JP2004036753A - Hydraulic frictional force variable damper - Google Patents

Hydraulic frictional force variable damper Download PDF

Info

Publication number
JP2004036753A
JP2004036753A JP2002194492A JP2002194492A JP2004036753A JP 2004036753 A JP2004036753 A JP 2004036753A JP 2002194492 A JP2002194492 A JP 2002194492A JP 2002194492 A JP2002194492 A JP 2002194492A JP 2004036753 A JP2004036753 A JP 2004036753A
Authority
JP
Japan
Prior art keywords
shaft member
pressure
cylindrical member
hydraulic
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002194492A
Other languages
Japanese (ja)
Other versions
JP4312426B2 (en
Inventor
Toshiyuki Kanesawa
兼澤 敏之
Kazuhiro Saito
斉藤 一博
Takanari Satou
佐藤 登也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOMOE GIKEN KK
Tomoe Research and Development Ltd
Original Assignee
TOMOE GIKEN KK
Tomoe Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOMOE GIKEN KK, Tomoe Research and Development Ltd filed Critical TOMOE GIKEN KK
Priority to JP2002194492A priority Critical patent/JP4312426B2/en
Publication of JP2004036753A publication Critical patent/JP2004036753A/en
Application granted granted Critical
Publication of JP4312426B2 publication Critical patent/JP4312426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic frictional force variable damper which facilitates adjustment of damping force even after assembly, and enables automatic adjustment of frictional damping force corresponding to external forces and continuous appropriate damping control. <P>SOLUTION: In a hydraulic damper 1, a shaft member 2 and a cylindrical member 3 freely slidably fitted in the axial direction are configured to damp to adsorb an impact by a prescribed fluid resistance (a stop valve 11, or the like). Pressurized fluid is supplied between the shaft member 2 and the cylindrical member 3 through a pressure path L4. A limit member 6 such as a lock sleeve is tightened to increase fastening and fitting degree of the shaft member 2C to the cylindrical member 3B. The frictional force between the shaft member and the cylindrical member is adjusted by supply of prescribed fluid while developing the damper effect using hydraulic pressure. By so doing, the damping control by friction can be materialized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、軸方向に摺動自在に嵌合された軸部材と筒部材とが所定の流体抵抗により衝撃が減衰して吸収されるように構成された油圧式ダンパーに関し、好適には地震等の急激な振動をすばやく減衰させる制振ダンパーに適用される。
【0002】
【従来の技術】
地震等の急激な振動が発生した場合に、基礎に対する建物構造物や橋脚に対する橋梁等の振動を有効に減衰させるものとして制振ダンパーが使用されている。制振ダンパーとしては、従来から種々のものが提案されて使用されている。図3に示した第1従来例のものは、軸部材を構成するピストン部により区画されたシリンダ内の両側の油圧室間に連通するオリフィスを前記ピストン部に穿設した油圧式ダンパーで、ピストン部の軸方向移動により油がオリフィスを流れる際のピストン部前後に生じる圧力差が減衰力としてピストン部に作用する。ピストン・シリンダ型の油圧ダンパーは力の伝達が効率的で、車両用として多用される。
【0003】
また、図4に示した第2従来例のものは、作動油が密封されたシリンダユニットと減衰力を発生させるバルブユニットと構造体への取付けのためのボールジョイントとで構成されたもので、作動原理は、建物等の構造体に振動が加わるとピストンロッドとシリンダとに軸方向の相対移動が生じ、作動油が外付け構成としたバルブユニットを通過して左右の圧力室間を移動する。その際にバルブユニット内に設置された調圧弁を押し出す流体抵抗を利用して減衰力を得るもので、建物や土木用ダンパーとして高剛性、高減衰力および高耐久性が得られる。
【0004】
さらに、図5に示した第3従来例のものは、改良された摩擦型ダンパーに関するもので、外筒とロッドとの間の相対的軸移動の際のすべり摩擦抵抗を減衰力として用いるものである。摩擦力の調整に皿ばねと楔機構が採用される。皿ばねによりスラスト方向の予圧が付与され、楔機構を介して摺動子に外筒内周面への所定の摩擦力が得られる。かくして、油等の媒体を使用することなく、地盤側基礎に接続された外筒と上部構造物側基礎に接続されたロッドとの間に振動による軸方向の相対移動が生じると、軸方向の力は楔機構を介して径方向に変換されて外筒の内周面と摺動子との間に予圧によるものに加えて摩擦力が付与されて、振動が有効に減衰される。他に、制振ダンパーとしては、鋼棒のような弾塑性履歴エネルギー型、磁気粘性体を利用した速度比例型等がある。
【0005】
【発明が解決しようとする課題】
ところが、このような従来の制振ダンパーにあって、前記第1従来例のピストン部にオリフィスを穿設した油圧式ダンパーでは、減衰力がオリフィスの径に依存して流量制御されるもので、安価ではあるものの、性能が固定されていた。また、前記第2従来例の調圧弁を用いた外付けバルブユニットを有する油圧式ダンパーでは、調圧弁による減衰力の調整を可能にして高剛性、高減衰力および高耐久性が得られることとなったものの、地震等による急激な振動(変位、力)が作用した場合でも、調圧弁にて設定された所定の減衰力による減衰制御がなされるのみで、効果的な減衰制御が充分になされなかった。さらに、前記第3従来例の改良された摩擦型ダンパーでは、油を用いることなく簡便な構成で、予圧付与等の機能により摩擦による減衰力の調整が可能であるものの、組付け後の減衰力の調整はダンパーを分解する必要があって面倒であった。また、前記鋼棒のような弾塑性履歴エネルギー型は復元性に不利であり、磁気粘性体を利用した油圧式ダンパーは高価であり実用性に乏しいものであった。
【0006】
そこで、本発明では前述したような従来の制振ダンパーにおける諸課題を解決して、組付け後でも減衰力の調整が容易で、さらに外力に応じて摩擦減衰力を自動的に調整することを可能にして、常に適切な減衰制御を行うことを可能にした油圧式ダンパーを提供することを目的とする。
【0007】
【課題を解決するための手段】
このため本発明は、軸方向に摺動自在に嵌合された軸部材と筒部材とが所定の流体抵抗により衝撃が減衰して吸収されるように構成された油圧式ダンパーにおいて、前記軸部材と筒部材との間に加圧流体の供給を受けて筒部材に対する軸部材の締結嵌合度合いを増大させるように構成したことを特徴とする。また本発明は、前記軸部材と筒部材との間に加圧流体の供給を受けて軸部材を締め付ける制限部材を配設したことを特徴とする。また本発明は、前記制限部材として、分割された複数個を軸方向に配列して構成したことを特徴とする。また本発明は、前記加圧流体の供給が、軸部材と筒部材との間の相対的な軸移動により生じた圧力上昇を導入してなされるように構成したことを特徴とする。また本発明は、前記加圧流体の供給が、軸部材と筒部材との間の相対的な軸移動により生じた圧力上昇によって開弁するカウンタバランス弁の設定圧力を導入してなされるように構成したことを特徴とする。また本発明は、軸部材を構成するピストン部により区画され筒部材を構成するシリンダ室間を連通する管路内にストップ弁あるいは絞り弁を設置したことを特徴とするもので、これらを課題解決のための手段とする。
【0008】
【実施の形態】
以下、本発明の油圧式摩擦力可変ダンパーの実施の形態を図面に基づいて詳細に説明する。図1は本発明の油圧式摩擦力可変ダンパーの第1実施の形態を示す全体概念図および要部拡大図である。本発明の基本的な構成は、図1(A)に示すように、軸方向に摺動自在に嵌合された軸部材2と筒部材3とが所定の流体抵抗により衝撃が減衰して吸収されるように構成された油圧式ダンパー1において、前記軸部材2と筒部材3との間に加圧流体の供給を受けて筒部材3(3B)に対する軸部材2(2C)の締結嵌合度合いを増大させるように構成したことを特徴とする。
【0009】
以下に詳述する。油圧式ダンパー1は、それぞれが建物構造体等にヒンジ接続される軸部材2と筒部材3が互いに嵌合されて構成される。軸部材2は、軸方向の略中央部に形成された径大部からなるピストン部2Bとその両側の基部2Aと先端部2Cとから構成され、筒部3は、前記ピストン2Bを収容するシリンダ部3Cと軸の先端部2Cに制限力を付与する加圧ロック部4である加圧部3Bと先端を収容する基部3Aとから構成される。筒部材3における各部3A、3Bおよび3Cは同径でもよいが、図示の例では、最も径の大きいシリンダ部3C、やや径の小さな基部3Aおよび最も径の小さな加圧部3Bとから構成されている。
【0010】
前記ピストン部2Bにより区画され筒部材を構成するシリンダ部3C内のシリンダ室7、8にそれぞれ第1開口部9および第2開口部10が穿設され、これらの開口部9、10に管路が接続される。これらの開口部9、10からの流れのみを可能にする第1逆止弁13および第2逆止弁14を経て合流地点にカウンタバランス弁12が配設される。前記合流地点から加圧路L4が前記筒部材3における加圧ロック部4に延びる。前記第1開口部9と第2開口部10とはストップ弁11を介して接続される。前記カウンタバランス弁12の下流(図面上方)には第5逆止弁18および絞り19を介してアキュムレータ17が配設され、カウンタバランス弁12とアキュムレータ17との合流地点の近傍には、前記第1開口部9および第2開口部10への流れのみを可能とする第3および第4逆止弁15および16が配設される。
【0011】
図1(B)に示すように、加圧路L4からの加圧流体の供給を受ける加圧ロック部4は、一体あるいは別部材から構成される径の最も小さな筒部材である加圧部3B内周の加圧室5と、さらに内周側に配置され軸部材の先端部2Cの外周に密接嵌合する鋼鉄製等の制限部材(ロックスリーブ)6とから構成される。好適にはロックスリーブ6は、分割された複数個を軸方向に配列して構成される。
【0012】
以下に、本実施の形態のものの動作を説明する。前記ストップ弁11を閉じた場合において、図1(A)の白矢印のように外力が加わると、軸部材2に対して筒部材3が図面右方への軸移動により第1シリンダ室7内に圧力上昇を生じ、第1逆止弁13を押し開けてカウンタバランス弁12の前面を加圧すると同時に加圧路L4を介して加圧ロック部4における圧力室5を加圧して制限部材であるロックスリーブ6を縮径して軸部材2の先端部2Cを締め付けて所定の摩擦力が得られる。このとき、第2逆止弁14は閉じている。外力が所定値を超えると、第1シリンダ室7内の圧力が設定された所定値に達してカウンタバランス弁12を開く。すると、第3および第4逆止弁15、16を介して第1シリンダ室7と第2シリンダ室8とが連通して圧油の循環がなされる。これにより、圧力室5を加圧して得られた摩擦力は減少し、軸部材2に対して筒部材3が移動する。
【0013】
過大な外力により急激な流量変化があった場合には、カウンタバランス弁12を通過した流体は絞り19により衝撃が吸収されつつアキュムレータ17内に吸収される。外力の開放に伴って、蓄圧された流体はアキュムレータ17から第5逆止弁18を経て第1および第2シリンダ室7、8に戻る。また、前記アキュムレータ17の配設は、該アキュムレータ17からの所定の初期圧力の付与によって、第5逆止弁18から、第3逆止弁15、第1逆止弁13および第4逆止弁16、第2逆止弁14を経て加圧路L4に伝達されて、イニシャルロックを付与することができる。かくして、ダンパー1は、シリンダ室7、8を検出部としてカウンタバランス弁12の設定値に達するまで適正にコントロールされて、圧力にほぼ比例してロック圧(制限圧)を制御して摩擦による減衰力を自動的に制御することができる。カウンタバランス弁12の設定値を変更すれば、加圧ロック部4の最大ロック制限圧を変更することができる。
【0014】
前記ストップ弁11を開放した場合は、カウンタバランス弁12の開放の設定値以下で、第1開口部9と第2開口部10を通じて所定の減衰値のダンパー動作がなされる。
<実施例>
カウンタバランス弁の設定圧力: 500Kg/cm2 
シリンダ室7、8の受圧面積: それぞれ 20cm2 
加圧ロック機構       : 圧力500Kg/cm2 にて、5tonの保持力発生
ストローク         : ±20cm
としたとき、
外力10tが作用した場合、シリンダ室7の圧力 P1=10ton/20cm2 =500Kg/cm2 となる。よって、P1=500Kg/cm2 により加圧ロック部4に5tonの保持力が発生する。同時にカウンタバランス弁12が開となり、シリンダ室7、8に圧油が連通し、与えられた保持力は減少する。外力の変位がストロークの75%(15cm=20×0.75)とすると、消費エネルギーは、5tonf×15cm=75tonf・cmとなる。
【0015】
図2は本発明の油圧式摩擦力可変ダンパーの第2実施の形態を示す全体概念図である。本実施の形態のものは、筒部材を構成するシリンダ部3Cにおけるシリンダ室7、8間を連通する管路内に絞り弁20を設置したことを特徴とする。したがって、本実施の形態のものでは、絞り弁20の開度を調整することで、外力の速度が絞り弁20の設定流量以内では、絞り弁20により減衰されつつシリンダ室7、8間を流体が流れて軸部材2と筒部材3とが相対軸移動する。外力の速度が絞り弁20の設定流量を超えると、絞り弁20の両側にてP1>P2の圧力差が生じる。カウンタバランス弁12の設定圧がP1のとき、カウンタバランス弁12が開き、同時に加圧ロック部4に圧力P1に相当するロック制限圧が生じる。したがって、本実施の形態のものは、カウンタバランス弁12と関連付けて絞り弁20の流量に相当する外力の速度に感応させてロック制限圧を得ることができる。
【0016】
以上、本発明の各実施の形態について説明してきたが、本発明の趣旨の範囲内で、軸部材および筒部材の形状、形式、それらの間の油圧式ダンパーとしての嵌合形態、加圧流体の供給を受けて筒部材に対する軸部材の締結嵌合度合いの増大形態(軸部材を締め付ける加圧ロックの他、軸部材を締付け勝手の制限部材をばね圧等による加圧流体の供給で拡開して軸動可能に構成した無圧ロックタイプのものを、外力の速度に応じて発生させた加圧流体の供給で無圧ロックを解除して軸部材を締め付けるように構成することもできる)、加圧流体の供給形態(外力の大きさあるいは速度をセンサー等により検出してそれらの大きさに応じて流体を加圧するように構成することもできる)、制限部材としてのロックスリーブの形状(分割された鋼鉄製の複数個を軸方向に配列して構成する他、1つの筒状の耐磨耗性樹脂部材あるいは分割されない1つの筒状の金属製部材等から構成されてもよい)、カウンタバランス弁の形状、形式およびその設定圧力の設定形態、主たる減衰部を構成してシリンダ室を区画するピストン部とシリンダ部との間の関連構成、ピストンにより区画されたシリンダ室間を連通する管路の形状、配設部位(外部配管の他、シリンダ部内に設置することもできる)、ストップ弁および絞り弁の形状、形式等については適宜採用が可能である。
【0017】
【発明の効果】
以上、詳細に説明してきたように本発明によれば、軸方向に摺動自在に嵌合された軸部材と筒部材とが所定の流体抵抗により衝撃が減衰して吸収されるように構成された油圧式ダンパーにおいて、前記軸部材と筒部材との間に加圧流体の供給を受けて筒部材に対する軸部材の締結嵌合度合いを増大させるように構成したことにより、油圧を利用したダンパー効果を発揮させつつ、加圧流体の供給を受けて軸部材と筒部材との間の摩擦力を調整して、摩擦による減衰力制御が可能となった。
【0018】
また、前記軸部材と筒部材との間に加圧流体の供給を受けて軸部材を締め付ける制限部材を配設した場合は、加圧流体を導入して制限部材を締め付けるだけの簡便な方法で摩擦力の調整が可能となる。
さらに、前記制限部材として、分割された複数個を軸方向に配列して構成した場合は、分割された複数個の制限部材における各内周側端面のエッジ部が制限部材による軸部材の制動効果をより高めることができる。
さらにまた、前記加圧流体の供給が、軸部材と筒部材との間の相対的な軸移動により生じた圧力上昇を導入してなされるように構成した場合は、シリンダ部におけるシリンダ室等を検出部として、外力の速度あるいは大きさに応じて軸部材と筒部材との間の摩擦によるロック制限力を得ることができて、適正な減衰力制御がなされる。
【0019】
また、前記加圧流体の供給が、軸部材と筒部材との間の相対的な軸移動により生じた圧力上昇によって開弁するカウンタバランス弁の設定圧力を導入してなされるように構成した場合は、カウンタバランス弁の設定値に達するまで適正にコントロールされて、圧力にほぼ比例してロック圧(制限圧)を制御して摩擦による減衰力を自動的に制御することができ、ダンパー自体の組付け後にても、カウンタバランス弁の設定値を変更して加圧ロック部の最大ロック制限圧を変更することが可能となる。
【0020】
さらに、軸部材を構成するピストン部により区画され筒部材を構成するシリンダ室間を連通する管路内にストップ弁を設置した場合は、ストップ弁の開弁により軸部材と筒部材とが通常のダンパー動作を行い、ストップ弁の閉弁によりカウンタバランス弁の設定値に達するまで適正にコントロールされて、圧力にほぼ比例してロック圧(制限圧)を制御して摩擦による減衰力を自動的に制御することができる。
さらにまた、軸部材を構成するピストン部により区画され筒部材を構成するシリンダ室間を連通する管路内に絞り弁を設置した場合は、カウンタバランス弁と関連付けて絞り弁の流量に相当する外力の速度に感応させてロック制限圧を得ることができる。
かくして、本発明によれば、組付け後でも減衰力の調整が容易で、さらに外力に応じて摩擦減衰力を自動的に調整することを可能にして、常に適切な減衰制御を行うことを可能にした油圧式ダンパーが提供される。
【図面の簡単な説明】
【図1】本発明の油圧式摩擦力可変ダンパーの第1実施の形態を示す全体概念図および要部拡大図である。
【図2】本発明の油圧式摩擦力可変ダンパーの第2実施の形態を示す全体概念図である。
【図3】従来のオリフィス型油圧式ダンパーの要部断面図である。
【図4】従来の改良された油圧式ダンパーの全体断面図である。
【図5】従来の摩擦型ダンパーの全体断面図である。
【符号の説明】
1・・・・ダンパー
2・・・・軸部材
2A・・・・基部
2B・・・・ピストン部
2C・・・・先端部
3・・・・筒部材
3A・・・・基部
3B・・・・加圧部
3C・・・・シリンダ部
4・・・・加圧ロック部
5・・・・加圧室
6・・・・制限部材(ロックスリーブ)
7・・・・第1シリンダ室
8・・・・第2シリンダ室
9・・・・第1開口部
10・・・・第2開口部
11・・・・ストップ弁
12・・・・カウンタバランス弁
13・・・・第1逆止弁
14・・・・第2逆止弁
15・・・・第3逆止弁
16・・・・第4逆止弁
17・・・・アキュムレーター
18・・・・第5逆止弁
19・・・・絞り
20・・・・絞り弁
L4・・・・加圧路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydraulic damper in which a shaft member and a cylindrical member fitted slidably in the axial direction are configured so that shock is attenuated and absorbed by a predetermined fluid resistance, and is preferably an earthquake damper or the like. Applied to a vibration damper that quickly attenuates sudden vibrations.
[0002]
[Prior art]
BACKGROUND ART When a sudden vibration such as an earthquake occurs, a vibration damper is used to effectively attenuate a vibration of a building structure with respect to a foundation or a bridge with respect to a pier. Various types of vibration dampers have been proposed and used. The first conventional example shown in FIG. 3 is a hydraulic damper in which orifices are provided in the piston section between the hydraulic chambers on both sides of a cylinder defined by a piston section forming a shaft member. The pressure difference generated before and after the piston portion when oil flows through the orifice due to axial movement of the portion acts on the piston portion as a damping force. The piston-cylinder type hydraulic damper is effective in transmitting force and is frequently used for vehicles.
[0003]
The second prior art shown in FIG. 4 is composed of a cylinder unit in which hydraulic oil is sealed, a valve unit for generating a damping force, and a ball joint for attachment to a structure. The principle of operation is that when vibration is applied to a structure such as a building, the piston rod and the cylinder move relative to each other in the axial direction, and the hydraulic oil moves between the left and right pressure chambers through the externally configured valve unit. . At this time, damping force is obtained by using a fluid resistance that pushes out a pressure regulating valve installed in the valve unit, and high rigidity, high damping force and high durability can be obtained as a damper for buildings and civil engineering.
[0004]
Further, the third conventional example shown in FIG. 5 relates to an improved friction type damper, in which a sliding friction resistance at the time of relative axial movement between an outer cylinder and a rod is used as a damping force. is there. A disc spring and a wedge mechanism are employed for adjusting the frictional force. A preload in the thrust direction is applied by the disc spring, and a predetermined frictional force is obtained on the inner peripheral surface of the outer cylinder by the slider via the wedge mechanism. Thus, without using a medium such as oil, if the axial relative movement due to vibration occurs between the outer cylinder connected to the ground foundation and the rod connected to the upper structure side foundation, the axial The force is converted in the radial direction via the wedge mechanism, and a frictional force is applied between the inner peripheral surface of the outer cylinder and the slider in addition to the force caused by the preload, so that the vibration is effectively damped. Other examples of the vibration damper include an elastic-plastic hysteretic energy type such as a steel rod and a velocity proportional type using a magnetic viscous body.
[0005]
[Problems to be solved by the invention]
However, in such a conventional vibration damper, in the hydraulic damper in which the orifice is formed in the piston portion of the first conventional example, the damping force is flow-controlled depending on the diameter of the orifice. Although cheap, the performance was fixed. Further, in the hydraulic damper having the external valve unit using the pressure regulating valve of the second conventional example, it is possible to adjust the damping force by the pressure regulating valve to obtain high rigidity, high damping force and high durability. However, even when sudden vibration (displacement, force) due to an earthquake or the like is applied, effective damping control is sufficiently performed only by performing damping control with a predetermined damping force set by the pressure regulating valve. Did not. Further, in the improved friction type damper of the third conventional example, although the damping force can be adjusted by friction with a simple structure without using oil and by a function such as preloading, the damping force after assembly is obtained. Adjustment was troublesome because it was necessary to disassemble the damper. In addition, the elasto-plastic hysteretic energy type such as the steel rod is disadvantageous in restoring property, and the hydraulic damper using the magnetic viscous material is expensive and has poor practicality.
[0006]
Therefore, the present invention solves the above-mentioned problems in the conventional vibration damper, and makes it easy to adjust the damping force even after assembling, and to automatically adjust the friction damping force according to the external force. It is an object of the present invention to provide a hydraulic damper capable of always performing appropriate damping control.
[0007]
[Means for Solving the Problems]
For this reason, the present invention provides a hydraulic damper in which a shaft member and a cylindrical member fitted slidably in the axial direction are configured so that shock is attenuated and absorbed by a predetermined fluid resistance. The pressurized fluid is supplied between the cylinder member and the cylindrical member to increase the degree of engagement of the shaft member with the cylindrical member. Further, the present invention is characterized in that a limiting member for receiving a supply of pressurized fluid and fastening the shaft member is provided between the shaft member and the cylindrical member. Further, the invention is characterized in that the limiting member is constituted by arranging a plurality of divided members in the axial direction. Further, the present invention is characterized in that the supply of the pressurized fluid is performed by introducing a pressure increase caused by a relative axial movement between the shaft member and the cylindrical member. Further, in the present invention, the supply of the pressurized fluid is performed by introducing a set pressure of a counterbalance valve that opens by a pressure increase caused by a relative axial movement between the shaft member and the cylindrical member. It is characterized by comprising. Further, the present invention is characterized in that a stop valve or a throttle valve is installed in a pipe which is partitioned by a piston portion forming a shaft member and communicates between cylinder chambers forming a cylindrical member, and solving these problems. Means.
[0008]
Embodiment
Hereinafter, an embodiment of a hydraulic variable frictional damper of the present invention will be described in detail with reference to the drawings. FIG. 1 is an overall conceptual diagram and an enlarged view of a main part showing a first embodiment of a hydraulic frictional force variable damper of the present invention. As shown in FIG. 1 (A), the basic configuration of the present invention is such that the shaft member 2 and the cylindrical member 3 fitted slidably in the axial direction absorb shock by attenuated due to predetermined fluid resistance. In the hydraulic damper 1 configured as described above, the pressurized fluid is supplied between the shaft member 2 and the cylindrical member 3 to fasten the shaft member 2 (2C) to the cylindrical member 3 (3B). It is characterized in that the degree is increased.
[0009]
Details will be described below. The hydraulic damper 1 is configured by fitting a shaft member 2 and a cylindrical member 3 that are each hinged to a building structure or the like to each other. The shaft member 2 is composed of a piston portion 2B formed at a substantially central portion in the axial direction and having a large diameter, base portions 2A and tip portions 2C on both sides thereof, and a cylinder portion 3 is a cylinder that accommodates the piston 2B. It comprises a pressing portion 3B, which is a pressing lock portion 4 for applying a limiting force to the portion 3C and the distal end portion 2C of the shaft, and a base portion 3A for accommodating the distal end. Each portion 3A, 3B and 3C of the cylindrical member 3 may have the same diameter, but in the example shown in the figure, it is composed of a cylinder portion 3C having the largest diameter, a base portion 3A having a slightly smaller diameter, and a pressing portion 3B having a smallest diameter. I have.
[0010]
A first opening 9 and a second opening 10 are respectively formed in cylinder chambers 7 and 8 in a cylinder part 3C which is partitioned by the piston part 2B and constitutes a cylindrical member. Is connected. A counterbalance valve 12 is disposed at the junction via a first check valve 13 and a second check valve 14 that allow only the flow from these openings 9, 10. A pressure path L4 extends from the junction to the pressure lock portion 4 of the tubular member 3. The first opening 9 and the second opening 10 are connected via a stop valve 11. An accumulator 17 is disposed downstream (above the drawing) of the counterbalance valve 12 via a fifth check valve 18 and a throttle 19. The accumulator 17 is located near the junction of the counterbalance valve 12 and the accumulator 17. Third and fourth check valves 15 and 16 are provided which allow only the flow to the first opening 9 and the second opening 10.
[0011]
As shown in FIG. 1 (B), the pressurizing lock unit 4 receiving the supply of the pressurized fluid from the pressurizing path L4 is a pressurizing unit 3B which is a cylindrical member having the smallest diameter and formed integrally or as a separate member. It is composed of a pressurizing chamber 5 on the inner periphery, and a restricting member (lock sleeve) 6 made of steel or the like, which is further disposed on the inner peripheral side and closely fits on the outer periphery of the tip 2C of the shaft member. Preferably, the lock sleeve 6 is configured by arranging a plurality of divided pieces in the axial direction.
[0012]
The operation of the embodiment will be described below. When the stop valve 11 is closed and an external force is applied as shown by a white arrow in FIG. 1A, the cylindrical member 3 moves in the first cylinder chamber 7 by the axial movement of the shaft member 2 to the right in the drawing. , The first check valve 13 is pushed open to pressurize the front surface of the counterbalance valve 12 and at the same time pressurize the pressure chamber 5 in the pressurizing lock section 4 via the pressurizing path L4 to restrict the pressure. A certain frictional force is obtained by reducing the diameter of a certain lock sleeve 6 and tightening the tip 2C of the shaft member 2. At this time, the second check valve 14 is closed. When the external force exceeds a predetermined value, the pressure in the first cylinder chamber 7 reaches the predetermined value and the counter balance valve 12 is opened. Then, the first cylinder chamber 7 and the second cylinder chamber 8 communicate with each other via the third and fourth check valves 15 and 16 to circulate the pressure oil. Thereby, the frictional force obtained by pressurizing the pressure chamber 5 decreases, and the cylindrical member 3 moves with respect to the shaft member 2.
[0013]
If there is a sudden change in the flow rate due to an excessive external force, the fluid that has passed through the counterbalance valve 12 is absorbed into the accumulator 17 while absorbing the impact by the throttle 19. With the release of the external force, the accumulated fluid returns from the accumulator 17 to the first and second cylinder chambers 7 and 8 via the fifth check valve 18. The accumulator 17 is arranged such that a predetermined initial pressure is applied from the accumulator 17 to the fifth check valve 18, the third check valve 15, the first check valve 13, and the fourth check valve. 16, transmitted to the pressurizing path L4 via the second check valve 14, and can be provided with an initial lock. Thus, the damper 1 is properly controlled until the set value of the counter balance valve 12 is reached by using the cylinder chambers 7 and 8 as the detection unit, and controls the lock pressure (limit pressure) almost in proportion to the pressure to attenuate due to friction. The power can be controlled automatically. If the set value of the counter balance valve 12 is changed, the maximum lock limit pressure of the pressure lock unit 4 can be changed.
[0014]
When the stop valve 11 is opened, a damping operation of a predetermined damping value is performed through the first opening 9 and the second opening 10 below the set value of the opening of the counterbalance valve 12.
<Example>
Set pressure of counter balance valve: 500 kg / cm 2
Pressure receiving area of cylinder chambers 7 and 8: 20 cm 2 each
Pressure lock mechanism: 5-ton holding force generation stroke at a pressure of 500 kg / cm 2 : ± 20 cm
And when
When an external force of 10 t is applied, the pressure in the cylinder chamber 7 becomes P1 = 10 ton / 20 cm 2 = 500 kg / cm 2 . Therefore, a holding force of 5 ton is generated in the pressure lock unit 4 by P1 = 500 kg / cm 2 . At the same time, the counterbalance valve 12 is opened, the pressure oil communicates with the cylinder chambers 7 and 8, and the applied holding force decreases. Assuming that the displacement of the external force is 75% of the stroke (15 cm = 20 × 0.75), the consumed energy is 5 ton × 15 cm = 75 ton · cm.
[0015]
FIG. 2 is an overall conceptual diagram showing a second embodiment of the hydraulic variable friction force damper of the present invention. The present embodiment is characterized in that a throttle valve 20 is installed in a conduit communicating between cylinder chambers 7 and 8 in a cylinder portion 3C constituting a cylindrical member. Therefore, in the present embodiment, by adjusting the opening degree of the throttle valve 20, the fluid between the cylinder chambers 7 and 8 is attenuated by the throttle valve 20 while the speed of the external force is within the set flow rate of the throttle valve 20. Flows, and the shaft member 2 and the cylindrical member 3 move relative to each other. When the speed of the external force exceeds the set flow rate of the throttle valve 20, a pressure difference of P1> P2 occurs on both sides of the throttle valve 20. When the set pressure of the counter balance valve 12 is P1, the counter balance valve 12 opens, and at the same time, a lock limiting pressure corresponding to the pressure P1 is generated in the pressurizing lock unit 4. Therefore, according to the present embodiment, the lock limit pressure can be obtained in response to the speed of the external force corresponding to the flow rate of the throttle valve 20 in association with the counterbalance valve 12.
[0016]
The embodiments of the present invention have been described above. However, within the scope of the present invention, the shapes and types of the shaft member and the cylindrical member, the fitting form as a hydraulic damper between them, the pressurized fluid Of the degree of engagement of the shaft member with the cylindrical member in response to the supply of the pressure member (in addition to the pressure lock for tightening the shaft member, the restricting member that can easily tighten the shaft member is expanded by the supply of pressurized fluid by spring pressure or the like) The pressureless lock type, which is configured to be axially movable, can be configured to release the pressureless lock by supplying a pressurized fluid generated according to the speed of the external force and tighten the shaft member.) Supply form of the pressurized fluid (the magnitude or speed of the external force may be detected by a sensor or the like, and the fluid may be pressurized according to the magnitude), and the shape of the lock sleeve as the restricting member ( Split steel May be constituted by one cylindrical wear-resistant resin member or one cylindrical metal member that is not divided, etc.), and the shape of the counterbalance valve. , The type and setting form of the set pressure, the related configuration between the piston portion and the cylinder portion that constitute the main damping section and divide the cylinder chamber, the shape of the conduit communicating between the cylinder chambers partitioned by the piston, The arrangement portion (which can be installed in the cylinder portion in addition to the external piping), and the shapes and types of the stop valve and the throttle valve can be appropriately adopted.
[0017]
【The invention's effect】
As described above in detail, according to the present invention, the shaft member and the cylindrical member slidably fitted in the axial direction are configured such that the shock is attenuated and absorbed by a predetermined fluid resistance. In the hydraulic damper described above, by supplying a pressurized fluid between the shaft member and the cylindrical member to increase the degree of engagement of the shaft member with the cylindrical member, a damper effect using hydraulic pressure is provided. While exerting the above, the frictional force between the shaft member and the cylindrical member is adjusted by receiving the supply of the pressurized fluid, so that the damping force can be controlled by the friction.
[0018]
Further, when a restricting member for receiving the supply of pressurized fluid and tightening the shaft member is provided between the shaft member and the cylindrical member, a simple method of introducing the pressurized fluid and tightening the restricting member is used. The friction force can be adjusted.
Further, when the limiting member is formed by arranging a plurality of divided limiting members in the axial direction, the edge of each inner peripheral end surface of the plurality of divided limiting members has a braking effect on the shaft member by the limiting member. Can be further enhanced.
Furthermore, in the case where the supply of the pressurized fluid is performed by introducing a pressure increase caused by a relative axial movement between the shaft member and the cylindrical member, a cylinder chamber or the like in the cylinder portion is provided. As the detection unit, a lock limiting force due to friction between the shaft member and the cylindrical member can be obtained according to the speed or magnitude of the external force, and appropriate damping force control is performed.
[0019]
Further, in the case where the supply of the pressurized fluid is performed by introducing a set pressure of a counterbalance valve that opens by a pressure increase caused by a relative axial movement between the shaft member and the cylindrical member. Is controlled appropriately until the set value of the counter balance valve is reached, and the damping force due to friction can be automatically controlled by controlling the lock pressure (limit pressure) almost in proportion to the pressure. Even after assembling, it is possible to change the set value of the counter balance valve to change the maximum lock limit pressure of the pressure lock unit.
[0020]
Further, when a stop valve is installed in a pipe defined by a piston portion constituting a shaft member and communicating between cylinder chambers constituting a cylinder member, the shaft member and the cylinder member are normally moved by opening the stop valve. The damper operates, and the stop valve is closed. The counter valve is properly controlled until it reaches the set value. The lock pressure (limit pressure) is controlled in proportion to the pressure to automatically reduce the damping force due to friction. Can be controlled.
Furthermore, when a throttle valve is installed in a pipe defined by a piston part forming a shaft member and communicating between cylinder chambers forming a cylindrical member, an external force corresponding to a flow rate of the throttle valve is associated with a counterbalance valve. The lock limit pressure can be obtained in response to the speed of the lock.
Thus, according to the present invention, it is possible to easily adjust the damping force even after assembling, and furthermore, it is possible to automatically adjust the friction damping force according to the external force, and to always perform appropriate damping control. A hydraulic damper is provided.
[Brief description of the drawings]
FIG. 1 is an overall conceptual diagram and a main part enlarged view showing a first embodiment of a hydraulic variable friction force damper of the present invention.
FIG. 2 is an overall conceptual diagram showing a second embodiment of the hydraulic variable friction force damper of the present invention.
FIG. 3 is a sectional view of a main part of a conventional orifice type hydraulic damper.
FIG. 4 is an overall sectional view of a conventional improved hydraulic damper.
FIG. 5 is an overall sectional view of a conventional friction damper.
[Explanation of symbols]
1, damper 2, shaft member 2A, base 2B, piston 2C, distal end 3, tubular member 3A, base 3B・ Pressure section 3C ・ ・ ・ ・ ・ ・ Cylinder section 4 ・ ・ ・ ・ ・ ・ Pressure lock section 5 ・ ・ ・ ・ ・ ・ Pressure chamber 6 ・ ・ ・ ・ ・ ・ Restriction member (lock sleeve)
7 First cylinder chamber 8 Second cylinder chamber 9 First opening 10 Second opening 11 Stop valve 12 Counter balance Valve 13 First check valve 14 Second check valve 15 Third check valve 16 Fourth check valve 17 Accumulator 18 ... Fifth check valve 19... Throttle 20... Throttle valve L4.

Claims (6)

軸方向に摺動自在に嵌合された軸部材と筒部材とが所定の流体抵抗により衝撃が減衰して吸収されるように構成された油圧式ダンパーにおいて、前記軸部材と筒部材との間に加圧流体の供給を受けて筒部材に対する軸部材の締結嵌合度合いを増大させるように構成したことを特徴とする油圧式摩擦力可変ダンパー。In a hydraulic damper configured so that a shaft member and a cylindrical member slidably fitted in the axial direction are attenuated and absorbed by a predetermined fluid resistance, between the shaft member and the cylindrical member And a supply of pressurized fluid to increase the degree of engagement of the shaft member with the cylindrical member. 前記軸部材と筒部材との間に加圧流体の供給を受けて軸部材を締め付ける制限部材を配設したことを特徴とする請求項1に記載の油圧式摩擦力可変ダンパー。The hydraulic friction variable damper according to claim 1, wherein a limiting member that receives a supply of pressurized fluid and tightens the shaft member is disposed between the shaft member and the cylindrical member. 前記制限部材として、分割された複数個を軸方向に配列して構成したことを特徴とする請求項2に記載の油圧式摩擦力可変ダンパー。The hydraulic friction variable damper according to claim 2, wherein a plurality of divided members are arranged in the axial direction as the limiting member. 前記加圧流体の供給が、軸部材と筒部材との間の相対的な軸移動により生じた圧力上昇を導入してなされるように構成したことを特徴とする請求項1ないし3のいずれかに記載の油圧式摩擦力可変ダンパー。4. The pressure fluid supply system according to claim 1, wherein the supply of the pressurized fluid is performed by introducing a pressure increase caused by a relative axial movement between the shaft member and the cylindrical member. 2. The hydraulic friction variable damper according to 1. 前記加圧流体の供給が、軸部材と筒部材との間の相対的な軸移動により生じた圧力上昇によって開弁するカウンタバランス弁の設定圧力を導入してなされるように構成したことを特徴とする請求項1ないし3のいずれかに記載の油圧式摩擦力可変ダンパー。The pressurized fluid is supplied by introducing a set pressure of a counterbalance valve that opens due to a pressure increase caused by a relative axial movement between the shaft member and the cylindrical member. The hydraulic variable friction force damper according to any one of claims 1 to 3, wherein 軸部材を構成するピストン部により区画され筒部材を構成するシリンダ室間を連通する管路内にストップ弁あるいは絞り弁を設置したことを特徴とする請求項1ないし5のいずれかに記載の油圧式摩擦力可変ダンパー。The hydraulic pressure according to any one of claims 1 to 5, wherein a stop valve or a throttle valve is installed in a pipe which is defined by a piston portion forming a shaft member and communicates between cylinder chambers forming a cylinder member. Variable friction force damper.
JP2002194492A 2002-07-03 2002-07-03 Hydraulic friction variable damper Expired - Fee Related JP4312426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002194492A JP4312426B2 (en) 2002-07-03 2002-07-03 Hydraulic friction variable damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002194492A JP4312426B2 (en) 2002-07-03 2002-07-03 Hydraulic friction variable damper

Publications (2)

Publication Number Publication Date
JP2004036753A true JP2004036753A (en) 2004-02-05
JP4312426B2 JP4312426B2 (en) 2009-08-12

Family

ID=31703174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194492A Expired - Fee Related JP4312426B2 (en) 2002-07-03 2002-07-03 Hydraulic friction variable damper

Country Status (1)

Country Link
JP (1) JP4312426B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180950A (en) * 2009-02-05 2010-08-19 Kayaba Ind Co Ltd Shock absorber
KR101017730B1 (en) 2010-05-26 2011-02-28 동일고무벨트주식회사 Cylindrical hybrid vibration control apparatus using viscoelasticity and friction
CN102720124A (en) * 2012-07-05 2012-10-10 大连理工大学 Fluid viscous damper with working switch
JP2014084945A (en) * 2012-10-23 2014-05-12 Toyota Motor Corp Suspension device
JP2016121477A (en) * 2014-12-25 2016-07-07 首都高速道路株式会社 Bridge fall prevention device
CN107724762A (en) * 2017-11-10 2018-02-23 智性科技南通有限公司 The viscous and difunctional damper of friction energy-dissipating
CN108951435A (en) * 2018-06-29 2018-12-07 南京理工大学 The method for improving existing assembled bridge pier energy dissipation capacity
CN108978447A (en) * 2018-06-29 2018-12-11 南京理工大学 The method for improving Precast Concrete Segmental Bridges bridge pier energy dissipation capacity
JP2019052532A (en) * 2018-11-06 2019-04-04 首都高速道路株式会社 Bridge fall prevention device with three-dimension bracket

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644240B2 (en) * 2010-08-03 2014-12-24 株式会社Ihi Damper device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180950A (en) * 2009-02-05 2010-08-19 Kayaba Ind Co Ltd Shock absorber
KR101017730B1 (en) 2010-05-26 2011-02-28 동일고무벨트주식회사 Cylindrical hybrid vibration control apparatus using viscoelasticity and friction
CN102720124A (en) * 2012-07-05 2012-10-10 大连理工大学 Fluid viscous damper with working switch
CN102720124B (en) * 2012-07-05 2014-04-02 大连理工大学 Fluid viscous damper with working switch
JP2014084945A (en) * 2012-10-23 2014-05-12 Toyota Motor Corp Suspension device
US9592712B2 (en) 2012-10-23 2017-03-14 Toyota Jidosha Kabushiki Kaisha Suspension apparatus
JP2016121477A (en) * 2014-12-25 2016-07-07 首都高速道路株式会社 Bridge fall prevention device
CN107724762A (en) * 2017-11-10 2018-02-23 智性科技南通有限公司 The viscous and difunctional damper of friction energy-dissipating
CN108951435A (en) * 2018-06-29 2018-12-07 南京理工大学 The method for improving existing assembled bridge pier energy dissipation capacity
CN108978447A (en) * 2018-06-29 2018-12-11 南京理工大学 The method for improving Precast Concrete Segmental Bridges bridge pier energy dissipation capacity
JP2019052532A (en) * 2018-11-06 2019-04-04 首都高速道路株式会社 Bridge fall prevention device with three-dimension bracket

Also Published As

Publication number Publication date
JP4312426B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
US11578776B2 (en) Movement stage for a hydraulic shock absorber and shock absorber with the movement stage
JP3479647B2 (en) Vibration damper
EP2232095B1 (en) Shock absorber with increasing damping force
JP3462243B2 (en) Shock absorber device
CA2537339C (en) Track system, and vehicle including the same
JP5469743B2 (en) Bicycle damper
US8066105B2 (en) Hydraulic suspension damper
KR101649930B1 (en) High velocity compression damping valve
EP1659310A3 (en) Damper (shock absorber) intended for vehicles
US6612408B2 (en) Frictional damping strut
JP2004036753A (en) Hydraulic frictional force variable damper
JPS63167139A (en) Vibration damper and braking method thereof
CN107567552B (en) Adjustable vibration damper
US10907699B2 (en) Sliding frequency dependent piston assembly
JP6626671B2 (en) Building damping structure
JP2020008167A (en) Multipurpose viscous damper
JPH07208532A (en) Damping force adjusting device for hydraulic shock absorber
JP7268973B2 (en) seismic isolation damper
JP4129936B2 (en) Pressure regulating valve and hydraulic damping device
EP1077175B1 (en) Telescopic fork arrangement
JP2003148545A (en) Hydraulic damping device
JPH1194001A (en) Damper device
JPH0571576A (en) Vibration controller for piping system and equipment
JP4020745B2 (en) Shock absorber lock mechanism
JPS6110024Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A977 Report on retrieval

Effective date: 20070903

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080507

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090513

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees