JP2004037334A - 放射線イメージングデバイス - Google Patents

放射線イメージングデバイス Download PDF

Info

Publication number
JP2004037334A
JP2004037334A JP2002196637A JP2002196637A JP2004037334A JP 2004037334 A JP2004037334 A JP 2004037334A JP 2002196637 A JP2002196637 A JP 2002196637A JP 2002196637 A JP2002196637 A JP 2002196637A JP 2004037334 A JP2004037334 A JP 2004037334A
Authority
JP
Japan
Prior art keywords
imaging device
scintillator
radiation
radiation imaging
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002196637A
Other languages
English (en)
Inventor
Kazuya Matsumoto
松本 一哉
Toyokazu Mizoguchi
溝口 豊和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002196637A priority Critical patent/JP2004037334A/ja
Publication of JP2004037334A publication Critical patent/JP2004037334A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】高感度且つ高解像度であると共に、長期間にわたって安定した信頼性のある放射線イメージングデバイスを提供する。
【解決手段】X線/γ線などの放射線を可視光に変換する放射線シンチレータ1と可視光を可視画像に変換する固体撮像素子2とを重ね合わせてなる放射線イメージングデバイスにおいて、放射線シンチレータを、固体撮像素子の画素に対応させて複数の貫通穴6を形成した基板5を用い、貫通穴の側壁には金属膜8を形成すると共に、該貫通穴にシンチレータ材料7を充填し、更に表面側に保護層9を介して金属膜を形成し、裏面側には下部保護層10を形成して構成する。
【選択図】    図2

Description

【0001】
この発明は、X線やγ線などの高エネルギー光子、高エネルギー放射線、あるいは高エネルギー粒子などを含む広義の放射線の画像が検出可能な放射線イメージングデバイスに関する。
【発明の属する技術分野】
【0002】
【従来の技術】
従来のシンチレータを用いたX線イメージングデバイスの構成例は、例えば、浜松ホトニクス株式会社発行のカタログ“X線シンチレータ付きファイバーオプティックプレート/次世代X線イメージングデバイス”(1999年8月発行)に記載がなされている。このカタログ記載のX線イメージングデバイスの概略構造を図6に示す。図6において、101 はX線を可視光に変換するためのX線シンチレータ、103 はCCDあるいはCMOSイメージセンサなどと組み合わせて画像の電子データ化を可能とするイメージングデバイス、102 はX線シンチレータ101で可視光に変換されたX線像をイメージングデバイス103 に伝達するためのファイバーオプティックプレート、104 はX線シンチレータ101 のキズや汚れなどを防ぐための保護フィルムである。
【0003】
ここで、X線シンチレータ101 は、微細な柱状結晶構造、つまり光ファイバに似た微細且つ緻密な構造を有している。このX線イメージングデバイスの基本動作は、次のようになる。すなわち、X線シンチレータ101 側より入射したX線は、X線シンチレータ101 で可視光に変換され、ファイバーオプティックプレート102 を通してイメージングデバイス103 に伝達されて、イメージングデバイス103 にて電子画像として検出されるものである。
【0004】
このような構成のX線イメージングデバイスによれば、高感度及び高解像度、つまり鮮明でハイコントラストのX線画像が実現できる。また、X線画像をCCDなどの読み出し系と組み合わせることによりデジタル化され、そのまま電子画像データとして保存・管理・転送が可能となる。
【0005】
【発明が解決しようとする課題】
しかしながら、従来のシンチレータを用いたX線イメージングデバイスには、次のような課題がある。すなわち、X線の入射によりX線シンチレータで励起・変換されて発光する可視光は、X線シンチレータ中で等方的に発光され、CCDあるいはCMOSなどのイメージングデバイスに伝達されるが、X線シンチレータのシンチレータ層の厚さは数百μmの厚さであり、イメージングデバイスの画素サイズの数十倍から数百倍の寸法を有する。そのため、たとえX線シンチレータが微細な柱状結晶構造であるとしても、X線光子が可視光に変換されたX線シンチレータ直下に存在するイメージングデバイスの画素、例えば受光ホトダイオード以外のイメージングデバイスの画素部に入射光が到達してしまうことがある。すなわち、対応する当該画素の近傍に存在する画素のホトダイオードにも、変換された可視光の一部が入射してしまい、このような場合にはX線画像の解像度及び感度が劣化してしまう恐れがある。
【0006】
本発明は、従来のX線イメージングデバイスの上記課題を解消するためになされたもので、高感度且つ高解像度であると共に長期間にわたって安定した信頼性のある放射線イメージングデバイスを提供することを目的とする。請求項毎の目的を述べると、請求項1に係る発明は、高感度且つ高解像度であると共に信頼性のある放射線イメージングデバイスを提供することを目的とする。請求項2及び3に係る発明は、更なる高感度及び高解像度の放射線イメージングデバイスを提供することを目的とする。請求項4に係る発明は、上記目的に加えて、長期信頼性を有し、安定した光電変換特性を有する放射線イメージングデバイスを提供することを目的とする。請求項5及び6に係る発明は、高感度及び高解像度であると共に、より広い視野を有する放射線イメージングデバイスを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、請求項1に係る発明は、少なくともX線/γ線などの放射線を可視光に変換するシンチレータ部と可視光イメージセンサ部とを有する放射線イメージングデバイスにおいて、前記シンチレータ部は、基板に多数の貫通穴を設け、該貫通穴にシンチレータ材料を埋め込むことにより構成されていることを特徴とするものである。
【0008】
このように構成された放射線イメージングデバイスにおいては、シンチレータ材料が埋め込まれた基板の貫通穴中で変換されて発生する可視光は、拡散することなく可視光イメージセンサ部に入射可能となるため、高解像度の放射線イメージングデバイスが実現可能となる。
【0009】
請求項2に係る発明は、請求項1に係る放射線イメージングデバイスにおいて、前記シンチレータ部は、前記貫通穴の側壁に光反射作用を有する金属膜が形成されていることを特徴とするものである。
【0010】
このように構成された放射線イメージングデバイスにおいては、シンチレータ部の貫通穴中で変換されて発生する可視光が貫通穴の側壁方向に漏れ出すことを完全に防ぐことができるため、より高解像度及び高感度の放射線イメージングデバイスが実現可能となる。
【0011】
請求項3に係る発明は、請求項1又は2に係る放射線イメージングデバイスにおいて、前記シンチレータ部は、放射線入射側の表面に光反射作用を有する金属膜が形成されていることを特徴とするものである。
【0012】
このように構成された放射線イメージングデバイスにおいては、シンチレータ部の貫通穴中で変換されて発生する可視光が放射線入射方向に漏れ出すことを完全に防ぐことができるため、より高解像度及び高感度の放射線イメージングデバイスが実現可能となる。
【0013】
請求項4に係る発明は、請求項1〜3のいずれか1項に係る放射線イメージングデバイスにおいて、前記シンチレータ部は、表面及び裏面に絶縁膜が形成されていることを特徴とするものである。
【0014】
このように構成された放射線イメージングデバイスにおいては、絶縁膜がシンチレータ部を保護するため、長期間にわたって高信頼性を有すると共に、安定した光電変換特性を有する放射線イメージングデバイスが実現可能となる。
【0015】
請求項5に係る発明は、請求項1〜4のいずれか1項に係る放射線イメージングデバイスにおいて、前記シンチレータ部及び前記可視光イメージセンサ部は、曲面状に形成されていることを特徴とするものである。
【0016】
このように構成された放射線イメージングデバイスにおいては、放射線入射面を曲面状に形成することにより視野の立体角が拡がるため、高解像度及び高感度であると共に、より広い視野範囲を有する放射線イメージングデバイスが実現可能となる。
【0017】
請求項6に係る発明は、請求項1〜5のいずれか1項に係る放射線イメージングデバイスにおいて、前記シンチレータ部及び前記可視光イメージセンサ部の支持部を備え、前記シンチレータ部及び前記可視光イメージセンサ部は、撮像中に可動状態で前記支持部に支持されていることを特徴とするものである。
【0018】
このように構成された放射線イメージングデバイスにおいては、空間解像度の劣化を防ぎながら視野の立体角を拡げることができ、高解像度及び高感度であると共に、より広い視野範囲を有する放射線イメージングデバイスが実現可能となる。
【0019】
【発明の実施の形態】
(第1の実施の形態)
次に、本発明の実施の形態について説明する。図1は、本発明に係る放射線イメージングデバイスの第1の実施の形態を示す概略断面図である。図1において、1はX線/γ線などの高エネルギー光子、高エネルギー放射線、高エネルギー粒子などを含む広義の放射線を可視光に変換するための放射線シンチレータ、2は可視光イメージセンサであるCCDあるいはCMOSなどの固体撮像素子、3は固体撮像素子2が搭載されたセラミックなどの基板、4は樹脂保護膜で、デバイスを保護するようにデバイス全体を覆っている。ここで固体撮像素子2は、エリアセンサあるいはラインセンサのいずれでもよい。
【0020】
放射線シンチレータ1の拡大平面図及び断面構造の拡大図を、それぞれ図2の(A)及び(B)に示す。図2の(A),(B)に示すように、放射線シンチレータ1は表面から裏面にわたって貫通形成された数ミクロンから数十ミクロンの直径を有する多数の貫通穴6を設けた、例えば数百μm程度の所望の厚さを有するシリコンなどからなる基板5と、貫通穴6の側壁に形成されたアルミニウム薄膜などからなる光反射作用を有する金属膜8と、貫通穴6の内部に充填された、例えばCsI(Tl ),CsI(Na ),CaF2 (Eu ),NaI(Tl ),BGO〔Bi ,Ge ,Oからなる化合物:BiGe12〕,CdWO4 ,LiI(Eu ),BeF2 ,CeF3 などのX線等の放射線を可視光に変換する機能を有するシンチレータ材料7とから構成されている。なお、シンチレータ材料としては、更に芳香族化合物を含む有機シンチレータ材料も用いることができる。
【0021】
ここで、貫通穴6は、固体撮像素子2の画素と1対1に対応して形成されると共に、固体撮像素子2の画素サイズと同等あるいはそれ以下のサイズで形成することが望ましい。したがって、固体撮像素子2の画素配列が、それぞれ正方格子、長方格子及び六方稠密(ハニカム)構造であれば、貫通穴6の配列も、それぞれ正方格子、長方格子及び六方稠密(ハニカム)構造となる。すなわち、固体撮像素子2の画素配列に対応して、貫通穴6の配置も自由に変更可能である。また、シンチレータ材料7としては、上記のようにX線検出用のものばかりでなく、変換された可視光の波長や、検出するX線あるいはγ線などの検出すべき放射線に応じて選択される。更に、放射線シンチレータ1のシリコンなどの基板5の厚さは、各々放射線シンチレータの吸収長近傍に設定することが好ましい。なお、図2の(B)に示すように、ここでは貫通穴は基板表面に対して垂直に形成されているものを示しているが、貫通穴の構成上の必要条件は、直線状に形成されていることであり、したがって貫通穴は基板表面に対して傾斜する形態で直線状に形成されていてもよい。
【0022】
また、放射線シンチレータ1の入射表面側には、必要に応じて、SiO2 などからなる薄膜の保護層9を介して、図示はしていないが可視光を完全に反射するアルミニウムなどからなる金属膜が形成されている。また、固体撮像素子2と接する裏面側には、SiO2 などからなる下部保護膜10が形成されていて、固体撮像素子2と重ね合わされている。ここで固体撮像素子2に対する入射放射線によるダメージを軽減する必要がある場合には、ファイバーオプティックプレートもしくはテレビ石(Ulexite)薄膜などを介して、放射線シンチレータ1と固体撮像素子2が重ね合わされるようにしてもよい。
【0023】
次に、本実施の形態に係る放射線イメージングデバイスの動作について説明する。金属膜並びに保護層9を透過して放射線シンチレータ1に入射するX線などの放射線は、放射線シンチレータ1の貫通穴6内のシンチレータ材料7の内部で可視光に変換される。これら変換された可視光は等方向に発せられるが、表面側に形成した金属膜や貫通穴6の側壁に形成された金属膜8などで反射され、収束されて裏面側より出射し、放射線シンチレータ1に近接して配置された固体撮像素子2に入射する。そして、所望の光蓄積期間後、固体撮像素子2において可視画像に変換される。
【0024】
次に、第1の実施の形態に係る放射線イメージングデバイスの製造方法について、図3に示す概略工程図を参照しながら説明する。まず、図3の(A)に示すような、シリコン活性層11,SiO2 層12及びシリコン支持層13からなるSOI基板を用意する。次に、図3の(B)に示すように、SOI基板の表面に貫通穴を形成するためのレジストパターン14を形成し、シリコン活性層11をSiO2 層12に達するようにエッチングを行って、直径が数μmから数十μmの寸法を有する貫通穴15を形成する。ここで、レジストパターン14の形成にあたっては、レジスト材料の代わりにSiO2 などの絶縁材料あるいは金属材料でもよく、シリコンとの選択性が高い材料であれば、材料の選択は自由である。また、エッチングはDeep −RIE(Deep Reactive Ion Etching )法を用いることが望ましい。
【0025】
次に、図3の(C)に示すように、表面のレジストパターン14を形成しているマスク材料を選択的に除去し、貫通穴15の側壁にAl などからなる光反射膜16を蒸着法やスパッタ法、あるいはメッキ法などで数十nmから数百nmの厚さになるように形成する。続いて、シンチレータ材料17をスパッタ法や蒸着法、あるいは印刷法やスピンコート法もしくはディップ法などにより、貫通穴15に充填する形態で形成する。
【0026】
シンチレータ材料を充填する他の手法としては、シンチレータ材料を貫通穴上に配置して、シンチレータ材料の融点以上に加温することで、シンチレータ材料を貫通穴内に充填する手法も存在する。例えば、プラスチックシンチレータを貫通穴上に置き、80℃前後の軟化点以上の温度を印加すると、貫通穴内にシンチレータ材料が流入し充填することができる。また、上記印刷法を用いる場合は、流動性を有する樹脂などにシンチレータ材料の微粒子・粉末を混ぜ、貫通穴の上部より貫通穴に樹脂を充填する。またスピンコート法あるいはディップ法も印刷法と類似した製法であるが、印刷法はシンチレータ材料を含有する流体を印刷機で形成するのに対して、スピンコート法の場合は半導体製法で公知のスピンコート機で、またディップ法は、シンチレータ材料を含有する液体中に貫通穴を形成した部材を漬けることにより、貫通穴にシンチレータ材料を含む液体を充填する。この場合、シンチレータ材料(蛍光体)を混ぜる母体材料は、蛍光の波長域で透明であることが必要であることは言うまでもない。
【0027】
他方、スパッタ法は半導体で既知のスパッタ装置によりシンチレータ材料を貫通穴内に充填する方法であり、蒸着法は蒸着装置あるいは Chemical Vapor Deposition(CVD)装置などによりシンチレータ材料を貫通穴内に充填する方法である。スパッタ法と蒸着法は、メカニズムは異なるが、両者ともシンチレータ材料の堆積は、気相中で行われるのに対して、印刷法やスピンコート法などは、液体の性質を利用して形成される。なお、上述の手法でシンチレータ材料を貫通穴内に充填したとき、入射側に平坦でない状態でシンチレータ材料が残る場合は、CMP(Chemical Mechanical Polish)などで平坦化処理を行うことも考えられる。
【0028】
次に、図3の(D)に示すように、必要に応じてシンチレータ材料17をアニーリングあるいはベーキングなどの熱処理を行った後、シリコン活性層11の表面にSiO2 薄膜18と金属薄膜19を順次形成する。ここで、シンチレータ材料17によっては、SiO2 薄膜18が不要になる場合もあり得る。最後に図3の(E)に示すように、裏面からシリコン支持層13を除去し、別途形成された固体撮像素子20と貼り合わせて、放射線イメージングデバイスの主要部分が完成する。ここで、21は固体撮像素子20のフォトダイオードである。
【0029】
このような構成の放射線イメージングデバイスにおいては、放射線シンチレータ1で可視光に変換された光は、発散することなく収束されて固体撮像素子2に入射するため、従来のX線イメージングデバイスに比べて格段に解像度及び感度が優れた放射線イメージングデバイス、つまり放射線検出システムが実現可能となる。また、放射線シンチレータ1の貫通穴6の側壁並びに放射線入射側表面に、光反射作用を有する金属膜を形成することにより、更なる高解像度及び高感度の放射線イメージングデバイスが実現可能となる。更に、放射線シンチレータの表面及び裏面に保護層9及び保護膜10としての絶縁膜を設けることにより、長期間にわたって高信頼性を有し、安定した光電変換特性を有する放射線イメージングデバイスが実現可能となる。
【0030】
なお、本実施の形態では、放射線シンチレータの貫通穴の側壁並びに放射線入射側表面に光反射作用を有する金属膜を、放射線シンチレータの表面及び裏面に保護層及び保護膜を形成したものを示したが、必ずしも必要はない場合もありうる。
【0031】
(第2の実施の形態)
次に、本発明の第2の実施の形態について説明する。図4は、本発明に係る放射線イメージングデバイスの第2の実施の形態の要部(放射線シンチレータ)を示す概略斜視図である。本実施の形態は、放射線の入射面を曲面状に構成するようにしたものである。すなわち、図4において、31は曲面状に構成した放射線イメージングデバイスの放射線シンチレータ、32は放射線シンチレータ31の開口部すなわち放射線シンチレータ31の貫通穴であり、この曲面状に構成した放射線シンチレータ31は、固体撮像素子の湾曲面に沿って貼り合わされるようになっている。
【0032】
一般に、固体撮像素子は、 300μm以上の厚さを有するシリコン単結晶基板上に形成されるため、固体撮像素子は曲げに対する剛性を有しており、湾曲させることは困難である。しかしながら、固体撮像素子を作製した後で、ラッピング装置、あるいはKOHやTMAHなどの薬液によるエッチングにより、数十μm〜200μm程度の厚さまでシリコン基板を研磨・除去し、シリコン基板を薄膜化することにより、シリコン基板の湾曲が可能となる。このようにして湾曲形成された固体撮像素子の湾曲面に沿って、別途上記のように曲面状に作製された放射線シンチレータを貼り合わすことにより、入射面を曲面状にした放射線イメージングデバイスが実現できる。
【0033】
このような構成の放射線イメージングデバイスによれば、曲面状に放射線シンチレータ31の開口部(貫通穴)が形成されているため、開口部と法線方向に入射する放射線のみが検出可能となり放射線イメージングデバイスとしての視野角が拡大し、平面状に構成した放射線イメージングデバイスに比べて、より広角な範囲にわたって指向性良く放射線画像の検出が可能となる。
【0034】
なお、本実施の形態では、一次元方向のみに湾曲した放射線イメージングデバイスについて説明したが、二次元状に湾曲させることも可能であることは言うまでもない。ただ、本実施の形態の放射線イメージングデバイスにおいては、平面構成の場合に比べて各画素は立体角的に離間するために、得られる画像の空間解像度は劣化してしまう。この空間解像度の劣化を防ぐ構成について、次の第3の実施の形態において説明する。
【0035】
(第3の実施の形態)
次に、本発明の第3の実施の形態について説明する。図5は、本発明に係る放射線イメージングデバイスの第3の実施の形態を示す概略斜視図である。なお、本実施の形態では放射線シンチレータ及び固体撮像素子としてのラインセンサの詳細な構成については、第1及び第2の実施の形態と同様であるため、その図示説明を省略する。
【0036】
図5において、43は一次元状に画素が配置されているラインセンサ、41は放射線シンチレータであり、42はラインセンサ43の各画素に対応して配置されている放射線シンチレータ41の開口部、すなわちシンチレータ材料が充填された貫通穴で、各々の開口部は長手方向に線状に配置されている。44は少なくとも放射線シンチレータ41とラインセンサ43とを含む部分を、ラインセンサ43の長軸を回転中心として回転動作させるための回転軸であり、図示しない保持部に回転可能に支持されている。
【0037】
このような構成の放射線イメージングデバイスの動作は、次のようになる。すなわち、ある静止位置におけ所望の放射線量を蓄積して各画素の放射線信号を読み出した後に、放射線イメージングデバイスを回転軸44を中心に所望の微小角だけ回転し、蓄積信号をリセットした後に、新たな信号蓄積及び信号読み出し動作を行う。以上の動作を繰り返して行い、読み出し信号を合成することにより、広い立体角にわたる放射線画像の撮像が可能となる。
【0038】
したがって、本実施の形態によれば、ラインセンサ43の画素に対して垂直つまり法線方向より入射する放射線のみを指向性良く検出可能であると共に、回転角を任意に且つ精度良く設定できるため、緻密で高解像度且つ高感度の立体画像を得ることができる。また、ラインセンサ43の長手方向となる一次元方向以外の寸法は小さくすることが可能となるため、回動軸44方向においては狭い部分に挿入が可能となり、例えば原子炉内部の配管のX線による故障分析など、狭い空間での利用が可能となる。
【0039】
なお、本実施の形態では、固体撮像素子としてラインセンサを用いたものを示したが、ラインセンサに限定されないことは言うまでもない。
【0040】
【発明の効果】
以上実施の形態に基づいて説明したように、請求項1に係る発明によれば、高感度且つ高解像度の放射線イメージングデバイスを実現できる。請求項2及び3に係る発明によれば、更なる高感度且つ高解像度が実現可能となる。請求項4に係る発明によれば、長期間にわたって信頼性を有し、安定した光電変換特性を有することが可能となる。請求項5に係る発明によれば、高感度且つ高解像度であると共に、広い視野範囲を有する放射線イメージングデバイスが実現可能となる。請求項6に係る発明によれば、空間解像度の劣化を防ぎながら更なる広い視野範囲が実現可能となる。
【図面の簡単な説明】
【図1】本発明に係る放射線イメージングデバイスの第1の実施の形態を示す概略断面図である。
【図2】図1に示した第1の実施の形態における放射線シンチレータの拡大平面図及び拡大断面図である。
【図3】図1及び図2に示した第1の実施の形態に係る放射線イメージングデバイスの製造方法を説明するための製造工程図である。
【図4】本発明の第2の実施の形態の要部を示す概略斜視図である。
【図5】本発明の第3の実施の形態を示す概略斜視図である。
【図6】従来のX線イメージングデバイスの構成例を示す概略断面図である。
【符号の説明】
1 放射線シンチレータ
2 固体撮像素子
3 基板
4 樹脂保護膜
5 シンチレータ基板
6 貫通穴
7 シンチレータ材料
8 金属膜
9 保護層
10 下部保護膜
11 シリコン活性層
12 SiO2 
13 シリコン支持層
14 レジストパターン
15 貫通穴
16 光反射膜
17 シンチレータ材料
18 SiO2 薄膜
19 金属薄膜
20 固体撮像素子
21 フォトダイオード
31 放射線シンチレータ
32 貫通穴
41 放射線シンチレータ
42 貫通穴
43 ラインセンサ
44 回転軸

Claims (6)

  1. 少なくともX線/γ線などの放射線を可視光に変換するシンチレータ部と可視光イメージセンサ部とを有する放射線イメージングデバイスにおいて、前記シンチレータ部は、基板に多数の貫通穴を設け、該貫通穴にシンチレータ材料を埋め込むことにより構成されていることを特徴とする放射線イメージングデバイス。
  2. 前記シンチレータ部は、前記貫通穴の側壁に光反射作用を有する金属膜が形成されていることを特徴とする請求項1に係る放射線イメージングデバイス。
  3. 前記シンチレータ部は、放射線入射側の表面に光反射作用を有する金属膜が形成されていることを特徴とする請求項1又は2に係る放射線イメージングデバイス。
  4. 前記シンチレータ部は、表面及び裏面に絶縁膜が形成されていることを特徴とする請求項1〜3のいずれか1項に係る放射線イメージングデバイス。
  5. 前記シンチレータ部及び前記可視光イメージセンサ部は、曲面状に形成されていることを特徴とする請求項1〜4のいずれか1項に係る放射線イメージングデバイス。
  6. 前記シンチレータ部及び前記可視光イメージセンサ部の支持部を備え、前記シンチレータ部及び前記可視光イメージセンサ部は、撮像中に可動状態で前記支持部に支持されていることを特徴とする請求項1〜5のいずれか1項に係る放射線イメージングデバイス。
JP2002196637A 2002-07-05 2002-07-05 放射線イメージングデバイス Pending JP2004037334A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196637A JP2004037334A (ja) 2002-07-05 2002-07-05 放射線イメージングデバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196637A JP2004037334A (ja) 2002-07-05 2002-07-05 放射線イメージングデバイス

Publications (1)

Publication Number Publication Date
JP2004037334A true JP2004037334A (ja) 2004-02-05

Family

ID=31704614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196637A Pending JP2004037334A (ja) 2002-07-05 2002-07-05 放射線イメージングデバイス

Country Status (1)

Country Link
JP (1) JP2004037334A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096648A (ja) * 2008-10-17 2010-04-30 Japan Atomic Energy Agency 放射線−光変換素子、放射線検出器
CN113945586A (zh) * 2021-10-22 2022-01-18 中国工程物理研究院激光聚变研究中心 用于kb显微镜的x射线图像记录仪

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096648A (ja) * 2008-10-17 2010-04-30 Japan Atomic Energy Agency 放射線−光変換素子、放射線検出器
CN113945586A (zh) * 2021-10-22 2022-01-18 中国工程物理研究院激光聚变研究中心 用于kb显微镜的x射线图像记录仪
CN113945586B (zh) * 2021-10-22 2024-06-07 中国工程物理研究院激光聚变研究中心 用于kb显微镜的x射线图像记录仪

Similar Documents

Publication Publication Date Title
US8481948B2 (en) Method to optimize the light extraction from scintillator crystals in a solid-state detector
EP1118878B1 (en) Scintillator panel, radiation image sensor, and method for producing the same
JP3789785B2 (ja) 放射線イメージセンサ
US7375341B1 (en) Flexible scintillator and related methods
JP4800434B2 (ja) シンチレータパネル、放射線イメージセンサの製造方法
JP3126715B2 (ja) シンチレータパネル及び放射線イメージセンサ
EP3132286B1 (en) Radiation detector with photosensitive elements that can have high aspect ratios
JPH11218577A (ja) シンチレーションの検出
US10448908B2 (en) Radiographic imaging apparatus and imaging system
US20110174981A1 (en) Photodiode Array, Radiation Detector and Method for Producing Such a Photodiode Array And Such A Radiation Detector
US7772558B1 (en) Multi-layer radiation detector and related methods
JPH09325185A (ja) 放射線検出器とその製造方法と透視検査装置とctスキャナ
JPH05188148A (ja) 放射線検出素子
US20070040125A1 (en) Scintillator panel, scintillator panel laminate, radiation image sensor using the same, and radiation energy discriminator
US10345456B2 (en) Radiation detector and method for producing a radiation detector
US10401508B2 (en) Scintillator, scintillator assembly, x-ray detector and x-ray imaging system and a method for manufacturing a scintillator
JP3987438B2 (ja) シンチレータパネル及び放射線イメージセンサ
JPH0593780A (ja) 放射線検出素子
JP2004037334A (ja) 放射線イメージングデバイス
KR101198067B1 (ko) 수직 적층형 섬광체 구조물을 이용한 방사선 검출 장치
JP2014215135A (ja) 放射線撮像装置、その製造方法、及び放射線検査装置
US20140138547A1 (en) Hybrid high energy photon detector
JP4283863B2 (ja) シンチレータパネル
Luppino et al. CCD mosaic development for large optical telescopes
KR20200009931A (ko) 후면 조사 구조를 이용한 저선량 및 고해상도 방사선 디텍터

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304