなる断面台形状に形成されている。
【0040】
図5の(a)に示すように、上述した製造方法で形成した凸部Daを有する銅膜Dと、凸部Daに対応した位置に貫通孔71を形成したプリプレグ70とを、凸部Daが貫通孔71に挿入するように重ね合わせる。
【0041】
凸部Daの径は最大で250μmであり、貫通孔71の径が50μm程大きいため、重ね合わせた後はこれらの間に隙間を生じる。この後、熱プレスの上下段のプレス定盤72,73でこれらを挟み込み120℃、20kg/cmで30分、続いて180℃、50kgf/cmで1時間プレスし、Bステージのエポキシ樹脂Eを完全に硬化させる。
【0042】
エポキシ樹脂Eは、硬化前に軟化して流動的になるため、貫通孔71と凸部Daの間にできた隙間にエポキシ樹脂Eが流れ込み、隙間はエポキシ樹脂Eで充填される。さらに、エポキシ樹脂Eと接する銅膜Dの面は粗面化されており、熱プレス時にエポキシ樹脂Eがその粗面に沿って流動し強固なアンカーを形成するため、プレス後のエポキシ樹脂Eと銅膜Dとの密着力は高く、1.5kgf/cm程度のピール強度を有する。
【0043】
プレス定盤72,73を冷却後、荷重を除荷すると、図5の(b)に示すような銅膜Dが付いた絶縁性基材40が得られる。
【0044】
次に図5の(c)に示すように、チップ接続用パッド51と再配列パッド53及びこれらを結ぶ配線部52を形成する位置にレジストパターン74を形成する。レジスト材料は特に限定されないが、貫通孔部分の凹部をカバーするために、テンティング性に優れたドライフィルムレジストが好適である。凹凸のある表面に均一な厚さで形成できる電着レジストも適している。本例では、ドライフィルムレジストを用い、一般的なラミネータでレジストを銅膜Dに貼り付け、適当な露光・現像によりレジストパターンを形成した。
【0045】
次に図5の(d)に示すように、レジストを形成していない領域の銅膜Dを、エッチングにより除去する。エッチング液としては例えば以下の組成の水溶液を用いることができる。
【0046】
塩化第2銅 100〜250g/L
塩酸(34%) 100〜200mL/L
エッチングは、液温を40〜60℃として、前記エッチング液をスプレーで基材上に30秒程度均一に吹き付け、その後、純水をスプレーで吹き付けることで十分リンスを行った。最後に図5の(e)に示すように、レジストパターン74を水酸化ナトリウム溶液等により除去した。
【0047】
以上の工程により、図2の(b)に示すようなチップ接続用パッド51と再配列パッド53及びこれらを結ぶ配線部52から構成される一つの連続した導電性部材50が、絶縁性基材40に設けられた配線基板30が製造できる。
【0048】
次に、上述したようにして形成された配線基板30を用いた半導体装置10の製造方法を説明する。図2の(a),(b)に示した配線基板30を用意し、基板上のICチップ20を搭載する個所に樹脂Rを施す。樹脂Rは、マトリクス樹脂中にシリカ等からなる無機フィラを分散させることにより、硬化後の熱膨張係数がマトリクス樹脂単体の熱膨張係数よりも小さくなるように調整される。
【0049】
次に、ICチップ20の接続にフリップチップボンダ等を用い、ICチップ20に設けられたバンプ24とチップ接続パッド51とを位置合わせし、全てのバンプ24がバンプ高さのバラツキによらず確実にチップ接続パッド51と接し、かつ、適当な応力を発生させるためにICチップ20を押し付ける荷重を調節する。荷重を加えた状態で、全体を加熱することで、ICチップ20と配線基板30間に設けた樹脂Rは流動し、ICチップ20のパッド面全体に行き渡り、その状態で硬化する。最後に必要に応じて、配線基板30にはんだボールB等を設ける。
【0050】
上述したように本発明の第1の実施の形態に係るBGAタイプの半導体装置10に用いられる配線基板30において、導電性部材50として、基板表面41に設けられたICチップ20を接続するチップ接続用パッド51と、基板裏面42に設けられた再配列パッド53とが一度のめっき工程で形成された一つの部材でできているため、構成要素が異なる部材や複数回の工程で作られた不連続な界面を有する部材に比べ、温度サイクル試験等のパッケージ信頼性試験で該導電性部材にクラック等の不良が発生する確率は極めて小さくなった。また、ホットオイル試験や高温高湿下での長時間保存試験に対する接続信頼性が向上した。
【0051】
また、はんだボール搭載面となる再配列パッド53のパッド面(図中下面)が絶縁性基材40表面との段差が無い。このため、パッド面が基材表面より窪んだ構造のパッケージに比べた場合、パッケージをマザーボードと呼ばれる回路装置等へ搭載するためのリフロー工程で、はんだボールBがパッド面から脱落する不良発生確率を極めて小さくすることができる。
【0052】
さらに、配線基板30の製造工程において、導電性部材50を部分的に凸状に成形するとともに、貫通孔71を形成したプリプレグ70と導電性部材の材料となる銅膜Dとを凸部Daが貫通孔71に嵌合するように位置合わせし、熱プレスすることで、従来必要だったビア孔内の追加の電気めっきを不要とし、生産効率を飛躍的に高めることが可能となった。
【0053】
図6の(a)〜(d)は、図2の(b)に示す第2例の配線基板30の製造方法を示す図である。まず、図6の(a)に示すように、凸部81を有する少なくとも表面が導電性である型板80を用意する。本例では凸部81の高さを60μm、凸部81の上部径を200μm、凸部81の下部径250μmとして、型板80の材料にはニッケル板ないしニッケル合金板を用いた。この型板80は図3に示した型板60と同一なものを用いてもよい。
【0054】
次に、図6の(b)に示すように、チップ接続用パッド51と再配列パッド53及びこれらを結ぶ配線部52を形成する部位が開口するように、その他の部分がレジストで覆われたレジストパターン82を形成する。レジスト材料は特に限定されないが、微細パターンを形成可能な解像度の高い液状レジストが好適である。凹凸のある表面に均一な厚さで形成できる電着レジストも適している。本実施例では、液状レジストを用い、スプレーコータでレジストを型板に被着し、適当な露光・現像によりレジストパターンを形成した。
【0055】
次に、図6の(c)に示すように、型板80のレジストが開口された部位に電気めっきにより例えば15μm程度の厚さを有する銅めっき膜83を形成する。電気めっき工程においては、電気めっき装置の電流源(不図示)の陰極に、型板表面を接続し、電流源の陽極には含リン銅板(不図示)を接続する。なお、めっき液としては、例えば下記の組成の水溶液を使用することができる。
【0056】
硫酸銅5水和物           50〜150g/L
硫酸(比重1.84)        50〜200g/L
塩酸(34%)           0.05〜0.2mL/L
界面活性剤             適量
光沢剤               適量
めっき条件は、液温25℃、電流密度1〜5A/dmとし、空気吹き出しによりめっき液を攪拌することにより、銅イオンの供給を十分に行う。めっき膜厚が15μmに達する時間を予め求めておき、その時間になったら通電を止め、基材をめっき装置から取り出し十分に水洗する。
【0057】
銅めっき膜83を形成した後、表面を粗面化する。粗面化処理は銅を酸化させるいわゆる黒色化処理やこれをさらに還元する還元処理、あるいは無電解銅めっきにより針状結晶を析出させる処理等を用いることができるが、本例では黒色化処理の後に還元処理を行う工程を用い、膜表面の平均粗さを約2μmにした。
【0058】
次に、図6の(d)に示すように、レジストパターン82を有機溶剤等を用いて除去した。
【0059】
図7の(a),(b)では、図6で示したように形成された凸部83aを有する銅めっき膜83をプリプレグ70に取り付ける方法について説明している。なお、プリプレグ70への貫通孔71の形成は、ドリルやパンチング、レーザ加工等を用いる。本例においては、厚さ100μmのFR−4のプリプレグ70に対し、炭酸ガスレーザ加工装置を用い、加工後寸法約300μmの貫通孔71を形成した。なお、貫通孔71は、図中下方にいくにつれて内径が大きくなる断面台形状に形成されている。
【0060】
図7の(a)に示すように、上述した製造方法で形成した凸部Daを有する銅膜Dと、凸部Daに対応した位置に貫通孔71を形成したプリプレグ70とを、凸部Daが貫通孔71に挿入するように重ね合わせる。
【0061】
凸部Daの径は最大で250μmであり、貫通孔71の径が50μm程大きいため、重ね合わせた後はこれらの間に隙間を生じる。この後、熱プレスの上下段のプレス定盤72,73でこれらを挟み込み120℃、20kg/cmで30分、続いて180℃、50kgf/cmで1時間プレスし、Bステージのエポキシ樹脂Eを完全に硬化させる。
【0062】
エポキシ樹脂Eは、硬化前に軟化して流動的になるため、貫通孔71と凸部Daの間にできた隙間にエポキシ樹脂Eが流れ込み、隙間はエポキシ樹脂Eで充填される。さらに、エポキシ樹脂Eと接する銅膜Dの面は粗面化されており、熱プレス時にエポキシ樹脂Eがその粗面に沿って流動し強固なアンカーを形成するため、プレス後のエポキシ樹脂Eと銅膜Dとの密着力は高く、1.5kgf/cm程度のピール強度を有する。
【0063】
プレス定盤72,73を冷却後、荷重を除荷すると、図7の(b)に示すような導電性部材50が付いた絶縁性基板40が得られる。この後、型板80だけを絶縁性基材40から剥離する。導電性部材50は絶縁性基材40に埋め込まれ、基材側に転写されている。
【0064】
第2例に係る配線基板30においても上述した第1例に係る配線基板30と同様の効果を得ることができ、この配線基板30を用いた半導体装置10においても同様の効果を得ることができる
なお、本発明は前記実施の形態に限定されるものではない。すなわち、上述した実施の形態においては、BGAタイプの半導体装置について説明したが、LGA(Land Grid Array)タイプの半導体装置に適用してもよい。また、型板、導電性部材、絶縁性基材、めっき液、エッチング液はその材質、寸法、構成、組成等に関して種々変更して用いることができ、さらに、電気めっき、エッチングあるいは熱プレスにおける条件も前記例示に限定されない。
【0065】
さらに、連続的な一つの構成部材に対し、これを主材として表面に酸化防止膜、拡散防止膜等を設けても良い。この場合、これらの膜が、主材である連続的な一つの構成部材の機械的性質に影響を与えることは好ましくないため、これらの膜厚は、主材の最薄部である厚みの1/5以下であることが望ましい。また、望ましい導電性部材の材質は銅あるいは銅合金であり、望ましい絶縁性基材は、ガラス繊維を構造支持体としてエポキシ樹脂、ポリフェニルエーテル、あるいはビスマレイミド・トリアジン樹脂を含浸したものである。
【0066】
この他、本発明の要旨を逸脱しない範囲で種々変形実施可能であるのは勿論である。
【0067】
【発明の効果】
本発明によれば、BGAタイプの半導体パッケージに用いるインターポーザ基板等において、追加の電気めっきを行うことなく、はんだボールの搭載不良を防止することができる。また、二次実装時におけるはんだ接続部の不良や、二次実装後の信頼性試験におけるはんだ接続部の不良を低減できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る半導体装置を示す断面図。
【図2】同半導体装置に組み込まれた配線基板を示す図であって、(a)は第1例を示す断面図、(b)は第2例を示す断面図。
【図3】第1例に係る配線基板の製造工程における前半工程の一例を示す断面図。
【図4】同配線基板の製造工程における前半工程の別の例を示す断面図。
【図5】同配線基板の製造工程における後半工程を示す断面図。
【図6】第2例に係る配線基板の製造工程における前半工程を示す断面図。
【図7】同配線基板の製造工程における後半工程を示す断面図。
【図8】従来のBGAタイプの半導体装置の一例を示す断面図。
【図9】同半導体装置に組み込まれた配線基板を示す断面図。
【符号の説明】
10…半導体装置
20…ICチップ(半導体素子)
30…配線基板
40…絶縁性基材
43…貫通孔
50…導電性部材
51…チップ接続用パッド(第1の導電性部材)
52…配線部(第2の導電性部材)
53…再配列パッド(第3の導電性部材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board having circuit wiring and a method for manufacturing the same, and more particularly to a wiring board having high reliability and high manufacturing efficiency. Further, the present invention relates to a semiconductor device in which a semiconductor element is connected to the above-described wiring board.
[0002]
[Prior art]
Usually, an IC chip (semiconductor device) is packaged so as to increase the size and pitch of input / output terminals to facilitate inspection and handling, and to seal the chip to protect the chip from an external environment. . In the technical field, this is called primary mounting of an IC chip, and a process of connecting a package to a wiring board by soldering or the like may be called secondary mounting. In recent years, the performance of communication network equipment has been dramatically improved. In particular, IC chips used for high-performance terminals represented by next-generation mobile phones are required to support sophisticated functions such as moving image transmission. Integration and miniaturization are progressing.
[0003]
These package forms satisfy the demands of miniaturization, weight reduction, and high density, and replace conventional packages using lead frames and TABs in order to respond to the increase in the number of IC terminals due to the expansion of functions. Is rapidly changing to a leadless CSP (Chip Scale Package) capable of higher density.
[0004]
FIG. 8 is a cross-sectional view showing a semiconductor device 200 having an optimal structure for miniaturization and multi-terminal configuration among such CSPs. In the semiconductor device 200, an IC chip (semiconductor element) 201 and an interposer substrate (wiring substrate) 202 are primarily mounted by flip-chip connection technology, and rearrangement for secondary mounting is performed on a back surface 202b of the interposer substrate 202 with respect to an IC mounting surface 202a. A pad 203 is formed.
[0005]
Flip chip connection technology is a technology commonly used in the art. That is, the IC chip 201 has a bump 204 formed of gold or the like on the input / output pad 201a with its active surface facing the interposer substrate 202, and the chip connection pad 205 on the interposer substrate 202 via the bump 204. It is electrically connected. The rearrangement pads 203 are arranged in a lattice on the back surface of the substrate. Further, a solder ball 206 is mounted and used as a BGA (Ball Grid Array) type CSP.
[0006]
The pitch of the rearrangement pads 203 is decreasing year by year, for example, to 1 mm, 0.8 mm, and 0.5 mm as the density of the semiconductor device increases.
[0007]
As a conventional interposer substrate 202 used for such a purpose, for example, there is a substrate as shown in FIG. In this method of manufacturing a substrate, a wiring 212 connecting an IC connection pad 205 and a rearrangement pad 203 is formed on an insulating substrate 211 such as a polyimide film or glass epoxy in advance. Next, a via hole 213 reaching the rearrangement pad 203 is opened by laser processing from the back surface side (the lower surface in the figure) of the insulating base material 211. Next, a wiring 212 connecting the IC connection pad 205 and the rearrangement pad 203 is formed on the insulating base 211.
[0008]
Next, a flux is applied to the rearrangement pad 203 exposed at the bottom of the hole on the back surface, and the solder ball 206 is temporarily fixed. Then, the solder is heated and melted to be fixed on the rearrangement pad 203.
[0009]
However, in this configuration, when the pitch of the rearrangement pads 203 is reduced, the diameter of the via hole 213 must be reduced accordingly, and if the thickness of the insulating base material 211 is constant, the hole depth is reduced. The diameter / pore diameter ratio increases. As a result, there is a case where the solder ball 206 does not contact the bottom of the hole at the time of the temporary fixing and the mounting of the solder ball 206 becomes impossible.
[0010]
In addition, even when the solder ball 206 can be mounted, when the solder is melted in the reflow process at the time of the secondary mounting, a defect that the solder ball 206 separates from the rearrangement pad 203 due to the surface tension of the solder and a constriction of the solder occur. In addition, a defect such as a crack occurring in a constricted portion occurs in a heat cycle test after the secondary mounting.
[0011]
In order to solve such a problem, as shown in FIG. 9B, additional electroplating is performed on the rearranged pads 203 exposed at the bottoms of the holes, and the via holes 213 are filled with the plating film 221 to form holes. The structure having a reduced depth is described in "Journal of Japan Institute of Electronics Packaging", Vol. 4, no. 1, pp. 63-67, 2001. With such a structure, the ratio of the hole depth / hole diameter can be reduced, so that the defects associated with the structure of FIG. 9A are reduced. Further, the via hole 213 is completely filled with the plating film 221, and the surface of the plating film 221, that is, the surface of the new rearrangement pad 203 is made the same as the surface of the insulating substrate 211, or the surface of the insulating substrate 211 is A similar effect can be obtained by using a protruding structure.
[0012]
[Problems to be solved by the invention]
The above-described semiconductor device such as a BGA (Ball Grid Array) type CSP has the following problems. That is, when additional electroplating is performed on the rearrangement pad 203 according to the above-described method, an interface exists between the rearrangement pad 203 and the plating film 221, so that a hot oil test or a high-temperature high-humidity In a long-term storage test, the interface may peel off and the electrical resistance may increase.
[0013]
Furthermore, since the adhesion between the plating film 221 and the insulating substrate 211 made of a resin material is weak, there is a possibility that the plating film 221 peels off on the hole wall surface of the via hole 213 and a gap is generated. It is considered that the cause of the weak adhesion is that the plating film 221 does not adhere to the unevenness existing on the resin surface on the hole wall surface.
[0014]
It is also conceivable to use a glass epoxy substrate as the insulating substrate 211. Glass epoxy substrates are inexpensive and have a low coefficient of thermal expansion as compared with polyimide films, and are therefore often used in this field. However, when a glass epoxy substrate is used, glass fibers are exposed on the wall surfaces of the holes, but it is widely known that the adhesion between the glass fiber surface and the plating film is weak. Therefore, a similar problem occurs even with a glass epoxy base material.
[0015]
Thus, moisture enters from the outside into the gap formed by the peeling of the plating film 221 and the insulating base material 211, and repeatedly expands and contracts due to a change in the surrounding environment, and the interface between the rearranged pad 203 and the additional plating film 221 is formed. Deteriorates more. Further, when the thickness of the insulating base material 211 is large and the depth / hole diameter ratio is large, it is necessary to increase the plating film thickness accordingly, and the plating time becomes extremely long. For example, when a glass epoxy base material is used, its thickness is about 100 μm, and therefore, for example, a hole having a diameter of 0.23 mm requires a plating film thickness of at least 50 μm or more. Current density of 2 A / dm 2 In this case, the plating time is required to be 100 minutes or more, and there is a problem that the production efficiency is significantly reduced.
[0016]
Therefore, an object of the present invention is to provide a wiring board and a method for manufacturing the same, which can prevent defective mounting of solder balls on an interposer board or the like used for a BGA type semiconductor package without performing additional electroplating. I do.
[0017]
It is another object of the present invention to provide a semiconductor device capable of reducing the defect of the solder connection part during the secondary mounting and the defect of the solder connection part in the reliability test after the secondary mounting.
[0018]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, a wiring board, a method of manufacturing the same, and a semiconductor device of the present invention are configured as follows.
[0019]
(1) In a wiring board having an insulating base material on which a conductive member is formed, the insulating base material includes a through hole extending from a first main surface to a second main surface thereof, and The member includes a first conductive member provided on the first main surface, a second conductive member provided on an inner wall surface of the through hole, a second conductive member provided on the inner wall surface of the through hole, and the second conductive member provided on the second main surface. And a third conductive member exposed in the same plane as the main surface of the third conductive member, wherein the first, second, and third conductive members are formed by one continuous member. And
[0020]
(2) In the method for manufacturing a wiring board in which a conductive member is provided on an insulating base material, a step of forming a metal layer having a convex portion and a step of penetrating the insulating base material containing an uncured thermosetting resin Forming a hole, laminating the metal layer and the insulating base material such that the protrusion of the metal layer is inserted into a through hole of the insulating base material, Heating the thermosetting resin to bring the metal layer into close contact with the insulating substrate, and etching the metal layer to form a conductive member. It is characterized by.
[0021]
(3) In a method of manufacturing a wiring board in which a conductive member is provided on an insulating base material, a step of forming a conductive member so as to be disposed on at least the protrusion on the surface of the template having the protrusion provided on the surface. And a step of forming a through-hole in an insulating base material containing an uncured thermosetting resin, and, on a template on which the conductive member is formed, a convex portion of the template is provided via the conductive member. By inserting the template and the insulating base material so as to be inserted into the through hole of the insulating base material, heating the insulating base material, and curing the thermosetting resin. A step of bringing the metal layer into close contact with the insulating base, and a step of peeling only the template from the conductive material or the insulating base while holding the conductive material on the insulating base. It is characterized by the following.
[0022]
(4) In a semiconductor device in which a semiconductor element is mounted on a wiring board, the wiring board includes an insulating base material on which a conductive member is formed, and the insulating base material is arranged from a first main surface thereof. A first conductive member provided on the first main surface; and a second conductive member provided on an inner wall surface of the through hole. A conductive member, and a third conductive member that closes the through hole and is exposed in the same plane as the second main surface, wherein the first, second, and third conductive members are provided. Are formed by one continuous member.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a longitudinal sectional view showing a BGA type semiconductor device 10 according to one embodiment of the present invention. The semiconductor device 10 includes an IC chip (semiconductor element) 20 and a wiring board 30 on which the IC chip 20 is mounted. In FIG. 1, B indicates a solder ball, and R indicates a sealing resin.
[0024]
The IC chip 20 includes a chip body 21, terminals 23 provided on a lower surface 22 in the figure, and bumps 24 made of gold or the like. The wiring board 30 includes an insulating base material 40 and a conductive member 50 made of a copper film (metal layer) provided on the insulating base material 40. The conductive member 50 may be formed of a conductive material such as copper or a copper alloy formed by plating, etching of a foil, or the like, in addition to the copper film.
[0025]
In addition, the resin R protects the active surface of the IC chip 20 or the connection portion formed by the bumps 24 from external moisture and the like, maintains the mechanical connection between the IC chip 20 and the wiring board 30, and protects the IC chip 20 from the wiring board. It is a resin such as an epoxy resin containing an appropriate amount of an inorganic filler such as silica for the purpose of relieving stress concentration on a bump connection portion caused by a difference in thermal expansion coefficient between the 30. In addition, an anisotropic conductive sheet, an anisotropic conductive paste, or the like may be used.
[0026]
The insulating substrate 40 is a thermosetting resin substrate reinforced with glass fiber, and is a glass epoxy plate or the like generally referred to in the art as a grade such as FR-4 or FR-5. The insulating base material 40 has a plurality of through holes 43 penetrating from the first main surface 41 to the second main surface 42. E is an epoxy resin.
[0027]
A chip connection pad (first conductive member) 51 provided on the first main surface 41, a wiring portion (second conductive member) 52 provided on the inner wall surface of the through hole 43, and a through hole A rearrangement pad (third conductive member) 53 that closes 43 and is exposed in the same plane as the second main surface 42 is provided. The chip connection pad 51, the wiring portion 52, and the rearrangement pad 53 are formed by one continuous member. The solder balls B are attached to the rearrangement pads 53.
[0028]
Glass fiber (not shown) exists inside the insulating base material 40, but no glass fiber exists inside the through-hole 43, and the wiring portion 52 inside the through-hole does not come into contact with the glass fiber. It is in close contact with resin E.
[0029]
2A and 2B are cross-sectional views showing only the wiring board 30 taken out. In the wiring substrate 30 according to the first example shown in FIG. 2A, chip connection pads 51 are formed on the surface of the insulating substrate 40. On the other hand, in the wiring board 30 according to the second example shown in FIG. 2B, the surface of the insulating substrate 40 and the surface of the chip connection pad 51 are flush. This difference in structure is caused by a difference in a method of manufacturing the wiring board 30 described later. The portion where the conductive member 50 is exposed from the insulating base material 40 can be provided with an anti-oxidation film or a diffusion prevention film having a thickness of 0.01 to 5 μm. Further, for the purpose of protecting the conductive member 50 on the surface of the base material, a resin layer covering at least a portion of the conductive member 50 other than the chip connection pads 51 and the rearrangement pads 53 may be formed.
[0030]
Next, a method for manufacturing the above-described wiring board 30 will be described. 3 to 5 are views showing a method of manufacturing the above-described wiring board 30 of the first example shown in FIG. 2A, and FIGS. 6 and 7 are diagrams of the second example shown in FIG. FIG. 6 is a diagram illustrating a method for manufacturing the wiring board 30.
[0031]
The wiring board 30 of the first example shown in FIG. 2A is manufactured as follows. Since the wiring board 30 is composed of the insulating base material 40 and the conductive member 50, the prepreg 70 serving as the material of the insulating base material and the copper having the convex portion Da serving as the material of the conductive member 50 are provided. A foil D is prepared. The prepreg 70 is a sheet in which glass fiber is impregnated with an epoxy resin and the resin is in a semi-cured state, that is, a so-called B stage.
[0032]
The method of manufacturing the copper film D having the convex portion Da includes, for example, a first copper film manufacturing method shown in FIGS. 3A to 3C and a second copper film manufacturing method shown in FIGS. 4A and 4B. Copper film manufacturing method.
[0033]
In the first metal foil manufacturing method shown in FIGS. 3A to 3C, a template 60 is used. That is, as shown in FIG. 3A, a template 60 having at least a surface having a projection 61 and having conductivity is prepared. In the present embodiment, the height of the protrusion 61 is 60 μm, the upper diameter of the protrusion 61 is 200 μm, and the lower diameter of the protrusion 61 is 250 μm, and a nickel plate or a nickel alloy plate is used as the material of the template 60.
[0034]
Subsequently, as shown in FIG. 3B, a copper foil 62 having a thickness of, for example, about 15 μm is formed on the surface of the template 60 on which the protrusions 61 are formed by electroplating. In the electroplating step, the surface of the template 60 is connected to the cathode of a current source (not shown) of the electroplating apparatus, and a phosphorous copper plate (not shown) is connected to the anode of the current source. As the plating solution, for example, an aqueous solution having the following composition can be used.
[0035]
Copper sulfate pentahydrate 50-150g / L
Sulfuric acid (specific gravity 1.84) 50-200 g / L
Hydrochloric acid (34%) 0.05-0.2mL / L
Surfactant appropriate amount
Brightener appropriate amount
The plating conditions are a liquid temperature of 25 ° C. and a current density of 1 to 5 A / dm. 2 The copper ions are sufficiently supplied by stirring the plating solution by blowing air. The time required for the plating film thickness to reach 15 μm is determined in advance, and when that time is reached, the energization is stopped and the substrate is taken out of the plating apparatus and washed sufficiently with water.
[0036]
After forming the copper foil 62, its surface is roughened. As the surface roughening treatment, a so-called blackening treatment for oxidizing copper, a reduction treatment for further reducing the same, or a treatment for precipitating needle-like crystals by electroless copper plating can be used. The average roughness of the surface was set to about 2 μm by using a step of performing a reduction treatment later.
[0037]
Subsequently, as shown in FIG. 3C, the formed copper foil 62 was peeled off from the template 60 while keeping the shape of the projection 61 to obtain a copper film D having a projection Da.
[0038]
On the other hand, in the second metal foil manufacturing method shown in FIGS. 4A and 4B, two template plates 80 and 81 are used. In addition, a general copper foil 82 having a thickness of 18 μm in which one surface is a glossy surface and the other surface is a roughened surface is prepared. As shown in FIG. 4 (a), one is a first template 80 on which a projection 80a similar to the above-described template 60 is formed, and the other is a projection 80a of the first template 80. The copper foil 82 is sandwiched by a second template 81 having a concave portion 81a that fits into 2 Press with load. As shown in FIG. 4B, the copper film D having the protrusion Da is obtained by unloading and opening both the mold plates 80 and 81.
[0039]
FIGS. 5A to 5E illustrate a method of attaching the copper film D having the convexities Da formed as shown in FIGS. 3 and 4 to the prepreg 70. FIG. The formation of the through holes 71 in the prepreg 70 uses drilling, punching, laser processing, or the like. In this example, a through-hole 71 having a dimension of about 300 μm was formed in a 100 μm thick FR-4 prepreg 70 using a carbon dioxide laser processing apparatus. The through-hole 71 is formed in a trapezoidal cross section in which the inner diameter increases as going downward in the figure.
[0040]
As shown in FIG. 5A, a copper film D having a convex portion Da formed by the above-described manufacturing method and a prepreg 70 having a through hole 71 formed at a position corresponding to the convex portion Da are combined with the convex portion Da. Are overlapped so as to be inserted into the through holes 71.
[0041]
The diameter of the projection Da is 250 μm at the maximum, and the diameter of the through hole 71 is about 50 μm. Thereafter, these are sandwiched between press platens 72 and 73 in the upper and lower stages of the hot press at 120 ° C. and 20 kg / cm. 2 For 30 minutes, then 180 ° C, 50kgf / cm 2 For 1 hour to completely cure the B-stage epoxy resin E.
[0042]
Since the epoxy resin E softens before being cured and becomes fluid, the epoxy resin E flows into a gap formed between the through hole 71 and the convex part Da, and the gap is filled with the epoxy resin E. Further, the surface of the copper film D in contact with the epoxy resin E is roughened, and the epoxy resin E flows along the rough surface during hot pressing to form a strong anchor. The adhesion to the copper film D is high, and has a peel strength of about 1.5 kgf / cm.
[0043]
After the press platens 72 and 73 are cooled, when the load is removed, the insulating base material 40 having the copper film D as shown in FIG. 5B is obtained.
[0044]
Next, as shown in FIG. 5C, a resist pattern 74 is formed at a position where a chip connection pad 51, a rearrangement pad 53, and a wiring portion 52 connecting these are formed. The resist material is not particularly limited, but a dry film resist excellent in tenting properties is preferable in order to cover the concave portion of the through-hole portion. Electrodeposited resists that can be formed with a uniform thickness on uneven surfaces are also suitable. In this example, a dry film resist was used, a resist was attached to the copper film D with a general laminator, and a resist pattern was formed by appropriate exposure and development.
[0045]
Next, as shown in FIG. 5D, the copper film D in a region where no resist is formed is removed by etching. As the etchant, for example, an aqueous solution having the following composition can be used.
[0046]
Cupric chloride 100-250g / L
Hydrochloric acid (34%) 100-200 mL / L
The etching was performed at a liquid temperature of 40 to 60 ° C., and the etching solution was sprayed uniformly on the base material for about 30 seconds by spraying, and thereafter, pure water was sprayed on the substrate to sufficiently rinse. Finally, as shown in FIG. 5E, the resist pattern 74 was removed with a sodium hydroxide solution or the like.
[0047]
By the above steps, one continuous conductive member 50 composed of the chip connection pad 51, the rearrangement pad 53, and the wiring portion 52 connecting them as shown in FIG. The wiring substrate 30 provided on the forty can be manufactured.
[0048]
Next, a method of manufacturing the semiconductor device 10 using the wiring board 30 formed as described above will be described. The wiring board 30 shown in FIGS. 2A and 2B is prepared, and a resin R is applied to a place where the IC chip 20 is mounted on the board. The resin R is adjusted by dispersing an inorganic filler made of silica or the like in the matrix resin so that the coefficient of thermal expansion after curing is smaller than the coefficient of thermal expansion of the matrix resin alone.
[0049]
Next, the bumps 24 provided on the IC chip 20 are aligned with the chip connection pads 51 by using a flip chip bonder or the like for connection of the IC chip 20, and all the bumps 24 are surely irrespective of the variation in the bump height. Then, the load for contacting the chip connection pad 51 and pressing the IC chip 20 to generate an appropriate stress is adjusted. By heating the whole under a load, the resin R provided between the IC chip 20 and the wiring board 30 flows, spreads over the entire pad surface of the IC chip 20, and is cured in that state. Finally, solder balls B and the like are provided on the wiring board 30 as necessary.
[0050]
As described above, in the wiring board 30 used in the BGA type semiconductor device 10 according to the first embodiment of the present invention, the chip connection for connecting the IC chip 20 provided on the substrate surface 41 as the conductive member 50 Pad 51 and the rearrangement pad 53 provided on the back surface 42 of the substrate are made of one member formed in a single plating process, so that components having different components or improperly formed in a plurality of processes are used. As compared with a member having a continuous interface, the probability of occurrence of defects such as cracks in the conductive member in a package reliability test such as a temperature cycle test was extremely small. In addition, connection reliability for a hot oil test and a long-term storage test under high temperature and high humidity was improved.
[0051]
In addition, the pad surface (lower surface in the figure) of the rearrangement pad 53 serving as the solder ball mounting surface has no step with the surface of the insulating base material 40. Therefore, when compared with a package having a structure in which the pad surface is depressed from the surface of the base material, the probability of occurrence of a defect that the solder ball B falls off the pad surface in the reflow step for mounting the package on a circuit device called a motherboard or the like is reduced. It can be extremely small.
[0052]
Further, in the manufacturing process of the wiring board 30, the conductive member 50 is partially formed into a convex shape, and the prepreg 70 in which the through-hole 71 is formed and the copper film D serving as the material of the conductive member are formed with the convex portion Da. By performing positioning and hot pressing so as to fit into the through-hole 71, additional electroplating in the via hole, which was conventionally required, is not required, and the production efficiency can be dramatically improved.
[0053]
FIGS. 6A to 6D are diagrams showing a method of manufacturing the second example wiring board 30 shown in FIG. 2B. First, as shown in FIG. 6A, a template 80 having at least a surface having a convex portion 81 and having conductivity is prepared. In this example, the height of the projection 81 is 60 μm, the upper diameter of the projection 81 is 200 μm, and the lower diameter of the projection 81 is 250 μm, and a nickel plate or a nickel alloy plate is used as the material of the template 80. The template 80 may be the same as the template 60 shown in FIG.
[0054]
Next, as shown in FIG. 6B, the other portions are covered with resist so that the portions for forming the chip connection pads 51, the rearrangement pads 53, and the wiring portions 52 connecting them are opened. A resist pattern 82 is formed. The resist material is not particularly limited, but a high-resolution liquid resist capable of forming a fine pattern is preferable. Electrodeposited resists that can be formed with a uniform thickness on uneven surfaces are also suitable. In this embodiment, a liquid resist was used, a resist was applied to a template using a spray coater, and a resist pattern was formed by appropriate exposure and development.
[0055]
Next, as shown in FIG. 6C, a copper plating film 83 having a thickness of, for example, about 15 μm is formed by electroplating on a portion of the template 80 where the resist is opened. In the electroplating step, the surface of the template is connected to the cathode of a current source (not shown) of the electroplating apparatus, and a phosphorous copper plate (not shown) is connected to the anode of the current source. As the plating solution, for example, an aqueous solution having the following composition can be used.
[0056]
Copper sulfate pentahydrate 50-150g / L
Sulfuric acid (specific gravity 1.84) 50-200 g / L
Hydrochloric acid (34%) 0.05-0.2mL / L
Surfactant appropriate amount
Brightener appropriate amount
The plating conditions are a liquid temperature of 25 ° C. and a current density of 1 to 5 A / dm. 2 The copper ions are sufficiently supplied by stirring the plating solution by blowing air. The time required for the plating film thickness to reach 15 μm is determined in advance, and when that time is reached, the energization is stopped and the substrate is taken out of the plating apparatus and washed sufficiently with water.
[0057]
After forming the copper plating film 83, the surface is roughened. As the surface roughening treatment, a so-called blackening treatment for oxidizing copper, a reduction treatment for further reducing the same, or a treatment for precipitating needle-like crystals by electroless copper plating can be used. The average roughness of the film surface was set to about 2 μm by using a step of performing a reduction treatment later.
[0058]
Next, as shown in FIG. 6D, the resist pattern 82 was removed using an organic solvent or the like.
[0059]
FIGS. 7A and 7B illustrate a method of attaching the copper plating film 83 having the convex portions 83a formed as shown in FIG. The formation of the through holes 71 in the prepreg 70 uses drilling, punching, laser processing, or the like. In this example, a through-hole 71 having a dimension of about 300 μm was formed in a 100 μm thick FR-4 prepreg 70 using a carbon dioxide laser processing apparatus. The through-hole 71 is formed in a trapezoidal cross section in which the inner diameter increases as going downward in the figure.
[0060]
As shown in FIG. 7A, a copper film D having a convex portion Da formed by the above-described manufacturing method and a prepreg 70 having a through hole 71 formed at a position corresponding to the convex portion Da are combined with the convex portion Da. Are overlapped so as to be inserted into the through holes 71.
[0061]
The diameter of the projection Da is 250 μm at the maximum, and the diameter of the through hole 71 is about 50 μm. Thereafter, these are sandwiched between press platens 72 and 73 in the upper and lower stages of the hot press at 120 ° C. and 20 kg / cm. 2 For 30 minutes, then 180 ° C, 50kgf / cm 2 For 1 hour to completely cure the B-stage epoxy resin E.
[0062]
Since the epoxy resin E softens before being cured and becomes fluid, the epoxy resin E flows into a gap formed between the through hole 71 and the convex part Da, and the gap is filled with the epoxy resin E. Further, the surface of the copper film D in contact with the epoxy resin E is roughened, and the epoxy resin E flows along the rough surface during hot pressing to form a strong anchor. The adhesion to the copper film D is high, and has a peel strength of about 1.5 kgf / cm.
[0063]
After the press platens 72 and 73 are cooled, when the load is removed, the insulating substrate 40 having the conductive member 50 as shown in FIG. 7B is obtained. Thereafter, only the template 80 is separated from the insulating base material 40. The conductive member 50 is embedded in the insulating base material 40 and is transferred to the base material side.
[0064]
The same effect as the above-described wiring substrate 30 according to the first example can be obtained in the wiring substrate 30 according to the second example, and the same effect can be obtained in the semiconductor device 10 using the wiring substrate 30 as well.
The present invention is not limited to the above embodiment. That is, in the above-described embodiment, a BGA type semiconductor device has been described, but the present invention may be applied to an LGA (Land Grid Array) type semiconductor device. The template, the conductive member, the insulating substrate, the plating solution, and the etching solution can be used with various changes in the material, dimensions, configuration, composition, and the like, and furthermore, the conditions in electroplating, etching or hot pressing. Is not limited to the above example.
[0065]
Further, an anti-oxidation film, an anti-diffusion film, and the like may be provided on the surface of one continuous component using this as a main material. In this case, since it is not preferable that these films affect the mechanical properties of one continuous constituent member as the main material, these film thicknesses are set to one of the thinnest portions of the main material. / 5 or less is desirable. A desirable material for the conductive member is copper or a copper alloy, and a desirable insulating base material is one in which glass fiber is used as a structural support and impregnated with epoxy resin, polyphenyl ether, or bismaleimide / triazine resin.
[0066]
In addition, it goes without saying that various modifications can be made without departing from the spirit of the present invention.
[0067]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, in the interposer board | substrate etc. used for a BGA type semiconductor package, the mounting failure of a solder ball can be prevented, without performing additional electroplating. In addition, it is possible to reduce the defect of the solder connection part during the secondary mounting and the defect of the solder connection part in the reliability test after the secondary mounting.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a semiconductor device according to one embodiment of the present invention.
FIGS. 2A and 2B are views showing a wiring board incorporated in the semiconductor device, wherein FIG. 2A is a cross-sectional view showing a first example, and FIG. 2B is a cross-sectional view showing a second example.
FIG. 3 is a sectional view showing an example of a first half of a process of manufacturing the wiring board according to the first example;
FIG. 4 is a sectional view showing another example of the first half of the manufacturing process of the wiring board.
FIG. 5 is a sectional view showing a latter half of the manufacturing process of the wiring board.
FIG. 6 is a sectional view showing a first half of a process of manufacturing a wiring board according to a second example;
FIG. 7 is a sectional view showing a latter half of the manufacturing process of the wiring board.
FIG. 8 is a cross-sectional view illustrating an example of a conventional BGA type semiconductor device.
FIG. 9 is a sectional view showing a wiring board incorporated in the semiconductor device.
[Explanation of symbols]
10 ... Semiconductor device
20 ... IC chip (semiconductor element)
30 Wiring board
40 ... insulating base material
43 ... Through-hole
50 ... conductive member
51: Chip connection pad (first conductive member)
52... Wiring portion (second conductive member)
53: Rearrangement pad (third conductive member)

Claims (4)

導電性部材が形成された絶縁性基材を有する配線基板において、
前記絶縁性基材は、その第1の主面から第2の主面に達する貫通孔を具備し、
前記導電性部材は、前記第1の主面に設けられた第1の導電性部材と、前記貫通孔の内壁面に設けられた第2の導電性部材と、前記貫通孔を塞ぎ、かつ、前記第2の主面と同じ面内に露出した第3の導電性部材とを具備し、
前記第1、第2及び第3の導電性部材が、連続的な一つの部材により形成されていることを特徴とする配線基板。
In a wiring board having an insulating base material formed with a conductive member,
The insulating base material has a through hole extending from the first main surface to the second main surface,
The conductive member, a first conductive member provided on the first main surface, a second conductive member provided on an inner wall surface of the through hole, and closes the through hole, and A third conductive member exposed in the same plane as the second main surface,
The wiring board, wherein the first, second and third conductive members are formed by one continuous member.
絶縁性基材に導電性部材が設けられた配線基板の製造方法において、
凸部を有する金属層を形成する工程と、
未硬化の熱硬化性樹脂を含有する絶縁性基材に貫通孔を形成する工程と、
前記金属層の凸部が前記絶縁性基材の貫通孔に挿入されるように、前記金属層と前記絶縁性基材とを積層する工程と、
前記絶縁性基材を加熱し、前記熱硬化性樹脂を硬化させることで前記金属層と前記絶縁性基材とを密着させる工程と、
前記金属層をエッチングし、導電性部材を形成する工程とを備えていることを特徴とする配線基板の製造方法。
In a method of manufacturing a wiring board provided with a conductive member on an insulating base material,
Forming a metal layer having a convex portion,
A step of forming a through hole in the insulating base material containing an uncured thermosetting resin,
A step of laminating the metal layer and the insulating base material such that the protrusions of the metal layer are inserted into the through holes of the insulating base material,
A step of heating the insulating base material and bringing the metal layer into close contact with the insulating base material by curing the thermosetting resin,
Forming a conductive member by etching the metal layer.
絶縁性基材に導電性部材が設けられた配線基板の製造方法において、
表面に凸部を設けた型板表面の少なくとも凸部上に配置されるように導電性部材を形成する工程と、
未硬化の熱硬化性樹脂を含有する絶縁性基材に貫通孔を形成する工程と、
前記導電性部材を形成した型板上に、型板の凸部が前記導電性部材を介して前記絶縁性基材の貫通孔に挿入されるように、前記型板と前記絶縁性基材とを積層する工程と、
前記絶縁性基材を加熱し、前記熱硬化性樹脂を硬化させることで前記金属層と前記絶縁性基材とを密着させる工程と、
前記導電性材料を絶縁性基材に保持しつつ前記型板だけを導電性材料ないし絶縁性基材から剥離する工程とを具備したことを特徴とする配線基板の製造方法。
In a method of manufacturing a wiring board provided with a conductive member on an insulating base material,
A step of forming a conductive member so as to be arranged on at least the convex portion of the template surface having the convex portion provided on the surface,
A step of forming a through hole in the insulating base material containing an uncured thermosetting resin,
On the template on which the conductive member is formed, the template and the insulating base material are so arranged that the projections of the template are inserted into the through holes of the insulating base material via the conductive member. Laminating,
A step of heating the insulating base material and bringing the metal layer into close contact with the insulating base material by curing the thermosetting resin,
A step of peeling off only the template from the conductive material or the insulating base material while holding the conductive material on the insulating base material.
半導体素子が配線基板に実装された半導体装置において、
前記配線基板は、導電性部材が形成された絶縁性基材を具備し、
前記絶縁性基材は、その第1の主面から第2の主面に達する貫通孔を具備し、
前記導電性部材は、前記第1の主面に設けられた第1の導電性部材と、前記貫通孔の内壁面に設けられた第2の導電性部材と、前記貫通孔を塞ぎ、かつ、前記第2の主面と同じ面内に露出した第3の導電性部材とを具備し、
前記第1、第2及び第3の導電性部材が、連続的な一つの部材により形成されていることを特徴とする半導体装置。
In a semiconductor device in which a semiconductor element is mounted on a wiring board,
The wiring board includes an insulating base material on which a conductive member is formed,
The insulating base material has a through hole extending from the first main surface to the second main surface,
The conductive member, a first conductive member provided on the first main surface, a second conductive member provided on an inner wall surface of the through hole, and closes the through hole, and A third conductive member exposed in the same plane as the second main surface,
A semiconductor device, wherein the first, second and third conductive members are formed by one continuous member.
JP2002192668A 2002-07-01 2002-07-01 Wiring board, method of manufacturing the same, and semiconductor device Pending JP2004039761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002192668A JP2004039761A (en) 2002-07-01 2002-07-01 Wiring board, method of manufacturing the same, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002192668A JP2004039761A (en) 2002-07-01 2002-07-01 Wiring board, method of manufacturing the same, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2004039761A true JP2004039761A (en) 2004-02-05

Family

ID=31701855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002192668A Pending JP2004039761A (en) 2002-07-01 2002-07-01 Wiring board, method of manufacturing the same, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2004039761A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250702A (en) * 2006-03-15 2007-09-27 Elpida Memory Inc Semiconductor device, its manufacturing method, and wiring board
JP2008270646A (en) * 2007-04-24 2008-11-06 Toppan Forms Co Ltd Conductive connection structure and its manufacturing method
JP2009246109A (en) * 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The Semiconductor package substrate and semiconductor package using the same
US7808114B2 (en) 2005-04-28 2010-10-05 Sanyo Electric Co., Ltd. Circuit device and method of manufacturing thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808114B2 (en) 2005-04-28 2010-10-05 Sanyo Electric Co., Ltd. Circuit device and method of manufacturing thereof
JP2007250702A (en) * 2006-03-15 2007-09-27 Elpida Memory Inc Semiconductor device, its manufacturing method, and wiring board
JP2008270646A (en) * 2007-04-24 2008-11-06 Toppan Forms Co Ltd Conductive connection structure and its manufacturing method
JP2009246109A (en) * 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The Semiconductor package substrate and semiconductor package using the same

Similar Documents

Publication Publication Date Title
US7319049B2 (en) Method of manufacturing an electronic parts packaging structure
US8673744B2 (en) Wiring substrate, manufacturing method thereof, and semiconductor package
US8863378B2 (en) Method for manufacturing a wiring board
JPH11233678A (en) Manufacture of ic package
US7370411B2 (en) Wiring board manufacturing method
US8692129B2 (en) Package-substrate-mounting printed wiring board and method for manufacturing the same
WO2009118999A1 (en) Semiconductor device, multilayer wiring board and method for manufacturing semiconductor device
US7874066B2 (en) Method of manufacturing a device-incorporated substrate
US20100139963A1 (en) Interconnect substrate, method of manufacturing interconnect substrate and semiconductor device
US6483195B1 (en) Transfer bump street, semiconductor flip chip and method of producing same
TW200935573A (en) Insulative wiring board, semiconductor package using the same, and method for producing the insulative wiring board
JP5176676B2 (en) Manufacturing method of component-embedded substrate
JP2000174050A (en) Semiconductor chip and manufacture thereof
JP2004039761A (en) Wiring board, method of manufacturing the same, and semiconductor device
JP4196606B2 (en) Wiring board manufacturing method
JP2000174052A (en) Semiconductor chip and manufacture thereof
JP2002064162A (en) Semiconductor chip
JP2000077558A (en) Printed wiring board and its manufacture
JP2013122963A (en) Wiring board
JP2002064161A (en) Semiconductor chip and manufacturing method thereof
JP2008199063A (en) Method of manufacturing multiple printed circuit board containing semiconductor element
JP4593444B2 (en) Manufacturing method of electronic component mounting structure
JP4103482B2 (en) Semiconductor mounting substrate, semiconductor package using the same, and manufacturing method thereof
JP3037603B2 (en) Printed circuit board for semiconductor package
JP3925258B2 (en) Manufacturing method of substrate for semiconductor package