JP2004037948A - 多波長光源および光通信システム - Google Patents

多波長光源および光通信システム Download PDF

Info

Publication number
JP2004037948A
JP2004037948A JP2002196475A JP2002196475A JP2004037948A JP 2004037948 A JP2004037948 A JP 2004037948A JP 2002196475 A JP2002196475 A JP 2002196475A JP 2002196475 A JP2002196475 A JP 2002196475A JP 2004037948 A JP2004037948 A JP 2004037948A
Authority
JP
Japan
Prior art keywords
light
light source
wavelength
optical
broadband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002196475A
Other languages
English (en)
Inventor
Hiroshi Shioda
塩田 裕志
Norio Tashiro
田代 至男
Masateru Tadakuma
忠隈 昌輝
Keiichi Aiso
相曽 景一
Misao Sakano
坂野 操
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002196475A priority Critical patent/JP2004037948A/ja
Publication of JP2004037948A publication Critical patent/JP2004037948A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】光強度が平坦な広帯域光を出力可能で、かつ、製造コストおよび運用コストを低減することのできる多波長光源を実現する。
【解決手段】入力光源1と、入力光源1と接続された広帯域化導波路2と、広帯域化導波路2途上に配置された非相反回路部3と、広帯域化導波路2末端に設けられた光出射部4とを備える。また、広帯域化導波路2途上において、励起光を入力するための光結合器5a、5bと、励起光を供給するため光結合器5a、5bとそれぞれ接続された励起光源6a、6bとを備えた構造を有する。広帯域化導波路2は、正常分散かつ平坦な分散特性を有し、エルビウムが添加されたことで所定の増幅利得を有する。自己位相変調、波長分散および光増幅の作用によって、放物線形状のパルス波形の光が広帯域化導波路2中を伝送して強度が平坦な広帯域光を出力する。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は、光通信等に使用する光源に関し、特に、所定の波長範囲に渡って平坦な強度を有する広帯域光を得ることができる多波長光源および光通信システムに関する。
【0002】
【従来の技術】
従来、光通信の分野において、通信容量拡大の要請に応えるために、波長の異なる複数の信号光を同一光ファイバによって伝送させるWDM(Wavelength Division Multiplexing)方式が提案され、一部で実用化されている。WDM方式等によって通信容量を拡大するためには、所定波長範囲に渡って複数の信号光を発生する信号光源が必要であるため、従来、所定波長範囲に渡って強度が平坦な広帯域光を出力することが可能な多波長光源について研究が行われている。
【0003】
例えば、従来研究されてきた多波長光源の一例として、分散減少光ファイバを用いたものが知られている。これは、図18のグラフに示すように、入力端において異常分散特性を有し、ファイバ長が増大するにつれて分散値が減少傾向を示す光ファイバを備え、入力光としてソリトン状のパルス波形を有する光を用いた構造を有する。具体的には、以下に説明する機構により広帯域光を実現している。
【0004】
光ファイバに入力した光ソリトンは、所定のソリトン条件を満たすため、光ファイバ中で分散が異常分散となる領域においてソリトン断熱圧縮が生じ、パルスパワーが一定の値を保持したまま、パルス幅が圧縮される。そして、パルス幅が圧縮された光ソリトンは、その分ピークにおける光強度が高くなるため、光ファイバ中で主に自己位相変調(Self−Phase Modulation: SPM)によって徐々にスペクトル幅が拡大する。そして、分散値が0になるファイバ長の近傍で主に4光波混合によってスペクトル幅をさらに拡大し、広帯域光を得ている(光通信技術ハンドブック((株)オプトロニクス社) 第1版 P125〜P128参照)。
【0005】
光ファイバ中で生じるソリトン断熱圧縮によって、入力光の光強度が大きくなることで非線形光学効果が顕著に生じることとなるため、自己位相変調および4光波混合によるスペクトル幅の拡大が大きくなり、広帯域光を得ることができる。なお、このような分散減少光ファイバを用いた技術について、特開平11−160744号公報に開示されている。
【0006】
【発明が解決しようとする課題】
しかし、上記した分散減少光ファイバを用いた多波長光源は、様々な問題を有する。具体的には、ソリトン断熱圧縮を用いて広帯域光を得る方式を採用するため、入力光の波形および分散減少光ファイバの分散特性を精密に制御する必要があり、これに起因して、以下に示す問題が生じる。
【0007】
まず、入力光源および分散減少光ファイバの製造が困難であるという問題を有する。すなわち、ソリトン断熱圧縮を実現するためには、入力光は所定のソリトン条件を満たす必要があるため、入力光のパルス波形を精密に制御する必要がある。同様に、分散減少光ファイバについても、ソリトン断熱圧縮を実現するために分散特性を精密に制御する必要があるため、入力光源および分散減少光ファイバの製造は容易ではない。このため、製造コストが上昇するという問題がある。
【0008】
また、光強度が平坦な広帯域光を実現することが困難という問題も生じる。理想的なソリトン断熱圧縮を実現できた場合にはほぼ完全に光強度が平坦な広帯域光を実現することが可能だが、実際には理想的なソリトン断熱圧縮を実現することは困難である。このため、実際の装置では、出力される広帯域光の中心波長の強度と、他の波長の強度とは20dB程度の差が生じることが知られている。従って、分散減少光ファイバを用いた従来の多波長光源では、中心波長成分に関しては、信号光として取り出すことはできない。
【0009】
本発明は、上記従来技術の欠点に鑑みてなされたものであって、所定の波長範囲に渡って光強度が平坦な広帯域光を出力可能で、かつ、製造コストおよび運用コストを低減することのできる多波長光源および光通信システムを実現することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、請求項1にかかる多波長光源は、第1の光を出力する光源と、前記第1の光を入力し、前記第1の光の強度を増幅しつつ非線形光学効果により前記第1の光のスペクトル幅を拡大し、一定の波長範囲に渡って平坦な強度を有する第2の光を出力する広帯域化導波路とを備えたことを特徴とする。
【0011】
この請求項1の発明によれば、光増幅を行いつつ非線形光学効果を発生させることでスペクトル幅を拡大するため、伝送する光の強度を高めることが可能で、非線形光学効果を十分に発生させることでスペクトル幅の拡大が十分に行われ、広い波長範囲に渡って強度が平坦な広帯域光を得ることができる。
【0012】
また、請求項2にかかる多波長光源は、上記の発明において、前記広帯域化導波路は、ラマン増幅により前記第1の光の強度を増幅することを特徴とする。
【0013】
また、請求項3にかかる多波長光源は、上記の発明において、前記光源と前記広帯域化導波路との間に配置され、前記第1の光のパルス波形を変化させて広帯域化導波路に出力する分散付与部をさらに備えたことを特徴とする。
【0014】
また、請求項4にかかる多波長光源は、上記の発明において、前記第2の光を入力し、所定波長範囲の光のみを出力するフィルタ手段をさらに備えたことを特徴とする。
【0015】
また、請求項5にかかる多波長光源は、上記の発明において、前記フィルタ手段は、中心波長の異なる複数の光を出力するよう前記第2の光を出力することを特徴とする。
【0016】
また、請求項6にかかる多波長光源は、上記の発明において、前記フィルタ手段は、前記第1の光の中心波長と異なる中心波長の光を出力することを特徴とする。
【0017】
また、請求項7にかかる多波長光源は、上記の発明において、前記フィルタ手段は、エタロンフィルタによって形成されることを特徴とする。
【0018】
また、請求項8にかかる多波長光源は、上記の発明において、前記フィルタ手段は、波長に応じて異なる割合で前記第2の光を分岐する光分波器によって形成されることを特徴とする。
【0019】
また、請求項9にかかる光通信システムは、請求項1〜8のいずれか一つに記載の多波長光源と、前記多波長光源から出力された信号光を伝送する伝送路と、該伝送された信号光を受信する受信器とを含むことを特徴とする。
【0020】
また、請求項10にかかる光通信システムは、上記の発明において、励起光を出力する励起光源と、前記励起光を前記信号光と合波するための合波器と、増幅用光ファイバとを含む光増幅器をさらに備えたことを特徴とする。
【0021】
また、請求項11にかかる光通信システムは、上記の発明において、前記増幅用光ファイバは、エルビウムが添加されたことを特徴とする。
【0022】
また、請求項12にかかる光通信システムは、上記の発明において、前記光増幅器は、ラマン増幅により光増幅を行うことを特徴とする。
【0023】
【発明の実施の形態】
以下に図面を参照して、本発明にかかる多波長光源および光通信システムの好適な実施の形態について説明する。図面の記載において、同一または類似部分には同一あるいは類似な符号を付している。また、図面は模式的なものであり、現実のものとは異なることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
【0024】
(実施の形態1)
まず、実施の形態1にかかる多波長光源について説明する。本実施の形態1にかかる多波長光源は、分散特性が平坦な正常分散を示し、入力光を増幅する機能を有する光ファイバを備えた構造を有する。図1は、本実施の形態1にかかる多波長光源の構造を示す模式図である。以下、多波長光源の具体的な構造について説明する。
【0025】
本実施の形態1にかかる多波長光源は、入力光源1と、入力光源1に接続された広帯域化導波路2と、広帯域化導波路2途上に配置された非相反回路部3と、広帯域化導波路2末端に設けられた光出射部4とを備える。また、広帯域化導波路2途上において、励起光を供給するための光結合器5a、5bと、光結合器5a、5bとそれぞれ接続された励起光源6a、6bとを備えた構造を有する。
【0026】
入力光源1は、パルス光または連続発振光を広帯域化導波路2に出力するためのものである。本実施の形態1においてはパルス光を出力するものとし、入力光源1は半導体レーザ素子によって形成されるものとする。なお、入力光源1から出力されるレーザ光のパルス波形については、後述するように特に制限はない。
【0027】
広帯域化導波路2は、例えば光ファイバによって形成されており、入力光源1から入力されたレーザ光を増幅しつつ、波長範囲を拡大して広帯域光を出力するためのものである。具体的には、広帯域化導波路2は、図2のグラフに示すように、正常分散、すなわち負の分散値を有し、ファイバ長に対して分散値が一定となる分散特性を有する。なお、広帯域化導波路2の分散特性は図2に示すもの以外でも正常分散であれば広帯域光を有効に出力することは可能だが、後に説明するように広帯域光の平坦化の観点若しくは製造の容易性の観点からは図2に示す分散特性であることが好ましい。なお、3次分散値については、絶対値が小さいことが好ましく、0であることがより好ましい。本実施の形態1においては、3次分散値を0としている。
【0028】
また、広帯域化導波路2は、入力されたレーザ光を増幅するために、エルビウムイオン(Er3+)が添加された構造を有する。従って、広帯域化導波路2は、添加したエルビウムイオンを所定の波長を有する励起光で励起し、励起によって得られたエネルギーを入力光に与えることで、入力光の光強度を増幅する機能を有する。なお、広帯域化導波路2に添加する材料については、エルビウム以外の、例えば、ツリウム(Tm)、プラセオジウム(Pr)、イットリビウム(Yb)、テルビウム(Tb)等の希土類を用いても増幅機能を有することが可能である。また、広帯域化導波路2を形成する材料についても、ガラス材料に限定されることはなく、テルライト(Tellurite)系、フローライド(Fluoride)系、シリカ(Silica)系の材料を用いても良いし、上記した条件を満たすものであれば、これら以外の材料を用いて形成しても良い。
【0029】
非相反回路部3は、光出射部4側からの戻り光が広帯域化導波路2に入力されるのを防止するためのものである。具体的には、非相反回路部3は、光アイソレータや、サーキュレータ等によって形成される。光アイソレータは、例えば、屈折率に異方性を有する複屈折結晶、波長板、ファラデー回転子等を組み合わせて形成される。なお、光出射部4における光反射を防止すること等によって戻り光の発生を抑制できる場合には、非相反回路部3を省略した構造とすることも可能である。
【0030】
励起光源6a、6bは、励起光を供給するためのものである。具体的には、励起光源6a、6bは、例えば半導体レーザ素子によって形成され、980nm程度、1480nm程度の波長のレーザ光を出力する。ただし、励起光の波長は1530nm程度でも良い。なお、本実施の形態1においては、入力光の進行方向に対して前方および後方から励起する双方向励起方式を採用しているが、前方励起もしくは後方励起のみによって光増幅を行う構造としても良い。また、励起光源6a、6bを構成する半導体レーザ素子の数は単数に限定されず、複数であっても良い。
【0031】
光結合器5a、5bは、励起光源6a、6bから出力された励起光を広帯域化導波路2に入力するためのものである。具体的には、光結合器5a、5bは、光カプラ、光合分波器、サーキュレータ等によって形成されている。以上の構成により、本実施の形態1にかかる多波長光源は形成されている。
【0032】
本実施の形態1にかかる多波長光源では、自己位相変調、波長分散および光増幅が相互に作用することによって光強度の平坦性が良好な広帯域光を出力している。以下では、これらの現象について簡潔に説明した後、本実施の形態1にかかる多波長光源の動作について説明する。
【0033】
自己位相変調とは、非線形光学効果の一種であって、伝送する光の強度に応じて伝送する光自身の位相が変調される現象のことをいう。一般に、光ファイバなどの媒質の屈折率は、その中を伝送する光の強度に比例してわずかに変化するため、屈折率変化に応じて光自身の位相が変調される。光の周波数は、位相の時間微分によって規定されるため、自己位相変調が生じると、光の位相が変調されることによって光の周波数も変化し、光の波長範囲も変化する。
【0034】
波長分散とは、光ファイバ等の伝送媒体の屈折率が波長依存性を有することに起因して光のパルス幅が変化する現象のことをいう。波長ごとに屈折率が変化する場合には、光の群速度は波長ごとに異なる値となる。このため、伝送する光が所定範囲の波長を有する場合には、波長分散によって入力光のパルス幅が変動する。本実施の形態1においては、広帯域化導波路2は分散特性が正常分散となるため、高周波数の光成分の群速度は減少し、低周波数の光成分の群速度は増大する。従って、本実施の形態1において、広帯域化導波路2中を伝送する光は、波長分散の作用によって入力時と比較してパルス幅が拡大することとなる。
【0035】
光増幅は、自己位相変調を効果的に行う目的で行われる。光増幅を行わなかった場合、伝送する光の強度が低下し、高い非線形光学効果を得られなくなるためである。一般に非線形光学効果の度合いは伝送する光の強度に比例するため、光強度を増幅することで自己位相変調を効果的に行うことが可能となる。特に、本実施の形態1では、正常分散の光ファイバ中を光が伝送することとしたためパルス幅が拡大し、これに対応してピーク値が減少することから、光強度を増幅することが必要である。また、光強度の増幅を行うことで、自己位相変調および波長分散との相互作用によって光強度の平坦性が良好な広帯域光を出力することが可能となるが、このことについては後で詳細に説明する。
【0036】
次に、本実施の形態1にかかる多波長光源の動作について説明する。まず、入力光源1から入力光が広帯域化導波路2に入力され、広帯域化導波路2中を伝播する。ここで、入力光のパルス波形については後述するように特に制限はないが、以下においては、入力光がガウシアン形状のパルス波形を有する場合を例に説明する。
【0037】
ここでは、広帯域化導波路2中を伝送する光が、自己位相変調によって波長範囲が拡大され、波長分散および光増幅の寄与によって所定波長範囲に渡って光強度が平坦化されることを説明する。まず波長分散および光増幅が生じない場合の自己位相変調について説明する。
【0038】
図3(a)〜図3(c)は、入力光のパルス波形がガウシアン形状である場合の自己位相変調について示すグラフである。ここで、図3(a)は入力光のパルス波形を示し、図3(b)は、図3(a)のパルス波形に対する位相変調の程度を示すグラフである。また、図3(c)は、位相の変化量から導出される周波数の変化量を示すグラフである。
【0039】
図3(a)に示すように、ガウシアン形状のパルス波形は時間Tおよび時間Tにおいて変曲点を有し、パルス波形の傾きが最大となる。また、上記したように、自己位相変調において位相の変化量は光強度に比例するため、図3(a)と図3(b)とは同様の波形となる。さらに、図3(c)に示す周波数変化量は、図3(b)に示す曲線の時間微分に対応するため、パルス波形の傾きが最大となる時間T、Tで極値をとる。
【0040】
そのため、自己位相変調のみが生じている場合には、異なる時間において、同一の周波数変化が生じている。例えば、図3(c)に示す時間Tおよび時間Tにおいて、周波数変化量は共にΔωとなる。このように、異なる時間において同一の周波数変化を生じている場合、周波数変化量Δωに対応した波長において干渉が生じるため、出力される広帯域光にリップルが発生して平坦性が損なわれるおそれが生じる。
【0041】
これに対して、入力光のパルス波形が放物線形状である場合には、強度が平坦な広帯域光を出力することが可能となる。図4は、入力光のパルス波形が放物線形状となる場合の自己位相変調について示すグラフである。なお、図4のグラフは上から順にパルス波形位相の変化量、周波数の変化量を示す。なお、放物線形状とは、2次関数の場合のみならず、他の変曲点を有さないパルス波形も含む概念とする。
【0042】
パルス波形のグラフで示すように、放物線形状のパルス波形を有する場合には変曲点が存在しないため、位相変化量のグラフ上も変曲点は存在せず、この結果、周波数変化量は、極値が存在しない単調変化のグラフとなる。従って、周波数変化量が一致する時間は複数存在することはなく、干渉によって広帯域光にリップルが発生することもない。
【0043】
このため、広帯域化導波路2中を伝送する光のパルス波形は放物線形状を有することが好ましい。本実施の形態1においては、自己位相変調に加えて、波長分散と光増幅を併せて行うことで広帯域化導波路2中を伝送する光のパルス波形を放物線形状に変化させている。
【0044】
波長分散によるパルス波形の変化について、図5(a)および図5(b)を参照して説明する。所定のパルス波形、例えば図5(a)に示すガウシアン形状のパルス波形を有する光が広帯域化導波路2中を伝送すると、自己位相変調によって、図5(b)で示すような周波数変調が生じる。ここで、正常分散の場合には、高周波数の光成分の群速度は減少し、低周波数の光成分の群速度は増大する。従って、図5(b)の矢印で示すように、自己位相変調によって周波数が増大した光成分は時間軸に対して正の方向に移動し、周波数が減少した光成分は時間軸に対して負の方向に移動することとなる。このことにより広帯域化導波路2中を伝送する光のパルス波形は、図5(a)の点線に示す波形に変化する。特に、変曲点の部分については、周波数変化の絶対値がもっとも大きくなることから、波長分散によって、他の部分よりも時間軸方向に移動する距離は大きくなる。このため、パルス波形における変曲点はそれぞれ端部方向に移動して消滅し、パルス波形は、図5(a)の点線で示すように放物線形状となる。
【0045】
一方、パルス波形が放物線形状となった後も、波長分散によってパルス波形は時間軸方向に拡大する。このため、伝送距離が長い場合にはパルス波形が放物線形状からさらに矩形状となるおそれがある。本実施の形態1にかかる多波長光源では、広帯域化導波路2に光増幅機能を持たせ、自己位相変調の影響を増大させることで放物線形状のパルス波形を維持している。具体的には以下の通りである。
【0046】
自己位相変調は非線形光学効果であるため、自己位相変調を効果的に行うためには伝送する光の強度が大きいことが望ましい。本実施の形態1にかかる多波長光源では、広帯域化導波路2が増幅機能を備えることとしたために光は増幅され、自己位相変調が効率的に行われる。すなわち、広帯域化導波路2中を伝送する光は、自己位相変調の影響を強く受け、波長分散の影響は相対的に小さなものとなる。このため、増幅利得を適切な値に設定することで、任意のパルス波形を有する入力光に対して、広帯域化導波路2中では放物線形状のパルス波形に変化させ、その波形を維持したまま伝送させることができる。従って、広帯域化導波路2に入力された光は、伝送中全般に渡って自己位相変調によるスペクトル幅の拡大が行われ、広い波長範囲に渡って平坦な強度を有する励起光を得ることができる。
【0047】
なお、本実施の形態1において、広帯域化導波路2に光増幅機能を持たせたことにより、伝送中に低下するピーク強度を維持もしくは高めているという利点も生じる。すなわち、広帯域化導波路2中を伝送する光は、自己位相変調によって波長範囲が拡大し、波長分散によってパルス幅が拡大することから、通常はピーク値が低下する。しかし、本実施の形態1では広帯域化導波路2が光増幅機能を有するため、伝送途中に光増幅が行われ、ピーク強度が維持もしくはさらに高められることとなる。そのため、伝送用光ファイバ中において、より効果的に自己位相変調による波長範囲の拡大が生じ、出力される広帯域光も十分な強度を得ることができる。
【0048】
以上の議論は、広帯域化導波路2中を伝送する光に関する非線形シュレディンガー方程式を解析することによっても裏付けられる。なお、以下において波動関数A(z,T)は、伝送する光の電場の波動関数の包絡線を示し、|A|は、伝送する光の強度となる。非線形シュレディンガー方程式において、光ファイバの長手方向、すなわち光が伝送する方向をz軸とし、時間T、単位長さあたりの増幅利得g、非線形係数γ、2次分散値β、虚数iを用いると、波動関数A(z,T)に関して、
i(∂A/∂z)=(1/2)β(∂A/∂T)−γ|A|A+i(g/2)A  ・・・(1)
となる(M.E.Fermann et al., ”Self−similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett., vol. 84, no. 26, pp. 6010−6013, 2000)。なお、2次分散値βは、図2のグラフ等で用いた分散値Dとの間に、
D=−(2πc/λ)β・・・(2)
という関係を有する。すなわち、図2のグラフのように分散値Dが負で一定の値を有する場合、2次分散値βは、正で一定の値を有する。
【0049】
(1)式において、左辺は、光ファイバ中の伝送に伴う波動関数の変化分を示し、右辺第1項は、波動関数の変化に対する波長分散の寄与を示す。また、右辺第2項は、波動関数の変化に対する非線形光学効果である自己位相変調の寄与を示し、右辺第3項は、増幅利得gの寄与を示す。増幅利得gおよび非線形係数γに関してγg>0が成立する場合には、z→∞の極限において、(1)式は、
A(z,T)=A(z){1−[T/T}exp{iφ(z,T)}・・・(3)
という漸近解を有する。(3)式に示すように、漸近解は、最大振幅がA(z)であり、パルス波形が{1−[T/T}に対応し、φ(z,T)の位相で振動する。ここで、A(z)、φ(z,T)およびTは、
(z)=0.5(gEin1/3(γβ/2)−1/6exp(gz/3) ・・・(4)
φ(z,T)=φ+(3γ/2g)A −(g/6β)T      ・・・(5)
(z)=0.5(Einγβ/2g1/3exp(gz/3)・・・(6)
と表される。ここで、Einは、入力光の1パルスあたりのエネルギー(以下、「入力パルスエネルギー」と言う)である。(3)式に示すように、漸近解は時間Tの2次式を含むため、漸近解に基づくパルス波形は放物線形状となり、パルス形状が放物線形状を維持しつつ広帯域化導波路2中を伝送することが示される。また、(5)式に示されたように、位相φは時間Tの2次式で表されるため、位相φの微分に対応する周波数は、図4に示す場合と同様に時間Tの1時間数となり、所定の波長範囲に渡って強度が平坦な広帯域光が得られることが分かる。
【0050】
また、(3)式〜(5)式からも明らかなように、広帯域化導波路2に入力されたレーザ光は、入力パルスエネルギーEinのみが波動関数A(z,T)に影響を与えており、入力されたレーザ光のパルス幅やパルス波形の影響を受けないことが分かる。従って、入力光源1から供給される入力光について、パルス波形が放物線形状である必要はなく、任意のパルス波形を有する入力光を用いることができる。
【0051】
実際に(1)式に基づいて数値計算によるシミュレーションを行った結果を図6(a)および図6(b)に示す。図6(a)は、広帯域化導波路2中の伝送に伴うパルス波形の変化を示すグラフであり、曲線lは入力直後のパルス波形を示し、曲線l、曲線lは入力後広帯域化導波路2中をそれぞれ500m、1000m伝送した後のパルス波形を示す。図6(b)は、伝送に伴うスペクトル波形の変化を示すグラフであり、曲線l、曲線l、曲線lはそれぞれ入力直後、500m伝送後、1000m伝送後のスペクトル波形を示す。なお、シミュレーションにおいて、入力光のパルス幅を2psとし、入力パルスパワーを0.3pJとした。これは、10GHzの周波数を有し、3mWの光強度を有するパルス光に相当する。また、入力光のパルス波形はガウシアン形状とした。さらに、広帯域化導波路2について、2次分散値βを2ps/kmとし、非線形係数γを14.2W−1km−1とし、増幅利得gを20dB/kmとしている。
【0052】
図6(a)に示すように、伝送距離が長くなるにつれてパルス幅は拡大し、ピーク値についても増大する。また、パルス波形について、曲線lに示す入力時においてガウシアン形状であるのに対し、曲線l、曲線lにおいてはほぼ放物線形状となっている。
【0053】
また、図6(b)に示すように、広帯域化導波路2を伝送する光は、徐々にスペクトル幅が拡大すると共に強度が平坦となる波長領域が現れ、さらに伝送するに従って平坦な波長領域が拡大する。例えば、曲線lに示すように、1000m伝送した後には強度が平坦となる波長領域は2THz程度にまで拡大する。従って、少なくともシミュレーション上において、本実施の形態1にかかる多波長光源は平坦性が良好な広帯域光を実現できることが示されている。
【0054】
次に、本実施の形態1にかかる多波長光源によって得られる広帯域光が入力光のパルス波形に依存しないことを確認するためにシミュレーションを行い、図7のグラフに示す結果を得た。具体的には、パルス幅を0.5psから4psまで変化させ、それ以外の条件については図6(a)、(b)に示すシミュレーションと同一の条件を用いて得られる広帯域光のスペクトル幅の変動を調べた。なお、スペクトル幅は、ピーク値との差が10dBとなる強度の最大周波数と最小周波数との差分値とした。
【0055】
図7のグラフに示すように、入力光のパルス幅を増加させるに従って、得られる広帯域光のスペクトル幅は単調減少するが、変動幅は非常に少ない。特に、1ps〜3psの範囲では、パルス幅は3倍に変動しているにも関わらず、スペクトル幅の変動は7%程度に抑制されている。従って、本実施の形態1にかかる多波長光源では、出力される広帯域光は、入力光のパルス幅にはほとんど依存しないことが明らかである。
【0056】
次に、実際に本実施の形態1にかかる多波長光源を作製し、出力光についてスペクトル波形を測定して所定範囲に渡って平坦な強度を有する広帯域光が得られることを確認した。具体的には、2次分散値βが6.6ps/km、非線形係数γが14.2W−1km−1であり、ファイバ長が1kmの光ファイバを広帯域化導波路2とし、広帯域化導波路2に添加するエルビウムイオンの量および励起光源6a、6bの光強度等を調整することで増幅利得gを20dB/kmとしている。また、入力光源1は、パルス波形がガウシアン形状であり、入力パルスエネルギーが2.5pJ、5pJ、10pJとなる入力光を出射可能な半導体レーザ素子を使用した。
【0057】
図8は、上記構造の多波長光源について、出力光のスペクトル波形を測定したグラフである。ここで、曲線lは入力パルスエネルギーが2.5pJの場合を示し、曲線l、曲線lはそれぞれ、入力パルスエネルギーが5pJ、10pJの場合の出力光を示す。なお、図8において、点線は入力光のスペクトル波形を示している。
【0058】
図8のグラフより明らかなように、現実の多波長光源において得られる出力光は、広い周波数範囲に渡って強度が平坦なスペクトル波形を有する。特に、入力パルスエネルギーが10pJの場合には、最大強度との差が10dB以下となる平坦な波長範囲は34.5nm程度にまで拡大している。この測定結果により、本実施の形態1にかかる多波長光源は、実際に広い波長範囲に渡って強度が平坦な広帯域光を出力できることが示された。
【0059】
以上説明したように、本実施の形態1にかかる多波長光源は、強度の平坦性に優れた広帯域光を出力することが可能という利点を有する。本実施の形態1においては広帯域化導波路2中を伝送する光のパルス波形は放物線形状となるため、異なる時間において同一の周波数シフトを生じることがない。従って、出力される広帯域光において、同一周波数シフトによる干渉に起因したリップルが生じることはなく、広い波長範囲に渡って強度が平坦な広帯域光を出力することができる。
【0060】
また、本実施の形態1にかかる多波長光源は、容易に製造できるという利点を有する。本実施の形態1においては、入力光の波形に関わらず広帯域化導波路2中においてパルス波形が放物線形状となることから、入力光のパルス波形等に特別な条件は必要とならない。そのため、所定の入力パルスパワーを有する光を出力可能であれば、任意のパルス波形を出力する光源を入力光源1として使用することが可能である。
【0061】
また、本実施の形態1では、(1)式〜(6)式からも明らかなように、2次分散値の他、増幅利得や入力パルスパワーなど多様な係数によって広帯域光のスペクトル波形が決定される。このため、個々の係数についてはそれほどの厳密性が要求されないという利点を有する。例えば、広帯域化導波路2の2次分散値が伝送距離に対して変動するような場合であっても、励起光源6a、6bから出力される励起光の強度等を適宜調整する事によって2次分散値が一定である場合と同等の広帯域光を出力することが可能である。従って、本実施の形態1においては、入力光源1、広帯域化導波路2等に要求される条件が従来技術と比較して緩和され、容易に製造できるという利点を有する。
【0062】
さらに、本実施の形態1にかかる多波長光源は、入力パルスパワーを従来よりも抑制できるという利点を有する。本実施の形態1においては入力光が所定強度以上というソリトン条件を満たす必要はなく、かつ広帯域化導波路2中で光増幅を行う構造としたためである。
【0063】
なお、実施の形態1にかかる多波長光源において、入力光源1と広帯域化導波路2との間に所定の分散特性を有する光ファイバ等によって形成された、分散付与部を配置する構造としても良い。例えば、分散付与部の分散特性が、分散値が距離に対して減少する場合には、入力光源1から入力される光のパルス波形が時間軸方向に対して圧縮される。そのため、パルス波形におけるピーク強度が高められ、広帯域化導波路2中における自己位相変調を顕著に発生させることが可能となる。
【0064】
また、分散付与部を光結合器5bと光出射部4との間に配置する構造としても良い。増幅された光が分散付与部を通過することによって、例えば、分散特性が長手方向に対して減少する場合には、トランスフォームリミットなパルス波形を実現することができる。かかるパルス波形はスペクトル的には大きく拡散した状態となるが、パルス幅は格段に細くすることができ、理論的には半値全幅(FWHM)が300fsにもなる。
【0065】
さらに、広帯域化導波路2について、2次分散値βを図2に示すような一定の値とせず、正の値を保持したまま長手方向に対して減少する特性を有するものを用いても良い。分布利得と分散とは等価なものであるため、減少する2次分散値βに対して分布利得を調整する事で多波長光源を実現することが可能なためである。広帯域化導波路2の2次分散値βが長手方向に対して減少する構造とした場合、パルス幅の拡大が抑制されるためにピーク強度を高く維持することができる。そのため、非線形光学効果が顕著に生じ、スペクトル幅をさらに拡大することができる。
【0066】
(実施の形態2)
次に、実施の形態2にかかる多波長光源について説明する。実施の形態2にかかる多波長光源は、光ファイバ中を伝送する光をラマン増幅を用いて増幅する構造を有する。図9は、実施の形態2にかかる多波長光源の構造を示す模式図である。
【0067】
本実施の形態2にかかる多波長光源は、入力光源1と、入力光源1と接続された広帯域化導波路8と、広帯域化導波路8途上に配置された非相反回路部3と、広帯域化導波路8の末端に配置された光出射部4とを備える。また、広帯域化導波路8の途上において光結合器9、10が配置されており、広帯域化導波路8に対して励起光を入力可能な構造を有する。光結合器9は、光結合器11を介して励起光源13および励起光源14と接続され、光結合器10は、光結合器12を介して励起光源15および励起光源16と接続された構造を有する。なお、実施の形態1と同様の符号もしくは名称を付した部分については、以下で特に言及しない限り、実施の形態1の場合と同様の機能を有し、同等の効果を発揮するものとする。
【0068】
励起光源13〜16は、広帯域化導波路8中を伝送する光をラマン増幅によって増幅するためのものである。具体的には、励起光源13〜16は、広帯域化導波路8中を伝送する光よりも100nm程度短い波長の光を出力する。そして、励起光源13および励起光源14は、光結合器11によってそれぞれの偏波方向が直交するように合波され、広帯域化導波路8に対して光結合器9を介して無偏波化した励起光が入力される。同様に、励起光源15および励起光源16は、光結合器12によって偏波方向が直交するように合波され、広帯域化導波路8に対して光結合器12を介して無偏波化した励起光が入力される。また、光結合器9を介して入力される励起光は、広帯域化導波路8中を入力光源1から入力された光と同一方向に伝送され、光結合器12を介して入力される励起光は、入力光源1から入力された光と逆方向に伝送される。すなわち、本実施の形態2にかかる多波長光源では、広帯域化導波路8中を伝送する光に対して、双方向励起方式によってラマン増幅が行われる。
【0069】
本実施の形態2にかかる多波長光源において、光結合器9、10を介して入力される励起光の光源はそれぞれ単一の光源からなることとしても良い。ただし、ラマン増幅は偏波依存性を有することから、上記したように複数の光源によって無偏波化した励起光を用いることが好ましい。また、本実施の形態2においては、いわゆる双方向励起方式によってラマン増幅を行っているが、前方励起もしくは後方励起のみでラマン増幅を行う構造としても良い。
【0070】
広帯域化導波路8は、ラマン増幅を効率的に行うために非線形係数が大きなものを用いることが好ましい。また、実施の形態1にかかる多波長光源とは光増幅の方法が異なるため、エルビウムイオン等の希土類を添加する必要はない。
【0071】
本実施の形態2にかかる多波長光源は、ラマン増幅によって広帯域化導波路2中を伝搬する光を増幅することとしている。このため、入力される光の波長に応じて励起光の波長を決定することで光増幅が可能となり、入力光の波長を任意に選択することが可能である。また、複数の波長でラマン増幅を行った場合には、広い波長範囲に対して所望の利得特性を得ることができるので、各励起光源の光強度等を制御することにより多波長光源の出力光のスペクトル特性を調整することができる。
【0072】
次に、本実施の形態2にかかる多波長光源について、数値計算によるシミュレーションを行った。図10(a)は、伝送距離に応じてパルス波形が変化する様子を示すグラフであり、図10(b)は、スペクトル波形が変化する様子を示すグラフである。ここで、広帯域化導波路8について、非線形係数γを20W−1km−1、2次分散値βを1.0ps/km、3次分散値βを0.03ps/km、単位長さあたりの増幅利得gを10dB/kmとしている。また、入力光源1から入力する光について、パルス波形はガウシアン形状を有し、入力パルスパワーを0.2pJ、パルス幅を2psとしてシミュレーションを行っている。
【0073】
図10(a)に示すように、伝送距離の増加に応じてパルス幅は拡大し、変曲点の存在しない放物線形状となる。これに対応して、図10(b)に示すスペクトル波形についても、徐々に波長範囲が拡大すると共に強度が平坦となり、広帯域光が得られることが示されている。特に、2500m程度伝送された後には、平坦な範囲はほぼ3THz程度にまで拡大され、広い範囲に渡って平坦な広帯域光が得られることが示されている。
【0074】
次に、広帯域化導波路8の特性および入力光の条件を変更してシミュレーションを行った例について、図11(a)および図11(b)に示す。図11(a)は、パルス波形の変化を示すグラフであり、図11(b)は、スペクトル波形の変化を示すグラフである。図11(a)および図11(b)のシミュレーションにおいては、非線形係数γを4.5W−1km−1とし、2次分散値βを0.2ps/km、3次分散値βを0.0ps/km、単位長さあたりの増幅利得gを5dB/kmとしている。また、入力光のパルス波形はガウシアン形状とし、入力光のパルス幅を2psとし、入力パルスエネルギーを0.2pJとした。
【0075】
図11(a)に示すように、パルス波形は徐々に放物線に変化している。今回のシミュレーションでは、2次分散値を小さな値としたため、パルス波形が放物線形状に変化するまでに要する伝送距離は、図10(a)の場合と比較して長くなる。ただし全体的な傾向としては図10(a)の場合と同様で、伝送途中から放物線形状に変化した後、そのパルス波形を維持して広帯域化導波路8中を伝送している。また、パルス波形の変化に対応して図11(b)に示すスペクトル波形も波長範囲が拡大すると共に光強度が平坦な領域が現れ、4000m伝送した後には平坦な強度となる周波数範囲は4THz程度にまで拡大する。
【0076】
次に、パルス幅を減少させて再びシミュレーションを行った。具体的には、伝送用光ファイバの特性および入力パルスエネルギーについては図11の場合と同一とし、入力光のパルス幅を1psとした。
【0077】
図12(a)に示すように、パルス波形は比較的伝送距離が短い段階で放物線形状に変化し、その後放物線形状を維持したまま伝送する。また、図12(b)に示すように、比較的短い伝送距離で平坦なピークが現れ、平坦な強度となる周波数範囲が拡大する。なお、平坦な強度となる周波数範囲は図11(b)の場合と同様にほぼ4THzであり、出力光の広帯域化という観点からは、入力光のパルス幅に対する依存性は少ない。
【0078】
(実施の形態3)
次に、実施の形態3にかかる多波長光源について説明する。実施の形態3にかかる多波長光源は、新たに光出射部に接続した光フィルタ部を備えた構造である。図13は、本実施の形態3にかかる多波長光源の構造を示す模式図であり、以下、図13を参照して多波長光源の構造について説明する。
【0079】
実施の形態3にかかる多波長光源は、入力光源1と、入力光源1と接続された広帯域化導波路2と、広帯域化導波路2途上に配置された非相反回路部3とを備える。また、広帯域化導波路2末端には光出射部4を備え、光出射部4は、光フィルタ18と接続されている。また、広帯域導波路2途上には光結合器5a、5bがそれぞれ配置され、光結合器5aは励起光源6aと、光結合器5bは励起光源6bと接続されている。なお、実施の形態1と同一の符号もしくは名称を付した部分については、以下で言及しない限り実施の形態1の場合と同様の機能を有し、同等の効果を発揮するものとする。
【0080】
光フィルタ18は、光出射部4から出力される広帯域光のうち、所望の波長を有する光成分を透過させるためのものである。具体的には、光フィルタ18は、光バンドパスフィルタや、光エタロンフィルタによって形成されており、所望の波長の光成分を透過させる機能を有する。
【0081】
光フィルタ18の作用について、図14を参照して説明する。本実施の形態3にかかる多波長光源は、実施の形態1と同様に自己位相変調等によって、図14の点線のように入力時よりも波長範囲が拡大され、強度が平坦化した広帯域光が光出射部4から出力される。これに対して、所定の光透過特性を有する光フィルタ18を光出射部4に接続して配置することで、図14の実線に示すように、広帯域光は、異なる中心波長を有する複数の光に分かれて出力されることとなる。
【0082】
このため、本実施の形態3にかかる多波長光源は、例えば、WDM方式の光通信における信号光源として使用することができる。信号光源として使用した場合、異なる中心波長を複数の光源によって出力する構造に比べて、必要とする光源の数を低減することができ、装置の小型化および低コスト化を図ることができる。
【0083】
また、光フィルタ18を介して光を出力する構造としたことで、出力光の波長が安定化するという利点も有する。具体的には、例えば信号光源を半導体レーザ素子によって構成する場合には、半導体レーザ素子に印加される電圧や、半導体レーザ素子の温度が変動することによって信号光の波長も変動する。これに対して、本実施の形態3にかかる多波長光源を用いた場合、仮に入力光の波長が変動したとしても、光フィルタ18を透過させることで出力される光の波長を一定の値に保持することができる。
【0084】
(変形例1)
次に、実施の形態3にかかる多波長光源の変形例1について説明する。変形例1では、光フィルタ18に替えて光分波器を用いた構造を採用している。図15は、変形例にかかる多波長光源の構造を示す模式図である。図15に示すように、変形例では、光フィルタ18に替えて光分波器19を光出射部4に接続した構造を有する。
【0085】
光分波器19は、光出射部4から出力される広帯域光を波長λ〜λごとに分波するためのものである。具体的には、光分波器19は、例えば、複数の光ファイバのコアを溶融接続して形成される。この場合、溶融時の加熱温度および加熱時間等を調整することで、分波する波長の割合を変更させて光分波器19を構成することができる。また、複数の光ファイバのコアを溶融接続する以外にも、プリズムや、アレイ導波路、回折格子等を用いて光分波器19を形成することが可能である。
【0086】
(変形例2)
次に、実施の形態3にかかる多波長光源の変形例2について説明する。変形例2にかかる多波長光源では、光フィルタ18が、異なる中心波長の複数の光を透過するのではなく、所定の中心波長を有する単一の光を透過する。この場合、例えば入力光と異なる中心波長を有する光を透過させることで、入力光から中心波長が所定範囲だけシフトした光を出力することが可能となる。このように光フィルタ18を構成した場合にも、出力光の波長が安定化するなどの利点を有することとなる。また、変形例1のように光分波器19を用いた場合でも、中心波長の異なる複数の光に分波するのではなく、所定の中心波長を有する単一の光を出力する構造としても良い。
【0087】
変形例2にかかる多波長光源について実際に作製し、図16に示すグラフを得た。図16において、曲線l10は入力光のスペクトルを示し、曲線l11は光出射部4から出力される広帯域光を示す。そして、曲線l12は、光フィルタ18によって広帯域光から切り出された出力光を示す。図16に示すように、入力光に対して波長が2nm程高波長側にシフトした出力光が実際に得られている。
【0088】
なお、実施の形態3および変形例1、2にかかる多波長光源は、実施の形態1にかかる多波長光源を利用して構成されるものとしたが、これに限定されず、ラマン増幅を用いた実施の形態2にかかる多波長光源に対してフィルタ部を付加した構造とすることも可能である。
【0089】
(実施の形態4)
次に、実施の形態4にかかる光通信システムについて説明する。実施の形態4にかかる光通信システムは、実施の形態3にかかる多波長光源を信号光源として使用している。図17は、実施の形態4にかかる光通信システムの構成を示す模式図である。以下、図17を参照して実施の形態4にかかる光通信システムについて説明する。
【0090】
実施の形態4にかかる光通信システムは、多波長光源21と、多波長光源21に接続された伝送用光ファイバ22と、伝送用光ファイバ22と光結合器26を介して接続された増幅用光ファイバ23を備える。また、増幅用光ファイバ23と光結合器28を介して伝送用光ファイバ24が接続され、伝送用光ファイバ24には受信器25が接続されている。さらに、光結合器26には励起光源27が接続され、光結合器26を介して励起光が増幅用光ファイバ23に入力可能な構造を有し、光結合器28には励起光源29が接続され、増幅用光ファイバ23に対して励起光が入力可能な構造を有する。なお、伝送用光ファイバ22、24は、例えば、DSF(Dispersion Shifted Fiber)、SMF(Single Mode Fiber)によって形成される。
【0091】
多波長光源21は、実施の形態3にかかる多波長光源からなる。このため、多波長光源21は、異なる中心波長を有する複数の信号光が出力される構造を有し、同一ファイバ中を伝送させることで高い通信容量を実現することができる。なお、実施の形態3以外でも、実施の形態1または実施の形態2にかかる多波長光源を用いても良いし、実施の形態3の変形例にかかる多波長光源を用いることとしても良い。
【0092】
増幅用光ファイバ23は、エルビウムイオンを添加した構造を有する。増幅用光ファイバ23には、励起光源27および励起光源29から励起光が入力され、これにより信号光を増幅する機能を有する。なお、添加する希土類元素は、エルビウム以外にもツリウム、プラセオジウム、イットリビウム、テルビウムなどとしてもよく、これらの元素を添加せずにラマン増幅によって信号光を増幅する構造としても良い。
【0093】
なお、増幅用光ファイバ23は、長距離伝送されることによって低下した信号光の強度を増幅するためのものであり、実施の形態1〜3にかかる光増幅のように、非線形光学効果の発生を増大させるためのものではない。むしろ、受信器25における信号光の受信の精度を維持するために、増幅用光ファイバ23中における非線形光学効果は、全く生じないか、生じても許容範囲内となるよう増幅利得を調整することが好ましい。
【0094】
受信器25は、伝送されてきた信号光を受信し、電気信号に変換するためのものである。具体的には、受信器25は、フォトダイオードや光抵抗等によって形成され、信号光の強度に応じて電気信号に変換することで情報を受信する。
【0095】
次に、本実施の形態4にかかる光通信システムの動作について簡単に説明する。多波長光源21から出力された信号光は、伝送用光ファイバ22を伝送した後、増幅用光ファイバ23において、低下した光強度を補うために光増幅が行われる。そして、増幅された信号光は、伝送用光ファイバ24を伝送した後、受信器25に到達する。受信器25で受信された信号光は、電気信号に変換されることによって情報が受信される。
【0096】
ここで、多波長光源21は、実施の形態3にかかる多波長光源を使用することとしたため、単一の入力光源によって異なる中心波長を有する複数の信号光を出力できるという利点を有する。このため、信号光の本数に応じた数の信号光源を備える必要はなく、低コストで光通信システムを実現することが可能である。また、自己位相変調、波長分散および光増幅の相互作用によって強度が平坦な広帯域光を得ているため、それぞれの信号光の強度もほぼ一定となるという利点も有する。
【0097】
【発明の効果】
以上説明したように、請求項1〜8の発明によれば、広帯域化導波路において光を増幅しつつ非線形光学効果によってスペクトル幅を拡大するため、伝送する光の強度を高めることが可能で、非線形光学効果を十分に発生させることでスペクトル幅の拡大が十分に行われ、波長範囲の広い広帯域光を得ることができるという効果を奏する。
【0098】
また、この発明によれば、入力光源および広帯域化導波路に要求される特性が従来に比べて緩やかとなるため、製造が容易で安価な多波長光源を提供できるという効果を奏する。
【0099】
また、請求項9〜12の発明によれば、請求項1〜8のいずれか一つに記載の多波長光源を信号光源として使用する構成としたため、強度が平坦な広帯域光を信号光として使用することができるという効果を奏する。
【図面の簡単な説明】
【図1】実施の形態1にかかる多波長光源の構成を示す模式図である。
【図2】広帯域化導波路の分散特性を示すグラフである。
【図3】(a)は、ガウシアン形状のパルス波形を示すグラフであり、(b)は、(a)のパルス波形を有する光に対する位相変化量を示すグラフであり、(c)は、(a)のパルス波形を有する光に対する周波数の変化量を示すグラフである。
【図4】上から順に、放物線形状のパルス波形を示すグラフ、このパルス波形を有する光に対する位相変化量を示すグラフ、上のグラフのパルス波形を有する光に対する周波数の変化量を示すグラフである。
【図5】(a)、(b)は、実施の形態1において波長分散の影響によってパルス波形が変化することを説明するためのグラフである。
【図6】(a)は、実施の形態1にかかる多波長光源について、シミュレーションによって、伝送距離に応じてパルス波形が変化することを示すグラフであり、(b)は、シミュレーションによって、伝送距離に応じてスペクトル波形が変化することを示すグラフである。
【図7】実施の形態1において、出力される広帯域光のスペクトル幅が入力光のパルス幅に依存しないことを示すグラフである。
【図8】実際に作製した多波長光源について、伝送距離に応じてスペクトル波形が変化することを示すグラフである。
【図9】実施の形態2にかかる多波長光源の構造を示す模式図である。
【図10】伝送距離に応じた波形変化についてシミュレーションによって得られたグラフであり、(a)はパルス波形の変化を示すグラフであり、(b)はスペクトル波形の変化を示すグラフである。
【図11】伝送距離に応じた波形変化についてシミュレーションによって得られたグラフであり、(a)はパルス波形の変化を示すグラフであり、(b)はスペクトル波形の変化を示すグラフである。
【図12】伝送距離に応じた波形変化についてシミュレーションによって得られたグラフであり、(a)はパルス波形の変化を示すグラフであり、(b)はスペクトル波形の変化を示すグラフである。
【図13】実施の形態3にかかる多波長光源の構造を示す模式図である。
【図14】実施の形態3における光フィルタの作用を説明するための模式的なグラフである。
【図15】実施の形態3の変形例1にかかる多波長光源の構造を示す模式図である。
【図16】実施の形態3の変形例2にかかる多波長光源について、光フィルタの作用を説明するための測定結果を示すグラフである。
【図17】実施の形態4にかかる光通信システムの構造を示す模式図である。
【図18】従来技術にかかる多波長光源を構成する光ファイバの分散特性を示すグラフである。
【符号の説明】
1     入力光源
2     伝送用光ファイバ
3     非相反回路部
4     光出射部
5a、5b、9〜12、26、28   光結合器
6a、6b、13〜16、27、29  励起光源
8     伝送用光ファイバ
13〜16    励起光源
18   光フィルタ
19   光分波器
21   多波長光源
22、24    伝送用光ファイバ
23   増幅用光ファイバ
25   受信器

Claims (12)

  1. 第1の光を出力する光源と、
    前記第1の光を入力し、前記第1の光の強度を増幅しつつ非線形光学効果により前記第1の光のスペクトル幅を拡大し、一定の波長範囲に渡って平坦な強度を有する第2の光を出力する広帯域化導波路と、
    を備えたことを特徴とする多波長光源。
  2. 前記広帯域化導波路は、ラマン増幅により前記第1の光の強度を増幅することを特徴とする請求項1に記載の多波長光源。
  3. 前記光源と前記広帯域化導波路との間に配置され、前記第1の光のパルス波形を変化させて広帯域化導波路に出力する分散付与部をさらに備えたことを特徴とする請求項1または2に記載の多波長光源。
  4. 前記第2の光が入力され、所定波長範囲の光のみを出力するフィルタ手段をさらに備えたことを特徴とする請求項1〜3のいずれか一つに記載の多波長光源。
  5. 前記フィルタ手段は、中心波長の異なる複数の光を出力するよう前記第2の光を出力することを特徴とする請求項4に記載の多波長光源。
  6. 前記フィルタ手段は、前記第1の光の中心波長と異なる中心波長の光を出力することを特徴とする請求項4に記載の多波長光源。
  7. 前記フィルタ手段は、エタロンフィルタによって形成されることを特徴とする請求項4〜6のいずれか一つに記載の多波長光源。
  8. 前記フィルタ手段は、波長に応じて異なる割合で前記第2の光を分岐する光分波器によって形成されることを特徴とする請求項4〜6のいずれか一つに記載の多波長光源。
  9. 請求項1〜8のいずれか一つに記載の多波長光源と、
    前記多波長光源から出力された信号光を伝送する伝送路と、
    該伝送された信号光を受信する受信器と、
    を含むことを特徴とする光通信システム。
  10. 励起光を出力する励起光源と、
    前記励起光を前記信号光と合波するための合波器と、
    増幅用光ファイバと、
    を含む光増幅器をさらに備えたことを特徴とする請求項9に記載の光通信システム。
  11. 前記増幅用光ファイバは、エルビウムが添加されたことを特徴とする請求項10に記載の光通信システム。
  12. 前記光増幅器は、ラマン増幅により光増幅を行うことを特徴とする請求項10に記載の光通信システム。
JP2002196475A 2002-07-04 2002-07-04 多波長光源および光通信システム Pending JP2004037948A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196475A JP2004037948A (ja) 2002-07-04 2002-07-04 多波長光源および光通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196475A JP2004037948A (ja) 2002-07-04 2002-07-04 多波長光源および光通信システム

Publications (1)

Publication Number Publication Date
JP2004037948A true JP2004037948A (ja) 2004-02-05

Family

ID=31704552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196475A Pending JP2004037948A (ja) 2002-07-04 2002-07-04 多波長光源および光通信システム

Country Status (1)

Country Link
JP (1) JP2004037948A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129205A (ja) * 2006-11-17 2008-06-05 Furukawa Electric Co Ltd:The パルス光源

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129205A (ja) * 2006-11-17 2008-06-05 Furukawa Electric Co Ltd:The パルス光源

Similar Documents

Publication Publication Date Title
JP6134065B2 (ja) 散逸ソリトンモードにおけるファイバ型光パラメトリック発振器
CN100578269C (zh) 全光纤啁啾脉冲放大系统
JP4388229B2 (ja) 光ファイバの1430〜1530nm低損失ウィンドウのために使用する非線形ファイバ増幅器
US6876489B2 (en) All band amplifier
CN100527549C (zh) 测量非线性光学特性的方法、光学放大器和光传输系统
US20040213302A1 (en) Pulsed laser sources
US6870663B2 (en) Wavelength tunable light source and pulse light source
JP2014515175A (ja) 中赤外線および遠赤外線のための小型でコヒーレントで高輝度の光源
JP2010093246A (ja) カーボン・ナノチューブを使用する受動モード同期ファイバ・レーザ
WO2005086299A1 (ja) 希土類添加ファイバを使用する光ファイバレーザ及び広帯域光源
JP4057291B2 (ja) 光パルス発生器
WO2007066759A1 (ja) 光圧縮器および極短パルス光源
JP3558499B2 (ja) 光ファイバ、光源装置及びシステム
US9684223B2 (en) High efficiency fiber optical parametric oscillator
US6892015B2 (en) Optical pulse waveform conversion
Li et al. A dual-wavelength and dual-repetition-rate actively mode-locked fiber ring laser
EP1394599B1 (en) Wavelength converter
Tamura et al. A polarization-maintaining pedestal-free femtosecond pulse compressor incorporating an ultrafast dispersion-imbalanced nonlinear optical loop mirror
US8275010B2 (en) Optical pulse amplifier and optical pulse source
JP2004037949A (ja) 多波長光源
JP2004037948A (ja) 多波長光源および光通信システム
Cheng et al. Tunable and switchable dual-wavelength Er-doped fiber ring laser using ASEs
JP2001222036A (ja) ラマン増幅方式とそれを用いた光信号伝送方法
JPH04357892A (ja) モード同期光ファイバレーザ装置
JPH11195829A (ja) 広帯域光出力装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211