JP2004039135A - 半導体集積回路装置 - Google Patents

半導体集積回路装置 Download PDF

Info

Publication number
JP2004039135A
JP2004039135A JP2002196094A JP2002196094A JP2004039135A JP 2004039135 A JP2004039135 A JP 2004039135A JP 2002196094 A JP2002196094 A JP 2002196094A JP 2002196094 A JP2002196094 A JP 2002196094A JP 2004039135 A JP2004039135 A JP 2004039135A
Authority
JP
Japan
Prior art keywords
signal
local
circuit
control signal
main control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002196094A
Other languages
English (en)
Inventor
Katsumi Dosaka
堂阪 勝己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2002196094A priority Critical patent/JP2004039135A/ja
Priority to US10/368,480 priority patent/US6768699B2/en
Publication of JP2004039135A publication Critical patent/JP2004039135A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1072Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers for memories with random access ports synchronised on clock signal pulse trains, e.g. synchronous memories, self timed memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4082Address Buffers; level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4097Bit-line organisation, e.g. bit-line layout, folded bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/22Control and timing of internal memory operations
    • G11C2207/2281Timing of a read operation

Abstract

【課題】内部配線負荷によるパルス信号のパルス幅の制約を受けることなく、高速で変化する内部タイミング制御信号を生成する。
【解決手段】複数のメイン制御信号をそれぞれ含む複数のメイン制御信号発生回路を設け、これらを順次活性化し、また所定のシーケンスで、メイン制御信号の活性化時所定のメイン制御信号発生回路をリセットする。この複数組のメイン制御信号の各一方の組のメイン制御信号の立上がりエッジと他方の組のメイン制御信号の立下がりエッジを利用して、ローカル制御信号を生成する。
【選択図】    図3

Description

【0001】
【発明の属する技術分野】
この発明は、半導体集積回路装置に関し、特に、大記憶容量の半導体記憶装置を内蔵する半導体集積回路装置に関する。より特定的には、この発明は、クロック信号に同期してデータの転送を行なうクロック同期型DRAM(ダイナミック・ランダム・アクセス・メモリ)の行選択動作を制御する行系制御回路の構成に関する。
【0002】
【従来の技術】
図24は、従来の半導体記憶装置の全体の構成を概略的に示す図である。図24において半導体記憶装置は、複数のサブメモリアレイSMA0−SMA3と、これらのサブメモリアレイSMA0−SMA3それぞれに対応して設けられ、対応のサブメモリアレイの行を選択するためのロウデコーダRD0−RD3と、サブメモリアレイSMA0およびSMA2に対応して設けられ、これらのサブメモリアレイSMA0およびSMA2の列を選択する列選択信号を生成するコラムデコーダCDAと、サブメモリアレイSMA1およびSMA3に対応して設けられ、これらのサブメモリアレイSMA1およびSMA3の列を選択するための列選択信号を生成するコラムデコーダCDBと、コラムデコーダCDAにより選択された列のメモリセルとデータの授受を行なうためのデータパスDPAと、コラムデコーダCDBにより選択された列のメモリセルとデータの授受を行なうためのデータパスDPBを含む。これらのデータパスDPAおよびDPBは、データ入力回路(入力バッファ、ライトバッファ)およびデータ出力回路(出力バッファ、プリアンプ)を含む。
【0003】
サブメモリアレイSMA0およびSMA1が、バンクBA♯1を構成し、サブメモリアレイSMA2およびSMA3が、バンクBA♯0を構成する。これらのバンクBA♯1およびBA♯0に共通に、クロック信号CLKに同期してアドレス信号ADDおよび動作モードを指示するコマンドCMDを受け、バンクBA♯0およびBA♯1に対する動作制御信号を生成するメイン制御回路MCKが設けられる。
【0004】
この半導体記憶装置は、クロック信号CLKに同期して動作するクロック同期型半導体記憶装置であり、制御信号およびアドレス信号がクロック信号に同期して与えられ、またデータDQがクロック信号に同期して転送される。
【0005】
バンクBA♯0に対しては、サブ制御回路SCK0が設けられ、バンクBA♯1に対しては、サブ制御回路SCK1が設けられる。
【0006】
メイン制御回路MCKは、アドレス信号ADDに含まれるバンクアドレスに従って、指定されたバンクに対する動作制御信号を生成する。サブ制御回路SCK0およびSCK1は、メイン制御回路MCKからの主動作制御信号に従って、指定された動作を行なうための制御信号を生成する。これらのサブ制御回路SCK0およびSCK1は、互いに独立に、メイン制御回路MCKからの動作制御信号に従って動作する。
【0007】
図24に示すように、メモリアレイを2つのバンクBA♯0およびBA♯1に分割することにより、これらのバンクBA♯0およびBA♯1を、サブ制御回路SCK0およびSCK1に従って、個々独立に活性/非活性化することができる。ここで、バンクの活性化は、バンクにおいてメモリセル行が選択状態におかれる状態を示す。これらのバンクBK♯0およびBK♯1に対しインタリーブ態様でデータアクセスを行なうことにより、ページ切換時のペナルティが生じず、高速アクセスを実現することができる。
【0008】
図25は、図24に示すサブメモリアレイSMA0−SMA3の構成を概略的に示す。サブメモリアレイSMA0−SMA3は、同一構成を有するため、図25においては、1つのサブメモリアレイSMAを代表的に示す。
【0009】
図25において、サブメモリアレイSMAは、複数のメモリブロックMB0−MB7と、これらのメモリブロックMB0−MB7の間に配置されるセンスアンプ帯SAB1−SAB7と、メモリブロックMB0およびMB7の外側部に配置されるセンスアンプ帯SAB0およびSAB8を含む。
【0010】
メモリブロックMB0−MB7それぞれにおいては、メモリセルが行列状に配列される。センスアンプ帯SAB0−SAB8においては、対応のメモリブロックMB0−MB7のメモリセル列に対応してセンスアンプ回路が配置される。センスアンプ帯SAB0−SAB8は、いわゆる「交互配置型シェアードセンスアンプ構成」を有し、対応のメモリブロックの列の両側に交互にセンスアンプ回路が配置され、かつ隣接メモリブロックにより各センスアンプ回路が共有される。
【0011】
サブメモリアレイSMAにおいて、ブロック単位で行選択動作が行なわれる。アドレス信号ADDに含まれるブロックアドレス信号に従って生成されるブロック選択信号によりメモリブロックが指定されて、この指定されたメモリブロックにおいて行選択が行なわれる。
【0012】
指定されるメモリブロックの数は、1つまたは2つである。2つのメモリブロックが同時に指定される場合においては、上側の4メモリブロックの1つと下側の4つのメモリブロックの1つのメモリブロックとが選択される。センスアンプを共有するメモリブロックは同時には選択はされない。
【0013】
サブメモリアレイSMAは、複数のメモリブロックMB0−MB7に分割されているため、サブ制御回路SCK0およびSCK1も、それぞれ、メモリブロックMB0−MB7にそれぞれ対応するローカル制御回路に分割される。
【0014】
この図25に示すように、サブメモリアレイSMAにおいてブロック分割動作を行なうことにより、非選択のメモリブロックをプリチャージ状態に維持し、消費電流を低減する。
【0015】
この図25に示すサブメモリアレイSMAが、バンクBA♯0およびBA♯1それぞれに配置される。したがって、バンクBA♯0およびBA♯1の境界部においては、バンクBA♯1のセンスアンプ帯SAB8とバンクBA♯0のセンスアンプ帯SAB0が隣接して配置される。バンクBA♯0およびBA♯1がセンスアンプ帯を共有することがなく、バンクBA♯0およびBA♯1個々にセンスアンプ帯の活性/非活性を行なうことができる。
【0016】
図26は、図25に示すサブ制御回路SCK0およびSCK1の構成を概略的に示す図である。バンクBA♯0に含まれるサブメモリアレイSMA2は、メモリブロックMB00−MB07を含む。バンクBA♯1のサブメモリアレイSMA0は、メモリブロックMB10−MB17を含む。これらのメモリブロックMB00−MB07それぞれの両側およびメモリブロックMB10−MB17それぞれの両側には、センスアンプ帯が配置される。図26においては、これらのセンスアンプ帯を、単に矩形領域で示す。
【0017】
サブ制御回路SCK0は、メモリブロックMB00−MB07それぞれに対応して設けられるローカル制御回路LCK00−LCK07を含み、サブ制御回路SCK1はメモリブロックMB10−MB17それぞれに対応して設けられるローカル制御回路LCK10−LCK17を含む。
【0018】
メイン制御回路MCKは、外部からのコマンドCMDおよびアドレス信号ADDに従ってバンク別のロウ系制御信号群BRCおよびプリデコードブロックアドレス信号PBAを生成し、また外部からのクロック信号ECLKに同期して内部クロック信号CLKを生成する。メイン制御回路MCKからの内部クロック信号CLKは、ローカル制御回路LCK00−LCK07およびLCK10−LCK17に共通に与えられる。
【0019】
バンク別のロウ系制御信号群BRCは、バンクBA♯0に対するロウ系制御信号BR0と、バンクBA♯1に対するロウ系制御信号BR1を含む。ロウ系制御信号BR0は、ローカル制御回路LCK00−LCK07に共通に与えられ、ロウ系制御信号BR1は、ローカル制御回路LCK10−LCK17に共通に与えられる。
【0020】
プリデコードブロックアドレス信号PBAは、外部からのアドレス信号ADDに含まれるブロックアドレスをプリデコードして生成される。バンクBA♯0およびBA♯1は、それぞれ8個のメモリブロックを含むため、6ビットのプリデコードブロックアドレス信号PBAが生成される。2ビットのプリデコードブロックアドレス信号により、バンクBA♯0およびBA♯1において、上半分または下半分のメモリブロックが指定され、残りの4ビットのプリデコードブロックアドレス信号PBG1により、これらの上半分および下半分のメモリブロックにおいて1つのメモリブロックが指定される。したがって、これらのプリデコードブロックアドレス信号PBG0およびPBG1各々からの1ビットが、ローカル制御回路LCK00−LCK07およびLCK10−LCK17それぞれに与えられる。
【0021】
プリデコードブロックアドレス信号PBAにより、バンクBA♯0およびBA♯1において、共通にメモリブロックが指定される。バンク別のロウ系制御信号群BRCにより、バンクアドレス信号ADDに含まれるバンクアドレスにより指定されたバンクに対するロウ系制御信号が活性化されて行選択に関連する動作が行なわれる。
【0022】
なお、図26においては、図面を簡略化するために、サブメモリアレイSMA1およびSMA3の構成については示していない。これらのサブメモリアレイSMA1およびSMA3も、サブメモリアレイSMA0およびSMA2と同様の構成を有し、ローカル制御回路LCK00−LCK07およびLCK10−LCK17により、行選択動作が制御される。
【0023】
データパスDPAおよびDPBの各々は、前述の如く、選択メモリセルへのデータの書込みを行うライトドライバ、選択メモリセルのデータを増幅するプリアンプ、および外部とデータの授受を行うデータ入出力バッファを含み、コラムデコーダCDAにより選択された列のメモリセルとデータの授受を行なう。
【0024】
この図26に示すように、バンクBA♯0およびBA♯1においてメモリブロック単位で行選択を行なうことにより、非選択メモリブロックをプリチャージ状態に維持することができ、消費電流を低減することができる。
【0025】
ワード線を指定するためのアドレス信号(以下、ワード線アドレス信号と称す)は、すべてのメモリブロックに共通に与える必要があり、ローカル制御回路LCK00−LCK07およびLCK10−LCK17に共通に与えられる。
【0026】
図27は、メイン制御回路MCKに含まれる入力バッファの構成の一例を示す図である。このメイン制御回路MCKにおいては、外部からのコマンドCMDおよびアドレス信号ADDが、外部クロック信号ECLK(内部クロック信号CLK)に同期して取込まれる。
【0027】
図27において、入力バッファIBは、クロック信号(内部クロック信号)CLKを反転するインバータIVと、クロック信号CLKがLレベルのとき導通し、入力信号INを通過させるトランスミッションゲートXF1と、トランスミッションゲートXF1を通過した信号をラッチするインバータラッチIL1と、クロック信号CLKがHレベルのとき導通し、インバータラッチIL1にラッチされた信号を通過させるトランスミッションゲートXF2と、トランスミッションゲートXF2を通過した信号をラッチして内部出力信号OUTを生成するインバータラッチIL2を含む。
【0028】
トランスミッションゲートXF1およびXF2は、CMOSトランスミッションゲートであり、クロック信号CLKおよびインバータIVからの補のクロック信号に同期して導通/非導通状態となる。次に、この図27に示す入力バッファIBの動作を、図28に示す信号波形図を参照して説明する。
【0029】
クロック信号CLKがLレベルのときにはトランスミッションゲートXF1が導通状態であり、入力信号INがインバータラッチIL1にラッチされる。一方、トランスミッションゲートXF2は、非導通状態であり、出力信号OUTは変化しない。
【0030】
クロック信号CLKがHレベルに立上がると、トランスミッションゲートXF1が非導通状態となり、入力信号INはインバータラッチIL1のラッチ信号に影響を及ぼさない。クロック信号CLKがHレベルに立上がると同時に、トランスミッションゲートXF2が導通状態となり、インバータラッチIL1にラッチされた信号が、インバータラッチIL2へ伝達されて、出力信号OUTが生成される。したがって、出力信号OUTがクロック信号CLKの立上がりに同期して変化する。出力信号OUTは、クロック信号の1クロックサイクル期間、その状態が維持される。
【0031】
この図27に示す入力バッファIBが、メイン制御回路MCKにおいて、アドレス信号ADDおよびコマンドCMDそれぞれに対して設けられる。したがって、内部信号がクロック信号CLKの立上がりに同期して生成されるため、このクロック信号CLKに対するセットアップ/ホールド時間が確保されていれば、内部信号がクロック信号CLKの立上がりに同期して変化するため、これらの入力信号間のスキューを考慮する必要がなく、内部動作開始タイミングを早くすることができる。
【0032】
【発明が解決しようとする課題】
図29は、内部クロック信号、ロウ系制御信号およびプリデコードブロックアドレス信号の配線負荷を概略的に示す図である。図29において、内部クロック信号CLKはクロックドライバDRV0により、信号線SGL0を介して伝達される。ロウ系制御信号BR(BR0またはBR1)は、ドライブ回路DRV1により信号線SGL1を介して伝達される。プリデコードブロックアドレス信号PBは、ドライブ回路DRV2により、信号線SGL2を介して伝達される。
【0033】
図26に示すように、内部クロック信号CLKは、ローカル制御回路LCK00−LCK07およびLCK10−LCK17に共通に与える必要があり、この信号線SGL0の負荷容量C0が最も大きくなる。
【0034】
ロウ系制御信号BRについては、対応のバンクのローカル制御回路がすべて結合されるため、信号線SGL1の負荷容量C1が、次に大きくなる。
【0035】
プリデコードブロックアドレス信号PBにおいて、プリデコードブロックアドレス信号ビット群PBG1については、各バンクにおいて2つのメモリブロックに対するローカル制御回路が接続されるだけであり、その負荷容量が最も小さくなる。プリデコードブロックアドレス信号ビット群PBG0については、各バンクにおいて4つのローカル制御回路が接続されるだけである。したがって、バンク間にリピータを設けておくことにより、ドライバDRV2の負荷が軽減され、この配線負荷は、ロウ系制御信号よりも小さくすることができる。
【0036】
これらの信号線SGL0−SGL2の配線負荷容量C0−C2が異なるため、信号伝搬遅延が異なり、信号間のスキューが生じる。特に、メイン制御回路MCKからは、遠方のローカル制御回路LCK17に向かって列方向に沿って一方方向にこれらの信号が伝達されるため、メイン制御回路MCKに最も近いローカル制御回路LCK00と最も遠いローカル制御回路LCK17とで、信号伝搬遅延時間が異なり、このスキューの大きさも同様、異なってくる。
【0037】
図30は、ローカル制御回路LCK00およびLCK17の入力信号と外部からのクロック信号ECLK、アドレス信号ADDおよびコマンドCMDのタイミング関係を概略的に示す図である。
【0038】
メイン信号回路MCKへは、外部クロック信号ECLK、アドレス信号ADDおよびコマンドCMDが与えられる。外部クロック信号CLKの立上がりに同期して外部からのアドレス信号ADDおよびコマンドCMDが取込まれ、プリデコードブロックアドレス信号PBAおよびロウ系制御信号BR(BR0またはBR1)が生成される。
【0039】
メイン制御回路MCKに最も近いローカル制御回路LCK00に対しては、この内部クロック信号CLKと外部クロック信号ECLKとの差は最も小さい。メイン制御回路MCKにおいて内部クロック信号CLKに同期してロウ系制御信号BR0およびプリデコードブロックアドレス信号PBAが生成されてローカル制御回路LCK00に伝達される。
【0040】
ローカル制御回路LCK00においては、内部クロック信号CLKを伝達する信号線SGL0の配線容量C0が大きく、この内部クロック信号CLKがプリデコードブロックアドレス信号PBAおよびロウ系制御信号BR0よりも少し遅れて到達する。しかしながら、この場合、これらの信号の配線長は短いため、プリデコードブロックアドレス信号PBAと内部クロック信号CLKの間のスキューは小さい。このタイミングで、内部クロック信号CLKに同期してローカル制御回路LCK00が動作した場合、プリデコードブロックアドレス信号PBAのセットアップ時間が不十分であり、誤動作を起こす可能性がある。
【0041】
一方、メイン制御回路MCKからの最も遠いローカル制御回路LCK17においては、内部クロック信号CLKがその長い配線長により、伝搬遅延が最も大きくなる。同様、ロウ系制御信号BR1およびプリデコードブロックアドレス信号PBAも、その遅延時間はローカル制御回路LCK00に比べて大きくなるものの、内部クロック信号CLKの遅延時間に比べて小さい。この場合、プリデコードブロックアドレス信号PBAと内部クロック信号CLKの位相差、すなわちスキューが大きくなる。したがって、ローカル制御回路LCK17においては、内部動作開始タイミングを早くすることができず、高速動作をすることができない。
【0042】
ローカル制御回路における動作開始タイミングを、メイン制御回路MCKからの距離に応じて設定した場合、ローカル制御回路ごとに動作開始タイミングが異なり、回路設計が複雑となる。また、外部クロック信号ECLKが高速になればなるほど、このタイミング調整時間が微小時間となり、そのタイミング調整が極めて厳しくなる。したがって、安定動作のために、このメイン制御回路MCKから最も遠いローカル制御回路LCK17の最悪のスキュー条件に従って内部回路の動作タイミングを設定する必要があり、高速動作をすることができなくなるという問題が生じる。
【0043】
また、プリデコードブロックアドレス信号PBAにおいても、プリデコードブロックアドレス信号ビット群PBG0とプリデコードブロックアドレス信号ビット群PBG1とは、その配線の負荷が異なり、遅延時間が異なる。したがって、プリデコードブロックアドレス信号ビットが、すべて確定状態となるタイミングは、各ローカル制御回路ごとに異なり、正確なデコード動作を行なうことができなくなる場合が生じる。
【0044】
図31は、メイン制御回路MCKの概略構成を示す図である。図31において、メイン制御回路MCKは、外部からのクロック信号ECLKを受けて内部クロック信号CLKを生成するクロックバッファ900と、クロックバッファ900からの内部クロック信号CLKに同期して外部からのコマンドCMDを取込むコマンド入力バッファ902と、内部クロック信号に同期して外部からのアドレス信号ADDを取込むロウアドレス入力バッファ904と、内部クロック信号CLKに同期してコマンド入力バッファ902からのコマンドをデコードし、そのデコード結果に従ってバンクBA♯0に対するロウ系制御信号BR0を生成するロウ系制御信号発生回路905と、内部クロック信号CLKに同期してコマンド入力バッファ902からのコマンドをデコードし、該デコード結果に従ってバンクBA♯1に対するロウ系制御信号BR1を生成するロウ系制御信号発生回路906と、内部クロック信号CLKに同期してコマンド入力バッファ902からのコマンドをデコードし、データアクセス(列選択およびデータ入出力)に関連する回路の動作を制御するコラム系制御回路908を含む。
【0045】
ロウ系制御信号発生回路905および906へは、ロウアドレス入力バッファ904からのバンクアドレスBADが与えられ、このバンクアドレスBADが指定するバンクに対して設けられたロウ系制御信号発生回路が活性化される。バンクBA♯0に対するロウ系制御信号BR0は、ロウアドレスデコードイネーブル信号RADE<0>、ワード線駆動タイミング信号RXT<0>、ビット線分離指示信号BLI<0>、ビット線イコライズ指示信号BLEQ<0>、およびセンスアンプ活性化信号SON<0>およびSOP<0>を含む。同様、バンクBA♯1に対するロウ系制御信号BR1は、信号RADE<1>、RXT<1>、BLI<1>、BLEQ<1>、SON<1>、およびSOP<1>を含む。
【0046】
なお、図31においては、コラム系制御回路908は、データの入出力を行なうデータパスDPを制御するように示す。しかしながら、バンクBA♯0およびBA♯1に対して設けられたコラムデコーダの動作をも、このコラム系制御回路908が制御する。
【0047】
この図31に示すように、メイン制御回路MCKにおいては、バンクBA♯0およびBA♯1それぞれに対応してロウ系制御信号発生回路905および906が設けられる。したがって、バンクの数が増加した場合、このロウ系制御信号発生回路の数を増加させる必要があり、応じて、このメイン制御回路MCKにおけるロウ系制御信号発生回路のレイアウトを変更する必要がある。このため、メイン制御回路MCKをバンク構成に応じて再設計する必要がある。また、この再設計時において信号線の負荷が変化した場合、その信号間のスキュー調整などを行なうための再設計が必要となる。したがって、バンク構成に変化に対して容易に対応することができないという問題が生じる。また、バンクの数が増加した場合、ロウ系制御信号発生回路の数も増加し、応じてロウ系制御信号を伝達する信号線の数も増加し、配線領域の増大および回路占有面積の増大が生じ、チップサイズが増大するという問題が生じる。
【0048】
ロウ系制御信号発生回路は、それぞれ、クロック信号に同期して、所定のシーケンスでロウ系制御信号を生成している。クロック信号が高速のクロック信号の場合、内部で生成される制御信号のパルス幅は、クロック信号のサイクル時間により決定される。内部制御信号は、パルス信号として生成される場合には、Hレベル期間とLレベル期間とを有する。正確な波形のパルス信号を生成するためには、このパルス信号のHレベル期間とLレベル期間とを確保する必要がある。
【0049】
メイン制御信号を先の図29に示すようにバスドライブ回路で各ローカル制御回路に転送する場合、メイン制御信号の立上り時間および立下り時間が、バスドライバの動作特性とバスの負荷容量とにより決定される。従って、メイン制御信号の立上りと立下りとを利用して、ローカル制御信号を生成する場合、メイン制御信号のパルス幅に対する制約条件により、ローカル制御回路において生成するローカル制御信号の活性化タイミングが決定され、高速で内部動作を行うことができなくなる可能性がある。したがって、高速のクロック信号に従って、内部動作を行うことができなくなり、高速のクロック信号に同期してデータアクセスを行うことができなくなるという問題が生じる。
【0050】
それゆえこの発明の目的は、高速のクロック信号に同期して正確に動作することのできる半導体集積回路装置を提供することである。
【0051】
この発明の他の目的は、高速クロック信号に同期して、信号間スキューの影響を受けることなく高速でメモリセルの選択動作を行なうことのできる半導体集積回路装置を提供することである。
【0052】
この発明のさらに他の目的は、バンク構成の変更にも容易に対応して、高速クロック信号に従って正確に動作することのできる半導体集積回路装置を提供することである。
【0053】
この発明のさらに他の目的は、正確に内部の複数のメモリセル選択動作制御信号を短い間隔で所定のシーケンスで活性/非活性化することのできる半導体集積回路装置を提供することである。
【0054】
この発明のさらに他の目的は、メイン制御信号のパルス幅の制約を受けることなく正確にローカル制御信号を生成することのできる半導体集積回路装置を提供することである。
【0055】
【課題を解決するための手段】
この発明の第1の観点に係る半導体集積回路装置は、外部からの動作モード指示信号に従って、互いに位相の異なる複数の制御信号を生成するメイン制御信号発生回路を含む。このメイン制御信号発生回路は、動作モード指示信号に従って、所定のシーケンスでメイン制御信号の複数組の1つを活性化する。これらの複数のメイン制御信号の組は、所定のシーケンスで選択される。
【0056】
この発明の第1の観点に係る半導体集積回路装置は、さらに、メイン制御信号発生回路からのメイン制御信号に従ってローカル制御信号を生成するローカル制御信号発生回路を含む。このローカル制御信号発生回路は、互いに異なる組のメイン制御信号を受け、かつ互いに異なる組については、メイン制御信号の互いに異なる変化方向に応答してローカル制御信号を生成する。
【0057】
好ましくは、メイン制御回路は、複数組のメイン制御信号の所定のメイン制御信号の活性化に応答して所定のシーケンスにおいて予め定められた異なる組のメイン制御信号を非活性化する。
【0058】
好ましくは、各ローカル制御信号発生回路は、各組に含まれるメイン制御信号の対応のメイン制御信号を合成して、ローカル制御信号を生成する。
【0059】
また、好ましくは、ローカル制御信号に従って動作モード指示信号が指定する動作を制御するためのローカル動作制御信号を生成するローカル動作制御回路がさらに設けられる。
【0060】
好ましくは、このローカル動作制御信号の数は、ローカル制御信号の数以上である。
【0061】
この発明の第2の観点に係る半導体集積回路装置は、それぞれが、指定された動作を活性化時実行する複数のローカル回路と、複数のローカル回路に対して共通に配置され、外部からの動作モード指示信号に従って、互いに位相の異なる複数の制御信号を生成するメイン制御信号発生回路とを含む。このメイン制御信号発生回路は、動作モード指示信号に従って所定のシーケンスでメイン制御信号の複数組を駆動する。
【0062】
この発明の第2の観点に係る半導体集積回路装置は、さらに、各ローカル回路に対応して配置され、メイン制御信号発生回路からのメイン制御信号に従って対応のローカル回路に対するローカル動作制御信号を生成するローカル制御回路を含む。このローカル制御回路は、互いに位相の異なる組のメイン制御信号を受け、かつ互いに異なる組については、メイン制御信号の互いに異なる変化方向に応答してローカル制御信号を生成する。このメイン制御信号発生回路は、動作モード指示信号に従って、所定のシーケンスで、それぞれが、複数のメイン制御信号を含む複数組の1つを選択状態へ駆動する。
【0063】
好ましくは、各ローカル制御回路は、複数のメイン制御信号に従って対応のローカル回路に対するローカル制御信号を生成するローカル制御信号発生回路と、このローカル制御信号発生回路からのローカル制御信号に従って、対応のローカル回路に対する動作制御信号を生成するローカル動作制御回路とを含む。
【0064】
好ましくは、各ローカル回路に対応して配置され、外部からのアドレス信号に従って、対応のローカル回路が指定されたかを示すローカル回路選択信号を生成するローカルデコード回路が設けられる。各ローカル制御回路は、このローカル回路選択信号の活性化に応答して活性化されて、ローカル動作制御信号を生成する。
【0065】
好ましくは、ローカル回路は、行列状に配列される複数のメモリセルを含む。ローカル動作制御信号は、これらの複数のメモリセルの選択動作に関連する動作を制御する。
【0066】
また、好ましくは、各メイン制御回路は、複数組のメイン制御信号の所定のメイン制御信号の活性化に応答して所定のシーケンスにおいて予め定められた異なる組のメイン制御信号を非活性化する。
【0067】
それぞれが複数のメイン制御信号を含む複数のメイン制御信号の組を、動作モード指示信号に従って各組単位で活性化し、これらのメイン制御信号の異なる組のメイン制御信号の変化に従ってローカル制御信号を生成することにより、各メイン制御信号のパルス幅を十分に確保して、メイン制御信号を生成して各ローカル制御回路へ転送することができる。すなわち、異なる組のメイン制御信号を利用することにより、各組においてメイン制御信号を高速で変化させる必要がなく、内部動作が、1つの組におけるメイン制御信号の変化速度により律速されることがなく、高速で内部でローカル制御信号を生成することができ、内部動作を高速化することができる。
【0068】
【発明の実施の形態】
[実施の形態1]
図1は、この発明の実施の形態1に従う半導体記憶装置の要部の構成を概略的に示す図である。メモリブロックMBa−MBnに対し、行系回路15a−15nが設けられる。これらの行系回路15a−15nの各々は、センスアンプ回路、ビット線分離回路、ビット線プリチャージ/イコライズ回路等を含む。すなわち、行系回路15a−15nの各々は、活性化時、対応のメモリブロックMBa−MBnにおいて、行選択に関連する動作を実行し、非活性化時、対応のメモリブロックMBa−MBnをプリチャージ状態に駆動する。
【0069】
これらの行系回路15a−15nに対し、ローカル制御回路10a−10nが設けられる。これらのローカル制御回路10a−10nの各々は、図示しないブロック選択信号に従って活性化され、活性化時、対応の行系回路15a−15nに対し、ローカルロウ制御信号群RSELGを生成する。これらのローカルロウ制御信号群SELGは、q個のロウ制御信号を含む。ローカルロウ制御信号群RSELGに含まれるロウ制御信号の詳細については、後に説明する。
【0070】
これらのローカル制御回路10a−10nに対し、共通でメイン制御回路1が設けられる。メイン制御回路1は、行系コマンドROWCOMが与えられると、複数の互いに位相の異なるメインロウ制御信号群MRCKLGを生成して制御信号バス2上を介して伝達する。メインロウ制御信号群MRCKLGは、複数組の制御構成のメイン制御信号の組MRSG0−MRSGpを含む。このメインロウ制御信号群MRCKLGは、アドレス信号と独立な信号であり、行系コマンドROWCOMが与えられるとメイン制御信号の組MRSG0−MRSGpの1つが選択されて、そこに含まれるメイン制御信号が所定のシーケンスで活性化される。このメイン制御信号の活性化に従って、別のメイン制御信号の組のメイン制御信号が非活性化される。
【0071】
ローカル制御回路10a−10nにおいては、このメイン制御信号の複数組MRSG0−MRSGpにおいて所定の関係にあるメイン制御信号の組に従ってローカルロウ制御信号RSELGを生成する。このローカルロウ制御信号の生成時において、異なるメイン制御信号の組の対応のメイン制御信号の立上りおよび立下りを利用する。1つのメイン制御信号の組においては、高速でメイン制御信号を変化させる必要がなく、メイン制御信号のパルス幅の制約を受けることなく、高速のクロック信号に従って、ローカルロウ制御信号を生成することができる。
【0072】
また、これらのメイン制御信号群の組MRSG0−MRSGpを順次所定のシーケンスで選択して、そこに含まれるメイン制御信号を活性化する。これらのメイン制御信号はアドレス信号と独立の制御信号である。従って、バンク数増大時においても、メインロウ活性化信号発生回路の構成を何ら変更する必要がなく、バンク構成の変更に対し容易に対応することができる。
【0073】
図2は、この発明に従う半導体記憶装置を含む半導体集積回路装置の構成を概略的に示す図である。図2において、半導体集積回路装置CHにおいて、半導体記憶装置は、ロジック20と同一半導体チップ上に集積化される。ロジック20は、所定の処理を行ないかつこの半導体記憶装置にデータアクセスを行なう。
【0074】
半導体記憶装置は、複数のメモリブロックMBaW−MBnWおよびMBaE−MBnEと、メモリブロックMBaW,MBaE−MBnW,MBnEにそれぞれ対応して設けられるローカル制御回路10a−10nと、ロジック20からのコマンドCNDおよびアドレス信号ADDを受け、ローカル制御回路10a−10nに対するメインロウ系制御信号を生成するメイン制御回路1と、メモリブロックMBaW−MBnWに対応して設けられるデータパス16Wと、メモリブロックMBaE−MBnEに対して設けられるデータパス16Eを含む。これらのデータパス16Wおよび16Eの各々は、データの入力バッファ、データの出力バッファ、内部書込データを生成するライトドライバおよび内部読出データを生成するプリアンプを含み、ロジック20とデータの授受を行なう。
【0075】
図2に示す半導体記憶装置自体の全体の配置は、図24に示す半導体記憶装置の構成とほぼ同様である。しかしながら、このメイン制御回路1からローカル制御回路10a−10nに伝達されるロウ系制御信号の構成が異なり、またそれに応じて、ローカル制御回路10a−10nの構成も変更される。以下、具体的構成について説明する。
【0076】
図3は、メイン制御回路およびローカル制御回路のロウ系制御回路部分を概略的に示す図である。図3において、メイン制御回路1は、ロジック20からのクロック信号CLKを受けて内部クロック信号CLK0を生成するクロック入力バッファ30と、クロック入力バッファ30からの内部クロック信号CLK0に同期してロジックからのコマンドCMDを取込みデコードしてロウアクティブ信号ACTおよびプリチャージ指示信号PRCを活性/非活性化するコマンドデコーダ31と、クロック入力バッファ31からの内部クロック信号CLK0を受け、ローカル制御回路10a−10nへ内部クロック信号CLK1を伝達するクロックドライバ35と、内部クロック信号CLK0に同期してアドレス信号ADDを取込み内部アドレス信号ADDINを生成するアドレス入力バッファ32と、コマンドデコーダ31からのロウアクティブ信号ACTを受け、3相のメインロウ活性化信号RCNTAA<2:>、RCNTAB<2:0>、およびRCNTAC<2:0>の組を生成するメインロウ活性制御回路33と、内部クロック信号CLK0に同期してコマンドデコーダ31からのプリチャージ指示信号PRCを受けて2相のメインプリチャージ活性化信号RCNTPA<1:0>およびRCNTPB<1:0>の組を生成するメインプリチャージ制御回路34を含む。
【0077】
メインロウ活性制御回路33からの3相のメインロウ活性化信号RCNPAA、PCNPABおよびPCNPACは3組生成される。すなわち、このメインロウ活性化信号RCNTAA<2:0>、RCNTAB<2:0>、およびRCNTAC<2:0>が、ロウアクティブ信号ACTに従って1組が活性化される。
【0078】
同様、メインプリチャージ制御回路34からのメインプリチャージ活性化信号は、2RCNTPA<1:0>、およびRCNTPB<1:0>が準備され、コマンドデコーダ31からのプリチャージ指示信号PRCに従って1組のメインプリチャージ活性化信号RCNTPA<i>およびRCNTPB<i>が所定のシーケンスで活性/非活性化される。これらのアドレス入力バッファ32、メインロウ活性制御回路33およびメインプリチャージ制御回路35の各々は、それぞれの出力信号に対しドライブ回路を有している。これらのドライブ回路35は、すべて同一構成(同一トランジスタサイズ)を有し、同一の駆動力で対応の信号をローカル制御回路10a−10nに伝達する。
【0079】
ローカル制御回路10a−10nの各々は同一構成を有しており、図3においては、ローカル制御回路10iの概略的内部構成を代表的に示す。
【0080】
ローカル制御回路10iは、内部クロック信号CLK1を受けるクロック入力回路37aと、内部アドレス信号ADDINを受けるアドレス入力回路37bと、メインロウ活性化信号RCNTAA<2:0>−RCNTAC<2:0>を受ける入力回路37bと、メインプリチャージ活性化信号RCNTPA<2:0>およびRCNTPB<2:0>を受ける入力回路37eと、アドレス入力回路37cからのブロックアドレス信号を受けてデコードするブロックアドレスデコーダ40と、内部アドレス信号ADDINとブロックアドレスデコーダ40からのブロック選択信号とクロック入力回路37aからの内部クロック信号と入力回路37dおよび37eの出力信号とに従ってロウ系制御信号BLI、BLEQ、SON、SOPおよびRXTとワード線選択信号Addを生成するロウ系ローカル制御回路41を含む。
【0081】
入力回路37a−37eは同一構成を有するバッファ回路を含み、同一の入力負荷(入力インピーダンス)を有する。したがって、メイン制御回路1のドライバ35a−35eの駆動負荷はすべて同じとなり、メイン制御回路1からローカル制御回路へ伝達される各信号の配線負荷を、各メモリブロックに対して同じとすることができ、応じて各メモリブロックに対して、信号間のスキューを同一とすることができる。
【0082】
メモリブロックMBiは、ローカル制御回路10iに対して設けられる。メモリブロックMBiの行系回路15iとして、ワード線ドライバ15iaと、センスアンプ15ibと、ビット線負荷回路15icが設けられる。ワード線ドライバ15iaは、ロウ系ローカル制御回路41からのワード線選択信号Addとワード線駆動タイミング信号RXTとに従ってメモリブロックIBiのアドレス指定された行に対応するワード線WLを選択状態へ駆動する。
【0083】
ビット線分離回路15icは、このメモリブロックIBiのビット線対に対応して設けられるビット線分離ゲートを含み、ビット線分離指示信号BLIがLレベルのときにセンスアンプ15ibとメモリブロックMBiとを切離す。
【0084】
センスアンプ15ibには、各ビット線対に対応して設けられるセンスアンプ回路と、各ビット線対に対して設けられるビット線プリチャージ/イコライズ回路が設けられる。ビット線イコライズ指示信号BLEQはビット線イコライズ/プリチャージ回路へ与えられ、各ビット線対を中間電圧レベルにプリチャージしかつイコライズする。センスアンプ活性化信号SONおよびSOPにより、センスアンプ15ibに含まれるセンスアンプ回路が活性/非活性化される。
【0085】
次に、この図3に示すメイン制御回路およびローカル制御回路の動作を、図4に示す信号波形図を参照して説明する。
【0086】
メイン制御回路1において、コマンドデコーダ31は、内部クロック信号CLK0の立上がりエッジで外部のロジックからのコマンドCMDを取込み、取込んだコマンドが指定する動作モードを指示する信号を生成する。コマンドCMDが行選択を指示するロウアクティブコマンドの場合、コマンドデコーダ31は、ロウアクティブ信号ACTを活性化する。このロウアクティブ信号ACTは、ロジックからのデコード後の動作モード指示信号であっても良い。
【0087】
メインロウ活性制御回路33は、このロウアクティブ信号ACTに応答して、3組のメインロウ活性化信号RCNTAA<2:0>−RCNTAC<2:0>のうち、1組のメインロウ活性化信号を順次活性化する。図4において、メインロウ活性化信号RCNTAA<1>−RCNTAC<1>が順次活性化されるシーケンスを一例として示す。この1組のメインロウ活性化信号RCNTAA<1>−RCNTAC<1>が所定のシーケンスで順次活性化されると、次いで、このメインロウ活性制御回路33は、メインロウ活性化信号RCNTAC<1>の立上がりに応答して、それまでHレベルにあった別の組のメインロウ活性化信号RCNTAA<0>−RCNTAC<0>を順次非活性化する(Lレベルに立下げる)。
【0088】
したがって、ロウアクティブコマンドが与えられた場合、1組の3相メインロウ活性化信号が、順次、その電圧レベルがLレベルからHレベルに立上がり(活性化され)、一方、この選択された1組のメインロウ活性化信号がすべて活性化されると、別の組の先に選択状態にあった3相メインロウ活性化信号を順次Lレベルに立下げる(非活性化する)。これらのメインロウ活性化信号RCNTAA<2:0>−RCNTAC<2:0>は共通に、ローカル制御回路10a−10nへ与えられる。従って、1組のメインロウ活性化信号のHレベル期間が、アクティブコマンドの2回印加されるサイクルとなり、また、Lレベル期間が、連続して印加されるアクティブコマンドのクロックサイクル期間となり、高速クロック信号を用いても、余裕を持って、メインロウ活性化信号を生成することができる。
【0089】
ローカル制御回路10iにおいて、アドレス信号に含まれるブロックアドレスをブロックアドレスデコーダ40がデコードし、そのデコード結果を示すブロック選択信号(ブロックヒット信号)を生成する。このブロック選択信号が活性状態のときには、対応のローカル回路、すなわちメモリブロックが選択されており、ロウ系ローカル制御回路41が動作し、メインロウ活性化信号RCNTAA<2:0>−RCNTAC<2:0>の1組の立上がりおよび別の組のメインロウ活性化信号の立下がりに応答して、ローカルロウ系制御信号を順次活性化する。すなわち、メインロウ活性化信号RCNTAA<1>の立上がりに応答してロウアドレスデコードイネーブル信号RADEが活性化され、ロウアドレス信号ADDINのデコード動作が行なわれる。また、ビット線分離指示信号BLIがHレベルとなると、この選択メモリブロックと対をなすメモリブロックがセンスアンプ帯から分離される。
【0090】
次に、メインロウ活性化信号RCNTAB<1>の立上がりに応答してビット線イコライズ指示信号BLEQがLレベルに立下がり、ビット線のイコライズ/プリチャージ動作が選択メモリブロックにおいて停止する。
【0091】
対でメインロウ活性化信号RCNTAC<1>の立上がりに応答してワード線駆動タイミング信号RXPが活性化される。このワード線駆動タイミング信号RXPに従って、ワード線ドライバ15ia(図3参照)で活性化され、ドライバデコードイネーブル信号RADEの活性化に応答してデコードされて生成されたワード線選択信号Abbに従って、アドレス指定されたワード線が選択状態へ駆動される。
【0092】
次いで、このメインロウ活性化信号RCNTAC<1>が立上がると、メインロウ活性化信号RCNTAA<0>−RCNTAC<0>がそれぞれ順次、HレベルからLレベルに立下がる。メインロウ活性化信号RCNTAB<0>の立下がりに応答して、センスアンプ活性化信号SONがHレベルに立上がり、またメインロウ活性化信号RCNTAC<0>の立下がりに応答してセンスアンプ活性化信号SOPがLレベルに立下がる。応じて、センスアンプ15ibが活性化され、選択ワード線に接続されるメモリセルデータの検知、増幅およびラッチが行なわれる。これらのロウ系制御信号RADE、BLI、RXT、BLEQ、SONおよびSOPは、次に行選択終了を指示するプリチャージコマンドが与えられるまでその状態を維持する。
【0093】
プリチャージ指示信号PRCが与えられたときには、2相のメインプリチャージ制御信号RCNTPA<1:0>およびRCNTPB<1:0>に従って初期化が行なわれる。図4においては、メインロウ活性化信号RCNTAA、RCNTACに関連する動作を示しており、このプリチャージに関連するメインプリチャージ指示信号RCNTPAおよびRCNTPBは示していない(図面を簡略化するため)。
【0094】
ロウ系ローカル制御回路において、3相メイン制御信号の位相を組合せてロウ系回路が必要なより多くのローカルロウ系動作制御信号を発生することができる。
【0095】
メインロウ活性化信号の別の組のメイン制御信号の立上がりエッジおよび立下がりエッジを利用して、ロウ系制御信号を変化させることにより、以下の利点が得られる。
【0096】
図5は、1組のメインロウ系制御信号を用いた場合の動作を示す信号波形図である。図5に示す動作シーケンスにおいては、1組のメインロウ活性化信号RCNTAA−RCNTACおよびメインプリチャージ活性化信号RCNTPAおよびRCNTPBが用いられる。メインロウ活性化信号RCNTAAの立上がりエッジおよび立下がりエッジをトリガとして、ローカルロウ系制御信号の活性/非活性化が行なわれ、またメインプリチャージ活性化信号RCNTPAおよびRCNTPBの立上がりエッジおよび立下がりエッジを利用して、これらのローカルロウ制御信号の初期化が行なわれている。
【0097】
図5においては、たとえば、メインロウ活性化信号RCNTAAの立上がりに応答して、ロウアドレスデコードイネーブル信号RADEおよびビット線分離指示信号BLIがHレベルに立上がる。メインロウ活性化信号RCNTABの立上がりエッジに応答して、ビット線イコライズ指示信号BLEQが、Lレベルに立下がる。次いで、このメインロウ活性化信号RCNTABの立下がりに応答してセンスアンプ活性化信号SONがHレベルに立上り、活性化される。
【0098】
また、メインロウ活性化信号RCNTACの立上がりに応答してワード線駆動タイミング信号RXPがHレベルに立上がり、また、メインロウ活性化信号RCNTACの立下がりに応答して、センスアンプ活性化信号SOPがLレベルに立下がり、Pセンスアンプ(PチャネルMOSトランジスタで構成されるセンスアンプ回路部分)が活性化される。
【0099】
また、プリチャージ指示信号PRCが活性化されたときには、プリチャージ活性化信号RCNTPBの立上がりに応答してロウアドレスデコードイネーブル信号RADEおよびワード線駆動タイミング信号RXTがLレベルに立下がる。次いで、メインプリチャージ活性化信号RCNTPAが、プリチャージ活性化信号RCNTPBの立上がりに応答して立下がり、応じて、ビット線分離指示信号BLIがLレベルに立下がり、ビット線イコライズ指示信号BLEQがHレベルに立下がる。次いで、センスアンプ活性化信号SONがLレベル、センスアンプ活性化信号SOPがHレベルにそれぞれ駆動される。
【0100】
このように、1組のメイン制御信号を用いた場合、たとえば、メインロウ活性化信号RCNTABの立上がりに応答してビット線イコライズ動作が完了し、続いてこのメインロウ活性化信号RCNTABの立下がりに応答してセンスアンプ活性化信号SONが活性化される。したがって、内部でビット線プリチャージ動作が完了してからセンスアンプ(Nセンスアンプ:NチャネルMOSトランジスタで構成されるセンスアンプ)が活性化されてセンス動作が行なわれるまでの時間Tは、メインロウ活性化信号RCNTABのHレベルの期間により決定される。この時間Tは、メインロウ活性化信号RCNTABの立上がり時間trおよび立下がり時間tfにより、その最小値が決定される。
【0101】
入力回路37dの初段にインバータが配置されており、このインバータの入力論理しきい値が、たとえばVDD/2であると仮定すると、このインバータの出力信号は、その入力論理しきい値を入力信号が超えた場合に変化するため、図6に示すように、その期間Tは、(tr+tf)/2よりも短くすることができない。この立上がり時間trおよびtfは、回路構成およびバスの負荷により定められ、一定時間以上短くすることはできない。このような最小時間でパルス信号を変化させる場合、Hレベル期間を確保することができず、正確にパルス信号を生成することができない。パルス信号を正確に生成するためには、Hレベル期間およびLレベル期間を確保して、変化させる必要がある。したがって、メイン制御信号の立上りおよび立下りを両者を利用する場合、メイン制御信号のパルル幅の制約により、時間Tを短くすることができず、高速のクロック信号に同期して、内部で行の選択および非選択を行うことが困難となる可能性がある。
【0102】
しかしながら、複数の組のメイン制御信号を利用することにより、各組においてはメイン制御信号は、緩やかに変化させるだけで良く、十分にパルス幅を確保することができ、メイン制御信号のパルス幅の制約を受けることなく、ローカルロウ系制御信号を変化させることができる。
【0103】
すなわち、異なる組のメイン制御信号を利用し、かつそれぞれの組の異なるエッジを利用することにより、これらのローカルロウ制御信号の発生に対しては十分なメイン制御信号のパルス幅を確保することができる。また、異なる制御信号の立上がりエッジおよび立下がりエッジを利用しており、これらの各組においてメイン制御信号を極めて短時間で順次変化させても、各組においては、メイン制御信号は一方方向に変化しているだけであり、Hレベル期間およびLレベル期間を十分に、各メイン制御信号に対して確保することができ、メイン制御信号のエッジに従って、ローカルロウ系制御信号を所望の状態へ駆動することができる。
【0104】
特に、3組以上のメイン制御信号を用いれば、これらのメインロウ系制御信号(メインロウ活性化信号およびメインプリチャージ活性化信号)のHレベル期間およびLレベル期間は、アクティブコマンドが各クロックサイクルごとに印加されても、1クロックサイクル期間以上確保することができ、安定に、正確な波形を有するメインロウ系活性化信号を生成することができ、安定に、ローカルロウ系制御信号をこのエッジをトリガとして変化させて、高速動作を保証することができる。
【0105】
1例として、図6に示すように、1つのメインロウ活性化信号RCNTABを用いた場合、センス動作開始までの時間Tの最小時間Tminは、メインロウ活性化信号RCNTABの立上がり時間trおよび立下がり時間tfで決定される。しかしながらこの図6に示すように、メインロウ活性化信号RCNTABを立上げすぐに立下げた場合、信号波形が不安定となり、正確な動作を補償することができない。また、メインロウ活性化信号RCNTABを立上げた後に、すぐに立下げるためのタイミング制御が極めて困難となる。しかしながら、図7に示すように、異なる組のメインロウ活性化信号RCNTAB<1:0>を用いそれぞれの立上がりエッジおよび立下がりエッジを利用することにより、それぞれのメインロウ活性化信号RCNTAB<1:0>のHレベル期間およびLレベル期間を十分に確保して、これらの立上がりエッジおよび立下がりエッジの間の時間Tを所望の値に設定することができる。これにより、正確に、内部動作を保証することができる。また、図7に示す時間Tの最小値は、メイン制御回路内部における遅延回路の遅延時間で調整することができ、配線遅延を考慮する必要がなく、正確に、この時間Tを設定することができる。
【0106】
図8は、図3に示すメインロウ活性制御回路33の構成を概略的に示す図である。図8において、メインロウ活性制御回路33は、クロック信号CLK(CLK0)の立上がりに応答してアクティブコマンド(アクティブ指示信号)ACTをカウントするACTカウンタ90と、このACTカウンタ90のカウント値ACN<2:0>に応答して選択的にイネーブルされ、イネーブル時、クロック信号CLKとアクティブ指示信号ACTに従ってメインロウ系制御信号RCNTAA<2>−RCNTAC<2>、RCNTAA<1>−RCNTAC<1>、およびRCNTAA<0>−RCNTAC<0>を生成するメインロウ活性化信号発生回路GEN2−GNE0を含む。
【0107】
これらのメインロウ活性化信号発生回路GEN2−GNE0は、所定のシーケンスで、1つのメインロウ活性化信号発生回路の発生するメインロウ活性化信号の活性化時、前段のメインロウ活性化信号発生回路をリセットする。図8においては、メインロウ活性化信号発生回路GEN−GEN0が、それぞれ前段のメインロウ活性化信号発生回路GEN1、GEN0、およびGEN2を非活性化するシーケンスを一例として示す。
【0108】
ACTカウンタ90は、クロック信号CLK(CLK0)の立上がり時に、アクティブ指示信号ACTが与えられると、そのカウントビットACN<2:0>を更新する。メインロウ活性化信号発生回路GEN2−GEN0は、それぞれ、カウントビットACN<2>−ACN<0>に従ってイネーブルされ、クロック信号CLK(CLK0)およびアクティブ指示信号ACTに従って、対応のメインロウ活性化信号を所定のシーケンスで活性化する。
【0109】
図9は、図8に示すメインロウ活性制御回路33の動作を示す図である。図9においては、外部から直接ロウアクティブコマンドACTが与えられる。すなわち、この構成においては、図3に示すコマンドデコーダ31は設けられていない。ロジックが、アレイ活性化指示信号のコマンドをデコードして、アクティブ指示信号ACTをコマンドCMDとして与える。以下、このアクティブ指示信号をロウアクティブコマンドACTとして説明する。
【0110】
時刻T1においてロウアクティブコマンドACTが与えられると、まず1組のメインロウ活性化信号発生回路が活性化される。図9においては、メインロウ活性化信号発生回路GEN0が活性化され、メインロウ活性化信号RCNTAA<0>−RCNTAC<0>が順次活性化される(Hレベルに立上げられる)。
【0111】
一方、メインロウ活性化信号RCNTAC<0>がHレベルに立上がると、活性状態のメインロウ活性化信号発生回路GEN2の出力するメインロウ活性化信号RCNTAA<2>−RCNTAC<2>が順次非活性化される。
【0112】
メインロウ活性化信号RCNTAA<0>が活性状態の間、時刻T2において再び別のバンクに対するロウアクティブコマンドACTが与えられる。ロウアクティブコマンドACTに従ってACTカウンタ90がカウント動作を行ない、別のメインロウ活性化信号発生回路GEN1が活性化される。このメインロウ活性化信号発生回路GEN1が、時刻T2に与えられたロウアクティブコマンドACTに従って、メインロウ活性化信号RCNTAA<1>−RCNTAC<1>を順次活性化する。
【0113】
メインロウ活性化信号RCNTAC<1>が活性化されると、活性状態のメインロウ活性化信号RCNTAA<0>−RCNTAC<0>が順次非活性化される。
【0114】
時刻T3において、再びロウアクティブコマンドACTが与えられると、さらに別のメインロウ活性化信号発生回路GEN2が活性化される。この時刻T3におけるロウアクティブコマンドACTに従って、メインロウ活性化信号RCNTAA<2>−RCNTAC<2>が順次活性化される。メインロウ活性化信号RCNTAC<2>が活性化されると、メインロウ活性化信号発生回路GEN1がリセットされ、メインロウ活性化信号RCNTAA<1>−RCNTAC<1>が順次非活性化される。
【0115】
時刻T4に再びロウアクティブコマンドACTが与えられた場合、既に、スタンバイ状態に復帰した最初のメインロウ活性化信号発生回路GEN0が活性化され、この時刻T4におけるロウアクティブコマンドACTに従ってメインロウ活性化信号RCNTAA<0>−RCNTAC<0>が順次活性化される。
【0116】
各クロックサイクルにおいて、活性化されるメインロウ活性化信号の組の各メインロウ活性化信号の立上がりエッジと別の組のメインロウ活性化信号の立下がりエッジを利用して、内部動作制御信号を生成する。これらのメインロウ活性化信号RCNTAA<2:0>−RCNTAC<2:0>は、最小限、次のクロックサイクルにおいてアクティブコマンドACTが与えられるまでHレベル期間を維持する。
【0117】
したがって、このメインロウ活性化信号発生回路として、3組のメインロウ活性化信号発生回路を設けることにより、メインロウ活性化信号RCNTAA<2:0>−RCNTAC<2:0>のそれぞれのHレベル期間およびLレベル期間は、クロック信号CLK(CLK0)の1クロックサイクル期間以上に保持することができる。
【0118】
各メインロウ活性化信号は、緩やかに変化させることができ、内部のローカルロウ活性化信号は、別の組のメインロウ活性化信号の立上りエッジおよび立下りエッジを利用しており、これらのエッジ間の時間を適当に調整することにより、ビット線イコライズからセンス動作開始までの時間を短縮することができる。
【0119】
これらのメインロウ活性化信号RCNTAA<2:0>−RCNTAC<2:0>は、バンクアドレスと独立な信号であり、単にロウアクティブコマンドACTが与えられると活性化されるだけである。したがって、バンク数が変更されても、このメインロウ活性化信号発生回路GEN0−GEN2の構成を何ら変更する必要がなく、バンク構成の変更に対しても容易に対応することができる。
【0120】
また、各クロックサイクルにおいてメインロウ活性化信号の立上がりエッジおよび立下がりエッジを利用しており、正確に、これらのメインロウ活性化信号RCNTAA<2:0>−RCNTAC<2:0>の立上がりエッジおよび立下がりエッジに同期して内部動作タイミングを決定することができる。
【0121】
図10(A)は、図8に示すACTカウンタ90の構成を概略的に示す図である。図10(A)において、ACTカウンタ90は、ロウアクティブコマンド(アクティブ指示信号)ACTとクロック信号CLK(CLK0)を受けるAND回路91cおよび91eと、AND回路91cの出力信号に応答して入力Dに与えられた信号をラッチするラッチ92aと、AND回路91eの出力信号に応答して入力Dに与えられた信号をラッチするラッチ92bと、クロック信号CLKに応答してラッチ92aおよび92bの出力Qからの信号をラッチするラッチ93aおよび93bと、ラッチ93aの出力Qからの信号を受けるインバータ91aと、ラッチ93bの出力Qからの信号とインバータ91aの出力信号とを受けてラッチ92aの入力Dへ与えるAND回路91bと、ラッチ93aおよび93bの出力Qからの信号を受けて、その出力信号をラッチ92bの入力Dへ与えるNOR回路91dを含む。
【0122】
ラッチ92aおよび92bは、入力Dに与えられる信号がHレベルのとき、入力Dに与えられる信号を取込み、かつこの入力Dに与えられる信号がLレベルとなるとラッチ状態となる。これらのラッチ92aおよび92bは、また、リセット信号RSTに応答して、その出力Qの信号がLレベルにリセットされる。ラッチ93aおよび93bは、クロック信号CLKがLレベルのときに、この入力Dに与えられる信号を取込み、クロック信号CLKがHレベルとなるとラッチ状態となる。
【0123】
ACTカウンタ90は、さらに、ラッチ93aの出力Qからの信号を受けるインバータ91fと、ラッチ93bの出力Qからの信号を受けるインバータ91gと、ラッチ93aの出力Qからの信号とインバータ91gの出力信号とを受けてカウントビットACT<2>を生成するAND回路91hと、インバータ91fの出力信号とラッチ93bの出力Qからの信号とを受けてカウントビットACN<1>を生成するAND回路91iと、インバータ91fおよび91gの出力信号を受けて、カウントビットACN<0>を生成するAND回路91jを含む。
【0124】
このACTカウンタ90は、2ビットのカウンタであり、ラッチ92bおよび93bが下位ビットのカウント値を算出し、ラッチ92aおよび93aが、上位ビットのカウント値を算出する。インバータ91fおよび91gとAND回路91h−91jにより、これらのカウントビットをデコードするデコード回路が構成される。
【0125】
図10(B)は、図10(A)に示すラッチ92aおよび92bの構成の1例を示す図である。図10(B)においては、これらのラッチ92aおよび92bは同一構成を有するため、1つのラッチ92を代表的に示す。
【0126】
図10(B)において、ラッチ92は、入力Eに与えられる信号を受けるインバータ95aと、インバータ95aの信号と入力Eの信号とに従って入力Dに与えられた信号を通過させるトランスミッションゲート95bと、トランスミッションゲート95bから転送された信号をラッチするインバータラッチ95cと、インバータラッチ95cのラッチ信号を反転して出力Qから出力するインバータ95eと、インバータラッチ95cのラッチ信号をリセット信号RSTに従ってリセットするトランジスタ95dを含む。
【0127】
図10(B)においては、リセットトランジスタ95dが、NチャネルMOSトランジスタ(絶縁ゲート型電界効果トランジスタ)で構成され、リセット信号RSTがHレベルとなると、このインバータラッチ95cの入力ノードを接地電位レベルに保持し、応じて出力Qからの信号をLレベルに設定する。
【0128】
図10(C)は、図10(A)に示すラッチ93aおよび93bの構成の一例を示す図である。これらのラッチ93aおよび93bは、同一構成を有するため、図10(C)においては、1つのラッチ93を代表的に示す。
【0129】
図10(C)において、ラッチ93は、入力E_Bに与えられる信号を反転するインバータ96aと、入力E_Bの信号とインバータ96aの出力信号とに従って入力Dに与えられた信号を通過させるトランスミッションゲート96bと、トランスミッションゲート96bにより伝達された信号をラッチするインバータラッチ96cと、インバータラッチ96cのラッチ信号を反転して出力Qに与えるインバータ96dを含む。
【0130】
この図10(C)に示すラッチ93には、リセット機能は設けられていない。前段のラッチ92aおよび92bがリセット機能を有しており、クロック信号CLKに同期してこれらのラッチ93aおよび93bのラッチ信号も、前段のラッチ92aおよび92bの初期データに従って初期状態にリセットされる。次に、図10(A)−図10(C)に示すACTカウンタ90の動作について簡単に説明する。
【0131】
初期状態においては、リセット信号RSTにより、ラッチ92aおよび92bがリセットされ、その出力Qからの信号はLレベルである。クロック信号CLKがLレベルとなると、ラッチ93aおよび93bが、これらのラッチ92aおよび92bの出力信号を取込みラッチするため、またラッチ93aおよび93bの出力信号もLレベルである。したがって、初期状態においては、インバータ91fおよび91gの出力信号がHレベルとなり、応じてAND回路91jからのカウントビットACN<0>がHレベルであり、残りのカウントビットACN<2:0>はともにLレベルである。
【0132】
ロウアクティブコマンドACTが与えられない間は、AND回路91cおよび91eはLレベルの信号を出力する。したがって、ラッチ92aおよび92bは、図10(B)に示すトランスミッションゲート95bが非導通状態であり、ラッチ状態を維持する。したがって、このACTカウンタ90は、アクティブコマンドACTが与えられるまでリセット状態を維持する。またこのとき、NOR回路91dの出力信号はHレベルであり、AND回路91bの出力信号はLレベルである。
【0133】
ロウアクティブコマンドACTが与えられると、クロック信号CLKの立上がりに同期してAND回路91cおよび91eの出力信号がHレベルとなり、ラッチ92aがAND回路91bの出力信号を取込み、その出力QからLレベルの信号を出力する。一方、ラッチ92bは、AND回路91eの出力信号の立上がりに応答してNOR回路91dからのHレベルの信号を取込み、Hレベルの信号を出力する。クロック信号CLKがHレベルの間、ラッチ93aおよび93bはラッチ状態にある。したがって、この場合、ロウアクティブコマンドACTが与えられると、図9に示すメインロウ活性化信号発生回路GEN0がイネーブル状態にあり、このロウアクティブコマンドACTに従ってメインロウ活性化信号RCNTAA<0>−RCNTAC<0>を生成する。
【0134】
クロック信号CLKがLレベルとなると、図10(C)に示すトランスミッションゲート96bが導通状態となり、ラッチ92aおよび92bの出力信号を取込み、その出力9から取込んだ信号を出力する。応じて、ラッチ93bの出力信号がHレベルとなり、一方、ラッチ93aの出力信号はLレベルを維持する。
【0135】
ラッチ93aおよび93bの出力信号の変化に応答して、インバータ91aの出力信号がLレベルに立下がる。インバータ91fの出力信号はHレベルである。したがって、AND回路91iからのカウントビットACN<1>がHレベルに立上がり、一方、カウントビットACN<0>はLレベルに立下がる。また、ラッチ93bの出力信号がHレベルとなると、NOR回路91dの出力信号はLレベルとなり、また、AND回路91bの出力信号がHレベルとなる。
【0136】
続いて再びロウアクティブコマンドACTが与えられると、ラッチ92bは、NOR回路91dの出力するLレベルの信号を取込んで出力する。一方、ラッチ92aが、AND回路91bからのHレベルの信号を取込み出力する。したがって、次のクロック信号CLKがLレベルに立下がると、ラッチ93aからHレベルの信号が出力され、一方、ラッチ93bからはLレベルの信号が出力される。したがって、インバータ91dの出力信号がHレベル、インバータ91fの出力信号がLレベルとなり、カウントビットACN<1>がLレベルとなり、一方、AND回路91hからのカウントビットACN<2>がHレベルとなる。
【0137】
ラッチ93aの出力信号がHレベルとなると、インバータ91aの出力信号がLレベルとなり、応じて、AND回路91bの出力信号がLレベルに立下がる。一方、NOR回路91dは、ラッチ93aの出力信号がLレベルの信号を出力する。
【0138】
再びロウアクティブコマンドACTが与えられると、ラッチ92bがLレベルの信号を取込みラッチし、ラッチ93bがクロック信号CLKの立下がりに同期してスルー状態となり、ラッチ92bからのLレベルの信号を出力する。同様、ラッチ92aがクロック信号CLKの立上がりに同期してAND回路91bからのLレベルの信号を取込みラッチし、続いてクロック信号CLKの立下がりに応答してラッチ93aがラッチ92aからの信号を取込み出力する。したがって、ラッチ93aおよび93bの出力信号がともにLレベルとなり、カウントビットACN<0>がHレベルとなり、一方、カウントビットACN<2>がLレベルとなる。
【0139】
ACTカウンタ90を用いることにより、いわゆる3進カウンタが形成され、ロウアクティブコマンドACTが3回与えられるごとにカウントビットACN<0>がHレベルとなり、図9に示すメインロウ活性化信号発生回路GEN0−GEN2を、順次活性化することができる。
【0140】
図11は、図8に示すメインロウ活性化信号発生回路GEN0−GEN2の構成の一例を示す図である。これらのメインロウ活性化信号発生回路GEN0−GEN2は、同一構成を有するため、各回路において対応する部分には同一参照番号を付す。これらのメインロウ活性化信号発生回路GEN0−GEN2は、メインロウ活性制御回路33に含まれるため、それらの構成要素に対しては参照番号33を主として用いる。
【0141】
図11において、メインロウ活性化信号発生回路GEN0は、ロウアクティブコマンド(またはロウアクティブ信号)ACTと内部クロック信号CLK(CLK0)とカウントビットACN<0>とを受けるNAND回路33aと、NAND回路33aの出力信号がLレベルのときにセットされて第1の出力に活性状態(Hレベル)の信号を出力するセット/リセットフリップフロップ33bと、セット/リセットフリップフロップ33bの第1の出力の信号を反転するインバータ33cと、インバータ33cの出力信号を受けてメインロウ活性化信号RCNTAA<0>を生成するドライバ35caと、インバータ33cの出力信号を時間τ1遅延する遅延回路33dと、遅延回路33dの出力信号がLレベルのときにリセットされて第1の出力の信号をHレベルに駆動するセット/リセットフリップフロップ33eと、セット/リセットフリップフロップ33eの第1の出力の信号を反転するインバータ33fと、インバータ33fの出力信号を反転してメインロウ活性化信号RCNTAB<0>を生成するドライバ35cbと、インバータ33fの出力信号を時間τ2遅延する遅延回路33gと、遅延回路33gの出力信号がLレベルのときにセットされて第1の出力にHレベルの信号を出力するセット/リセットフリップフロップ33hと、セット/リセットフリップフロップ33hの第1の出力の信号を反転するインバータ33iと、インバータ33iの出力信号を反転してメインロウ活性化信号RCNTAC<0>を生成するドライバ35ccを含む。
【0142】
遅延回路33dおよび33gにより、メインロウ活性化信号RCNTAA<0>が活性化されてから時間τ1経過後に、メインロウ活性化信号RCNTAB<0>が活性化される。続いて、時間τ2経過後に、メインロウ活性化信号RCNTAC<0>が活性化される。ロウアクティブコマンド(ロウアクティブ指示信号)ACTの活性化に応答して、それぞれ立上がりの位相の異なるメインロウ制御信号RCNTAA<0>−RCNTAC<0>を生成する。ドライバ35ca−35cbは同一の駆動能力を有する。
【0143】
メインロウ活性化信号発生回路GEN0は、さらに、インバータ33iの出力信号を時間τ3遅延してメインロウ活性化信号発生回路GEN2へリセット信号として与える遅延回路33jとが設けられる。この遅延回路33jの出力信号に従ってメインロウ活性化信号発生回路GEN2に設けられたセット/リセットフリップフロップ33bがリセットされる。
【0144】
メインロウ活性化信号発生回路GEN0のセット/リセットフリップフロップ33bに対しては、リセット信号RST_Bとメインロウ活性化信号発生回路GEN1の最終段の遅延回路33jの出力信号とが与えられる。したがって、このメインロウ活性化信号発生回路GEN0は、リセット信号RST_Bが与えられるかまたはメインロウ活性化信号RCNTAC<1>がHレベルへ駆動されてから所定時間経過後に、リセットされる。
【0145】
メインロウ活性化信号発生回路GEN0は、さらに、セット/リセットフリップフロップ33bの第2の出力の信号を反転するインバータ33kと、インバータ33kの出力信号を時間τ4遅延してセット/リセットフリップフロップ33eをリセットする遅延回路33lと、セット/リセットフリップフロップ33eの第2の出力の信号を反転するインバータ33mと、インバータ33mの出力信号を時間τ5遅延する遅延回路33nを含む。
【0146】
遅延回路33nの出力信号がLレベルとなると、セット/リセットフリップフロップ33hがリセットされる。リセット信号RST_Bは、たとえばシステムリセット信号であり、電源投入時またはシステムリセット時に、このリセット信号RST_BはLレベルに設定される。遅延回路33lにより、セット/リセットフリップフロップ33bがリセットされ、メインロウ活性化信号RCNTAA<0>がLレベルに駆動されてから時間τ4経過後に、メインロウ活性化信号RCNTAB<0>が非活性化される(Lレベルに駆動される)。また、遅延回路33nにより、メインロウ活性化信号RCNTAB<0>の非活性化から時間τ5経過後に、セット/リセットフリップフロップ33hがリセットされて、メインロウ活性化信号RCNTAC<0>が非活性化される。
【0147】
メインロウ活性化信号発生回路GEN1は、メインロウ活性化信号発生回路GEN0とその構成は同じである。NAND回路33aに、カウントビットACN<1>が与えられる。またセット/リセットフリップフロップ33bが、リセット信号として、メインロウ活性化信号発生回路GEN2の最終段の遅延回路33jの出力信号が与えられる。このメインロウ活性化信号発生回路GEN1から、メインロウ活性化信号RCNTAA<1>−RCNTAC<1>が発生される。
【0148】
メインロウ活性化信号発生回路GEN2は、メインロウ活性化信号GEN0およびGEN1と同一構成を有し、初段のNAND回路33aに対しカウントビットACN<2>が与えられる。またセット/リセットフリップフロップ33bのリセット信号としてメインロウ活性化信号発生回路GEN0の最終段の遅延回路33jの出力信号およびシステムリセット信号RST_Bが与えられる。メインロウ活性化信号発生回路GEN2から、メインロウ活性化信号RCNTAA<2>−RCNTAC<2>が所定にシーケンスで生成される。
【0149】
これらのメインロウ活性化信号発生回路GEN0−GEN2は、同一構成を有し、また内部の遅延回路の遅延時間も同じである。したがって、メインロウ活性化信号RCNTAA<0>−RCNTAC<0>の組、メインロウ活性化信号RCNTAA<1>−RCNTAC<1>の組、およびメインロウ活性化信号RCNTAA<2>−RCNTAC<2>の組それぞれにおいては、同じ位相関係でメインロウ活性化信号RCNTAA−RCNTACが生成される。
【0150】
なお、最終段の遅延回路33jは、活性状態のメインロウ活性化信号を非活性化するために設けられている。したがって、遅延回路33jは特に設けられなくてもよい。
【0151】
図11に示すメインロウ活性化信号発生回路GEN0−GEN2を利用することにより、図9に示すメインロウ活性化信号発生シーケンスを実現することができる。
【0152】
図12は、選択バンクをプリチャージ状態へ復帰させるためのメインプリチャージ活性化信号を生成するメインプリチャージ制御回路34の構成を概略的に示す図である。図12において、メインプリチャージ制御回路34は、クロック信号CLK(CLK0)の立上がりに応答してプリチャージ指示信号(プリチャージコマンド)PRCをカウントするPRCカウンタ98と、PRCカウンタ98のカウントビットPCN<0>がHレベルのときにイネーブルされ、クロック信号CLKおよびプリチャージ指示信号PRCに従ってメインプリチャージ活性化信号RCNTPA<0>およびRCNTPB<0>を生成するメインプリチャージ活性化信号発生回路PGEN0と、PRCカウンタ98からのカウントビットPCN<1>がHレベルのときにイネーブルされ、プリチャージ指示信号PRCとクロック信号CLKとに応答してメインプリチャージ活性化信号RCNTPA<1>およびRCNTPB<1>を生成するメインプリチャージ活性化信号発生回路PGEN1を含む。
【0153】
PRCカウンタ98は、2ビットのカウント値PCN<1:0>を生成する。メインプリチャージ活性化信号発生回路PGEN0は、メインプリチャージ活性化信号PCNTPB<1>の活性化に応答してリセットされ、またメインプリチャージ活性化信号発生回路PGEN1は、メインプリチャージ活性化信号PCNTPB<0>の活性化に応答してリセットされる。これらのメインプリチャージ活性化信号発生回路PGEN0およびPGEN1は、図11に示すメインロウ活性化信号発生回路GEN0およびGEN1と同様の構成を有する。3相のメインロウ活性化信号に代えて2相のメインプリチャージ活性化信号が用いられる。
【0154】
図13は、図12に示すPRCカウンタ98の構成を概略的に示す図である。図13において、PRCカウンタ98は、プリチャージコマンド(プリチャージ指示信号)PRCとクロック信号CLKを受けるAND回路99と、AND回路99の出力信号を入力Eに受けるラッチ92cと、入力E_Bに与えられるクロック信号CLKに従ってラッチ92cの出力信号を取込んでカウントビットPCN<1>を生成するラッチ93cと、ラッチ93cの出力信号PCN<1>を反転してカウントビットPCN<0>を生成するインバータ回路100を含む。インバータ回路100の出力信号は、またラッチ92cの入力Dにフィードバックされる。
【0155】
ラッチ92cは、また、リセット信号RSTに従って出力信号がLレベルにリセットされる。これらのラッチ92cおよび93cは、図10(B)および図10(C)に示すラッチ92および93それぞれと同一構成を有する。ラッチ93cに含まれる出力段のインバータ回路96d(図10(C)参照)とインバータ回路100の駆動能力を等しくする。これにより、ローカル制御回路に対するカウントビットPCN<1:0>の信号伝搬遅延を同じに設定する。
【0156】
この図13に示すPRCカウンタにおいては、初期状態時においては、ラッチ92cの出力信号はLレベルであり、応じてラッチ93cの出力信号もLレベルである。したがって、カウントビットPCN<0>がHレベルとなり、カウントビットPCN<1>はLレベルである。プリチャージコマンドPRCが与えられるまでこの状態を維持する。次に、この図14を参照して図13に示すPRCカウンタの動作について説明する。以下の説明においても、コマンドが、ロジックにおいてデコードされて動作モード指示信号として与えられる場合を1例として示す。半導体記憶装置において、プリチャージコマンドがデコードされてプリチャージ指示信号PRCが生成されても良い。
【0157】
初期状態においては、リセット信号RSTによりPRCカウンタ98がリセットされ、カウントビットPCN<0>がHレベル、カウントビットPCN<1>がLレベルである。
【0158】
時刻T10においてプリチャージコマンドPRCが与えられると、ラッチ92cがクロック信号CLKの立上がりに同期して、カウントビットPCN<0>を取込み、その出力信号IPNをHレベルに立上げる。クロック信号CLKがLレベルとなると、ラッチ93cがラッチ92cの出力信号IPNを取込み、その出力信号すなわちカウントビットPCN<1>をHレベルに立上げ、応じてカウントビットPCN<0>はLレベルとなる。
【0159】
時刻T11においてプリチャージコマンドPRCが再び与えられると、ラッチ92cが、LレベルのカウントビットPCN<0>を取込み、その出力信号IPNがLレベルとなる。クロック信号CLKがLレベルとなると、ラッチ93cがラッチ92cのLレベルの出力信号IPNを取込み、カウントビットPCN<1>をLレベルに設定する。
【0160】
時刻T12において再びプリチャージコマンドPRCが与えられると、ラッチ92cの出力信号IPNがHレベルに立上がり、クロック信号CLKの立下がりに応答して、カウントビットPCN<0>およびPCN<1>の状態が変化する。
【0161】
したがって、この図13に示すPRCカウンタにおいては、プリチャージコマンドPRCが与えられるごとにクロック信号CLKの立下がりに同期してカウントビットPCN<0>およびPCN<1>が交互にHレベルに駆動され、応じて、図12に示すメインプリチャージ活性化信号発生回路PGEN0およびPGEN1が交互に活性化される。
【0162】
このメインプリチャージ活性化信号RCNTPA<1:0>およびRCNTPB<1:0>は、プリチャージコマンドPRCが与えられると所定のシーケンスで活性化され、バンクアドレスには何ら結合されていない。したがって、バンク拡張時にも、同一構成を用いて、メインプリチャージ活性化信号発生回路の構成を何ら変更することは要求されない。
【0163】
また、メインプリチャージ活性化信号発生回路PGEN0およびPGEN1は、一方が活性化されると他方が非活性化される。これらのメインプリチャージ活性化信号RCNTPA<1:0>およびRCNTPB<1:0>は、それぞれ、活性化期間を、連続してプリチャージコマンドPRCが印加される間の期間とすることができ、十分なパルス幅を有することができる。ローカルのプリチャージ制御信号を、これらのメインプリチャージ活性化信号RCNTPA<1:0>およびRCNTPB<1:0>立上りエッジおよび立下りエッジを利用して生成することにより、確実にローカルプリチャージ制御信号を、メインフプリチャージ活性化信号のパルス幅の制約を受けることなく生成することができる。
【0164】
図15は、プリチャージコマンドPRC印加時のローカルロウ系制御信号の初期状態への復帰シーケンスを示す図である。以下、図15を参照して、ローカルロウ制御信号の初期化シーケンスについて簡単に説明する。
【0165】
図15においては、先のプリチャージコマンド印加により、メインプリチャージ活性化信号RCNTPA<0>およびRCNTPB<0>がHレベルを維持し、メインプリチャージ活性化信号RCNTPA<1>およびRCNTPB<1>がLレベルを維持する状態を示す。
【0166】
この状態においては、PRCカウンタ98のカウントビットPCN<0>に従って、メインプリチャージ活性化信号発生回路PGEN0が、このプリチャージコマンドにより活性化され、メインプリチャージ活性化信号RCNTPA<0>およびRCNTPB<0>をHレベルに立上げる。次いで、クロック信号CLKの立下がりに応答して、PRCカウンタ98のカウントビットPCN<1>がHレベルとなり、メインプリチャージ活性化信号発生回路PGEN1がイネーブルされる。従って、次にプリチャージコマンドが印加されるとプリチャージ活性化信号発生か回路PGEN1が、活性化されてメインプリチャージ活性化信号を生成する。
【0167】
時刻T21においてロウアクティブコマンドACTが与えられ、ローカルロウ制御信号が所定のシーケンスで活性/非活性化される。このロウアクティブコマンドACTが与えられても、メインプリチャージ活性化信号RCNTPA<1:0>の状態は変化しない。
【0168】
時刻T22においてプリチャージコマンドPRCが与えられると、メインプリチャージ活性化信号RCNTPA<1>およびRCNTPB<1>が所定のシーケンスでHレベルに立上がる。このとき、また、メインプリチャージ活性化信号RCNTPB<1>の活性化に従って、メインプリチャージ制御信号発生回路PGEN0がリセットされ、メインプリチャージ活性化信号RCNTPA<0>およびRCNTPB<0>が、順時非活性化される。
【0169】
メインプリチャージ活性化信号RCNTPB<1>の立上がりに応答して、ロウアドレスデコードイネーブル信号RADEおよびワード線駆動タイミング信号RXTをHレベルに立上げる。続いて、プリチャージ活性化信号RCNTPA<0>の立下がりに応答してビット線分離指示信号BLIをLレベルに立下げ、またビット線イコライズ指示信号BLEQをHレベルに立上げる。また、このメインプリチャージ活性化信号RCNTPA<0>の立下がりに応答して、センスアンプ活性化信号SONをLレベルに立下げ、またセンスアンプ活性化信号SOPをHレベルに立上げる。
【0170】
メインプリチャージ活性化信号RCNTPA<1:0>およびRCNTPB<1:0>において、立上がりエッジおよび立下がりエッジをそれぞれ1つずつ利用して、ローカルロウ系制御信号を初期状態へ復帰させている。したがって、これらのメインプリチャージ活性化信号RCNTPA<1:0>のLレベルへの駆動が、プリチャージコマンドPRCの印加されたクロックサイクル内で完了している場合においては、十分に、高速のクロック信号に対応して、時刻T22の次のクロックサイクルで再びプリチャージコマンドPRCが与えられても、メインプリチャージ活性化信号RCNTPA<0>をHレベルに駆動して、プリチャージ動作を行なうことができる。メインプリチャージ活性化信号RCNTPB<1:0>の立上がりと、メインプリチャージ活性化信号RCNTPA<1:0>の立下がりを用いて、プリチャージ動作を行なっている。しかしながら、メインプリチャージ活性化信号として、1相の信号を利用し、メインプリチャージ活性化信号RCNTPA<1>の立上がりエッジとメインプリチャージ活性化信号RCNTPA<0>の立下がりエッジを用いてプリチャージ動作が行なわれてもよい。
【0171】
また、メインプリチャージ制御信号発生回路としてPGEN0−PGEN2の3組が用いられ、メインロウ活性化信号RCNTRA−RCNTRCと同様に、3組のメインプリチャージ活性化信号RCNTPA<2:0>およびRCNTPB<2:0>が用いられてもよい。この場合には、メインプリチャージ活性化信号RCNTPAのLレベル期間を、最低、クロック信号CLKの1クロックサイクル以上を確保することができる。
【0172】
図16は、ローカル制御回路に含まれるロウ系ローカル制御回路41の構成を概略的に示す図である。この図16において、ロウ系ローカル制御回路41は、メインロウ活性化信号RCNTRA<2:0>−RCNTRC<2:0>とカウントビットACN<2:0>とに従って内部ロウ制御信号ACTA、ACTBおよびACTCを生成するアクティブ系入力部100と、メインプリチャージ活性化信号RCNTPA<1:0>およびRCNTPB<1:0>およびプリチャージカウントビットPCN<1:0>に従って内部プリチャージ制御信号PRCAおよびPRCBを生成するプリチャージ系入力部110を含む。
【0173】
これらのアクティブ系入力部100およびおよびプリチャージ系入力部110は、図3に示すブロックアドレスデコーダ40からのブロック選択信号BHTAに従って選択的に活性化される。
【0174】
アクティブ系入力部100は、メインロウ活性化信号RCNTAA<2:0>を受ける入力回路101aと、メインロウ活性化信号RCNTAB<2:0>を並列に受ける入力回路101bと、メインロウ活性化信号RCNTAC<2:0>を並列に受ける入力回路101cと、カウントビットACN<2:0>をそれぞれ受ける入力インバータバッファ回路102a−102cと、これらの入力インバータバッファ回路102a−102cの出力信号をラッチしてラッチカウントビットLAN<2:0>を生成するラッチ104a−104cと、入力回路101a−101cそれぞれに対応して設けられるローカルパルス発生回路105a−105cを含む。
【0175】
これらのローカルパルス発生回路105a−105cは、その構成は後に示すが、ラッチ回路104a−104cそれぞれに対応して設けられるトライステートインバータバッファの2組を含み、ラッチカウントビットLAN<2:0>に従って対応の入力回路101a−101cからのメインロウ系制御信号をバッファ処理し、かつ2組のバッファロウ系制御信号を生成する。
【0176】
アクティブ系入力部100は、さらに、ブロック選択信号BHTAの活性化時、ローカルパルス発生回路105aの出力信号をバッファ処理してかつラッチして内部ロウ制御信号ACTAを生成するローカル入力バッファ回路160aと、内部ロウ制御信号ACTAの活性化に応答してイネーブルされ、ローカルパルス発生回路105bの出力信号に従って内部ロウ制御信号ACTBを生成するローカル入力バッファ回路160bと、内部ロウ制御信号ACTBの活性化時イネーブルされ、ローカルパルス発生回路105cの出力信号をバッファ処理してかつラッチして内部ロウ制御信号ACTCを生成するローカル入力バッファ回路160cと、内部ロウ制御信号ACTAおよびACTCを受けてラッチ104a−104cに対するラッチ制御信号を生成するOR回路107を含む。
【0177】
入力回路101a−101cの各々は、対応の3ビットのメインロウ活性化信号それぞれに対応して設けられる3ビットのインバータ回路を含み、対応のメインロウ活性化信号を反転してそれぞれ次段のローカルパルス発生回路105a−105cへ与える。
【0178】
ラッチ104a−104cは、先の図10(C)に示すラッチ93と同様の構成を備え、OR回路107の出力信号がLレベルのときにスルー状態となり、OR回路107の出力信号がHレベルのときにラッチ状態となる。ローカルパルス発生回路105a−105cは、それぞれ、互いに関連付けられる2組のメインロウ活性化信号を生成する。ローカル入力バッファ回路160a−160cにおいては、これらの対応のメインロウ活性化信号のNAND処理を行なって、内部ロウ制御信号ACTA−ACTCを生成する。これにより、ローカル入力バッファ回路160a−160cにおいては、対応のメインロウ活性化信号を、1つのクロックサイクル内において、立上げかつ立下げることができる。
【0179】
図17は、図16に示すローカルパルス発生回路105cおよびローカル入力バッファ回路160cの構成を示す図である。入力バッファ回路101cにおいては、メインプリチャージ活性化信号RCNTAC<0>−RCNTAC<2>それぞれに対応して、インバータバッファ200a−200cが設けられる。ローカルパルス発生回路105cは、このインバータバッファ200a−200cそれぞれに対応して設けられ、ラッチカウントビットLAN<0>−LAN<2>のときにイネーブルされるトライステートインバータバッファ202a−202cと、インバータバッファ200a−200c、これらのトライステートインバータバッファ202a−202cと並列に設けられるトライステートインバータバッファ202b−202fを含む。トライステートインバータバッファ202a−202cは、それぞれインバータバッファ200a−200cを介して与えられるメインロウ活性化信号RCNTAC<0>−RCNTAC<2>を受ける。一方、トライステートインバータバッファ202dは、ラッチカウントビットLAN<0>がHレベルのときにイネーブルされ、インバータバッファ202cからのメインロウ活性化信号RCNTAC<2>を反転して出力する。トライステートインバータバッファ202eは、ラッチカウントビットLAN<1>がHレベルのときにイネーブルされ、インバータバッファ200aからの反転メインロウ活性化信号RCNTAC<0>を反転して出力する。トライステートインバータバッファ202fは、ラッチカウントビットLAN<2>がHレベルのときにイネーブルされ、インバータバッファ200bを介して与えられるメインロウ活性化信号RCNTAC<1>を反転して出力する。
【0180】
トライステートインバータバッファ202a−202cの出力は共通に結合され、またトライステートインバータバッファ202d−202fの出力は共通に結合される。
【0181】
したがって、このローカルパルス発生回路105cにおいては、ラッチカウントビットLAN<0>がHレベルとなった場合にはトライステートインバータバッファ202aおよび202dがイネーブルされ、メインロウ活性化信号RCNTAC<0>およびRCNTAC<2>が選択されて、次段のローカル入力バッファ回路160cへ与えられる。ラッチカウントビットLAN<1>がHレベルのときには、トライステートインバータバッファ202bおよび202eがイネーブルされ、メインロウ活性化信号RCNTAC<1>およびRCNTAC<0>が選択されて、次段のローカル入力バッファ回路160cへ与えられる。
【0182】
ラッチカウントビットLAN<2>がHレベルのときには、トライステートインバータバッファ202cおよび202fがイネーブルされ、メインロウ活性化信号RCNTAC<2>およびRCNTAC<1>が選択されて次段のローカル入力バッファ回路150cへ与えられる。
【0183】
ローカル入力バッファ回路160cは、ノード203と電源ノードの間に接続されかつそのゲートにトライステートインバータバッファ202a−202cの出力信号を受けるPチャネルMOSトランジスタQ1と、電源ノードとノード203の間に接続され、かつそのゲートにトライステートインバータバッファ202d−202fの出力信号を受けるPチャネルMOSトランジスタQ2と、ノード203と接地ノードの間に直列に接続されるNチャネルMOSトランジスタQ3−Q5を含む。MOSトランジスタQ3のゲートは、トライステートインバータバッファ202a−202cの出力に結合される。MOSトランジスタQ4のゲートは、トライステートインバータバッファ202d−202fの出力に結合される。MOSトランジスタQ5のゲートへは、前段のローカル入力バッファ回路160bの出力する内部ロウ制御信号ACTBが与えられる。
【0184】
ローカル入力バッファ回路160cは、さらに、ノード203の信号を反転しかつラッチしてローカルロウ制御信号ACTCを生成するインバータラッチ205を含む。
【0185】
このローカル入力バッファ回路160cに、前段のローカル入力バッファ回路160dの出力する内部ロウ制御信号ACTBを与えることにより、確実に、所定のシーケンスで内部ロウ制御信号ACTA−ACTCを活性化する。次に、この図17に示すローカルパルス発生回路105cおよびローカル入力バッファ回路160cの動作について、図18に示すタイミング図を参照して簡単に説明する。
【0186】
今、メインロウ活性化信号RCNTAC<1>がHレベルに立上がる状態を考える。この場合、ラッチカウントビットLAN<1>がHレベルとなり、トライステートインバータバッファ202bおよび202eがイネーブルされる。したがって、ローカルパルス発生回路105cにおいては、このメインロウ活性化信号RCNTAC<1>およびRCNTAC<0>が選択されて、ローカル入力バッファ回路160cへ与えられる。メインロウ活性化信号RCNTAC<0>は、メインロウ活性化信号RCNTAC<1>がHレベルに立上がってから所定時間経過後にLレベルに立下がる。したがって、入力バッファ回路160cにおいては、このMOSトランジスタQ1およびQ2がともにオフ状態となり、MOSトランジスタQ3およびQ4がともにオン状態となったときに、内部ロウ制御信号ACTCがHレベルに立上がる。メインロウ活性化信号RCNTAC<0>がLレベルに立下がると、内部ロウ制御信号ACTCは、Lレベルに立下がる。
【0187】
メインロウ活性化信号RCNTAC<2>がHレベルに立上がると、所定時間経過後に、メインロウ活性化信号RCNTAC<1>がLレベルに立下がる。この動作時においては、ラッチカウントビットLAN<2>はHレベルであり、トライステートインバータバッファ202cおよび202fにより、メインロウ活性化信号RCNTAC<1>およびRCNTAC<2>が選択され、ローカル入力バッファ回路160cへ与えられる。したがって、この場合においても、ローカル入力バッファ回路160cにおいて、MOSトランジスタQ3およびQ4が、これらのメインロウ活性化信号RCNTAC<2:1>がともにHレベルの期間オン状態となり、内部ロウ制御信号ACTCがHレベルとなる。
【0188】
メインロウ活性化信号RCNTAC<0>がHレベルに立上がると、所定時間経過後に、メインロウ活性化信号RCNTAC<2>がLレベルに立下がる。したがって、この場合には、トライステートインバータバッファ202aおよび202bがラッチカウントビットLAN<0>によりイネーブルされ、メインロウ活性化信号RCNTAC<0>およびRCNTAC<2>が選択されてローカル入力バッファ160cへ与えられる。したがって、この場合においても、内部ロウ制御信号ACTCが、所定期間Hレベルとなる。
【0189】
したがって、メインロウ活性化信号RCNTAC<2:0>が、それぞれ、長いHレベル期間およびLレベル期間を有する場合においても、ローカルロウ制御回路41において、1つのクロックサイクルに内において立上がりエッジおよび立下がりエッジを有する内部ロウ制御信号ACTCを生成することにより、正確に、各サイクルにおいて、指定された動作モードに応じた状態に対応のローカル回路を設定することができる。このローカルロウ制御回路41において、入力回路101cからローカル入力バッファ回路160cまでの配線距離が短く、波形の鈍りおよび伝搬遅延は小さく、内部ロウ制御信号のパルス幅についての制約はメインのロウ活性化信号に比べて少なく、正確な波形を有する内部ロウ制御信号ACTCを生成することができる。
【0190】
再び図16に戻って、ロウ系ローカル制御回路41は、さらに、ラッチ回路166と、ローカルロウ制御信号ACTCに従って、このラッチ166の出力信号ACTLATをHレベルに設定するNチャネルMOSトランジスタ165と、プリチャージ系入力部110からの内部プリチャージ制御信号PRCAおよびPRCBに従ってインバータラッチ166のラッチ信号の論理レベルを変更する信号を生成する論理回路168と、この論理回路168の出力信号とリセット信号RST_Bに従ってインバータラッチ166のラッチ信号の論理レベルをリセットするリセット回路167と、インバータラッチ166のラッチ信号ACTLATを反転して補のラッチ信号ACTLATを生成するインバータ109を含む。
【0191】
論理回路168は、内部プリチャージ制御信号PRCAがLレベルでありかつ内部プリチャージ制御信号PRCBがHレベルとなると、リセット回路167を活性化し、インバータラッチ166のラッチ信号ACTLATをLレベルに設定する。インバータ109は、このインバータラッチ166のラッチ信号ACTLATを反転して、ローカル入力バッファ回路160aへ与える。このインバータ109の出力信号ZACTLATがLレベルのときには、ローカル入力バッファ回路160aはその出力信号ACTAの状態を変更せずラッチ状態を維持する。これにより、後に詳細に説明するように、選択メモリブロックにおけるワード線多重選択を防止する。
【0192】
このプリチャージ系入力部110も、アクティブ系入力部100と同様の構成を有し、内部プリチャージ制御信号PRCAおよびPRCBそれぞれに対し、ローカルパルス発生回路およびローカル入力バッファ回路が設けられる。ブロックデコーダからのブロックヒット信号(ブロック選択信号)BHTAに従って、選択メモリブロックに対して設けられたローカル制御回路において、ロウアクティブ動作またはプリチャージ動作が実行される。
【0193】
図19は、図16に示すローカル入力バッファ160aおよび160bの構成を示す図である。図19において、ローカル入力バッファ回路160aは、電源ノードとノード210aの間に並列に接続され、それぞれのゲートにローカルパルス発生回路105aの出力信号が与えられるPチャネルMOSトランジスタQ10およびQ11と、ノード210aと接地ノードの間に直列に接続されるMOSトランジスタQ12−Q15と、ノード210aの信号を反転しかつラッチして内部ロウ制御信号ACTAを生成するインバータラッチ212aを含む。
【0194】
MOSトランジスタQ12は、MOSトランジスタQ10のゲートに接続され、MOSトランジスタQ13のゲートは、MOSトランジスタQ11のゲートに接続される。MOSトランジスタQ14のゲートへは、ブロックヒット信号BHTAが与えられ、MOSトランジスタQ15のゲートへは、図16に示すインバータ109からの反転ラッチ信号ZACTLATが与えられる。
【0195】
ローカル入力バッファ回路160bは、電源ノードとノード210bの間に並列に接続されたそれぞれのゲートにローカルパルス発生回路105bの出力信号を受けるPチャネルMOSトランジスタQ20およびQ21と、ノード210bと接地ノードの間に直列に接続されるNチャネルMOSトランジスタQ22−Q24と、ノード210bの信号を反転しかつラッチして、内部ロウ制御信号ACTBを生成するインバータラッチ212bを含む。
【0196】
ローカル入力バッファ回路160aにおいて、対応のメモリブロックが選択されて行が選択状態に維持されている場合には、プリチャージコマンドが与えられるまで、ラッチ回路166にラッチされたラッチロウ活性化信号ACTLATはHレベルであり、インバータ109の出力信号ZACTLATはLレベルである。したがって、ローカル入力バッファ回路160aにおいては、その入力段のMOSトランジスタQ10−Q15により構成される入力バッファは、対応のローカルパルス発生回路105aの出力信号の論理レベルにかかわらずHレベルの信号を出力し、応じて内部ロウ制御信号ACTAはLレベルに維持される。したがって、対応のメモリブロックが選択状態のときに仮にブロックヒット信号BHTAが活性状態へ駆動されても、このメモリブロックは再び活性されることはない。これにより、メモリブロックにおけるワード線の多重選択を防止し、回路誤動作を防止する。
【0197】
図16に示すラッチ104a−104cは、図10(C)に示すラッチ93と同様の構成を備える。したがって、OR回路107の出力信号が内部ロウ制御信号ACTAの活性化に従ってHレベルとなると、これらのラッチ104a−104cはラッチ状態となり、カウントビットACN<2:0>の値が変化しても、内部のラッチカウントビットLAN<2:0>の値は変化しない。これらのラッチカウントビットLAN<2:0>に従って、ローカルパルス発生回路105a−105cのそれぞれにおいて、メインロウ活性化信号の選択が行なわれる。
【0198】
したがって、ラッチ104a−104cはラッチ状態となっているときにカウントビットACN<2:0>のカウント値が変化しても、正確に最初のメインロウ活性化信号RCNTAA<2:0>に続いて活性化されるメインロウ活性化信号RCNTAB<2:0>およびRCNTAC<2:0>が、このアクティブ系入力部100に取込まれて内部ロウ制御信号ACTBおよびACTCを生成することができる。これにより、ロウアクティブコマンドACTが高速で連続して与えられる場合においても、正確にアドレス指定されたメモリブロックにおいて行選択動作を行なうことができる。
【0199】
内部ロウ制御信号ACTCがLレベルとなると、そのときには内部ロウ制御信号ACTAはLレベルに立下がっており、OR回路107の出力信号がLレベルとなり、ラッチ104a−104cはカウントビットACN<2:0>を取込むことができる。すなわち、内部ロウ制御信号ACTA−ACTCがすべて活性状態となりかつすべて非活性状態となった後に新たなカウントビットを取込むことができる。
【0200】
なお、入力バッファ回路160a−160cにおいてインバータラッチ212a、212bおよび205が設けられているのは、入力段の内部出力ノードがハイインピーダンス状態(NチャネルMOSトランジスタおよびPチャネルMOSトランジスタが共にオフ状態となる)場合においても、内部制御信号がフローティング状態となるのを防止するためである。たとえば、メインロウ活性化信号RCNTABがHレベルのときに、内部ロウ制御信号ACTAがLレベルとなった状態のときにこのようなフローティング状態が生じる。
【0201】
図20は、ロウ系ローカル制御回路41のローカルロウ制御信号発生部の構成を示す図である。図20において、ローカルロウ制御信号発生部は、内部ロウ制御信号ACTBを受けるインバータ263と、内部ロウ制御信号ACTCを受けるインバータ264と、図16に示すインバータラッチ166のラッチ活性化信号ACTLATと内部ロウ制御信号ACTAとを受け、ロウアドレスデコードイネーブル信号RADEを生成する複合ゲート262と、内部ロウ制御信号ACTAとラッチ信号ACTLATを受けるOR回路269と、ラッチ信号ACTLATと内部ロウ制御信号ACTBを受けてビット線イコライズ指示信号BLEQを生成するNOR回路70と、インバータ263の出力信号とラッチ信号ACTLATとを受けてセンスアンプ活性化信号SONを生成するAND回路271と、インバータ264の出力信号とラッチ信号ACTLATとを受けてセンスアンプ活性化信号SOPを生成するNAND回路272と、内部ロウ制御信号ACTCとラッチ信号ACTLATとを受けるOR回路273と、内部プリチャージ制御信号PRCBを受けるインバータ278と、インバータ278の出力信号とOR回路273の出力信号とを受けてワード線駆動タイミング信号RXTを生成するAND回路73とを含む。
【0202】
図16に示すインバータラッチ166のラッチ信号ACTLATは、内部ロウ制御信号ACTCがHレベルの活性状態となるとHレベルの活性状態へ駆動され、次にメインプリチャージ活性化信号RCNTPAが与えられて内部プリチャージ制御信号PRCAがLレベルとなるまでHレベルの活性状態を維持する。したがって、ロウアクティブコマンドが与えられると、内部ロウ制御信号ACTA−ACTCがワンショットパルスで駆動された後においても、ラッチ信号ACTLATに従って内部のロウ系制御信号は活性状態を維持する。
【0203】
なお、この図20に示す構成において、NOR回路270からビット線イコライズ指示信号BLEQが生成されている。この構成は、対応のメモリブロックにおいてビット線イコライズ/プリチャージ回路が設けられており、ビット線プリチャージ/イコライズ回路がシェアード構成とされていない構成に対応する。ビット線プリチャージ/イコライズ回路がシェアードセンスアンプ帯に配置されている場合には、このビット線イコライズ指示信号BLEQは、対応のメモリブロックとセンスアンプ帯を共有するメモリブロックからのビット線イコライズ指示信号と結合されて対応のセンスアンプ帯内のビット線プリチャージ/イコライズ回路へ与えられる。
【0204】
複合ゲート262は、内部ロウ制御信号ACTAおよびラッチ信号ACTLATの一方がHレベルであり、かつインバータ278の出力信号がHレベルのときにロウアドレスデコードイネーブル信号RADEをHレベルに維持する。したがって、プリチャージコマンドが与えられ、内部プリチャージ制御信号PRCBがHレベルに立上がるまで、この複合ゲート62からのロウアドレスデコードイネーブル信号RADEはHレベルを維持する。
【0205】
ロウ系ローカル制御回路41は、さらに、入力バッファ回路を介して与えらるクロック信号CLK1に同期して、バッファ回路を介して与えられるXアドレスをラッチするラッチ261と、ロウアドレスデコードイネーブル信号RADEの活性化に応答してラッチ回路61によりラッチされたワード線アドレスをデコードしてワード線選択信号Addを生成するXアドレスデコーダ(ワード線アドレスデコーダ)263と、OR回路269からの出力信号に従ってビット線分離指示信号BLIを駆動するBLIドライバ275を含む。このBLIドライバ275へは、高電圧Vppが一方動作電源電圧として与えられる。
【0206】
使用されるシェアードセンスアンプ構成に応じて、ビット線分離指示信号BLIの論理レベルが異なる。ビット線プリチャージ/イコライズ回路がメモリブロックそれぞれに設けられ、スタンバイ状態時においては、メモリブロックの各ビット線がセンスアンプ回路から分離されている場合には、選択メモリブロックがセンスアンプ回路に接続される。また、これに代えて、スタンバイ状態時において、すべてのメモリブロックが対応のセンスアンプに接続され、行選択時選択メモリブロックと対をなす非選択メモリブロックがセンスアンプと切離される場合には、このビット線分離指示信号BLIは、対応のメモリブロックとセンスアンプを共有するメモリブロックのビット線分離回路へ与えられる。このビット線分離指示信号BLIの論理レベルは、したがって、メモリアレイの構成に応じて適当に定められる。
【0207】
ワード線ドライバ(Wドライバ)15iaへは、AND回路276からのワード線駆動タイミング信号RXTが与えられる。このワード線ドライバ15iaは、Xアドレスデコーダ263からのワード線選択信号Addに従って、対応のワード線を選択状態へ駆動する。
【0208】
次に、この図20に示すローカルロウ制御信号発生部の動作について、図21を参照して簡単に説明する。
【0209】
ブロックヒット信号BHTAに従って、対応のメモリブロックが選択された状態を考える。この場合、メインロウ活性化信号RCLTAA−RCLTACに従って、図16に示すローカル入力バッファ回路160a−160cは、順次内部ロウ制御信号ACTA−ACTCを所定期間Hレベルへ駆動する。内部ロウ制御信号ACTAがHレベルとなると、複合ゲート262により、ロウアドレスデコードイネーブル信号RADEがHレベルの活性状態となり、ラッチ261により内部クロック信号CLK1に同期してラッチされたワード線アドレスXADがデコードされ、ワード線選択信号Addが活性化される。
【0210】
内部ロウ制御信号ACTAがHレベルに立上がると、ローカル入力バッファ回路160bがイネーブルされ、内部ロウ制御信号ACTBが所定期間Hレベルとなる。この内部ロウ制御信号ACTBがHレベルとなると、ビット線イコライズ指示信号BLEQがLレベルとなり、対応のメモリブロックのビット線のプリチャージ/イコライズ動作が完了する。また、内部ロウ制御信号ACTAがHレベルとなると、OR回路269の出力信号がHレベルとなり、応じてBLIドライバ275が、ビット線分離指示信号BLIを、そのアレイ構成に応じてHレベルまたはLレベルに駆動する。
【0211】
内部ロウ制御信号ACTBがHレベルに駆動されると、続いて、内部ロウ制御信号ACTCがHレベルに駆動される(ローカル入力バッファ回路160cがイネーブルされる)。この内部ロウ制御信号ACTCがHレベルへ駆動されると、図16に示すインバータラッチ166によりラッチされたラッチ信号ACTLATがHレベルに駆動される。ロウ系動作時においては、プリチャージ制御信号PRCBはLレベルであり、インバータ278の出力信号はHレベルである。したがって、内部ロウ制御信号ACTCがHレベルとなり、OR回路273の出力信号またHレベルとなると、AND回路276により、ワード線駆動タイミング信号RXTがHレベルへ駆動され、WLドライバ15iaが、Xアドレスデコーダ263からのワード線選択信号Addに従ってワード線WLを選択状態へ駆動する。
【0212】
ラッチ信号ACTLATがHレベルのときに、内部ロウ制御信号ACTBがLレベルとなると、AND回路271からのセンスアンプ活性化信号SONがHレベルの活性状態へ駆動され、センスアンプ回路のNセンスアンプが動作する。次いで、内部ロウ制御信号ACTCがLレベルに立下がると、インバータ回路264の出力信号がHレベルとなり、NAND回路272からのセンスアンプ活性化信号SOPがLレベルに立下がる。
【0213】
以降、この状態が、ラッチ信号ACTLATがHレベルの間維持される。
プリチャージコマンドPRCが与えられ、ブロックヒット信号BHTAがHレベルとなると、図16に示すプリチャージ系入力部110において、メインプリチャージ活性化信号RCNTPA<1:0>およびRCNTPB<1:0>に従って、内部プリチャージ制御信号PRCAがHレベルに駆動される。内部プリチャージ制御信号PRCAがHレベルとなると、次いで、メインプリチャージ活性化信号RCNTPB<1:0>に従って内部プリチャージ制御信号PRCBがHレベルに立上がる。
【0214】
この内部プリチャージ制御信号PRCBがHレベルとなると、図20に示すインバータ278の出力信号がLレベルとなり、AND回路276からのワード線駆動タイミング信号RXTがLレベルとなり、また複合ゲート262からのロウアドレスデコードイネーブル信号RADEがLレベルの非活性状態となり、選択ワード線が非選択状態へ駆動される。続いて、内部プリチャージ制御信号PRCAがLレベルに立下がると、図16の論理回路168の出力信号がLレベルとなり、応じてラッチ信号ACTLATがLレベルとなる。ラッチ信号ACTLATがLレベルとなると、ロウ系制御信号BLI、BLEQ、SONおよびSOPが、それぞれ非活性状態へ駆動され、メモリブロックがスタンバイ状態へ駆動される。
【0215】
内部プリチャージ制御信号PRCAは、ブロックヒット信号BHTがLレベルとなり、かつメインプリチャージ制御信号RCNTPA<1:0>の一方がLレベルとなるとLレベルに駆動される。また、内部プリチャージ制御信号PRCBは、メインプリチャージ活性化信号RCNTPB<1:0>の一方がLレベルとなるとLレベルに駆動される。したがって、これらの内部プリチャージ制御信号PRCAおよびPRCBも、図17に示す回路と同様の構成を用いて生成され、パルス状の波形を有する。
【0216】
上述のように、複数組のメイン制御信号を用い、異なる組の立上がりエッジおよび立下がりエッジをそれぞれ用いて内部ロウ制御信号を生成することにより、メイン制御信号を長い配線長にわたって伝達する場合においても、正確な波形を有する内部ロウ制御信号を生成することができ、クロックサイクル時間が短くなった場合においても、安定に内部制御信号を生成して高速動作を行なうことができる。
【0217】
[実施の形態2]
図22は、この発明の実施の形態2に従う半導体集積回路装置の要部の構成を概略的に示す図である。図22において、クロック信号CLKに従って、複数組のタイミング制御信号SGA<k:0>−SGN<k:0>を生成するタイミング制御信号発生回路300と、タイミング制御信号SGA<k:0>−SGN<k:0>に従って内部動作タイミングを規定する内部動作制御信号OPTa−OPTmを生成するパルス合成回路310が設けられる。タイミング制御信号発生回路300は、カウンタと、複数組の遅延回路を含み、カウンタの出力カウント値に従って1つの遅延回路が活性化されて、クロック信号CLKを遅延してタイミング制御信号を生成する。
【0218】
パルス合成回路310は、これらのタイミング制御信号SGA<k:0>−SGN<k:0>の組において所定のシーケンスで隣接するタイミング制御信号の組の立上がりエッジおよび立下がりエッジに従ってタイミング制御信号OPTa−OPTmを生成する。したがって、パルス合成回路310としては、先の図11に示すメイン制御信号EN0−EN2と同様の構成が設けられる。
【0219】
この図22に示す内部動作制御信号発生部を利用することにより、図23に示すように、タイミング制御信号SGI<i>およびSGJ<i>の立上りエッジおよび立下がりエッジに従って内部動作制御信号OPThおよびOPTjを生成することができる。したがって、これらのタイミング制御信号SGI<i>およびSGJ<i>のパルス幅(Hレベル期間およびLレベル期間)を十分に確保して、低速で変化させて、短い間隔で変化する動作タイミング制御信号OPThおよびOPTjを生成することができる。
【0220】
内部動作制御信号OPThは、図23において破線で示すように、タイミング制御信号SGI<i>およびSGT<j>のNAND演算により生成されても良い。この動作タイミング制御信号OPThの駆動信号線の負荷が小さい場合に、正確に高速で変化するパルス信号を生成することができる。
【0221】
したがって、一般に、クロック信号CLKに同期して動作する半導体装置において内部タイミングを、クロック信号CLKに従って決定する場合、高速クロック信号CLKを用いても、正確に、複数の内部動作制御信号を生成することができる。
【0222】
なお、実施の形態1において、ロウ系回路の動作に対する制御信号を発生する部分の構成を示している。しかしながら、コラム系の回路、すなわち列選択およびデータの書込/読出を行なう回路に対して、コラム系動作制御信号を生成する場合においても、同様に本発明の構成を適用することができる。
【0223】
【発明の効果】
以上のように、この発明に従えば、複数組のメイン制御信号を利用し、1つの組のメイン制御信号の立上がりエッジと別の組のメイン制御信号の立下がりエッジとを利用して内部制御信号を生成しており、高速動作時においても、正確なパルス波形を有するメイン制御信号を用いて内部制御信号を生成することができ、高速で内部制御信号に従って内部動作を行うことができる。
【0224】
すなわち、外部からの動作モード指示信号に従って互いに位相の異なる複数の制御信号を生成し、この複数の制御信号の組を所定のシーケンスで1つの組を活性し、このメイン制御信号の組の互いに異なる組のメイン制御信号のそれぞれの異なるエッジに同期してこの制御信号を生成しており、メイン制御信号を低速で変化させて、高速で正確に変化するローカル制御信号を生成することができる。これにより、メイン制御信号のパルス幅の制約を受けることなく内部回路を高速動作をさせることができる。
【0225】
また、各組のメイン制御信号の所定のメイン制御信号の活性化に従って所定のシーケンスにおいて予め定められた異なる組のメイン制御信号を非活性化することにより、正確に、1つの組のメイン制御信号の活性化に従って別の組のメインの制御信号を非活性化し、これらの活性化エッジおよび非活性化エッジを用いてローカル制御信号を容易に生成することができる。
【0226】
また、ローカル制御信号に従って動作モード指示信号が指定する動作を制御するローカル動作制御信号を生成することにより、正確に、内部動作制御信号を生成することができる。
【0227】
また、ローカル動作制御信号の数を、ローカル制御信号の数よりも多くすることにより、ローカル制御回路の入力部の構成を簡略化することができる。
【0228】
また、複数のローカル回路に共通にメイン制御信号発生回路を設け、このメイン制御信号発生回路から複数組のメイン制御信号を各組を所定のシーケンスで生成し、各ローカル回路に対応して配置されるローカル制御回路においてこのメイン制御信号の異なる組のメイン制御信号の異なるエッジに従ってローカル制御信号を生成することにより、メイン制御信号を低速で変化させて、高速で変化するローカル制御信号を生成することができる。
【0229】
また、ローカル制御回路を、複数のメイン制御信号に従って対応のローカル回路に対するローカル制御信号を生成し、これらのこのローカル制御信号に従って対応のローカル回路に対するローカル動作制御信号を生成することにより、正確に、ローカル回路に対し動作制御信号を生成することができる。また、各ローカル回路に対する入力信号の負荷を同一とすることができ、アレイ構成変更時においても、容易に対応することができる。
【0230】
また、このローカル回路を、ローカルアドレス信号に従ってローカルデコード回路からの信号に従って選択的に活性化することにより、各ローカル回路を個々に駆動することができる。
【0231】
また、ローカル回路が複数のメモリセルを含む場合、メモリセル選択動作を高速にかつ正確に行なうことができる。
【0232】
また、メイン制御回路において、メイン制御信号の所定のメイン制御信号の活性化に応答して予め定められた異なる組のメイン制御信号を非活性化することにより、容易に、異なる組のメイン制御信号の異なる変化を利用することができる。
【図面の簡単な説明】
【図1】この発明に従う半導体集積回路装置の要部の構成を概略的に示す図である。
【図2】この発明の実施の形態1に従う半導体集積回路装置の全体の構成を概略的に示す図である。
【図3】この発明の実施の形態1に従う半導体集積回路装置の要部の構成をより具体的に示す図である。
【図4】図3に示す回路の動作を示すタイミング図である。
【図5】1組のメイン制御信号を用いた際の図3に示す回路の動作を示す図である。
【図6】図5に示すメインロウ活性化信号の最小パルス幅を示す図である。
【図7】この発明の実施の形態1に従うメインロウ活性化信号の位相関係を示す図である。
【図8】図3に示すメイン制御信号発生回路の構成を概略的に示す図である。
【図9】図8に示すメイン制御信号発生回路の動作を示すタイミング図である。
【図10】(A)−(C)は、図8に示すACTカウンタの構成を示す図である。
【図11】図8に示すメインロウ活性化信号発生回路の構成を示す図である。
【図12】図3に示すメインプリチャージ制御回路の構成を概略的に示す図である。
【図13】図12に示すPRCカウンタの構成を概略的に示す図である。
【図14】図13に示すPRCカウンタの動作を示すタイミング図である。
【図15】図3に示す回路のプリチャージ時の動作を示すタイミング図である。
【図16】図3に示すロウ系ローカル制御回路の要部の構成を概略的に示す図である。
【図17】図16に示すローカルパルス発生回路およびローカル入力バッファ回路の構成の一例を示す図である。
【図18】図17に示す回路の動作を示すタイミング図である。
【図19】図16に示す残りのローカルパルス発生回路およびローカル入力バッファ回路の構成を示す図である。
【図20】図3に示すロウ系ローカル制御回路のローカルの制御信号発生部の構成を示す図である。
【図21】図20に示すローカルロウ制御信号発生部の動作を示すタイミング図である。
【図22】この発明の実施の形態2に従う半導体集積回路装置の要部の構成を概略的に示す図である。
【図23】図22に示す回路の動作を示すタイミング図である。
【図24】従来の半導体記憶装置の全体の構成を概略的に示す図である。
【図25】図24に示すサブメモリアレイの構成を概略的に示す図である。
【図26】図24に示す半導体記憶装置の構成をより具体的に示す図である。
【図27】ローカル制御回路に含まれる入力バッファの構成の一例を示す図である。
【図28】図27に示す入力バッファの動作を示すタイミング図である。
【図29】図26に示す内部配線の負荷を概略的に示す図である。
【図30】図29に示す内部配線の信号伝達特性を示す図である。
【図31】従来の半導体集積回路装置の他の構成を概略的に示す図である。
【符号の説明】
1 メイン制御回路、10a−10n ローカル制御回路、15a−15n 行系回路、MBa−MBn,MBnW−MBnW,MBaE,MBnE メモリブロック、32 内部アドレス発生回路、33 メインロウアクティブ制御回路、34 メインプリチャージ制御回路、40 ブロックアドレスデコーダ、41ロウ系ローカル制御回路、GEN0−GEN2 ロウ活性化信号発生回路、90 ACTカウンタ、98 PRCカウンタ、PGEN0,PGEN1 メインプリチャージ活性化信号発生回路、100 ローカルロウアクティブ系回路、105a−105c ローカルパルス発生回路、160a−160c ローカル入力バッファ回路、110 プリチャージ系入力部、202a−202f トライステートインバータバッファ、Q1−Q5,Q10−Q15,Q20−Q24 MOSトランジスタ、205,212a,212b インバータラッチ、263,264,278 インバータ回路、269,273 OR回路、270 NOR回路、272 NAND回路、276 AND回路、262 複合ゲート、263 Xアドレスデコーダ、275 BLIドライバ、15ia WLドライバ。

Claims (9)

  1. 外部からの動作モード指示信号に従って、互いに位相の異なる複数のメイン制御信号を生成するメイン制御信号発生回路を備え、前記メイン制御信号発生回路は、前記動作モード指示信号に従って、それぞれが前記複数のメイン制御信号を含む複数のメイン制御信号の組の1つを、活性化し、かつ前記複数のメイン制御信号の組は、所定のシーケンスで選択され、
    前記メイン制御信号発生回路からのメイン制御信号に従ってローカル制御信号を生成するローカル制御信号発生回路を備え、前記ローカル制御信号発生回路は、互いに異なる組のメイン制御信号を受け、前記互いに異なる組については、メイン制御信号の互いに異なる変化方向に応答して前記ローカル制御信号を生成する、半導体集積回路装置。
  2. 各前記メイン制御信号発生回路は、前記複数組のメイン制御信号の所定のメイン制御信号の活性化に応答して所定のシーケンスにおいて予め定められた異なる組のメイン制御信号を非活性化する、請求項1記載の半導体集積回路装置。
  3. 前記ローカル制御信号に従って前記動作モード指示信号が指定する動作を制御するためのローカル動作制御信号を生成するローカル動作制御回路をさらに備える、請求項1記載の半導体集積回路装置。
  4. 前記ローカル動作制御信号の数は、前記ローカル制御信号の数以上である、請求項3記載の半導体集積回路装置。
  5. それぞれが、指定された動作を活性化時実行する複数のローカル回路、
    前記複数のローカル回路に対して共通に配置され、外部からの動作モード指示信号に従って、互いに位相の異なる複数の制御信号を生成するメイン制御信号発生回路を備え、前記メイン制御信号発生回路は、前記動作モード指示信号に従って所定のシーケンスでそれぞれが前記複数のメイン制御信号を含む複数組の1つを選択状態へ駆動し、
    各前記ローカル回路に対応して配置され、前記メイン制御信号発生回路からのメイン制御信号に従って対応のローカル回路に対するローカル動作制御信号を生成する複数のローカル制御回路を備え、各前記ローカル制御回路は、互いに異なる組のメイン制御信号を受け、前記互いに異なる組については、メイン制御信号の互いに異なる変化方向に応答して前記ローカル動作制御信号を生成する、半導体集積回路装置。
  6. 各前記ローカル制御回路は、
    前記複数のメイン制御信号に従って、対応のローカル回路に対するローカル制御信号を生成するローカル制御信号発生回路と、
    前記ローカル制御信号に従って、対応のローカル回路に対する動作制御信号を生成するローカル動作制御信号発生回路を備える、請求項5記載の半導体集積回路装置。
  7. 各前記ローカル回路に対応して配置され、外部からのアドレス信号に従って、対応のローカル回路が指定されたかを示すローカル回路選択信号を生成する複数のローカルデコード回路をさらに備え、各前記ローカル制御回路は、前記ローカル回路選択信号の活性化に応答して活性化されて前記ローカル動作制御信号を生成する、請求項5記載の半導体集積回路装置。
  8. 前記ローカル回路は、行列状に配列される複数のメモリセルを含み、前記ローカル動作制御信号は、前記複数のメモリセルの選択動作に関連する動作を制御する、請求項6記載の半導体集積回路装置。
  9. 前記メイン制御回路は、前記複数組のメイン制御信号の所定のメイン制御信号の活性化に応答して所定のシーケンスにおいて予め定められた異なる組のメイン制御信号を非活性化する、請求項5記載の半導体集積回路装置。
JP2002196094A 2002-07-04 2002-07-04 半導体集積回路装置 Pending JP2004039135A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002196094A JP2004039135A (ja) 2002-07-04 2002-07-04 半導体集積回路装置
US10/368,480 US6768699B2 (en) 2002-07-04 2003-02-20 Semiconductor integrated circuit device with embedded synchronous memory precisely operating in synchronization with high speed clock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196094A JP2004039135A (ja) 2002-07-04 2002-07-04 半導体集積回路装置

Publications (1)

Publication Number Publication Date
JP2004039135A true JP2004039135A (ja) 2004-02-05

Family

ID=29997037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196094A Pending JP2004039135A (ja) 2002-07-04 2002-07-04 半導体集積回路装置

Country Status (2)

Country Link
US (1) US6768699B2 (ja)
JP (1) JP2004039135A (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039135A (ja) * 2002-07-04 2004-02-05 Renesas Technology Corp 半導体集積回路装置
KR100608355B1 (ko) * 2004-03-25 2006-08-08 주식회사 하이닉스반도체 메모리 장치의 동작 주파수 변동에 따른 내부 제어 신호의인에이블 구간을 제어하는 장치와 그 방법
US7190603B2 (en) 2004-05-07 2007-03-13 Halo Lsi, Inc. Nonvolatile memory array organization and usage
US7764565B2 (en) * 2008-03-14 2010-07-27 Promos Technologies Pte.Ltd. Multi-bank block architecture for integrated circuit memory devices having non-shared sense amplifier bands between banks
US11225655B2 (en) 2010-04-16 2022-01-18 Nuevolution A/S Bi-functional complexes and methods for making and using such complexes
US10217494B2 (en) * 2017-06-28 2019-02-26 Apple Inc. Global bit line pre-charging and data latching in multi-banked memories using a delayed reset latch
KR102466965B1 (ko) * 2018-04-23 2022-11-14 에스케이하이닉스 주식회사 반도체장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020027823A1 (en) * 2000-09-06 2002-03-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device
US6888776B2 (en) * 2000-09-06 2005-05-03 Renesas Technology Corp. Semiconductor memory device
JP2002324398A (ja) * 2001-04-25 2002-11-08 Mitsubishi Electric Corp 半導体記憶装置、メモリシステムおよびメモリモジュール
JP2004039135A (ja) * 2002-07-04 2004-02-05 Renesas Technology Corp 半導体集積回路装置

Also Published As

Publication number Publication date
US20040004900A1 (en) 2004-01-08
US6768699B2 (en) 2004-07-27

Similar Documents

Publication Publication Date Title
US6512719B2 (en) Semiconductor memory device capable of outputting and inputting data at high speed
US7489588B2 (en) Semiconductor memory device having a main amplifier equipped with a current control circuit in a burst read operation
JP4370507B2 (ja) 半導体集積回路装置
JP2001006359A (ja) 半導体記憶装置
JP2000163969A (ja) 半導体記憶装置
US6304509B1 (en) Semiconductor storage unit
JP3719808B2 (ja) 半導体記憶装置
US5970001A (en) Dynamic RAM provided with a defect relief circuit
US7522467B2 (en) Semiconductor memory device
WO2005004164A1 (ja) 半導体記憶装置
US7359256B2 (en) Semiconductor memory device
JPH1139875A (ja) 半導体記憶装置
US6847567B2 (en) Sense amplifier drive circuits responsive to predecoded column addresses and methods for operating the same
JP2004039135A (ja) 半導体集積回路装置
JP2002025251A (ja) 半導体記憶装置
US6301187B1 (en) Synchronous type semiconductor memory device permitting reduction in ratio of area occupied by control circuit in chip area
JP2001312886A (ja) 半導体集積回路装置
JP2006172577A (ja) 半導体記憶装置
JP2003196985A (ja) 半導体メモリ及び半導体メモリのビットライト又はバイトライト方法
US7573776B2 (en) Semiconductor memory device having data-compress test mode
JP4119105B2 (ja) 半導体メモリ
JP3415784B2 (ja) 半導体記憶装置
US7872932B2 (en) Method of precharging local input/output line and semiconductor memory device using the method
JP2002025263A (ja) 半導体記憶装置
JP2003059268A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930